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A number of studies have directly compared measurements of polycrystals’ deformation to the solution
of a crystal plasticity model of the same polycrystal. An accurate representation of the full 3D microstruc-
ture and the boundary conditions has been shown to be important to obtain a good correspondence
between the behaviour of the real and the simulated polycrystal. However, much less is known about
the relationship between the global and the local solutions of crystal plasticity models and the influence
of material parameters on the local response of the polycrystal. To address these questions, uncertainty
quantification and sensitivity analysis are performed on finite element models of oligocrystals with a
crystal plasticity material model. The results show significant variations in the simulated stress and
strain fields due to variations in the material parameters. Sensitivity analysis is used to quantify the
contribution of crystal orientation, latent hardening and other material model parameters to the variability
of the crystal plasticity finite element model solution. The uncertainty in the stress and strain fields and
their sensitivities vary between the oligocrystals, but nevertheless, some distinct trends can be identified.
The most prominent trend is that, in general, the solution is most sensitive to the variations of the latent
hardening description and the crystallographic orientations of the constituent crystals.

1. Introduction

In the last decade, advances in both computational methods and experimental techniques have made it
possible to create very detailed and precise finite element (FE) models of real polycrystals and directly
compare their simulated responses to experimental observations. Due to current computational limita-
tions, the polycrystals studied are usually either very small [Guery et al. 2014; 2016; Heripre et al. 2007;
Musienko et al. 2007; Zhang et al. 2015; Pinna et al. 2015; Lim et al. 2014], or their constituent grains
are very big and few in number [Sachtleber et al. 2002; Hoc et al. 2003; Saai et al. 2010; Badulescu et al.
2011; Cuadra et al. 2016; Zhang et al. 2016; Dumoulin et al. 2013]. The small number of grains allows
measuring and comparing the local strain fields on the surfaces of the specimens to the simulation results.
Results from these kind of experimental studies may be used to calibrate single crystal plasticity (CP)
models in a direct and consistent way, and are important for the modelling of localisation and fracture
using crystal plasticity finite element methods (CP-FEM), which rely on the accuracy of the local solution
of the stress and strain fields. Local measurements of strain fields in polycrystals may also reveal the
influence of various microstructural features on the mechanical behaviour of the crystals, such as grain
boundaries and inclusions.
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The numerical aspects of this type of studies are examined in [Lim et al. 2016]. The role of mesh res-
olution, grain boundary representation and boundary conditions (BCs) is studied using a microstructure
generated with a phase-field model. In [Heripre et al. 2007; Musienko et al. 2007; Zhang et al. 2015],
simulations with realistic (obtained from the in-situ measurements with e.g. digital image correlation)
and simplified BCs were compared, and realistic BCs were shown to be important for the accuracy of the
simulation results. Another factor relevant for the accuracy of the predictions of the CP-FEM model is
the real 3D microstructure, lying beneath the surface of the specimen, on which the strain measurements
are performed. In [Heripre et al. 2007; Musienko et al. 2007; Zeghadi et al. 2007], it was demonstrated
that it is not possible to accurately predict the strain field on the surface of a specimen with significant
thickness without accounting for the whole structure.

The role of the CP model parameters has only been studied briefly. In [Lim et al. 2014], the way
the grain orientations are assigned to the elements of the CP-FEM model was studied. The most often
used method is assigning the average orientation to all elements within one grain, which was compared
to assigning a locally measured orientation to each corresponding element. The relative influence of
work-hardening parameters and BCs was compared in [Zhang et al. 2015]. Yet to the best of the au-
thors’ knowledge, no extensive quantitative studies of the sensitivity of the local CP-FEM solutions
to the parameters of the constitutive model have been performed. The CP model parameters are usu-
ally obtained by comparing the simulated and experimental force-displacement curves. In the fitting
procedure, the material parameters are either chosen based on previous studies (usually the case with
the latent hardening description), varied within some physically plausible range (as with the dislocation
accumulation and annihilation terms in the Kocks–Mecking type models [Teodosiu et al. 1991]), or varied
more or less arbitrary (as for the parameters of the Pierce–Asaro–Needleman model [Needleman et al.
1985]). One caveat when using such methods is that different sets of parameters may result in similar
global force-displacement responses but different local solutions [Khadyko et al. 2016a]. To address this
possibility, the investigation in [Guery et al. 2014] attempted to use both the local and global response
of the polycrystal in the fitting procedure and found that obtaining a set of parameters that satisfies both
the global force-displacement curve and the local strain field equally well was not possible. Given these
limitations, it is desirable to assess the impact of the uncertainty in the CP model parameters through
the mathematical framework of uncertainty quantification (UQ) and sensitivity analysis (SA). UQ can
quantify the variability of model predictions for given uncertainty about model parameters, while SA
evaluates how individual parameters contribute to this variability.

The perspective of UQSA views a computational model as a function that relates inputs, z, to outputs
or quantities of interest y = f (z). However, instead of treating z as exactly known, the uncertainty about
input values is accounted for by treating them as random variables with a probability distribution that
represents the likelihood or plausibility of different values of the inputs, e.g. if an input is known only
to be bounded between two values it may be represented as a uniform random variable. Thus the output
of the model is not a single deterministic value but a random variable with a probability distribution
that may be analysed to quantify the uncertainty and further the contribution of individual inputs to that
uncertainty may be quantified by sensitivity analysis.

Various UQ and SA tools have been applied in a wide range of scientific fields including structural
analysis [Ghiocel and Ghanem 2002], hydrology [Hall et al. 2009], environmental engineering [Fassò
and Cameletti 2010], biomechanics and many more. An overview and guide to the application of UQSA
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methods may be found in [Eck et al. 2016]. The methods themselves are not specific to any particular
field and may be applied to analyse any kind of model relating uncertain inputs to uncertain outputs. For
example a parametric study of the phenomenological plasticity and fracture models was performed in
[Pardoen 2006].

The main focus of the UQ studies in crystal plasticity has been the variability of the microstructure
(grain morphology and crystallographic texture) and the material processing parameters and their influ-
ence on the global response of the polycrystalline materials. A number of studies have been performed
by Zabaras and co-authors [Chen and Zabaras 2014; Wen and Zabaras 2012; Kouchmeshky and Zabaras
2010]. These studies develop a methodology, summarized in [Zabaras 2010], which reduces the com-
plexity of a polycrystals’ microstructure to a set of functions, which may be treated by the UQ methods.
The propagation of uncertainty from the microstructure to the global response of the material is a topic
of several other studies [Madrid et al. 2014; Salvati and Korsunsky 2017; Hiriyur et al. 2011; Stevens
2016]. A review of the UQSA methods applied in material science [Chernatynskiy et al. 2013] suggests
that this field is still in its nascent stage.

Some attempts to assess the sensitivity of the CP-FEM solution to e.g. uncertainty in the latent hard-
ening matrix were made in [Pham et al. 2017; Renner et al. 2016]. In both studies, each independent
component of the matrix was assigned a high value, while all others were held at unity. Then the response
of the model for all cases was qualitatively compared. This is a local form of UQSA. Local methods
examine the effect of a change around a reference value for one model input while keeping all other inputs
fixed. In many cases the dependency of the output on the input parameters may be non-additive, non-
monotonic, and non-linear, at least in some locations of the input space. Therefore the results obtained
by local methods could be misleading as these effects will not be reflected by the local analysis. Global
methods consider the whole input space and can account for non-additive, non-monotonic, and non-linear
dependencies of the output on the input and are thus in general more reliable and informative than local
methods.

Global methods of UQSA can be categorized as intrusive or non-intrusive. Intrusive approaches
require the uncertainty in the model inputs to be substituted into the model to derive new governing
equations accounting for uncertainty. On the other hand, non-intrusive methods do not require modifi-
cation of the existing models. Model outcomes are obtained using the usual (deterministic) solver for a
set of different input samples. UQSA is then based on the outputs obtained for each input sample. This
approach can be applied to any model with any numerical implementation, and it is therefore much better
suited for the present study. In this work the polynomial chaos (PC) method [Sudret 2008] is used. The
method consists of the following steps:

(1) Identification of the outputs of interest (in our case some way of representing the stress and strain
fields as a convenient set of values is necessary).

(2) Identification and assessment of the distribution of the uncertain inputs (in our case the uncertain
inputs are the material model parameters and their distribution should be chosen).

(3) Sampling of the input space to acquire samples (i.e., discrete sets of material parameters should be
picked from the chosen distribution).

(4) Evaluation of the deterministic model to obtain the outputs, corresponding to the inputs from the pre-
vious step (i.e., CP-FEM simulations with the sampled sets of material parameters are performed).
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(5) Calculation of UQSA measures.

(6) Assessment of convergence of UQSA measures.

A more detailed overview of the methods may be found in [Eck et al. 2016].
As the appropriate values of material parameters for a given CP-FEM model are generally quite

uncertain, this study investigates the resulting uncertainty of the stress and strain fields of a CP-FEM
solution due to the uncertainty in the material parameters. Additionally, sensitivity analysis investigates
the relative contributions of each material parameter. The subject of UQSA is a set of 2D and 3D
oligocrystals subjected to uniaxial tensile loading. The UQSA method allows performing a global quan-
titative analysis of the said uncertainties and sensitivities, unlike the local qualitative studies previously
performed with CP-FEM. In addition to improving understanding of the effects of material parameters in
CP-FEM simulations, the article also aims more broadly to introduce the aforementioned UQSA methods
and tools into CP-FEM.

2. Uncertainty quantification and sensitivity analysis

To account for the uncertainty about parameters they are treated as a random vector, Z, where the proba-
bility distribution of Z represents the likelihood or plausibility of different values of the input. Thus the
quantity of interest is a random variable defined by applying the function to the random variable Z, i.e.,
Y = f (Z).1 The uncertainty about the quantity of interest may be quantified by the expected value and
variance of Y :

E(Y )=
∫
∞

−∞

yρY (y) dy,

Var(Y )=
∫
∞

−∞

{Y −E(Y )}2ρY (y) dy,

(1)

where ρY (y) is simply the probability density function of Y .
Beyond accounting for the inherent uncertainty about the model prediction, sensitivity analysis (SA)

can determine the contribution of particular components of Z, i.e., specific inputs, to the uncertainty of Y .
Variance based sensitivity analysis decomposes the variance of the model output, Var(Y ), into portions
attributable to specific inputs or combinations of inputs. There are two widely used sensitivity indices
based on this decomposition of variance. The first is called the first order or main sensitivity index of
input Zi and is given by

SM,i =
Var{E(Y |Zi )}

Var(Y )
. (2)

This index measures the fraction of total variance that is attributable to variability of Zi independent
of the variability of all other inputs and if Zi were known exactly the Var(Y ) would be expected to
decrease by that proportion. The main sensitivity index SM,i is useful for prioritizing which parameters
may be most influential on the model behaviour as a large value indicates that changes in Zi alone have

1Note that deterministic or known values are traditionally denoted with lowercase letters, while uppercase letters represent
random variables. Values realized from the random variable Z or specific points within the range of Z are denoted by z as their
values are known and have no uncertainty.
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significant impacts on the model output. The second index is called the total sensitivity index of input Zi

and is defined as

ST,i =
E{Var(Y |Z¬i )}

Var(Y )
, (3)

where Z¬i is the vector of all inputs except Zi . This index measures the expected amount of variability
remaining if all other variables except Zi were known exactly. It may be useful for identifying irrelevant
parameters as a low value of ST,i suggests that Zi is not an influential input on the model output, and
conversely measurements of Y do not provide significant information about Zi in the context of parameter
estimation and design of experiments, e.g. [Rodriguez-Fernandez et al. 2007]. Thus sensitivity indices
may also be used to identify the viability of estimating parameters from particular measurements.

The case where the first order index is quite small while the total index is large indicates that the
parameter has strong interactive effects. In other words, the parameter’s influence is largely dependent
on the values of other parameters, thus the effect of changing its value alone may cause very different
responses. For example, a parameter may be important in a component of the model that is activated
only for certain levels of other parameters.

A number of methods may be employed to characterize Y = f (Z) or its probability distribution such
as Monte Carlo methods or modifying the governing equations to solve the stochastic problem directly
[Eck et al. 2016]. In this study we use a nonintrusive method2 called polynomial chaos which represents
the function f (z) as a series of orthogonal polynomials:

fN (z)=
k(N )∑
i=0

ci8i (z), k =
(

D+ N
N

)
=
(D+ N )!

N ! D!
, (4)

where N denotes the highest order polynomial, k denotes the number of terms, and D is the number
of components in Z. The basis polynomials are chosen to be orthogonal with respect to the probability
density ρZ(z) of Z such that∫

∞

−∞

8i (z)8 j (z)ρZ(z) d z = E(8i (Z)8 j (Z))= γiδi j (no sum), (5)

where E is the expected value, γi is a normalisation constant associated with 8i , and δi j is the Kronecker
delta. This orthogonality ensures that the probabilistic moments of YN = fN (Z) are simply algebraic
combinations of the coefficients, ci , and thus once the coefficients are obtained the expected value, vari-
ance, and sensitivity indices are easily calculated. To evaluate the coefficients a linear least squares
problem is formulated by evaluating the model at a number of different points in the parameter space
sampled according to the probability distribution of Z and the output values are regressed on the basis
functions. The convergence rate of YN = fN (Z) with respect to the maximum order N is dependent on
the smoothness of f (z), but typically only order 4 or 5 is sufficient to achieve converged and accurate
estimates of expected value, variance and sensitivity indices. This must be checked by verifying that the
estimates are consistent between successive orders of approximation. In this study, it was ensured that
the UQSA measures calculated from fN (Z) and fN−1(Z) have a relative precision within 1%.

2Nonintrusive means that the underlying deterministic model does not need to be modified.
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In this study the Python package chaospy [Feinberg and Langtangen 2015] is employed to sample from
the distribution of Z, generate basis polynomials for specified orders of truncation, solve the regression
problem and finally evaluate the variability and sensitivity indices.

3. Numerical models

3.1. Single crystal plasticity model. The single crystal plasticity model used in this work is formulated
within a finite deformation framework. The total deformation gradient F is multiplicatively decomposed
as follows [Needleman et al. 1985]:

F = Fe F p, (6)

where Fe and F p are the elastic and plastic part of F, respectively. The plastic part F p transforms
the body from the initial to the intermediate configuration by plastic slip, whereas the elastic part Fe

transforms the body from the intermediate to the current configuration by elastic deformation and rigid
body rotation. The plastic velocity gradient L p on the intermediate configuration is defined by

L p
= Ḟ p(F p)−1

=

n∑
α=1

γ̇ amα
0 ⊗ nα0 , (7)

where the orthonormal vectors mα
0 and nα0 are the slip direction and slip plane normal vectors, respectively,

for a slip system α in the initial and intermediate configurations, γ̇ α is the slip rate on slip system α, and
n is the total number of slip systems.

The elastic Green strain tensor Ee defined with respect to the intermediate configuration is given by

Ee
=

1
2
(Ce
− I), Ce

= (Fe)T Fe, (8)

where Ce is the elastic right Cauchy–Green deformation tensor and I is the second-order unity tensor.
The second Piola–Kirchhoff stress tensor S on the intermediate configuration reads as

S= J (Fe)−1σ (Fe)−T , (9)

where σ is the Cauchy stress tensor and J = det F is the Jacobian determinant. A linear hyperelastic
relation for small elastic strains is defined by

S= C S
el : Ee (10)

where C S
el is the fourth-order tensor of elastic moduli. For the FCC lattice, on which this study focuses,

this tensor has three independent components describing the elastic anisotropy of the crystal.
The plastic flow is described by [Hutchinson 1976]:

γ̇ α = γ̇0

(
|τα|

ταc

)1
m

sgn(τα), (11)

where γ̇0 is the reference slip rate, m is the instantaneous strain rate sensitivity, ταc is the yield strength
of slip system α, and the resolved shear stress τα is obtained as

τα = Ce S : (mα
0 ⊗ nα0 ). (12)
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The hardening is defined by

τ̇αc = θ(0)

n∑
β=1

qαβ |γ̇ β |, (13)

where θ(0) is the master hardening modulus, qαβ is the matrix of self-hardening and latent-hardening
coefficients, and the accumulated slip 0 is defined by the evolution equation:

0̇ =

n∑
α=1

|γ̇ α|. (14)

The master hardening modulus θ(0) is defined as follows [Tome et al. 1984]:

θ(0)= θ1+

(
θ0− θ1+

θ0θ1

τ1
0

)
exp

(
−
θ0

τ1
0

)
, (15)

where θ0, θ1 and τ1 are material parameters. The initial slip resistance τ0 is assumed equal for all slip
systems.

The crystal plasticity material model was implemented as a user-material subroutine, using the explicit
integration scheme of [Grujicic and Batchu 2002].

3.2. CP-FEM models. Investigating the effects of uncertainty about CP model parameters requires con-
sidering microstructure models that satisfy several constraints. The models should be generic enough
such that the results obtained are representative of a range of similar models. Further, the models should
be small enough to make running a multitude of simulations feasible. The models should also include
enough grains to provide a wide range of interactions between the grains and the resulting inhomogeneous
stress and strain fields. Finally, the meshes must be fine enough to resolve these fields in detail yet coarse
enough for a fast and efficient simulation.

Therefore the morphology chosen for the study was a generic Voronoi tessellation type structure with
ten approximately equiaxed convex grains representing oligocrystals. Both a 2D structure with plane-
strain conditions and a 3D structure were used. The structures are shown in Figure 1. The model was
subjected to tension by applying a velocity along the x-axis to its right edge (or face in case of 3D model)
which smoothly ramps up to a constant value. The left edge (or face) of the model is constrained in
displacement in the x-direction and the other edges (faces) are free. The effect of BCs on the local
stress and strain fields in polycrystals was studied elsewhere [Heripre et al. 2007; Zhang et al. 2015]. To
explore different configurations and interactions of hard/soft orientations, 5 different sets of 10 random
crystallographic orientations were assigned to the 10 grains of the 2D and 3D models. This provided
5 models with markedly different stress and strain fields on which the sensitivities could be calculated
and compared.

The mesh of the 2D CP-FEM model consists of 3004 two-dimensional plane-strain elements, and that
of the 3D model consists of 8000 brick elements. Reduced integration and the Flanagan–Belytschko
stiffness-based hourglass control [Flanagan and Belytschko 1981] were used in both cases. The explicit
solver of the nonlinear FEM code LS-DYNA [Hallquist 2016] was used in the calculations. Mass-scaling
was applied to reduce the computation time and the kinetic energy was controlled at every step to ensure
that it was very small compared to the total energy and that the simulation remained quasi-static.
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Figure 1. Illustrations of the 2D plane-strain and 3D microstructures.

Parameter AA6063-T4 AA6063-T7
1ϕ1 (

◦) −2 . . . 0 . . . 2 −2 . . . 0 . . . 2
τ0 (MPa) 20 . . . 30 . . . 40 40 . . . 60 . . . 80
τ1 (MPa) 17 . . . 26 . . . 35 6 . . . 9 . . . 12
θ0 (MPa) 163 . . . 244 . . . 325 129 . . . 194 . . . 257
θ1 (MPa) 8 . . . 12 . . . 16 1 . . . 2 . . . 3
q 1 . . . 1.5 . . . 2 1 . . . 1.5 . . . 2

Table 1. Ranges of the material model parameters for the 2D and 3D structures.

3.3. Distribution of material parameters. In this study, aluminium is used as a model material. The
material parameters are therefore based on the parameters of Al alloys studied previously in [Khadyko
et al. 2016b]. The baseline values and ranges of the material parameters are summarized in Table 1.

The elastic constants depend on the interatomic potentials, are similar in all Al alloys, and may be
measured with high accuracy. Thus, the elastic constants were excluded from the sensitivity study. Crys-
tal plasticity simulations and experiments are often limited to quasi-static cases (very low strain rates),
for which rate-independent and rate-dependent single crystal plasticity models produce identical results
[Pan and Rice 1983; Gambin 1992]. The choice of the reference slip rate γ̇0 and the rate sensitivity m
does not affect the solution as long as m is sufficiently small to preserve rate-insensitivity. Thus these
parameters were also excluded from the sensitivity study. The values used for the elasticity constants
and the constants governing rate dependence are summarized in Table 2.

c11 (MPa) c12 (MPa) c44 (MPa) γ̇0 (s−1) m
106430 60350 28210 0.010 0.005

Table 2. Elastic and rate sensitivity parameters of the crystal plasticity model.
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The Euler angles describing the orientation of the crystal are parameters that do not appear explicitly
in the material model, but are nevertheless crucial. In this work, the Euler angles are defined following
the conventions established in [Bunge 1982]. The crystal orientations are usually measured by EBSD on
a grid covering a patch of a polycrystal. Errors in the measurements may introduce various sources of
random and systematic errors to the orientation. In CP-FEM models, orientations are most often assigned
by finding the average of the orientations measured within a crystalline grain and assigning the resulting
orientation to all elements within this grain. An alternative approach uses the grid points of the EBSD
scan as the centroids of the elements of the CP-FEM model and assigns the orientation measured in each
point to the corresponding element. The first approach is the most widespread in CP-FEM models, thus
it is utilized in this study. The first Euler angle ϕ1 (i.e., the rotation around the z-axis according to the
coordinate system defined in Figure 1) is assumed to vary around the base value within a ±2◦ range for
all the grains in the model. This may be e.g. representing the error of the specimen positioning in the
electronic microscope, or other systematic error.

The next group of parameters includes the initial slip resistance τ0 and the hardening parameters θ0, θ1

and τ1. These parameters do not have a direct physical connection to the microstructure of the material
and can only be derived indirectly from the force-displacement curve and the deformation of the specimen.
Considering all the errors associated with experimental and numerical procedures, these parameters are
highly uncertain. In this work, we use two different baseline sets of the initial slip resistance and the
hardening parameters. One represents a ductile alloy reinforced mainly by solid solution of the alloying
elements, with values corresponding to AA6063-T4, and the other represents a stronger but less ductile
alloy reinforced mainly by precipitate particles, with values corresponding to AA6063-T7 [Khadyko et al.
2016b]. The material parameters are assumed to vary within a range of ±30% of the baseline value.

The next parameter is the latent hardening coefficient q . This parameter is very difficult to evaluate ex-
perimentally, so its value is based on the estimations provided by e.g. [Kocks and Brown 1966; Franciosi
et al. 1980] or some geometrical arguments [Liu et al. 2015]. Quite often, it is assumed for simplicity
to be unity (i.e., latent hardening equals self-hardening), as in [Erinosho et al. 2013]. The most common
value used in CP-FEM simulations is q = 1.4, though q = 1.6 was also proposed by [Kocks and Brown
1966]. In this work, it is assumed that the latent hardening of the crystal can be described by the latent
hardening matrix with one independent parameter, and that the most correct value of this parameter is
within the range q ∈ [1, 2] with q = 1.5 as the baseline value.

3.4. Identification of the outputs of interest. Simulations with material parameters lying in the centre of
the respective ranges (see Table 1) are used as a baseline to which all other simulations are compared by
computing the normalized root mean squared deviation (RMSD) of the scalar field variable φ, defined by

RMSD(φ)=

√
1
Ne

Ne∑
n=1

(
φn

φ̃
−
φ0n

φ̃0

)2

, (16)

where the local value φn of the variable φ is obtained in the n-th element of the Ne elements of the model,
φ̃ is a normalization factor calculated from the field φ. Further, φ0 represents the baseline field and φ̃0 the
corresponding normalization factor. The particular normalization values φ̃ and φ̃0 used for each scalar
field are discussed below. Note that RMSD is identical to root mean squared error, but in this case there
is no error per se rather just a metric of the average deviation over the mesh.
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The first scalar field variable is the equivalent plastic strain field, ε p, conjugate with the von Mises
norm of the stress field. The value of the equivalent plastic strain ε p is calculated in each element of the
model at different points of the deformation history (at approximately 5%, 10% and 15% global strain).
Then, the field produced by the model with varied material parameters is compared to the field produced
by the baseline simulation. In this case, φ is the equivalent plastic strain ε p; φn and φ0n are the equivalent
plastic strains in the n-th element of the current and the baseline simulation, respectively; φ̃ and φ̃0 are
both the global strain (which should be equal to the average of the strain for all elements in this case and
also identical for all simulations including the baseline). The RMSD(ε p) is a non-negative scalar that
shows how much the normalized strain field in the current simulation with the current set of material
parameters differs from the normalized strain field in the baseline case. Minimization of this or a similar
function may be used in a material parameters identification procedure, as e.g. in [Guery et al. 2014].

The second field is the equivalent (von Mises) stress field, here denoted σ . Whereas the average plastic
strain in all simulations was identical, the average stress varied greatly and depends strongly on the yield
strength and work-hardening. In this case, φ is the equivalent stress σ ; φn and φ̃ are the equivalent
stress in the n-th element and average equivalent stress in the current simulation; φ0n and φ̃0 are the
corresponding quantities for the baseline simulation. The third and fourth scalar fields applied in the
sensitivity study are the hydrostatic pressure field P and the stress triaxiality field T = −P/σ . The
RMSD of these fields is calculated in the same manner as for the equivalent stress field.

The final target of the sensitivity study is the global force-displacement curve. This curve is often used
for the material parameter fitting, and as mentioned before, it was used alongside the local strain field
for this purpose in [Guery et al. 2014] with little success. A typical fitting procedure would minimize
the squared error between the experimental and the simulated force-displacement curve by varying the
material parameters. Here the same type of measure is applied. The baseline curve is again used as
reference (or provisional “experimental” curve) and the RMSD is defined by

RMSD(F)=

√
1

Nd

Nd∑
i=1

(
F(di )− F0(di )

F0(di )

)2

, (17)

where F(d) is the total force at displacement d in the current simulation, F0(d) is the corresponding
force in the baseline simulation, Nd is the number of simulation history points where the force and
displacement are obtained, and dNd is the maximum displacement.

3.5. Evaluation of polynomial chaos expansions and UQSA measures. To understand how much the
variability of the parameters, denoted by the vector Z =

(
1ϕ1 τ0 τ1 θ0 θ1 q

)
, influences CP-FEM

simulations, UQSA of the outputs of interests was performed for each of the configurations discussed
in Section 3.2. As no statistical evidence was available to characterize the distribution of the parameters
considered, each parameter was described as an independent uniform random variable with ranges given
in Table 1, i.e., all values in the range are treated as equally valid.

UQSA for each configuration was performed by employing the chaospy software package [Feinberg
and Langtangen 2015] to generate samples in the input space and basis polynomials, to estimate coeffi-
cients of the expansion based on a linear regression of the output value, and finally to estimate measures
of uncertainty and sensitivity indices.



UNCERTAINTY AND SENSITIVITY ANALYSIS OF MATERIAL PARAMETERS IN CRYSTAL PLASTICITY 389

For each material type (T4 and T7), a set of sample values was generated according to the Hammersley
quasi-random sequence [2013], as this sequence is nested and allows for successively increasing the
number of points in the quasi-random sequence by only evaluating the number of additional samples
required. The maximum polynomial order was N = 5, which requires estimating k = 462 coefficients,
and thus 924 samples (simulations) for the chosen regression method. This order was chosen to ensure
that the estimates of sensitivity indices agreed within 1% between successive orders of polynomials.

Evaluation of the CP-FEM models for each input sample was performed as described in Section 3.2,
followed by post processing of each simulation to calculate the outputs of interest (see Section 3.4)
corresponding to each input sample. For each post-processed output, the coefficients of a truncated
polynomial expansion were estimated by the regression method, and subsequently the expected value,
variance, standard deviation, and sensitivity indices were calculated from the coefficients.

3.6. Averaging of results across orientations. As discussed in Section 3.1, this analysis considered CP-
FEM models based on two generic structures (one 2D and the other 3D as shown in Figure 1). Applying
5 unique combinations of crystallographic orientations to each of these generic structures generated 5 CP-
FEM models for both 2D and 3D simulations. For each of these 5 models, uncertainty quantification
and sensitivity analysis were conducted once over the range of T4 material parameters and again over
the range of T7 material parameters. Thus, uncertainty and sensitivity measures were estimated for 20
distinct cases, i.e., 5 cases for each of 2D-T4, 2D-T7, 3D-T4, and 3D-T7 models.

As the exact sensitivities and uncertainties generally depend on the specific CP-FEM model, the goals
of this UQSA were to investigate: (1) how much the quantities outlined in Section 3.2 vary on average
over the range of material parameters, (2) if model sensitivities are consistent over the range of crystallo-
graphic orientations and structures, and (3) which, if any, parameters are consistently more influential on
these quantities. As such, it was necessary to combine and summarize the UQSA results by averaging
the results from each of the individual analyses conducted as well as calculating meaningful measures
of the variability of these quantities across crystallographic orientations.

In this analysis RMSDs quantified the deviation of global force, equivalent plastic strain, equivalent
stress, hydrostatic pressure, and stress triaxiality from a reference value calculated based on the average
value of all parameters. This measure provides a convenient measure of the deviation of the model
solution from the baseline solution at nominal parameter values. The UQ estimates the expected value
and standard deviation of the RMSDs for a given set of crystallographic orientations. The expected values
of the RMSDs measure how much the quantities of interest differ on average from the reference values.
The standard deviation of the RMSDs quantifies the spread of these deviations over the possible parameter
values, i.e., a low standard deviation suggests that most possible parameter sets produce values deviating
from the reference values to a similar extent, whereas a large standard deviation of the RMSDs suggests
that there are quite different levels of deviation for distinct points in the parameter space. To compare both
of these aspects across sets of crystallographic orientations, the average value of the expected RMSDs as
well as the average value of the standard deviation of RMSDs across all orientation sets within each group
(2D-T4, 2D-T7, 3D-T4, and 3D-T7) were calculated. For each quantity of interest (see Section 3.2), the
average RMSD and its associated average standard deviation are reported as

E(X)± std(X)=
1
n

n∑
i=1

E(X i )±
1
n

n∑
i=1

std(X i ), (18)
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where n is the number of sets of crystallographic orientations, X denotes the RMSD of one of the
mechanical fields analysed, and X i denotes the RMSD of the same field calculated for the i-th set of
crystallographic orientations.

To summarize the sensitivity analyses for various sets of crystallographic orientations, the average
value, S j , and sample standard deviation, s(S j ), of each sensitivity index over all sets of crystallographic
orientations for a given material and geometry were calculated as

S j =
1
n

n∑
i=1

S j,i , s(S j )=

√
1
n

n∑
i=1
(S j,i − S j )2, (19)

where j indicates a specific parameter and i indexes the sets of crystallographic orientations.

4. Results and discussion

The UQ results for the RMSDs are presented in Figure 2 against the global strain level. The RMSD
for most of the fields naturally tends to increase with strain, though in some models it remains almost
constant.

The RMSD of the global force is almost constant and independent of the strain level. For both the
2D and 3D models and for both materials, the average is around 12% with an average standard deviation
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Figure 2. Root mean squared deviation (see (16) and (17)) for the outputs of interest.
Bars represent the average expected value of RMSD across the 5 sets of crystallographic
orientations considered, and the black error bars represent plus/minus the average stan-
dard deviation of RMSD across the orientations.
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Figure 3. The engineering stress-strain curves of the baseline simulation (middle curve)
and the simulations with the highest RMSD(F) (top and bottom curves) for one of the
orientation sets.

of 6%. The maximum variation in the force is illustrated by the engineering stress-strain plots for one
orientation set for each model type in Figure 3. The plots show the baseline simulation curve as well as
the curves with the highest RMSD(F), i.e., the engineering stress-strain curves for all other simulations
lie within the area bounded by these two curves. The plot may be compared to the results of the uniaxial
tension tests in [Khadyko et al. 2016b]. The material in that reference is extruded and possesses a strong
crystallographic texture, therefore its response cannot be directly compared to the response of the model
olygocrystals. Nevertheless, the yielding and work-hardening behaviour of the oligocrystals is still quite
similar to the results in [Khadyko et al. 2016b].

In the 2D models, the highest average value and average standard deviation are found for RMSD(ε p).
In particular, the average value of RMSD(ε p) reaches 15% for the T4 material and over 40% for the
T7 material, meaning that choosing arbitrary values of material parameters from the nominal ranges
results in the level of strain in each element on average differing by 15% and 40%, respectively, from the
baseline value in the two cases. The variability of RMSD(ε p) for the T7 material is also high, reaching
15% at higher strains, indicating that the plastic strain fields obtained from different material parameter
sets are not only different from the baseline, but also from each other. The high RMSD(ε p) for the T7
material is most likely due to its low work-hardening and tendency to localize. The exact position of
localization may change, creating large differences between the current and the baseline plastic strain
fields. For the T4 material, the plastic strain field is more homogeneous, giving a lower RMSD(ε p).
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For the 3D models, RMSD(ε p) is much smaller, just below 5% for the T4 material and just above 5%
for the T7 material. The average variabilities for the 3D models are also small, on the order of 2%–3%.
Considering that the material model is the same, the difference stems from the plane-strain condition
and more constrained plastic flow in the 2D model, which makes it more prone to plastic instability
and localization. To illustrate the described trends, a collection of equivalent plastic strain contour plots
are presented in Figure 4 on the deformed configuration. The equivalent strain contour plots show the
baseline simulation and the simulation with the highest RMSD(ε p) for one of the orientation sets.

2D-T4

2D-T7

3D-T4

3D-T7

Figure 4. Equivalent plastic strain in the baseline simulation (left) and a simulation with
the highest RMSD(ε p) (right) for the 2D-T4, 2D-T7, 3D-T4 and 3D-T7 models.
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The equivalent stress field is very stable, with both low average RMSD(σ ) and low average variability,
independent of the model and material type. The average RMSD(σ ) is less than or equal to around 5%.
The RMSDs for the hydrostatic pressure field and the stress triaxiality field show very similar average
values and variabilities. This is not surprising when considering the definition of the stress triaxiality
and the low RMSD of the von Mises stress. The average values of RMSD(P) and RMSD(T ) for the
2D models are 10% for the T4 material and 15% for the T7 material. Notably, the dependence of the
RMSDs on material type is reversed for the 3D model, where the average is almost 20% for the T4 mate-
rial and 15% for the T7. The variability of the RMSDs for the hydrostatic pressure and stress triaxiality
is also fairly consistent for all models and is around 5%. These trends may have some consequences in
the CP-FEM modelling of ductile fracture. The low variability of the stress field shows that it is possible
to obtain a good estimate of the equivalent stress distribution in the oligocrystal even when the material
parameters are not known precisely. On the other hand, the stress triaxiality estimation requires a higher
accuracy of the estimation of the material parameters.

Calibrating material model parameters based on force-displacement curves raises the question of
whether there is a correlation between the RMSD of the force and the plastic strain field. If these
quantities vary independently of each other, the correlation will be negligible, and the best fit for the
force-displacement curve does not necessarily produce the best fit for the plastic strain field. On the
other hand, if there is a correlation, then a better fit of the force-displacement curve should produce a
model with better predictions of the local strain field. The correlations of RMSD(F) and RMSD(ε p) for
each set of crystallographic orientations were calculated by

corr(x, y)=
∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2

∑n
i=1(yi − ȳ)2

, (20)

with x = RMSD(F) and y = RMSD(ε p), x̄ and ȳ denote the average values of the RMSD for the
n = 928 simulations of the given set of crystallographic orientations. For each material type the average
correlations and their associated standard deviations were also calculated in the same manner as those of
the sensitivity indices (19). The resulting values are presented in Figure 5. The correlation coefficients
are small in all cases, although they are higher for the 3D models than for the 2D models. Even the
highest values are just around 30%. Thus, in the case of the models and orientation sets tested, the force
and the strain field varied mostly independently of each other.

The sensitivity indices for the global force are presented in Figure 6, top. Both 2D and 3D models
demonstrate similar trends. In all cases, RMSD(F) is most sensitive to the initial slip resistance τ0.
The main sensitivity indices for all other material parameters are negligible. On the other hand, the
total sensitivity indices for the T4 material for both the 2D and 3D models are increasing with strain and
become significant for q , τ1 and θ0. For the T7 material, the total sensitivities are still negligible for these
parameters. Both the main and total sensitivity indices of θ1 and 1ϕ1 are negligible for all models and
material types. The trend seen for the total sensitivities is likely the result of the different work-hardening
of the T4 and T7 materials. The T4 material has significant work-hardening so the force level has more
room for variation, in contrast to the T7 material for which the force level can only moderately deviate
from the force at yielding. The work-hardening parameters primarily affect RMSD(F) only in interaction
with each other, as only their total sensitivity indices are significant, while their main sensitivity indices
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Figure 5. Sample correlation coefficient as defined in (20) of the global force and plastic
strain for the 5 models for each case between RMSD(F) and RMSD(ε p). The points are
the average value of the correlations and the error bars represent plus/minus one sample
standard deviation of the correlation coefficients. The averages and standard deviations
are determined according to (20).

remain negligible. In other words, the effect of the work-hardening parameters is highly dependent on
the values of the other parameters. For some values of other parameters they may have high influence,
but on average they have no strong independent effect. If the force-displacement curve is used for the
material model calibration, then for the T7 material only the initial slip resistance may be determined
with certainty, the other parameters do not affect it noticeably within the given ranges. On the other hand,
the local fields show very different sensitivities. A conclusion can be made, that for low work-hardening
alloys it is not possible to establish the local material parameters of the CP model, based on the global
stress-strain curve. In contrast, the calibration of the material model to the force-displacement curve of
T4 material allows adjusting the initial slip resistance as well as the hardening parameters, particularly
for larger displacements.

The sensitivity indices for RMSD(ε p) are shown in Figure 6, bottom. The plots of main and total
indices both show that RMSD(ε p) is most sensitive to the parameters q and 1ϕ1. Generally, the sen-
sitivity to q starts from a lower value and rises with increasing strain, while sensitivity to 1ϕ1 starts
at a higher value and decreases for both T4 and T7 tempers. The most probable explanation is that
as deformation develops and crystals rotate, activating multiple distinct slip systems, the interaction
between slip systems becomes more important, while the small variation in the initial orientation and
possible initial slip system activation becomes less important with increasing deformation. For the T4
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Figure 6. Main and total sensitivity indices SM and ST of the global force (top) and of
the normalized equivalent plastic strain (bottom). Circles represent the average value
of the sensitivity indices across the 5 sets of crystallographic orientations considered,
and the error bars indicate plus/minus one standard deviation of the sensitivities across
the orientations. For ease of viewing the x-position of the points is shifted by a small
amount such that the sensitivities may be differentiated.
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temper at 15% strain, the sensitivity to q overtakes the sensitivity to 1ϕ1. In contrast, for the T7 material
the sensitivity to 1ϕ1 is so high initially that it is still dominating even at 15% global strain, while the
sensitivity to q at this strain level is still relatively small in comparison. The third most important material
parameter is τ1, which almost always has a significantly smaller sensitivity index than the parameter is τ1,
which almost always has a significantly smaller sensitivity index than the first two. The total sensitivity
indices of the other parameters are much higher than their main indices, meaning that their effects on the
plastic strain field depend on the values of other parameters. The previous study on the latent hardening
[Khadyko et al. 2016a] indicates that if a more advanced latent hardening description was used, the
variability of the stress-strain fields and their sensitivity to latent hardening could be even higher.

The main and total sensitivity indices for RMSD(σ ), RMSD(P) and RMSD(T ) exhibit the same
trends as RMSD(ε p) and are not shown here. The parameters 1ϕ1 and q dominate, with 1ϕ1 more
important at small strains and for the T7 material. The initial slip resistance τ0 is usually the third most
important, except for the T7 material in the 2D model, where the parameter τ1 sometimes takes its place.

Considering the mesh resolution influence on the uncertainty and sensitivity of the model response,
the following argument can be made. The presented CPFEM model type was used extensively in the
literature. The convergence studies universally show that increasing mesh density improves the resolution
of the mechanical fields but does not change the field “shape” significantly. An example of this may be
found in [Khadyko et al. 2016b]. The field gradients will become sharper, which should in principle
increase RMSD of the corresponding fields.

5. Conclusions

UQSA methods were applied to study the variability and sensitivity of global and local solutions of a
CP-FEM model to the variations in material model parameters. Both a 2D plane-strain model and a 3D
model (using Voronoi tessellation) with 10 grains each were created, representing oligocrystals. Five sets
of 10 random grain orientations were assigned to each oligocrystal. Two baseline material types were
tested: a high work-hardening material based on the AA6063-T4 alloy, and a low work-hardening, high
yield stress material based on the AA6063-T7 alloy. To investigate the effects of parameter variability on
the predictions of model simulations, polynomial chaos expansions for outputs of interest representing
the strain and stress fields and the global force were estimated. UQ measures and sensitivity indices were
calculated from the polynomial chaos expansion. The generated stress and strain fields and the global
force were analysed by normalizing them and comparing to the baseline fields and force. The results show
that the equivalent plastic strain field may have significant variation, mostly due to early onset of strain
localization. If the material work-hardening rate is high and the plastic flow is not constrained, then the
variation of the plastic strain is quite low. The variation in the von Mises equivalent stress field is typically
low, which means that it is possible to obtain a good estimate of the equivalent stress distribution in the
oligocrystal even with uncertain values of the material parameters. On the other hand, the variations
in the hydrostatic stress and stress triaxiality fields are significant, compared to the equivalent stress
field and in some cases also the equivalent plastic strain field. The sensitivity study shows that the
mechanical fields are most sensitive to the uncertainty in the crystallographic orientation and the latent
hardening. The other parameters are mostly important in combination with each other. For the global
force, in contrast, the strongest sensitivity index was obtained for the initial slip resistance. In the case
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of the low work-hardening material, the other parameters are almost irrelevant, while for the high work-
hardening material they become somewhat more prominent for higher strains and in combination with
each other. The correlation between the global force variation and the plastic strain field variation is very
low, showing that the relationship between local and global solutions depends heavily on the material
parameters. Thus it is, in general, impossible to infer the local behaviour from global measurements
without accurate knowledge of the material parameters.

The application of the UQSA to the CP-FEM models is challenging, because of the high computational
cost of the CP-FEM models. Therefore, only five sets of orientations and models of oligocrystals were
used in this study. Nevertheless, the results show consistent trends for all tested sets of crystallographic
orientations, despite the fact that the orientations were all picked randomly from the whole orientation
space. The CP-FEM solutions for the mechanical fields, such as the equivalent plastic strain field (which
may be calculated by means of digital image correlation and used in various applications, e.g. material
model calibration or fracture studies) and the hydrostatic pressure and stress triaxiality fields (which are
crucial for advanced fracture predictions) show significant variability, due to uncertainty in the material
parameters. The solution is most sensitive to the uncertainty in the Euler orientation angle and the latent
hardening description. A similar UQSA study could be performed for specific polycrystal configurations
and BCs tailored to a particular problem. Such a study would highlight and evaluate quantitatively the
more particular trends relevant for that exact model.
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