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PREDICTION OF SPRINGBACK AND RESIDUAL STRESS OF
A BEAM/PLATE SUBJECTED TO THREE-POINT BENDING

QUANG KHOA DANG, PEI-LUN CHANG, SHIH-KANG KUO AND DUNG-AN WANG

A model for prediction of springback and residual stress distribution of a beam/plate subjected to three-
point bending and reverse bending is developed based on a mechanical-geometrical approach. A con-
verged solution that satisfies both the Euler–Bernoulli beam theory and the geometrical constraints is
obtained by a recursive scheme. The model can be applied to bending/unbending analyses of plates when
the beam bending approaches a plane strain condition. Springback and residual stress distribution of a
plate is predicted quite accurately by the model as verified by finite element analyses and experiments.
Accuracy of springback and residual stress prediction of the model is examined with consideration of
various geometry parameters of the beam and the fulcrum/support cylinders. The goal of this investiga-
tion is to develop an accurate and efficient model to predict the profile and residual stress of plates curved
by bending in the postyield range. The developed model can serve as a unit cell of a more sophisticated
model for leveling analyses of metal plates as multiple rollers are involved.

1. Introduction

Accurate estimation of springback and residual stress distribution of metal plates under leveling pro-
cess is necessary for appropriate and efficient adjustment of the roller settings of the leveling machines.
Development of an analytical model of the critical to the production process. The adjustment of the
roller settings of the levelers is complicated and an efficient analytical model can assist the operators in
obtaining high quality of the products. Levelers consist of rollers to deform sheet metal by alternative
bending. The leveling process with multiple rollers can be viewed as a cyclic three-point bending process.
An accurate three-point bending model with an efficient numerical algorithm is essential in implementing
an analytical model of levelers to determine its relevant key characteristics. Three-point bending test was
also designed to achieve a weight efficient structure of sandwiched beams [Li et al. 2011].

When modeling three-point bending, a beam subjected to displacements of a punch cylinder contacts
the punch cylinder and two fulcrum cylinders tangentially and does not penetrate cylinder surface. Con-
way [1947] and Theocaris et al. [1977] investigated deflections of beams under three-point bending by
elliptical integrals method. Ohtsuki [1986] analyzed large deflection bending stress of an elastic beam
under three-point bending based on a Legendre–Jacobi form’s elliptic integrals. Arnautov [2005] also
adopted elliptical integrals to provide a bending stress solution to the problem. Batista [2015] gave an
equilibrium configuration of an elastic beam subjected to three-point bending in terms of Jacobi elliptical
functions. Deflection behaviors of beams under three-point bending have also been investigated by clas-
sical beam theory [Mujika 2006; Mohyeddin and Fereidoon 2014]. These solutions of the three-point
bending problems were obtained by assuming elastic behavior of the beam material. Considering material
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hardening in the analyses, Hill [1950] and Gao [1994] derived solutions of pure bending of beams by
assuming elastic, linear plastic material. Pure bending of a plate made of a power-law-hardening material
was studied by Triantaflyllidis [1980] and Zhu [2007]. Kang and Li [2009] investigated bending stress
of a cantilever beam with power-law nonlinearity.

Prediction of final shape of beams/plates is a complex task in metal forming industries. Residual
stress distribution of beams/plates after springback has a strong influence on their final shape. Analytical
solutions for springback of beams and plates under pure bending were developed by Johnson and Yu
[1981]. Lin and Hua [2000] developed an analytical method to compute large deflection and springback
of a thin plate with strain hardening under four-roll bending process. Gergess and Sen [2016] derived
closed form solutions of load to deformation relation and profiles of steel members under point bending.
For more complex bending problems, however, numerical techniques are adopted. Sitar et al. [2015] pre-
sented a numerical procedure to compute springback of beams with asymmetric cross-sections. Zhang
et al. [2007] developed a model to predict springback of sheet metals after U-bending. They applied
kinematic, isotropic, and combined hardening laws in their model to account for stretching, bending,
and unbending of sheet metals during the U-bending process. Chiew et al. [2016] employed a numerical
modeling procedure to obtain residual stress distribution of steel members produced by three-roller bend-
ing. They proposed a residual stress model to predict residual stress distribution of the curved member.
Kuwabara et al. [1996] presented an analytical model to predict the amount of springback of a sheet
metal subjected to bending-unbending under tension. Given the curvatures of the sheet metal before the
deformation process, they calculated the residual stress distribution and residual curvature of the sheet
metal at the point of interest. Takahashi et al. [1996] performed a die bending test to verify the calculated
residual curvature by Kuwabara et al. [1996]. Kuwabara et al. [1999] established a numerical analysis
method for analyzing bending/unbending process of sheet metal at the point of interest. Their model
incorporates a three-dimensional constitutive model and the Ziegler’s kinematic hardening model.

In this investigation, a one-dimensional model of three-point bending tests capable of calculating
path/curvature of beams/plates, induced stress/strain histories, and hence final residual stress distribution
is developed. The stress/curvature distribution along the span of the beams/plates over the supports can
be calculated by the model. This model can be extended to simulate roller leveling process, which can
be approximated by a sequence of three-point bends between rollers. A phenomenological combined
hardening parameter is adopted to take isotropic and kinematic hardening into account during reverse
bending. In the model, support contact is incorporated into the pure bending problem of beams under
three-point bending in order to obtain springback and residual stress solutions. A recursive scheme
considering Euler–Bernoulli beam theory and geometrical constraints is adopted to obtain converged
solutions of beams under three-point bending and reverse bending. The model with consideration of the
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Figure 1. A schematic of a three-point bending test and a Cartesian coordinate system.
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material strain hardening is based on proportional straining conditions. Two-dimensional, plane strain
finite element analysis of beams subjected to three-point bending and reverse bending is carried out to
verify the model. The analysis is performed for various displacement loadings as well as different values
of radius of fulcrum cylinders. Experiments of three-point bending are performed to test the applicability
of developed analytical model. Finally, discussions and conclusions are given.

2. Model

Besides the assumptions of Euler–Bernoulli beam theory, friction forces at the roller supports, longi-
tudinal forces along the beam, gravity, and span shortening caused by deflection are neglected in the
numerical model. Figure 1 schematically shows a three-point bending test of a beam. The beam has a
length of L + d L , a thickness of h and a width of w. The overhang length of the beam is d L/2. The
radius of the punch cylinder and fulcrum cylinders is R. A Cartesian coordinate system is also shown
in the figure, where x represents the longitudinal direction, y represents the thickness direction, and z is
the width direction of the beam. The origin of the y coordinate is at the middle of the beam as shown in
the figure. Longitudinal strain εx can be written as

εx =−κy, (1)

where εx is the longitudinal strain, and κ represents the curvature. Large deflection of beams under three-
point bending may induce significant plastic deformation in the beam material. It is critical to study
the large plastic deformation of beams under three-point bending. When the beam is considered as an
elastic-linear plastic material, the effective stress σ̄ is given as

σ̄ = σ0+ E p(ε̄− σ0/E), (2)

where σ0 is the yield stress and ε̄ is the effective total strain. E and E p are the Young’s modulus and
plastic modulus, respectively. Assuming the von Mises criterion and plane-strain condition apply, the
stress in the width direction σz is

σz =
1
2(σx + σy), (3)

where σx and σy are the stresses in the longitudinal direction and thickness direction, respectively. Under
pure bending, the stress in the thickness direction σy is negligible, and the effective stress σ̄ is

σ̄ =
√

3
2 |σx |. (4)

Assuming volume conservation and plane-strain condition apply, the effective total strain can be ex-
pressed as

ε̄ = 2
√

3
|εx |. (5)

As described by Hill [1950] and Zhu [2007], the volume conservation is needed here to solve exactly
the pure bending problem of beams or plates in the elastic and plastic region. Relatively large plastic
deformation is considered in this investigation. This assumption contributes to a very small fraction of
error to the results. Because of symmetry, the bending moment M is given as

M =−2w
∫ h/2

0
σx y dy. (6)
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Figure 2. A schematic of cylinders below and above the beam.

The sign convention for the moment M and the curvature κ is related to the orientation of the coordinate
axes.

In order to estimate the contact points at which the beam contacts with the cylinders, it is assumed
that the beam contacts each cylinder tangentially as shown in Figure 2. As seen in the figure, Re is the
expanded radius of the roller and is given as

Re = R+ 1
2 h. (7)

The gradient of the longitudinal axis of the beam is equal to the tangent of the contact angle λi as [Müller
et al. 2013]

dy
dx

∣∣∣
xi
= tan λi , (8)

where y(x) is the longitudinal axis of the beam, (xi , yi ) is the i-th contact point, and λi is the i-th contact
angle. The contact point (xi , yi ) can be expressed as

xi = xc+ Re sin λi , yi = yc− Re cos λi , (9)

where (xc, yc) is the coordinates of the center of the punch/fulcrum cylinder.
The curvature, bending moment, deflected curve of the beam, and the contact points may be deter-

mined through a recursive scheme. First, the location of the three contact points and the beam curvature
κi at the i-th contact point are assumed. The bending moment Mi at the i-th contact point is computed
based on (1)–(6). Neglecting weight of the beam, the bending moment at the two fulcrum cylinders can
be taken as zero and it has an extreme value at the punch cylinder. The curvature of the deflected beam
is estimated based on the linear distribution of the bending moment between the fulcrum cylinder and
the punch cylinder. Once the curvature distribution κ(x) is known, the beam profile is given by

y(x)=
∫∫

κ(x) dx +C1x +C2, (10)
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parameters value

Poisson’s ratio 0.33
Young’s modulus (GPa) 70.3
tensile strength (MPa) 175.1
plastic modulus (MPa) 1579

Table 1. Material properties for AA5052.

where the constants C1 and C2 can be determined by the contact points at the fulcrum cylinders. The
recursive scheme is shown in Figure 3. A converged solution of the beam profile, moment distribution,
curvature distribution, and contact points that satisfies both the Euler–Bernoulli beam theory and the
geometrical constraints can be obtained by the recursive scheme. The recursive scheme outlined in
Figure 3 is based on a procedure presented by Higo et al. [2016]. Pure bending moment/curvature
equation has been used to simulate deflections of beams with elastoplastic behavior [Natarajan and
Peddieson 2011]. Pandit and Srinivasan [2016] described a method to analyze large deflections of a
curved beam subjected to a tip-concentrated follower load. Based on a linearly hardening model, they
obtained a moment-curvature constitutive law for their bending problem.

As the punch cylinder is lifted and loses contact with the beam, the beam springs back elastically and
the internal stress distribution results in a zero bending moment. Assuming no reverse yielding during
unloading, the curvature after unbending κ ′ can be expressed as [Hosford and Caddell 1993]

κ ′ = κ −M/(E I ), (11)

where κ and M are the curvature and moment, respectively, before springback, and I is the second
moment of inertia of the beam cross section.

Finite element analyses are carried out to verify the simple model for springback estimation of the
beam. The commercial software ABAQUS is used in this investigation. Due to the symmetry, only the
right half of the specimen is modeled. The finite element model is shown in Figure 4 (top). The punch
cylinder and the right fulcrum cylinder are also schematically shown in the figure. Two-dimensional
plane strain 4-noded CPE4R elements are used in the model. The number of elements is 8436 in the
finite element model. Figure 4 (bottom) is a close up view of the mesh near the punch cylinder. The
finite element mesh is made denser in the region under the punch and over the fulcrum. In ABAQUS,
the “rigid surface” option is used to describe the punch cylinder and the fulcrum cylinders, and the
“contact pair” option is used to describe the contact between the punch and the fulcrums with the beam.
The displacement of the rigid punch is controlled in the analyses. The material properties for AA5052
aluminum alloy used in this investigation are listed in Table 1. Figure 5 shows a stress-strain curve for
the AA5052 from tensile tests. The plastic modulus of the elastic linear plastic material behavior of the
AA5052 is taken as the slope of the fitted line shown in the figure. The strain is up to 0.025 during the
tensile tests. As seen in Figure 5, the stress at this strain value only goes to about 200 MPa. The stress
is computed by a linear extrapolation scheme for the strain higher than 0.025. The model can be applied
to various metals with specified strain hardening behaviors.
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input initial curvature, stress, and strain;
assume contact points xi , curvature κi ;

compute xi ; compute Mi ;

modify κi ;compute M(x), κ(x);

modify θi ;

estimate
beam profile y(x);

does beam profile
pass assumed
contact points?

no

yes

no dy
dx

∣∣∣
xi
= tan θi ?

beam profile;

Figure 3. A recursive scheme.

3. Numerical results

The beam considered in this investigation has a length of 400 mm, a width of 100 mm, and a thickness
of 6 mm. The overhang length of the beam d L/2 is 60 mm. The radius of the punch cylinder and fulcrum
cylinders is 1 mm. Finite element computational results are used to evaluate the applicability of the
developed model. Table 1 lists the material properties for the beam material, AA5052, with elastic linear
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Punch cylinder

Fulcrum cylinder

x

y

Figure 4. Top: a finite element model for the right half of a specimen. Bottom: a close
up view of the mesh near the punch cylinder.
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Figure 5. Tensile stress-strain curve for the AA5052 aluminum alloy.
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Figure 6. Beam profiles after bending and springback based on computational results
of the model and FEA.

plastic material behavior. Computational grids of the analytical model are taken as 40 and 100 in the
thickness direction and the longitudinal direction of the beam, respectively. The downward displacement
of the punch cylinder is 16.81 mm.

Figure 6 shows the computational results based on the model (model) and the finite element analyses
(fea). Seven contact point iterations and five contact angle iterations are required to reach a converged
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Figure 7. Stress distributions across beam thickness based on the model and the finite
element analyses.

solution. The code based on the model takes 2.82 seconds to run on an AMD Phenom II X2 550
3.10 GHz processor. As seen in the figure, the beam profile after bending based on computational results
of the model agrees with that based on the finite element analyses. The beam profile based on the
model is estimated by the double integral of the curvature as in (6). The agreement between the model
and the finite element analyses demonstrates the feasibility of the recursive scheme for calculation of
the moment distribution and curvature distribution of the beam under three-point bending. The beam
profile after springback is also shown in Figure 6. The displacements of the center of the beam due to
springback based on the model and the finite element analyses are 8.02 mm and 8.28 mm, respectively.
The percentage error in the springback estimation between the model and the finite element analyses is
nearly 3%. The beam profile after springback predicted by the model is very close to that based on the
finite element analyses.

After unloading, elastic springback occurs, and considerable residual stress results. Figure 7 shows
the longitudinal stress distributions across beam thickness at the center of the beam based on the model
and the finite element analyses. After bending and unloading, the stress σx based on the model agrees
well with the finite element analyses. The stress distribution in the elastic region is a straight line with
a slope of 1/(κE). As seen in the figure, the slopes of the lines based on the model are slightly less
than those based on the finite element analyses. This may be because the curvature κ in the model is
approximated by κ ≈ d2 y/dx2, and the curvature of a plane curve y = y(x) is

κ =
d2 y/dx2

(1+ (dy/dx)2)3/2
. (12)

The applicability of the developed model for springback and residual stress distribution for beams under
three-point bending is verified by the finite element analyses. The cases of plates under three-point
bending can be approached by the plane strain condition considered in the derivation of the model.
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Figure 8. A photo of a three-point bending setup for beam specimens.

Figure 9. Photos of a beam specimen: after bending (top) and springback (bottom).

4. Experiments and results

Specimens used in experiments were fabricated with AA5052 aluminum alloy. The material properties
of AA5052 aluminum alloy are listed in Table 1. The specimens were loaded in a three-point bending
setup. A photo of the three-point bending setup is shown in Figure 8. It is seen that the punch cylinder
is placed under the specimen and can be moved upward and downward by turning a knob under the
punch cylinder. The beam specimens used in this investigation have a width of 100 mm and a length
of 400 mm. The thickness of the beam specimens is 6 mm. The radius of the punch cylinder and fulcrum
cylinder is 1 mm. The distance L between the two fulcrums is 280 mm. The length of the two overhangs
is 60 mm. The loading rate of the punch was 5 mm per minute. A video camera was used to record the
deformation of the beam specimens on one side of the beam specimens. A strain gauge was attached
to the top surface of the beam specimen. Loading was applied by the punch cylinder until the desired
displacement of the punch was reached. The displacement of the punch was controlled by reading the
output of the strain gauge. In this investigation, the displacement of the punch was set as 16.81 mm.

Figure 9 (top and bottom) shows photos of a beam specimen after bending and springback, respectively.
Three tests were performed and the photos of the specimen profiles were taken by the camera. Figure 10
shows the beam profiles after bending and springback based on computational results of the model and
the experiments. The experimental results show some discrepancies due to the alignment error of the
experimental setup and sliding between the beam specimens and the punch/fulcrum cylinders. One of
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Figure 10. Beam profiles after bending and springback based on computational results
of the model and experiments.
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Figure 11. A schematic of the slitting method.

the three experimental results was discarded since it deviates from the other two experimental results
in a greater amount. The average amount of springback at the center of the beam based on the two
experimental results is 8.66 mm. Compared to the springback amount based on the model, 8.02 mm,
the error in springback estimation of the model is 7%. This discrepancy can be accepted considering
the alignment/measurement errors and sliding between specimens and punch/fulcrum cylinders during
experiments.

The residual stress of the bent beam was measured by a slitting method [Schajer and Prime 2006].
Figure 11 is a schematic of the slitting method. In the figure, a represents the depth of the slit. A strain
gauge is attached to a surface opposite to the slit. The method is based on the principle that residual
stress causes a body to deform when it is cut. The deformation is measured by strain gauges while cutting
progressively through the body. The strain record allows calculation of the residual stress distribution. In
this investigation, a slit was cut by electrical discharge machining (EDM) through the thickness direction
at the center of the specimen to a final depth of 5.33 mm (0.89% of specimen thickness). Strain at
each depth was measured by strain gauges. Residual stress results were obtained by the pulse stress
function and regularization as described in Schajer and Prime [2006]. Figure 12 shows the residual
stress distributions in the thickness direction at the center of the specimen based on the model and the
experiment. The stress results based on the model have good agreement with the stresses measured by
the slitting method.

In order to explore the feasibility of the developed model for estimation of profile and residual stress
of specimens subjected to three-point bending, the effects of punch displacement on the amount of
springback after unloading are examined. The values of the material constants are listed in Table 1.
Figure 13 shows the error in springback as a function of the normalized punch displacement for the
aluminum material. The normalized punch displacement ranges from 1 to 5. The punch displacement is
normalized by the specimen thickness. The percentage error in springback is calculated by the difference
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Figure 12. Residual distributions across beam thickness based on the model and the experiments.
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Figure 13. Percentage error in springback as a function of the normalized punch displacement.

in the springback at the center of the specimen between the model and the finite element analyses divided
by that of the finite element analyses. As shown in the figure, the error increases almost linearly as the
normalized punch displacement increases. At the normalized punch displacement of 5, the springback
amount predicted by the model has a percentage error of 6.7%.

Figure 14 shows the stress distributions at various punch displacements ranging from 6 mm to 30 mm,
corresponding to the normalized punch displacements ranging from 1 to 5. Due to the pressure of the
punch cylinder on the top surface of the specimen in the finite element analyses, a stress concentration
region is located near the contact point at the top surface of the specimen. Therefore, the longitudinal
stresses near the top surface of the specimen based on the finite element analyses are erroneous. The
stress after bending and the residual stress after springback computed by the model agree with those
based on the finite element analyses. The yielding fraction of the beam thickness is 31 % when the
punch displacement is 6 mm. The yielding fraction reaches 90 % when the punch displacement is 30 mm.
The model provides a relatively accurate estimation of the residual stress distributions under three-point
bending.
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Figure 14. Stress distributions across beam thickness based on the model and the finite
element analyses at the punch displacement of 6 mm (top left), 12 mm (top right), 18 mm
(center left), 24 mm (center right), and 30 mm (bottom).

The position of contact point of the specimen with the fulcrum cylinders varies as the specimen
rolls over the fulcrum cylinders during three-point bending tests. When the contact points changes
significantly, the position of the contact point has a major effect on the specimen profiles after springback.
An analytical model should be able to model the position of the contact point accurately and efficiently.
Figure 15 shows the percentage error of the springback prediction of the model for different normalized
radii of the fulcrum radius. The downward displacement of the punch cylinder is 16.81 mm. The fulcrum
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Figure 15. Percentage error in springback as a function of the normalized fulcrum radius.

radius R is normalized by the specimen thickness h. The percentage error is the difference between the
model prediction and computed value of the finite element analyses divided by the value of the finite
element analyses and is given as a percent. For the considered R/h values of 0.5, 1, 1.5, 2, 2.5, the
percentage errors are nearly 3%. When the R/h = 2.5 and the downward displacement of the punch is
16.81 mm, the rotation of the beam over the fulcrum cylinders is 8.75◦. For the R/h ratios considered, the
model provides acceptable prediction of the springback of the beam under three-point bending compared
to the results based on the finite element analyses.

Figure 16 and Figure 17 show the specimen’s profiles and residual stress distributions, respectively,
after bending and springback based on the model and the finite element analyses for various values
of the normalized radius of the fulcrum cylinder. The profiles after springback and the residual stress
distributions predicted by the model are in good agreement with those based on the finite element analyses.
Note that the stresses near the top surface of the specimen are erroneous due to the stress concentration
caused by the pressure from the punch cylinder in the finite element analyses, where the stress gets much
larger than that predicted by the model.

Reverse bending has practical importance in sheet forming processes. A reverse bending process is in-
vestigated in order to verify the possibility to utilize the present model to leveling processes. Figure 18 (top)
shows a setup of a three-point bending test considered in the model. The setup for reverse bending is
schematically shown in Figure 18 (bottom). The curvature and deflected curve of the beam after bending
and reverse bending are determined by the recursive scheme as shown in Figure 3. The curvature and
stress distributions of the beam after the bending process are taken as the initial curvature and stress
during the reverse bending process. Assuming isotropic hardening and using (1)–(6) and (11), the stress
distributions after reverse bending and springback can be computed.

Due to the constraint of the available experimental apparatus, a reverse bending and springback ex-
periment cannot be performed. Finite element analysis is sought to verify the deflected curve and stress
distributions obtained by the model. Figure 19 (top) shows a schematic of a finite element model where
two punches are in contact with the center of the beam. Two pairs of vertically aligned fulcrums are
located near the left end and right end of the beam, a left pair and a right pair, respectively. Figure 19
(second row) is a schematic of the finite element model during bending. During reverse bending of
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Figure 16. Beam profiles after bending and springback based on computational results
of the model and finite element analyses at various values of the normalized radius of
the fulcrum cylinder of 0.5 (top left), 1 (top right), 1.5 (center left), 2 (center right), and
2.5 (bottom).

the finite element analysis, the lower fulcrums of the left pair and the right pair and the upper punch
are removed; see Figure 19 (third row). The lower punch is removed for the springback analysis; see
Figure 19 (bottom).

In the analysis, the punch is moved downward 16.81 mm then moved upward 16.81 mm for bending
and reverse bending, respectively. The radius of the punch and the fulcrum is taken as 1 mm. The beam
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Figure 17. Stress distributions across beam thickness based on the model and the finite
element analyses at the normalized fulcrum radius of 0.5 (top left), 1 (top right), 1.5
(center left), 2 (center right), and 2.5 (bottom).

has a length of 400 mm, a width of 100 mm and a thickness of 6 mm. Figure 20 (top) shows the meshes
of the finite element model of the right half of the beam in its initial configuration. The meshes after
bending, reverse bending, and springback are shown in second row, third row, and bottom of Figure 20,
respectively.

Figure 21 shows the specimen’s profiles after reverse bending and springback based on the model and
the finite element analyses. The profiles after reverse bending and springback predicted by the model
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Figure 18. Schematics of: a three-point bending setup (top) and a three-point reverse
bending setup (bottom).

are in good agreement with those based on the finite element analyses. Figure 22 shows the stress
distributions after reverse bending and springback based on the model and the finite element analyses.
The residual stress distributions predicted by the model agree with those based on the finite element
analyses.

For materials that exhibit a combined isotropic and kinematic hardening behaviors, the yield stress
in reverse loading is usually lower than that in the case of continuous loading. During the three-point

Figure 19. Schematics of a finite element model where two punches are in contact with
the center of the beam.
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Figure 20. Meshes of the finite element model of the right half of the beam: in its initial
configuration (top), after bending (second row), after reverse bending (third row), and
after springback (bottom).
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Figure 21. Beam profiles after reverse bending and springback based on the model and
the finite element analyses.

reverse bending, the isotropic hardening model is no longer an adequate approximation. Therefore, under
reverse bending, consideration of a combined hardening model is required for prediction of a realistic
stress distribution and springback [Geng et al. 2002]. In order to extend the applicability of the developed
model in roller leveling process, a phenomenological combined hardening parameter is adopted to take
isotropic and kinematic hardening into account during reverse bending. Under reverse bending condition,
change in effective stress 1σ̄ can be given as [Zhang et al. 2007]

|1σ̄ | =

{
E |1ε̄| |1ε̄|< |1σ̄ |lim/E,
σ0+ E p(|1ε̄| − |1σ̄ |lim/E) |1ε̄| ≥ |1σ̄ |lim/E,

(13)

where |1ε̄| is the absolute value of the change in effective total strain from the initial loading point to
the current loading point during reverse bending; |1σ̄ |lim is the limiting value of effective stress change
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Figure 22. Stress distributions across beam thickness after reverse bending and spring-
back based on the model and the finite element analyses.
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Figure 23. Beam profiles after reverse bending and springback based on the model and
the finite element analyses for the case of kinematic hardening.

in the elastic regime after reverse bending and is written as

|1σ̄ |lim = (1+m)|σ̄r | + (1−m)(2σ0− |σ̄r |), (14)

where |σ̄r | is the absolute value of effective stress when the reverse bending occurs and m is a combined
hardening coefficient. The value of m can be taken as 1 or 0 corresponding to isotropic hardening or
kinematic hardening, respectively. For combined isotropic and kinematic hardening, the value of m is
between 0 and 1.

Assuming kinematic hardening during reverse bending, the feasibility of the present model for mate-
rials with kinematic hardening is investigated. Using (1)–(6), (11), and (13)–(14) with m = 0, the stress
distributions after reverse bending and springback can be computed. Figure 23 shows the specimen’s
profiles after reverse bending and springback based on the model and the finite element analyses for
the case of kinematic hardening. Good agreement is obtained between model results and finite element
analyses results. Figure 24 shows the stress distributions after reverse bending and springback based on
the model and the finite element analyses for the case of kinematic hardening. The stress results obtained
from the model show good agreement with those based on the finite element analyses.
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Figure 24. Stress distributions across beam thickness after reverse bending and springback
based on the model and the finite element analyses for the case of kinematic hardening.

It is noted that the bending/unbending model presented by Kuwabara et al. [1996] can predict the
residual curvature relatively accurately and their model was compared with results of finite element
analyses in draw-bending processes by Hama et al. [2008]. Compared to the model presented in this
investigation, Kuwabara’s model is more sophisticated with the consideration of tension in bending
processes and Ziegler’s kinematic hardening law. The advantage of the present model is that it can
calculate the residual stress and curvature distribution along the span of the beam over the supports. In
the model, the deformed profile of the beam is obtained based on the curvature distribution and the com-
bined isotropic and kinematic hardening during reverse bending is accounted for by a phenomenological
combined hardening parameter. The model’s prediction of the residual stress distribution and profile of
the beam after bending and reverse bending is verified by experiments and finite element analyses.

5. Conclusions

A model for analyzing springback and residual stress distribution of beams under three-point bending
is developed. Complex material hardening during bending and reverse bending can be modeled by a
phenomenological combined hardening parameter in the model. The converged solutions of deflection
and stress distribution of beams over the span of the supports under three-point bending and reverse
bending with consideration of material plastic hardening behavior are computed very efficiently by the
recursive scheme. Its feasibility to characterize the beam’s profile and residual stress distribution after
springback is verified by experiments and finite element analyses. The beam material is assumed to be
elastic, linear plastic, and the plastic behavior of the beam is described by the von Mises yield criterion.
Experimental results further confirm the accuracy of the model by comparing the experimental beam
profiles and residual stress distribution after bending and springback with the results obtained by the
model. Depending on the plastic behavior of the beam material, various hardening laws can be modeled
and incorporated into the analytical model.

Since the multiroller leveling process of metal plates can be viewed as a series of bending/unbending
of plates under three-point bending configurations, the developed model has the potential to be extended
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to analyze the profile and residual stress of plates during the leveling process. Accuracy of the model
for large deflection and relative large radius of fulcrum cylinders suggests that it is a reasonable building
block for development of an analytical model of multiroller leveling of metal plates in steel mills.
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