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ANALYTICAL APPROACH TO THE PROBLEM OF AN AUXETIC LAYER
UNDER A SPATIALLY PERIODIC LOAD

HENRYK KAMIŃSKI AND PAWEŁ FRITZKOWSKI

The problem of an infinite elastic layer under a periodic load is considered. A mathematical model is
formulated for the plane strain state. An analytical procedure based on the Fourier integral transformation
is discussed. The displacement components are obtained as infinite sums directly via the inverse Fourier
transform. Semianalytical results are presented in a nondimensional form for the case of conventional
elastic materials (positive Poisson’s ratio) and auxetic materials (negative Poisson’s ratio). The deforma-
tion of the loaded boundary and other characteristic surfaces of the layer is analyzed, and the displace-
ment and stress fields are demonstrated. The effect of Poisson’s ratio on the system behavior is studied.
The results are compared with the purely numerical solutions obtained using the finite element method.

1. Introduction

Nowadays, in times of advanced numerical methods and modern simulation software, the classical math-
ematical modeling and analytical treatment of formulated problems seem to belong to the past. Engineers
and researchers almost automatically reach for powerful computer tools, even if an analytical approach
could be applied easily. Beyond any doubt, most of the contemporary problems in computational me-
chanics are of a complex nature due to their geometry as well as the load and constraint conditions.
However, often an analytical solution to a simplified model may become a strong base for further studies
of more sophisticated and realistic systems.

In the field of linear elasticity, many fundamental problems have been formulated on strong assump-
tions. For instance, an unbounded (fully or partially) character of a domain (e.g., elastic space/plane, half-
space/plane, elastic layer or strip) and/or a specific case of stress-strain state (plane stress/strain) have
been considered. Such an approach has allowed for analytical treatment of the problems by means of
the complex potentials method, integral transforms, Fourier series, and stress functions, etc. [Teodorescu
2013; Sadd 2004; Saada 1974; Nowacki 1970; Timoshenko and Goodier 1951].

In fact, exact solutions have significant advantages over the numerical ones. First of all, they facilitate
a qualitative analysis of a given problem and enable one to draw more general conclusions. Secondly,
analytical solutions play a role of a reference point for brand new or improved computational methods
and algorithms. Moreover, the analytical approach may be useful for simulation studies of more complex
or unconventional systems. A good example are auxetics, i.e., materials with negative Poisson’s ratio.
Analytical solutions to purely theoretical problems can cast new light on unusual deformation behav-
ior of auxetic systems with numerous potential applications [Evans and Alderson 2000; Prawoto 2012;
Alderson and Alderson 2007; Fritzkowski and Kamiński 2016; Sanami et al. 2014; Carneiro et al. 2013].
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It should be noted that, although auxetics have been known since the 1980s, their properties (mechan-
ical, thermal, and others) and mechanisms of the anomalous deformation still draw attention of many
researchers. However, a significant majority of the studies are based on the purely numerical approach
(e.g., see [Walczak et al. 2014; Strek et al. 2010; Jopek and Strek 2015; Salit and Weller 2009]).

This paper is devoted to stress and deformation analysis of an elastic solid layer subjected to a spatially
periodic load. Since a state of plane strain is assumed, the problem is reduced to a two-dimensional
one. The displacement field equations are solved by a semianalytical approach, i.e., the Fourier integral
transform is applied in combination with numerical evaluation of the displacement and stress components.
The main aim of this work is to investigate the effect of Poisson’s ratio on the behavior of the elastic
system.

The paper is divided into five sections. In Section 2, a mathematical formulation of the elasticity
problem is presented. The semianalytical solution procedure is presented in Section 3. Section 4, in turn,
contains simulation results and discussion. Finally, some conclusions and closing remarks are provided
in Section 5.

2. Formulation of the problem

Let us consider the elastic layer illustrated in Figure 1. The term “layer” should be understood as a part
of an elastic space (infinite domain) bounded by two parallel planes at a finite distance h [Teodorescu
2013]. The upper boundary face (xz) is subjected to a distributed normal load p(x) which is periodic
along the x-axis:

p(x)= p(x + 2a). (2-1)

The solid material that occupies the domain is assumed to be linearly elastic, homogeneous, and isotropic.
It is characterized by shear modulus G and Poisson’s ratio ν. In the case of auxetics, ν < 0.

Taking into account the domain and loading geometry (independent of the z coordinate), the spatial
problem can be reduced to a two-dimensional formulation. The specified case falls into the category of
plane strain problems, and consequently we focus on a semiinfinite planar region

�=

{
−∞≤ x <∞,
−h ≤ y ≤ 0.

(2-2)

Figure 1. Infinite elastic layer under a periodic load.
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Let u(x, y)= [ux , u y]
T be the displacement vector. The strain-displacement relations involving only

the allowable strains are given by

εx =
∂ux

∂x
, εy =

∂u y

∂y
, εxy =

1
2

(
∂ux

∂y
+
∂u y

∂x

)
. (2-3)

From Hooke’s law, the corresponding stress components become

σx = λ(εx + εy)+ 2µεx , σy = λ(εx + εy)+ 2µεy, σxy = 2µεxy, (2-4)

where λ and µ are Lamé constants, given as

λ=
2Gν

1−2ν
, µ= G. (2-5)

Finally, in the case of zero body forces, the Navier–Lamé equations reduce to [Nowacki 1970; Sadd
2004]

µ∇2ux + (λ+µ)
∂

∂x

(
∂ux

∂x
+
∂u y

∂y

)
= 0, (2-6a)

µ∇2u y + (λ+µ)
∂

∂y

(
∂ux

∂x
+
∂u y

∂y

)
= 0. (2-6b)

Moreover, for the given problem, the unknown vector-valued function u(x, y) must satisfy the following
traction boundary conditions:

σy(x, 0)= p(x), (2-7a)

σxy(x, 0)= 0, (2-7b)

σy(x,−h)= 0, (2-7c)

σxy(x,−h)= 0. (2-7d)

Thus, the resulting mathematical model consists of the system of coupled partial differential equations
(2-6) together with the set of boundary conditions (2-7).

3. Analytical solution procedure

3.1. Transformation of the problem. Let f (x) be a real function of a real variable x , which satisfies
Dirichlet’s conditions and is absolutely integrable. For further purposes, the following definition of the
Fourier integral transform of f is used [Bronsztejn et al. 2004; Sneddon 1951; Teodorescu 2013]:

F[ f (x)] =
∫
∞

−∞

f (x)e−isx dx, (3-1)

where the variable s is real.
Now, let ũx and ũ y denote the Fourier transforms of the displacements with respect to the x-coordinate,

that is,
ũx(s, y)= Fx [ux(x, y)], ũ y(s, y)= Fx [u y(x, y)]. (3-2)
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Taking the transform of the governing equations (2-6), one can obtain

(κ − 1)
∂2ũx

∂y2 + i2s
∂ ũ y

∂y
− s2(κ + 1)ũx = 0, (3-3a)

(κ + 1)
∂2ũ y

∂y2 + i2s
∂ ũx

∂y
− s2(κ − 1)ũ y = 0, (3-3b)

where κ denotes the Kolosov constant:
κ = 3− 4ν. (3-4)

It should be noticed that these equations have simpler form than the original ones.
Next, consider the boundary conditions (2-7). Let pb(x) be a basis function of the distributed load,

i.e., the load over one period (−a ≤ x ≤ a), so that periodic summation can be used:

p(x)=
∞∑

k=−∞

pb(x − 2ka). (3-5)

In the given case

pb(x)= p0
[
−η(x + a)+ 2η

(
x + 1

2a
)
− 2η

(
x − 1

2a
)
+ η(x − a)

]
, (3-6)

where p0 is the load intensity and η denotes the Heaviside step function. The Fourier transform of (3-6)
is given by

p̃b(s)=
i p0

s
[eisa
− e−isa

+ 2eisa/2
− 2e−isa/2

]. (3-7)

Taking into account formula (3-5) as well as the linearity and shifting (translation) properties of the
Fourier transform, for the whole periodic load applied to the infinite boundary one can write [Bronsztejn
et al. 2004; Zemanian 1965]

p̃(s)= p̃b(s)
∞∑

k=−∞

e−i2kas . (3-8)

Now, boundary conditions (2-7) can be converted to

σ̃y(s, 0)= p̃(s), (3-9a)

σ̃xy(s, 0)= 0, (3-9b)

σ̃y(s,−h)= 0, (3-9c)

σ̃xy(s,−h)= 0, (3-9d)
where

σ̃x(s, y)= Fx [σx(x, y)],

σ̃y(s, y)= Fx [σy(x, y)],

σ̃xy(s, y)= Fx [σxy(x, y)].

To sum up, after the transformation the boundary value problem is composed of the equilibrium
equations (3-3) and associated boundary conditions (3-9).
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3.2. Solution of the transformed problem. Due to its relatively simple form, the transformed problem
can be solved in a quite conventional way. For the second-order partial differential equations (3-3), the
trial solution is

ũx(s, y)= C1er y, ũ y(s, y)= C2er y, (3-10)

where C1 and C2 are real constants, while r is generally a complex parameter to be determined. Inserting
(3-10) into the homogeneous system (3-3) leads to a characteristic equation for r . There are two double
roots:

r1,2 = s, r3,4 =−s,

thus, the general solution is given by

ũx(s, y)= A11esy
+ A12 yesy

+ B11e−sy
+ B12 ye−sy, (3-11a)

ũ y(s, y)= A21esy
+ A22 yesy

+ B21e−sy
+ B22 ye−sy, (3-11b)

where Ai j , Bi j (for i, j = 1, 2) are complex constants. Substituting ũx and ũx into (3-3), one obtains

α11esy
+α12 yesy

+β11e−sy
+β12 ye−sy

= 0, (3-12a)

α21esy
+α22 yesy

+β21e−sy
+β22 ye−sy

= 0, (3-12b)

where αi j , βi j (for i, j = 1, 2) denote certain functions of s and y, involving the constants Ai j , Bi j . Equat-
ing to zero the coefficients αi j and βi j , one can find that system (3-12) is fulfilled (for every s and y) if

A12 = i A22, B22 = i B12 (3-13)
and

B12 =−
s
κ
(i B21+ B11), A22 =−

s
κ
(i A11+ A21). (3-14)

Now, the transformed displacements with four independent constants are

ũx(s, y)=
[

A11+ (A11− i A21)
sy
κ

]
esy
+

[
B11− (B11+ i B21)

sy
κ

]
e−sy, (3-15a)

ũ y(s, y)=
[

A21− (A21+ i A11)
sy
κ

]
esy
+

[
B21+ (B21− i B11)

sy
κ

]
e−sy . (3-15b)

The constants can be determined from the prescribed boundary conditions. Obviously, it is necessary to
use relations (2-3) and (2-4) to express σ̃y , σ̃xy in terms of ũx , ũ y . The traction conditions (3-9a) and
(3-9b) require

A21 =−
p̃(s)e2hs

[4h2s2
− (κ + 1)(e2hs

+ 2hs− 1)]
4Gs[e4hs − 2e2hs(1+ 2h2s2)+ 1]

,

B21 =
p̃(s)e2hs

[4h2s2
− (κ + 1)(e−2hs

− 2hs− 1)]
4Gs[e4hs − 2e2hs(1+ 2h2s2)+ 1]

.

(3-16)

Then, conditions (3-9c) and (3-9d) lead to

A11 =−
i[2κB21e2hs

− A21(4h2s2
+ 4κhs+ κ2

+ 1)]
4h2s2− κ2+ 1

,

B11 =
i[2κA21e−2hs

− B21(4h2s2
− 4κhs+ κ2

+ 1)]
4h2s2− κ2+ 1

.

(3-17)
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On the basis of (3-15) together with relationships (3-16) and (3-17), one can find expressions for the
Fourier transforms of the displacement components:

ũx(s, y)=
i p̃(s)
4G

φx(s, y)
ψ(s, y)

, ũ y(s, y)=
p̃(s)
4G

φy(s, y)
ψ(s, y)

, (3-18)

where

φx(s, y)= A1 sinh(sy)+ A2 sinh(s(y+ 2h))+ B1 cosh(sy)+ B2 cosh(s(y+ 2h)),

φy(s, y)= B ′1 sinh(sy)+ B ′2 sinh(s(y+ 2h))+ A′1 cosh(sy)+ A2 cosh(s(y+ 2h)),

ψ(s, y)= s[2h2s2
− cosh(2hs)+ 1],

(3-19)

and

A1 =−2s(y− κh+ h), A2 = 2sy, A′1 =−2s(y+ κh+ h),

B1 = 4hs2(y+ h)− κ + 1, B2 = κ − 1, B ′1 = 4hs2(y+ h)+ κ + 1, B ′2 =−κ − 1.

These results can be subjected to the inverse Fourier transformation in order to obtain the unknown
displacements ux and u y as well as the stresses and strains.

3.3. Inverse transformation. In view of the definition (3-1), the corresponding inverse Fourier transform
is represented by [Bronsztejn et al. 2004; Sneddon 1951; Teodorescu 2013]

f (x)= F−1
[ f̃ (s)] = 1

2π

∫
∞

−∞

f̃ (s)eisx ds. (3-20)

In computational practice, direct evaluation of the above integral is usually complicated (if possible), and
therefore is rarely conducted. However, this approach can be used in the case under investigation.

It is clear from (3-18) that the complexity of the inversion procedure is mainly affected by the form of
the image function p̃(s). To simplify the calculations, Poisson’s summation formula is applied [Zemanian
1965]:

∞∑
k=−∞

eiks
= 2π

∞∑
k=−∞

δ(s− 2πk), (3-21)

where δ denotes the Dirac delta function. Hence, the expression (3-8) can be written alternatively as

p̃(s)= π
a

p̃b(s)
∞∑

k=−∞

δ
(

s− πk
a

)
. (3-22)

According to the general definition (3-20), the inverse Fourier transforms of (3-18) are

ux(x, y)= 1
2π

∫
∞

−∞

i p̃(s)
4G

φx(s, y)
ψ(s, y)

eisx ds, u y(x, y)= 1
2π

∫
∞

−∞

p̃(s)
4G

φy(s, y)
ψ(s, y)

eisx ds. (3-23)
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Substituting (3-22) into (3-23), converting (3-7) to trigonometric form, and taking into account the sifting
property of the Dirac delta leads to the following result:

ux(x, y)=
2i p0

Ga

∞∑
k=−∞

sin3( 1
4ask

)
cos
( 1

4ask
) φx(sk, y)

skψ(sk, y)
eisk x , (3-24a)

u y(x, y)=
2p0

Ga

∞∑
k=−∞

sin3( 1
4ask

)
cos
( 1

4ask
) φy(sk, y)

skψ(sk, y)
eisk x , (3-24b)

where sk = πk/a. Finally, after some manipulations and observations, one can find

ux(x, y)=
p0

Ga

∞∑
k=1

(−1)k sin(s ′k x)
φx(s ′k, y)

s ′kψ(s
′

k, y)
, (3-25a)

u y(x, y)=−
p0

Ga

∞∑
k=1

(−1)k cos(s ′k x)
φy(s ′k, y)

s ′kψ(s
′

k, y)
, (3-25b)

where s ′k = s2k−1 = π(2k − 1)/a. The displacements can be used to determine the strain and stress
components by means of the relations (2-3) and (2-4).

For example, the full form of the k-th term for the horizontal displacement is

uxk =
(−1)k p0 sin(s ′k x)

Gas ′k
2
[2h2s ′k

2
− cosh(2hs ′k)+ 1][
−2s ′k(y− κh+ h) sinh(s ′k y)+ 2s ′k y sinh(s ′k(y+ 2h))

+ (4hs ′k
2
(y+ h)− κ + 1) cosh(s ′k y)+ (κ − 1) cosh(s ′k(y+ 2h))

]
. (3-26)

Similarly, the k-th term for the normal stress σx , for instance, can be written as

σxk =
4(−1)k p0 cos(s ′k x)

as ′k[2h2s ′k
2
− cosh(2hs ′k)+ 1][

−s ′k(y− 2h) sinh(s ′k y)+ s ′k y sinh(s ′k(y+ 2h))

+ (2hs ′k
2
(y+ h)− 1) cosh(s ′k y)+ cosh(s ′k(y+ 2h))

]
. (3-27)

As can be seen from the sample analytical results, the expressions for the displacement components natu-
rally involve Poisson’s ratio ν (via the constant κ), while the stress field is independent of the parameter.

4. Simulation results

4.1. Semianalytical results. The results reported below have been obtained for the special case when
a/h= 1. For natural reasons, in numerical computations the infinite sums in formulae (3-25) are truncated
to a finite number of terms:

ux(x, y)≈
n∑

k=1

uxk, u y(x, y)≈
n∑

k=1

u yk . (4-1)
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Figure 2. Vertical displacement of the loaded surface (solid) and the midsurface
(dashed) for various values of Poisson’s ratio. Top left: ν = 0.25. Top right: ν =−0.25.
Bottom left: ν =−0.5. Bottom right: ν =−0.75. Results obtained for n = 50.

Moreover, the results have a nondimensional form. More precisely, the dimensionless displacements are
introduced as

Ux(x, y)= G
p0a

ux(x, y), Uy(x, y)= G
p0a

u y(x, y). (4-2)

Analogously, the following nondimensional stresses are defined as

Sx(x, y)= 1
p0
σx(x, y), Sy(x, y)= 1

p0
σy(x, y), Sxy(x, y)= 1

p0
σxy(x, y). (4-3)

Let us start with a displacement analysis of the layer. In Figure 2 the vertical displacements Uy of
the loaded surface (y = 0) and the midsurface (y = −h/2) for 0 ≤ x ≤ 2a are presented for various
values of Poisson’s ratio. For ease of comparison, all the graphs have equal axis scales. The deformation
behavior is intuitively reasonable and qualitatively identical in each case. The maximum absolute values,
max |Uy|, occur at x = ka for k = 0, 1, 2, . . . , i.e., in the middle of each subinterval of the upward or
downward load. As can be seen, the values grow with decreasingly lower ν. The surfaces have zero
displacement at x = (2k− 1)a for k = 1, 2, . . . , where the load changes its direction.

Similar plots for the horizontal displacement are shown in Figure 3. Now, the maximum absolute
values, max |Ux |, arise at x = (2k− 1)a for k = 1, 2, . . . , while zero values can be observed at x = ka
for k = 0, 1, 2, . . . . However, the displacements of the midsurface are much smaller, and a change of
sign occurs as Poisson’s ratio is decreased.
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Figure 3. Horizontal displacement of the loaded surface (solid) and the midsurface
(dashed) for various values of Poisson’s ratio. Top left: ν = 0.25. Top right: ν =−0.25.
Bottom left: ν =−0.5. Bottom right: ν =−0.75. Results obtained for n = 50.

To give a more systematic insight into changes of the displacements when ν is varied, the following
quantities are used:

U max
y =Uy|x=0, U max

x =Ux |x=a/2

The functions U max
y (ν) and U max

x (ν) related to the top-, mid- and bottom-surface of the layer are presented
in Figure 4. As can be seen, the maximum vertical displacement for all the surfaces is always positive
and increases linearly with decreasing Poisson’s ratio. The character of U max

x is also linear. However, the
midsurface has near zero displacement, while in case of the bottom-surface the displacement is negative
and it decreases with decreasing ν.

The discussed results have been obtained for n = 50. This number of terms of the analytical solution
ensures a good approximation of the layer displacements. The maximal values U max

y in the function of
n for selected values of Poisson’s ratio are plotted in Figure 5. As can be seen, the results converge
rapidly, and for n > 50 there are no significant deviations in U max

y . It should be noted that over the whole
analyzed range (10≤ n ≤ 200) the displacement values differ by less than 0.15%.

Let us turn to an overall look at the displacement field. Figure 6 shows the distribution of the horizontal
and vertical displacements (scaled by a factor of 102) within an elementary cell of the layer: 〈0, 2a〉×
〈−h, 0〉, for three values of Poisson’s ratio: ν = 0.25, ν =−0.25 and ν =−0.5. When it comes to Ux ,
there are two types of zero isolines: vertical (at x = a) and approximately horizontal. Position of the
latter one is affected by ν. In the case of a conventional material (ν > 0), one can observe an evident
disproportion between the area above and below the contour of zero value. In the distribution of Uy , there
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Figure 4. Maximal vertical (left) and horizontal (right) displacements versus Poisson’s
ratio for the surfaces at y = 0 (solid), y =−h/2 (dashed), and y =−h (dotted). Results
obtained for n = 50.

Figure 5. Approximated value of the maximal vertical displacement versus the number
of summed terms of the analytical solution for various values of Poisson’s ratio. Top
left: ν = 0.25. Top right: ν =−0.25. Bottom left: ν =−0.5. Bottom right: ν =−0.75.

are only vertical zero isolines (at x = a/2 and x = 3a/2). Some differences arise in their neighborhood:
the nearby contours become increasingly barrel-shaped as Poisson’s ratio is decreased.

The longitudinal displacement (Ux ) of the cell through its thickness is plotted in Figure 7. More
precisely, the curves that represent the layer cross-sectional deplanation at x = a/4 (or x = 3a/4) and
x = a/2 are presented for selected values of Poisson’s ratio. As can be seen from Figure 3 and Figure 6,
Ux(x, y)= 0 for every y at x = 0, x = a, x = 2a. The displacement profiles at x = 5a/4 (or x = 7a/4)
and x = 3a/2, in turn, are mirror images of the respective curves for x = a/4 (or x = 3a/4) and x = a/2
about the central transverse axis x = a.

Although the displacements increase with decreasing ν (see Figure 3), all the curves intersect at one
point. Its location can be found based on (3-26). Since the second and the next terms of the series (4-1)
decay strongly, they are negligible compared with the first term. Now, for two arbitrary values of the
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Figure 6. Displacement distribution in a rectangular cell — horizontal displacement
Ux × 102 (left column) and vertical displacement Uy × 102 (right column). Top
row: ν = 0.25. Middle row: ν =−0.25. Bottom row: ν =−0.5.

Kolosov constant, κ1 and κ2, the displacements ux ≈ ux1 (for every x) are equal if

2πh sinh
(
π

y
a

)
− a cosh

(
π

y
a

)
+ a cosh

(
π

y+2h
a

)
= 0. (4-4)

In the special case when h = a, the solution of the transcendental equation is

y = a
2π

ln
(

2π + 1− e−2π

2π − 1+ e2π

)
≈−0.686a, (4-5)

which can be treated as a sufficiently accurate approximation of the intersection point. Needless to say,
the vertical location is independent of both x and ν.

When it comes to the point of zero longitudinal displacement (Ux = 0), it moves down as ν is decreased.
Because the point corresponds to the nearly horizontal zero isoline mentioned before (see Figure 6, left
column), its y-position is similar over the whole range 0 ≤ x ≤ a (see Figure 7). Using again the first
term of the series solution, the average horizontal displacement can be defined as

u(avg)
x =

1
a

∫ a

0
ux1 dx . (4-6)
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Figure 7. Deplanation of the layer cross-section for ν = 0.25 (dashed), ν = 0 (solid),
ν =−0.25 (dot-dashed), and ν =−0.75 (dotted). Left: x = a/4 and x = 3a/4. Right:
x = a/2.

Figure 8. Vertical position of the zero average horizontal displacement versus Poisson’s
ratio: approximate solutions (marks); the cubic curve (solid) and line (dotted) fitted in
the least-squares sense.

Now, the algebraic equation u(avg)
x (y)= 0 can be solved numerically to find the approximate (averaged)

vertical position y0 of the zero point (zero isoline) for 0 ≤ x ≤ a (and a ≤ x ≤ 2a). The solutions for
varying Poisson’s ratio within the range−1≤ ν≤ 0.5 (with the step1ν= 0.1) are shown in Figure 8. This
discrete dependence y0(ν) can be approximated, for example, by the standard polynomial curve fitting
in a least-square sense. Here, two subintervals have been considered separately, related to nonauxetic
and auxetic materials (0≤ ν ≤ 0.5 and −1≤ ν ≤ 0). A linear function and a cubic curve have been fitted
to the data, respectively. In both cases, the root-mean-square error of the approximations is less than 1%
(about 0.22% and 0.47%). It can be concluded that the characteristics become “softer” in the auxetic
range, i.e., the value y0 drops increasingly slower as Poisson’s ratio tends to −1.
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Figure 9. Stress distribution in a rectangular cell. Left: normal stress Sx × 10. Right:
normal stress Sy × 10. Bottom: shear stress Sxy × 10.

Distributions of normal stress Sx , Sy and shear stress Sxy (all scaled by a factor of 10) are presented
in Figure 9. Note that the quantities are independent of ν, according to the remark on (3-26) and (3-27).
As can be seen, the vertical contours of zero normal stresses correspond to zero contours of Uy . In the
case of shear stress, in turn, the zero isoline coincides with the one for Ux = 0.

The lack of dependence of the stress field on Poisson’s ratio may seem curious. The problem has been
considered within the classical linear elasticity framework, for the whole (thermodynamically admissible)
range of ν. Thus, one can state that Sx , Sy , Sxy are always the same, identical for both the auxetic
and conventional materials (homogeneous and isotropic in each case). However, such a solution is
not so unusual: results of this nature can arise within linear elasticity [Timoshenko and Goodier 1951;
Timoshenko 1930; Ventsel and Krauthammer 2001; Boresi et al. 1993]. For instance, the analyzed elastic
layer problem may be confronted with the case of cylindrical bending of a rectangular plate (finite or
infinite). Thus, consider a clamped-clamped thin plate of length a in the x-direction and infinitely long
in the z-direction (xz is the middle plane), subjected to a uniform transverse load p = constant (upward
or downward). It is well known that an expression for the plate deflection u y(x) would include Poisson’s
ratio (via the flexural rigidity), while the normal stress σx would be free of this elastic constant. Obviously,
the classical thin plate theory further assumes that σy = σyz = 0 (plane stress relative to the xz-plane),
which is too strong a constraint not consistent with our formulation. But even if the stress components σy ,
σyz are approximately determined through the use of the differential equations of equilibrium (against
Kirchhoff’s assumptions), they also are not influenced by ν [Ventsel and Krauthammer 2001; Boresi et al.
1993; Jaeger 1964; Szilard 2004].

4.2. FEM results. Exact solutions, achievable for simple geometry and load cases, are often used to
assess accuracy and efficiency of new or modified numerical techniques. Vice versa, a well-established
computer method can be applied in order to validate newly developed analytical solutions. Unarguably,
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Figure 10. FEM results for a rectangular cell. Top left: Uy × 102 for ν = 0.25. Top
right: Uy × 102 for ν =−0.5. Bottom left: Sx × 10. Bottom right: Sxy × 10.

the finite element method (FEM) is one of the most common approaches to modeling and simulation
in science and engineering, including solid mechanics. For example, FEM-based reference results were
used in [Walczak et al. 2014; Fritzkowski and Kamiński 2016] to examine exact solutions or numerical
solutions obtained via meshless methods. Similarly, comparative simulations have been conducted for
the present case, by means of COMSOL Multiphysics software.

Due to the spatial periodicity of the layer, the linear static analysis is focused on a finite-sized domain,
i.e., the rectangular cell:

�̂=

{
0≤ x ≤ 2a,
−h ≤ y ≤ 0.

(4-7)

Apart from boundary conditions (2-7a) and (2-7c), the following ones are imposed on the left and right
edges (roller supports):

ux(0, y)= 0, ux(2a, y)= 0. (4-8)

Moreover, two pointwise displacement conditions are introduced as

u y
( 1

2a, 0
)
= 0, u y

( 3
2a, 0

)
= 0. (4-9)

On the one hand, these assumptions can be concluded from the semianalytical results. On the other
hand, such a behavior of the loaded surface is a natural consequence of the fact that the resultant of the
distributed load on the periodic cell is zero.

A uniform rectangular mesh is generated in the entire domain (a swept mesh). The quadratic quadri-
lateral finite elements are used. The presented results have been obtained for ne = 5000 finite elements
(100× 50) and ndof = 40602 degrees of freedom.

The distribution of displacement Uy and stress Sx obtained numerically for ν = 0.25 and ν =−0.5 are
shown in Figure 10. Thus, the graphs can be compared to the ones in Figure 6, top row and bottom row,
and Figure 9, left and bottom. For convenience, the same isolines have been included in the FEM-based
plots. As can be seen, the displacement and stress fields provided by two different methods are in very
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ν 0.49 0.25 0 −0.25 −0.5 −0.75 −0.99

U max
y

semianalytical 0.2119 0.3117 0.4155 0.5194 0.6233 0.7272 0.8269
FEM 0.2119 0.3117 0.4156 0.5195 0.6233 0.7272 0.8270

U max
x

semianalytical 0.0215 0.1488 0.2814 0.4140 0.5466 0.6792 0.8064
FEM 0.0210 0.1484 0.2809 0.4133 0.5457 0.6779 0.8048

Table 1. Semianalytical vs. FEM results: maximal displacements.

Figure 11. FEM results — deformation of a rectangular cell. Left: ν = 0.25. Right: ν =−0.5.

close agreement with each other. Table 1 contains the maximal displacements U max
y and U max

x obtained
with FEM (ndof = 40602) and the semianalytical procedure (n = 50). It turns out that the values are
almost identical.

Deformation of the rectangular cell for ν = 0.25 and ν = −0.5 (drawn at the same scale) can be
observed in Figure 11. In full accordance with the analytical results depicted in Figure 4, vertical
displacements within the cell increase with decreasing Poisson’s ratio.

5. Conclusions

In this paper, elastic deformation of an infinite layer under a periodic load has been considered. The
semibounded character of the domain allows for an analytical treatment of the problem. The displace-
ments of the loaded surface and other surfaces of the layer have been presented and discussed. Moreover,
the distributions of the displacements as well as the normal and shear stresses in the periodic cell of the
domain have been presented. The effect of Poisson’s ratio on the system behavior has been analyzed.

Although the Fourier integral transform has been applied, evaluation of the inverse transforms for the
displacements and stresses does not require numerical computation of residues, as for example in the
case of elastic quarter-space [Fritzkowski and Kamiński 2016]. The analytical solution is represented by
an infinite single series of relatively simple form. The results indicate quite fast convergence of these
series. Furthermore, they are in high agreement with the purely numerical solutions obtained by means
of the finite element method (FEM).

It has been demonstrated that the horizontal and vertical displacements of the layer surface grow (in
absolute value) with decreasing ν at constant G. In the studied case, the relationship between the system
response and Poisson’s ratio turns out to be linear. Hence, in the context of contact mechanics, e.g., when
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a rigid punch is pressed against an elastic material, one can expect that the indentation depth will be
higher for auxetics than for conventional solids. Such behavior seems to contradict the effect of practical
importance, highlighted by many authors: the indentation resistance increases with the auxeticity of the
material [Sanami et al. 2014; Greaves et al. 2011; Carneiro et al. 2013]. However, in the mathematical
description of deformable solids, Young’s modulus and Poisson’s ratio (E , ν) are usually employed
instead of shear modulus and Poisson’s ratio (G, ν). When the latter pair is used (as in this paper),
the conclusions of a physical nature can change: the application of more auxetic materials (at constant
shear modulus) does not necessarily suppress the deformation [Lim 2015]. So, the selection of elastic
constants is crucial, and must not be ignored or underestimated by engineers and researchers.

The horizontal displacements of the layer through its thickness have been analyzed carefully. It has
been shown that all the deplanation profiles for various values of ν have a common point. Location of
the zero point (zero average longitudinal displacement), in turn, is strongly affected by Poisson’s ratio.
As ν is lowered, the vertical position decreases linearly in the conventional range, and in a cubic manner
in the auxetic range. The stress components for the system, in turn, are independent of Poisson’s ratio.

The presented semianalytical approach and the results can be a benchmark for future research on, for
example, periodic cell structures made of conventional and auxetic materials.
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