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STABILITY AND NONPLANAR POSTBUCKLING BEHAVIOR OF
CURRENT-CARRYING MICROWIRES IN A

LONGITUDINAL MAGNETIC FIELD

YUANZHUO HONG, LIN WANG AND HU-LIANG DAI

The stability and nonplanar buckling problem of current-carrying microwires in the presence of longitudi-
nal magnetic field are investigated by accounting for the nonlinearities resulted from the axial elongation
of the microwire’s centerline. Based on the Euler–Bernoulli beam theory, modified couple stress theory,
and Hamilton’s principle, the nonlinear governing equations of the nonplanar motions of the microwire
are derived. By application of Galerkin’s approach, the nonplanar dynamic responses are evaluated for
both clamped-clamped and pinned-pinned boundary conditions. The effects of dimensionless material
length scale parameter, compressive load, magnetic field force, and slenderness ratio on the nonplanar
buckling instability and the postbuckling configuration are discussed in detail. The obtained results show
that the nonplanar buckling instability of microwires occurs when the magnetic field force becomes
sufficiently large and the postbuckling configuration depends on the magnitude of magnetic field force,
slenderness ratio, and initial conditions. The material length scale parameter can stabilize the microwire.
Moreover, the stability boundaries for the magnetic field parameter and compressive load are analyzed,
showing that an expected critical value of magnetic field parameter may be achieved by choosing a
suitable compressive load as a trigger of automatic devices. Interestingly, it is found that the presence
of an axial compressive load has no effect on the postbuckling shape, although it can destabilize the
microwire system and amplify the postbuckling amplitude.

1. Introduction

With the flourish of nanomaterials and nanotechnology [Lee et al. 2013; Tao et al. 2010; Atashbar
and Singamaneni 2005; McFarland and Colton 2005], miniaturization is becoming one of the main
features in microelectromechanical systems (MEMS) and microelectronic devices [Lee et al. 2008; Li
et al. 2007; Luo et al. 2006; Pauzauskie and Yang 2006; Singh 2009]. For that reason, many scientific
researchers have paid great attention to the mechanical behaviors of micro/nano structures. In many
practical applications, microstructures may be subjected to various physical fields, such as a magnetic
field, electric field, or fluid flow. It has been experimentally observed in the scale of micrometers that
strong small-length scale effects may occur in both nonmetallic and metallic materials [McFarland and
Colton 2005; Fleck et al. 1994; Stölken and Evans 1998]. Namely, the mechanical properties of mi-
croscale structures may depend on their geometrical size. Obviously, such size-dependent properties
cannot be classical/conventional continuum mechanics theories. Some experimental results [McFarland
and Colton 2005; Fleck et al. 1994; Stölken and Evans 1998] showed that with the decrease of structural
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characteristic size, the effective stiffness of microscale structures generally becomes higher than that
predicted by using the classical continuum mechanics theories, i.e., the error between the experimental
result and the result from classical continuum mechanics theories might be remarkable in some cases.
Therefore, several nonclassical continuum theories have been established, such as the nonlocal elasticity
theory [Wang 2009; Wang et al. 2006; Chang and Yeh 2014], surface elasticity theory [Kiani 2014a; He
and Lilley 2008], strain gradient elasticity theory [Ebrahimi and Barati 2017a], and couple stress theory
[Yang et al. 2002; Mindlin and Tiersten 1962].

According to the nonlocal elasticity theory, the stress state at a given point is assumed to depend on the
strain state of itself and its neighborhood [Wang et al. 2006]. The surface elasticity theory presumes that
the surface energy cannot be ignored, and with the increase of ratio between surface/interface area and
volume, the effect of surface layer may play a significant role in predicting the mechanical behavior of
nanoscale structures [Wang 2009]. The couple stress theory is originally developed by Mindlin and Tier-
sten [1962] and further modified by Yang et al. [2002]. In the modified couple stress theory, not only the
classical normal and shear stresses, but also the couple stresses, which are related to the deformation via
a new material constant called the material length scale parameter, have been taken into account. So far,
many researchers have utilized the modified couple stress theory to describe the size effect of microstruc-
tures [Tsiatas 2009; Dai et al. 2015; Dehrouyeh-Semnani et al. 2015; Mohammadabadi et al. 2015].

In the framework of the above nonclassical continuum theories, there were a few studies focused on
the mechanical behavior of carbon nanotubes in magnetic fields [Kiani 2014c; Arani et al. 2015; Wang
et al. 2016]. In the presence of a magnetic field, the Lorentz force generated by the induced current needs
to be taken into account in some cases. For instance, Kiani [2014c] investigated the instability of a single-
walled carbon nanotube (SWCNT) subjected to a three-dimensional (3D) magnetic field and obtained the
critical transverse magnetic field at which buckling instability of the SWCNT occurs. Arani et al. [2015]
studied the nonlinear vibration of two coupled nanotubes conveying fluid under a two-dimensional (2D)
magnetic field, showing that the effect of a transverse magnetic field on the stability of CNTs is more
obvious than that of a longitudinal magnetic field. More recently, Wang et al. [2016] studied the natural
frequency and stability of fluid-conveying carbon nanotubes in a longitudinal magnetic field, and they
found that the magnetic field can increase the critical flow velocity for flutter instability.

In addition, there were some studies associated with the vibration characteristics of micro/nano-beams
acted upon by magnetic fields [Chang 2016; Ebrahimi and Barati 2016; 2017b]. For instance, Chang
[2016] analyzed the effect of a magnetic field on the frequency of nonlinear nanobeams based on nonlo-
cal elasticity theory and found that the magnetic force decreases the frequency and hence the nonlocal
parameter can destabilize the nanobeam. Ebrahimi and Barati [2016] established a dynamical model of
thermo-piezo-electrically actuated nanobeams under a magnetic field. On the basis of nonlocal strain
gradient theory, Ebrahimi and Barati [2017b] investigated the flexural wave propagation of functionally
graded (FG) nanobeams in a longitudinal magnetic field. It was shown that the wave propagation charac-
teristics of FG nanobeams depend on various parameters including material graduation, magnetic field
intensity, and length scale parameter.

In the past years, several investigations have been carried out regarding the dynamics of micro/nano-
wires carrying electric current in the presence of magnetic fields [Kiani 2014a; 2015a; Wang et al. 2015].
In the dynamical model of current-carrying micro/nano-wires under magnetic fields, the induced current
for the change of magnetic flux was assumed to be negligible if compared with the initial current. Hence,
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the Lorentz force produced by the exerted magnetic field and initial current is the key factor needed to
be accounted for.

Reviewing the studies on instability and vibration of magnetically affected micro/nano-wires carrying
electric current, Kiani [2014a] studied the forced vibration of current-carrying nanowires (CCNW) in a
longitudinal magnetic field accounting for both surface energy and nonlocal size effects. The influence of
excitation frequency, magnetic force and small scale parameter on the maximum magnitude of transverse
displacements of the CCNW was discussed. Using surface elasticity theory and considering the effect
of longitudinal magnetic field, Keivan also investigated the column buckling of doubly parallel slender
CCNW [Kiani 2016], and the free vibration and instability of a single CCNW modeled by a string [Kiani
2014b] or by an Euler–Bernoulli beam [Kiani 2015a]. The work of Kiani [2015b] was concerned with the
vibration and buckling instability of pretensioned CCNWs acted upon by a suddenly applied 3D magnetic
field. Using the differential quadrature method, Wang et al. [2015] calculated the natural frequency and
buckling shapes of current-carrying microwires (CCMW) immersed in a longitudinal magnetic field. It
was shown that both first- and second-mode buckling instabilities of microwires with clamped-clamped
ends might occur when the magnetic field parameter becomes sufficiently large.

Amongst the valuable studies reviewed above, most researchers employed linear analytical models to
analyze the dynamical system of magnetically affected CCNWs/CCMWs. However, some key questions
associated with nonlinear phenomena cannot be answered excepted by nonlinear theory. For example,
when a magnetically affected CCMW is buckled, the original straight equilibrium has become unstable
and any motions actually would take place about the new nontrivial equilibrium points. In such a case,
the postbuckling behavior must be assessed in the framework of nonlinear theories. Therefore, it is
instructive for us to develop nonlinear analytical models for investigating the nonlinear postbuckling
behaviors of CCMWs/CCNWs acted upon by magnetic fields.

In the present study, using the modified couple stress theory proposed by Yang et al. [2002], a nonlinear
analytical model for magnetically affected CCMWs is developed to explore the microwire’s dynamical
behavior. Using Hamilton’s principle, the nonplanar governing equations are derived by significantly
accounting for the nonlinearity associated with the axial extension of the microwire when lateral displace-
ments occur. The main feature of this analytical model is that it is capable of predicting the nonplanar
configuration of the CCMW during buckling. The partial differential equations were discretized by
Galerkin’s approach and the resultant ordinary differential equations (ODE) were further solved via a
fourth-order Runge–Kutta method. The effects of slenderness ratio, magnetic field force, axial com-
pressive load, material length scale parameter, and initial conditions on the instability and nonplanar
postbuckling configurations are evaluated, interestingly showing that the postbuckling shape of CCMWs
is sensitive to the magnetic field parameter as well as the initial conditions employed.

2. Definition, assumption, and modeling of the problem

Consider a straight elastic microwire of length L illustrated in Figure 1. The microwire is immersed in a
longitudinal magnetic field B and a constant electric current I is flowing through it. It is assumed that the
microwire is slender enough such that the microwire can be modeled by a Euler–Bernoulli microbeam
of density ρ, circular cross-sectional area A, and classical flexural rigidity E I . The effects of gravity
are neglected while the axial extension of the microwire’s centerline is taken into account. The initial
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Figure 1. Schematic of a current-carrying microwire in a longitudinal magnetic field.

stress of the microwire may be nonzero due to the action of a given axial compressive load P . In the
following analysis, using the rectangular Cartesian coordinate system (x, y, z) shown in Figure 1, the
x-axis is assumed to be coincident with the centroidal axis of the undeformed microwire. The microwire
may deflect along the y-axis and the z-axis, as shown in Figure 1.

According to the modified couple stress theory [Yang et al. 2002], the relation between the deviatoric
part of the coupled stress tensor mi j and the symmetric curvature tensor xi j is given by

mi j = 2l2Gxi j , (1)

where G and l represent the shear modulus and the material length scale parameter respectively. By
referring to the derivation of Mojahedi and Rahaeifard [2016], the nonzero components of the symmetric
curvature tensor can be written as

xxy = xyx =−
1
2
∂2w

∂x2 , xxz = xzx =−
1
2
∂2v

∂x2 . (2)

Substituting (2) into (1), one has

mxy = m yx =−Gl2 ∂
2w

∂x2 , mxz = mzx =−Gl2 ∂
2v

∂x2 . (3)

As shown in Figure 1, the components of the displacement vector of the point (x, 0, 0) on the centroidal
axis can be described as u = u(x, t), v = v(x, t), and w = w(x, t). According to the Euler–Bernoulli
beam theory, the displacement field can be written as

u1(x, y, z, t)= u(x, t)− z ∂w(x, t)
∂x

− y ∂v(x, t)
∂x

, u2 = v(x, t), u3 = w(x, t), (4)

where u1, u2, and u3 are, respectively, the x-, y-, and z-components of the displacement vector u of a
point (x, y, z) on a beam cross-section.

The initial axial strain induced by the axial compressive load can be written as

ε0 =−
P

E A
. (5)

The axial strain caused by the beam’s deformation can be obtained by the von-Kármán relation and is
given by

ε1 =
∂u1

∂x
+

1
2

(
∂w

∂x

)2
+

1
2

(
∂v

∂x

)2
=
∂u
∂x
− z

∂2w

∂x2 − y
∂2v

∂x2 +
1
2

(
∂w

∂x

)2
+

1
2

(
∂v

∂x

)2
. (6)
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It is assumed that the effect of motions on the initial axial strain could be neglected for small defor-
mations. Thus, the total axial strain of the microwire is obtained as

εx =−
P

E A
+
∂u
∂x
− z

∂2w

∂x2 − y
∂2v

∂x2 +
1
2

(
∂w

∂x

)2
+

1
2

(
∂v

∂x

)2
, (7)

and the axial stress can be written as

σx = E
[
−

P
E A
+
∂u
∂x
− z

∂2w

∂x2 − y
∂2v

∂x2 +
1
2

(
∂w

∂x

)2
+

1
2

(
∂v

∂x

)2
]
. (8)

Now the total strain energy in the microwire can be expressed as

V = 1
2

∫
L

∫∫
A
(σxεx +mxy xxy +m yx xyx +mxzxxz +mzx xzx) dA dx . (9)

Substituting (2), (3), (7), and (8) into (9), one obtains

V = 1
2

∫
L

∫∫
A

{
E
[
−

P
E A
+
∂u
∂x
− z

∂2w

∂x2 − y
∂2v

∂x2 +
1
2

(
∂w

∂x

)2
+

1
2

(
∂v

∂x

)2
]2

+Gl2
(
∂2w

∂x2

)2

+Gl2
(
∂2v

∂x2

)2}
dA dx . (10)

The kinetic energy of the microwire is given by

T = 1
2ρA

∫ L

0

[(
∂u
∂t

)2
+

(
∂v

∂t

)2
+

(
∂w

∂t

)2]
dx, (11)

where the components of the velocity vector of the point (x, 0, 0) on the centroidal axis are utilized to
determine the kinetic energy of the system.

On the basis of Lorentz’s formula, the CCMW immersed in a magnetic field would be subjected to a
Lorentz force. For small deformations, I = I0(1+∂u/∂x) ex+ I0(∂w/∂x) ey+ I0(∂v/∂x) ez is the electric
current vector with amplitude I0. According to the derivation of He and Lilley [2008], the Lorentz force
per unit length of the microwire immersed in a longitudinal magnetic field can be evaluated by

fm = I × B = B0 I0

(
0 ex ,

∂w

∂x
ey,−

∂v

∂x
ez

)
, (12)

where ex , ey , and ez represent the unit vectors associated with x-, y-, and z-axes, respectively; B0 is
the magnitude of the magnetic induction vector B. It is noted that an induced current may be generated
because of the electromagnetic induction, yielding an additional magnetic force. According to deriva-
tion of Narendar et al. [2012], one obtains the additional magnetic forces along the z- and y-axes are
ηAH 2

x ∂
2w/∂x2 and ηAH 2

x ∂
2v/∂x2, respectively, where η is the magnetic field permeability and Hx is

the magnetic flux vector with amplitude Hx in the x direction. In this paper, the microwire is considered
to be nonferromagnetic. For nonferromagnetic materials (e.g., copper or silver), the magnetic field per-
meability η is approximately to be 4π × 10−7 H/m and the magnetic field intensity Hx is approximately
equal to the magnetic induction B. In this case, the Lorentz force plays a major role. Thus the effect of
the additional magnetic force will be neglected in this work.
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Then, the variation of the virtual work resulted from the Lorentz’s force is given by

δW = B I0

∫ L

0

(
∂w

∂x
δv−

∂v

∂x
δw
)

dx . (13)

According to Hamilton’s principle, one has∫ t2

t1
(δV − δT − δW ) dt = 0. (14)

Substituting (10), (11), and (13) into (14) and considering the pinned-pinned or clamped-clamped bound-
ary conditions of the microwire, the nonplanar version of the governing equations of the microwire
carrying current in a longitudinal magnetic field takes the form

ρA
∂2u
∂t2 − E A

∂2u
∂x2 − E A ∂v

∂x
∂2v

∂x2 − E A∂w
∂x

∂2w

∂x2 = 0, (15a)

ρA
∂2v

∂t2 + (AGl2
+ E I )

∂4v

∂x4 + E A
[

P
E A
−
∂u
∂x
−

1
2

(
∂w

∂x

)2
−

3
2

(
∂v

∂x

)2
]
∂2v

∂x2

− E A
(
∂2u
∂x2 +

∂w

∂x
∂2w

∂x2

)
∂v

∂x
= B I0

∂w

∂x
, (15b)

ρA
∂2w

∂t2 + (AGl2
+ E I )

∂4w

∂x4 + E A
[

P
E A
−
∂u
∂x
−

1
2

(
∂v

∂x

)2
−

3
2

(
∂w

∂x

)2
]
∂2w

∂x2

− E A
(
∂2u
∂x2 +

∂v

∂x
∂2v

∂x2

)
∂w

∂x
=−B I0

∂v

∂x
. (15c)

From (15), it is seen that the distributed Lorentz force is not constant but actually depends upon the
deformed configuration of the microwire. When we consider the interaction between the magnetic field
and microwire, it is also assumed that there is no coupling at the material level but only through the
Lorentz force, which is applied as a body force in (15b) and (15c).

In consideration of no distributed axial load, the longitudinal inertia could be neglected [Kahrobaiyan
et al. 2011] and (15a) can be reduced to the following form

−E A
∂2u
∂x2 − E A ∂v

∂x
∂2v

∂x2 − E A∂w
∂x

∂2w

∂x2 = 0, (16)

namely,

−
∂2u
∂x2 =

1
2

{
∂

∂x

[(
∂v

∂x

)2
+

(
∂w

∂x

)2]}
. (17)

Carrying out two integrations of (17) and applying the corresponding boundary conditions, one obtains

u =−1
2

∫ x

0

[(
∂v

∂x

)2
+

(
∂w

∂x

)2]
dx + x

2L

∫ L

0

[(
∂v

∂x

)2
+

(
∂w

∂x

)2]
dx . (18)
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Substituting (18) into (15b) and (15c), the governing equations of the microwire can be simplified to
two-dimensional forms, as follows:

(AGl2
+ E I )

∂4v

∂x4 + E A
[ P

E A
−

C
2L

]∂2v

∂x2 + ρA
∂2v

∂t2 = B I0
∂w

∂x
, (19a)

(AGl2
+ E I )

∂4w

∂x4 + E A
[ P

E A
−

C
2L

]∂2w

∂x2 + ρA
∂2w

∂t2 =−B I0
∂v

∂x
, (19b)

where the parameter C represents the axial elongation of the centroidal axis and is defined by

C =
∫ L

0

[(
∂v

∂x

)2
+

(
∂w

∂x

)2]
dx . (20)

The resultant equations may be rendered dimensionless through the use of

ξ =
x
L
, v̄ =

v

L
, w̄ =

w

L
, τ =

[ E I
ρA

]1/2 t
L2 . (21)

The dimensionless equations are

(µ+ 1)
∂4v̄

∂ξ 4 + (p−αc)
∂2v̄

∂ξ 2 −α
3/2 f I

∂w̄

∂ξ
+
∂2v̄

∂τ 2 = 0, (22a)

(µ+ 1)
∂4w̄

∂ξ 4 + (p−αc)
∂2w̄

∂ξ 2 +α
3/2 f I

∂v̄

∂ξ
+
∂2w̄

∂τ 2 = 0, (22b)

where several other dimensionless parameters are defined by

µ=
AGl2

E I
, p= P L2

E I
, f I =

2
√

2 B I0

EπD
, α=

AL2

2I
=8

( L
D

)2
, c=

∫ 1

0

[(∂v̄
∂ξ

)2
+

(∂w̄
∂ξ

)2]
dξ. (23)

The various dimensionless parameters in (23) denote, respectively, the dimensionless material length
scale parameter, dimensionless compressive load, dimensionless magnetic force, dimensionless parame-
ter associated with slenderness ratio, and dimensionless axial elongation of the centerline. In the follow-
ing analysis, the effects of the first four dimensionless parameters appearing in (23) on the stability and
nonplanar buckling of the microwire will be discussed in detail.

In the case of a clamped-clamped microwire carrying current, the dimensionless boundary conditions
to be satisfied are as follows:

v̄(0, τ )= v̄(1, τ )= 0, ∂v̄(0, τ )
∂ξ

=
∂v̄(1, τ )
∂ξ

= 0, (24a)

w̄(0, τ )= w̄(1, τ )= 0, ∂w̄(0, τ )
∂ξ

=
∂w̄(1, τ )
∂ξ

= 0. (24b)
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The dimensionless boundary conditions for a pinned-pinned microwire may be written in a similar
way:

v̄(0, τ )= v̄(1, τ )= 0,
∂2v̄(0, τ )
∂ξ 2 =

∂2v̄(1, τ )
∂ξ 2 = 0, (25a)

w̄(0, τ )= w̄(1, τ )= 0,
∂2w̄(0, τ )
∂ξ 2 =

∂2w̄(1, τ )
∂ξ 2 = 0. (25b)

3. Solutions based on Galerkin’s approach

In this section, the Galerkin’s approach is applied to transform the governing equations from partial
differential equations (PDEs) to ordinary differential equations (ODEs). The resultant ODEs will be
further solved by using a fourth-order Runge–Kutta (R–K) method. For the sake of eliminating the
effects of initial conditions on the transient responses and achieving steady buckling deformation of the
microwire, an additional damping term is added to the governing equations; thus, we have

(µ+ 1)
∂4v̄

∂ξ 4 + (p−αc)
∂2v̄

∂ξ 2 −α
3/2 f I

∂w̄

∂ξ
+
∂2v̄

∂τ 2 + γ
∂v̄

∂τ
= 0, (26a)

(µ+ 1)
∂4w̄

∂ξ 4 + (p−αc)
∂2w̄

∂ξ 2 +α
3/2 f I

∂v̄

∂ξ
+
∂2w̄

∂τ 2 + γ
∂w̄

∂τ
= 0, (26b)

where γ is a dimensionless damping coefficient. It should be explained that the additional damping
term cannot affect the postbuckling configuration of the current-carrying microwire. In what follows, the
damping coefficient of γ = 1 is adopted for the purpose of obtaining fast convergence speed.

According to the Galerkin’s approach, the dimensionless lateral displacements of the microwire may
be expressed as

v̄(ξ, τ )=

N∑
n=1

φn(ξ) qvn(τ ), (27a)

w̄(ξ, τ )=

N∑
n=1

φn(ξ) qwn(τ ), (27b)

where N is the number of considered modes and φn(ξ) is the n-th mode function of an Euler–Bernoulli
beam with corresponding boundary conditions; qvn(τ ) and qwn(τ ) are the two generalized coordinates
of the discretized system. It is presumed that the approximate expansion of series (27) may be reliable
at a suitably high value of N .

Substituting (27a) and (27b) into (26a) and (26b), one obtains the following set of nonlinear algebraic
equations: [

K vv(τ ) K vw

Kwv Kww(τ )

]{
qv
qw

}
+

{
q̈v
q̈w

}
+ γ

{
q̇v
q̇w

}
= 0, (28)

where single and double dots denote first- and second-order derivatives with respect to the dimensionless
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time τ . In (28), several vectors and matrices are defined by

qv =


qv1(τ )
...

qvN (τ )

 , qw =


qw1(τ )
...

qwN (τ )

 , (29a)

K vv
mn(τ )= Kww

mn (τ )= (µ+ 1)λ4
mδmn + η(τ) cmn, (29b)

K vw
mn =− f I bmn, (29c)

Kwv
mn = f I bmn. (29d)

The values of bmn , cmn , and λn , which are related to the boundary conditions of the microwire, may
be evaluated in closed form by defining the following set of constants:

bmn =

∫ 1

0
φm(ξ) φ

′

n(ξ) dξ, cmn =

∫ 1

0
φm(ξ) φ

′′

n (ξ) dξ. (30)

For clamped-clamped boundary conditions, we have

λ1 = 4.7300, λ2 = 7.8532, λn ≈
(
n+ 1

2

)
π (n = 3, 4, 5, . . .), (31a)

φn(ξ)= cos(λnξ)− cosh(λnξ)−
cos(λ)− cosh(λn)

sin(λn)− sinh(λn)
[sin(λnξ)− sinh(λnξ)]. (31b)

For pinned-pinned boundary conditions, one has

λn = nπ (n = 1, 2, 3, . . .), (32a)

φn(ξ)=
√

2 sin(λnξ). (32b)

It should be noted that the dimensionless parameter η(τ) in (29b) represents the equivalent axial com-
pression p determined by the initial axial compression and the time-varying axial elongation c(τ ), i.e.,

η(τ)= p− ac(τ ), (33)

c(τ )=
∫ 1

0

{[ N∑
n=1

φ′n(ξ) qvn(τ )

]2

+

[ N∑
n=1

φ′n(ξ) qwn(τ )

]2}
dξ. (34)

In order to apply the Runge–Kutta method, we define two new vectors as follows

q =
{

qv
qw

}
, Q =

{
q̇
q

}
. (35)

Then one obtains

Q̇ = F(τ, Q)=
[
−γ ×[I] −[K ]
[I] [0]

]{
{q̇}
{q̇}

}
, (36)

where [I] is a unit diagonal matrix and [0] is a zero element matrix.
By use of the fourth-order Runge–Kutta method, the dynamic responses of the CCMW immersed in a

longitudinal magnetic field may be calculated. Selecting a set of system parameters defined in (23), one
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can analyze the effects of slenderness ratio, magnetic force, axial compression and material length scale
parameter on the stability and nonplanar postbuckling behaviors of the microwire.

4. Validity of the developed nonlinear model and proposed computational procedure

It is noted that, due to the presence of Lorentz’s force, (26) could not be solved analytically. In the
case of f I = 0, however, the exact solutions for the postbuckling amplitudes of a microwire under axial
compression are available [Nayfeh and Emam 2008]. In this section, first, numerical simulations based
on (26) are performed in order to check the validity of the developed nonlinear model and proposed com-
putational procedure. For that purpose, the postbuckling configuration of an axially loaded microbeam
in the absence of magnetic fields is numerically calculated and compared to that obtained analytically.

In the case of µ= 0 and f I = 0, (26) is reduced to the buckling problem of a classical Euler–Bernoulli
beam subjected to a compressive load. The governing equation for the planar deflection of the microwire
becomes

ψ iv(ξ)+ pψ ′′(ξ)−αψ ′′
∫ 1

0
ψ ′2(ξ) dξ = 0. (37a)

Now consider a simply-supported beam with an axial compressive load of p = 10π2. In this case, the
analytical solution for the buckling configuration is given by [Sun et al. 2017]

ψ1(ξ)=±
3
√

2α
α

sin(πξ). (37b)

As seen in Figure 2, compared with the analytical solution of (37b), our numerical results for the
buckling amplitude of the microwire achieve low relative error below 0.01% for N > 4, thus demon-
strating the validation and accuracy of the Runge–Kutta procedure. Synthesizing both the accuracy and
computational efficiency, therefore, N = 5 will be chosen for the following calculations.
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Figure 2. The relative error of numerical results for postbuckling amplitude as a func-
tion of the truncated mode number N for µ= 0, f I = 0, α = 800, and p = 10π2.
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5. Results and discussion

This section examines the nonlinear behavior of the CCMW employing the nonlinear model developed in
Section 2. More specifically, the postbuckling amplitudes of the microwire are examined in Section 5.1,
for different values of α and f I . The effect of initial conditions on the postbuckling configurations
(amplitude and shape) of the microwire is analyzed in Section 5.2. The influence of magnetic field
parameter on the postbuckling configurations of the microwire is discussed in Section 5.3. Section 5.4
evaluates the effect of material length scale parameter on the stability and postbuckling amplitudes of
the microwire. In Section 5.5, the effect of axial compressive load on the postbuckling configuration is
studied.

5.1. Postbuckling amplitudes of the microwire for various α and fI . The microwire’s stability and
postbuckling amplitude are examined by setting µ = 0.1 and p = 0, and varying the value of α. To
observe the stability evolution of the microwire, the dimensionless magnetic force f I is successively
increased.

Figure 3 shows the buckling responses of the microwire through plots of the transverse amplitudes as
a function of f I , for clamped-clamped or pinned-pinned boundary conditions. The results are obtained
for a microwire with α = 800, 1200, 1600, or 2000. In Figure 3, the transverse amplitudes of the
microwire are denoted as max(

√
v̄(ξ, τ )2+ w̄(ξ, τ )2 ). From this figure, one may find that the buckling

instability of a clamped-clamped microwire occurs at f I c ≈ 0.0192, 0.0104, 0.0068, and 0.0048 for four
different values of α (α = 800, 1200, 1600, and 2000), respectively. For a pinned-pinned microwire, the
buckling instability occurs at f I c ≈ 0.0069, 0.0038, 0.0024, and 0.0018 for α = 800, 1200, 1600, and
2000, respectively. Since f I c represents the onset value of dimensionless magnetic force for buckling
instability, it is termed as the critical magnetic force. Thus, by changing the value of α and maintaining
other system parameters unchanged, the slenderness ratio parameter α is found to have significant effect
on the critical magnetic force and hence the postbuckling amplitudes of the microwire. The evolution of
postbuckling amplitudes as a function of α is in accord with one’s common experience. Based on further
calculations, it is found that at the onset of buckling instability, we have α3/2 f I c ≈ 433.7 for clamped-
clamped ends and α3/2 f I c ≈ 157.1 for pinned-pinned ends. For a given set of boundary conditions,
therefore, the combined parameter α3/2 f I may be viewed as an essential index for examining the stability
of CCMW acted upon by a longitudinal magnetic field. In the following discussion, we define α3/2 f I as
a new magnetic field parameter.

5.2. Postbuckling configurations for various initial conditions. The results shown in Figure 3 were
concerned with the transverse amplitudes of the microwire. Some calculations for the postbuckling
shapes of the microwire are further conducted here. In our numerical calculations, it is noted that the
initial conditions can significantly affect the final postbuckling shapes of the microwire. This trend may
be the most interesting finding in this work. Some typical results are plotted in Figure 4 and Figure 5,
where the dimensionless magnetic field parameter α3/2 f I remains unchanged while the value of α is
varied. In Figure 4, the initial conditions for calculations were chosen as

q̇v(0)= q̇w(0)= {0, 0, 0, 0, 0}, qv(0)= qw(0)= {a, 0, 0, 0, 0}, (38)
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Figure 3. The maximum transverse amplitudes of the microwire as a function of the
dimensionless magnetic force f I , for µ = 0.1, p = 0, and various values of α: for
clamped-clamped boundary conditions (left), and for pinned-pinned boundary condi-
tions (right).

where a is a given constant and is fixed to be 0.001 in our calculations. In Figure 5, however, another
set of initial conditions were used:

q̇v(0)= q̇w(0)= {0, 0, 0, 0, 0}, qv(0)= {a, 0, 0, 0, 0}, qw(0)= {0, a, 0, 0, 0}. (39)

As shown by the results of Figure 4 and Figure 5, for a given set of system parameters, the buckling
shapes in the x-o-y and x-o-z planes are different from each other. Interestingly, the postbuckling shapes
depend on the combined parameter α3/2 f I and the buckling amplitudes are affected by the slenderness ra-
tio parameter α. Moreover, the postbuckling configurations shown in Figure 4 (left column) (or Figure 4,
right column) contain both first-mode and second-mode components of a beam with clamped-clamped
(or pinned-pinned) boundary conditions. As shown by the results of Figure 5, however, the postbuckling
shapes for v in x-o-y plane and w in x-o-z plane mainly contains the first-mode and second-mode
components, respectively.

More extensive calculations have been done for several other possible types of initial conditions. The
results are presented in Figure 6 for clamped-clamped boundary conditions and in Figure 7 for pinned-
pinned boundary conditions. From the results of Figure 6 and Figure 7, it is observed that the postbuckling
shapes of the microwire are strongly dependent on the initial conditions used. For a set of given initial
conditions, the buckling shape for v in the x-o-y plane may mainly contain the first-mode component
of a clamped-clamped beam. For other initial conditions, however, it may be mainly associated with the
second-mode component. To the authors’ knowledge, this strong dependence of postbuckling shapes on
the initial conditions is a relatively new finding for CCNWs and has not been reported previously.

An alternative, perhaps easier-to-understand form of the results of Figure 6 and Figure 7, is represented
in a cylindrical coordinate, as shown in Figure 8 and Figure 9. In these two figures, the radius r and
angle θ , respectively, denote the minimum distance from the deformed microwire to the x-axis and
the minimum clockwise rotation angle from vector {v ey, w ez} to the unit vector ey. From Figure 8
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Figure 4. The postbuckling shapes of the microwire in the x-o-y and x-o-z planes for
µ= 0.1, p= 0, and various values of α, for: clamped-clamped boundary conditions with
α3/2 f I = 1000 (left column), and pinned-pinned boundary conditions with α3/2 f I = 500;
the initial conditions of (38) were chosen for all calculations (right column).

Figure 5. The postbuckling shapes of the microwire in the x-o-y and x-o-z planes for
µ= 0.1, p= 0, and various values of α, for: clamped-clamped boundary conditions with
α3/2 f I = 1000 (left column), and pinned-pinned boundary conditions with α3/2 f I = 500;
the initial conditions of (39) were chosen for all calculations (right column).

and Figure 9, one can observe two obvious but important features. First, the dimensionless radius r
for a fixed ξ is identical for various different initial conditions, for either clamped-clamped or pinned-
pinned boundary conditions. This implies that initial conditions have no effect on the “overall” nonplanar
amplitudes of the CCMW. However, initial conditions can affect the spatial shapes of the microwire, as
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Figure 6. The postbuckling shapes of the microwire with clamped-clamped ends for
different initial conditions: µ= 0.1, p = 0, α3/2 f I = 2000, and α = 800.

Figure 7. The postbuckling shapes of the microwire with pinned-pinned ends for differ-
ent initial conditions: µ= 0.1, p = 0, α3/2 f I = 1000, and α = 800.

may be observed in Figure 8, right, and Figure 9, right. Second, the total relative rotation angles of
clamped-clamped microwire and pinned-pinned microwire are 150 and 120 degrees respectively, which
are independent of initial conditions.

To explain the strong dependence of postbuckling shapes on initial conditions, let us analyze the
eigenvectors of the stiffness matrix [K ] in (8). For a given set of system parameters, extensive calcu-
lations showed that the dimensionless axial elongation of the microwire’s centerline do not change for
various initial conditions. This means that the stiffness matrix [K ] does not change. Putting the value of
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Figure 8. The postbuckling configurations of a clamped-clamped microwire shown in a
cylindrical coordinate system for different initial conditions and µ= 0.1, p= 0, α3/2 f I =

2000, and α = 800.

Figure 9. The postbuckling configurations of a pinned-pinned microwire shown in
a cylindrical coordinate system, for different initial conditions and µ = 0.1, p = 0,
α3/2 f I = 1000, and α = 800.

dimensionless axial elongation of the centerline into the stiffness matrix [K ], one has[
K vv K vw

Kwv Kww

]{
qv
qw

}
= 0. (40)

It is assumed that a particular nontrivial solution of (40) may be expressed as{
qv
qw

}
=

{
X1

X2

}
. (41)
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Bearing in mind the expression of (29), one has

K vv
= Kww, K vw

=−Kwv. (42)

It is noted that, therefore, another particular solution satisfying (40) can be written as{
qv
qw

}
=

{
X2

−X1

}
. (43)

Thus, it follows from (41) and (43) that there may exist infinite kinds of possible solutions to (28).
This implies that infinite kinds of postbuckling shapes may occur, mainly determined by the chosen
initial conditions. Indeed, the feature of kaleidoscopic postbuckling shapes is due to the antisymmetry
of the stiffness matrix [K ]. This new feature for nonplanar microwires has not been detected in previous
studies of microwires under buckling in a single plane.

In fact, the initial displacement conditions may be viewed as an initial disturbance for the microwire.
From this point of view, a set of initial velocity conditions may be also employed as an initial disturbance.

5.3. Effect of magnetic field parameter on the postbuckling configurations. The main results obtained,
plotted in Figures 10–12, show that the magnetic field parameter may, sometimes, affect the postbuckling
configurations of the microwire. In Figure 10 and Figure 11, four values of magnetic field parameter have
been chosen for calculations for clamped-clamped or pinned-pinned boundary conditions. With initial
conditions defined by (39), it is clear that the magnetic field parameter does not have visible effect on the
postbuckling shape of the microwire. With initial conditions of (38), however, it is seen that the effect
of magnetic field parameter on the postbuckling shape is obvious. For example, the results of Figure 10
(right) show that with increasing magnetic field parameter, the buckling shape of w in the x-o-z plane
contains more and more second-mode components of a clamped-clamped beam. Similar trends may be
found for pinned-pinned boundary conditions.

In addition, it is found that the buckling instability cannot appear in higher-order modes (e.g., the third
mode), even if the magnetic field parameter becomes sufficiently large.

More extensive calculations have produced the results of Figure 12, where the initial conditions of (38)
were utilized, for either clamped-clamped or pinned-pinned boundary conditions. In Figure 12 (left or
right), twenty different values of magnetic field parameter were selected for calculations, thus producing
twenty curves in each figure. Only the configurations of v have been plotted for clarity. It should be stated
that the results of postbuckling amplitudes shown in Figure 12 have been normalized for the purpose of
intuitive comparison. From Figure 12 (left and right), it is clearly seen that, with the increase of magnetic
field parameter, the postbuckling configuration evolves from the first-mode shape to a hybrid shapes of
both first and second modes.

Strictly speaking, the displacement v (or w) would contain contributions of all the modes according to
the basic idea of the Galerkin’s approach. However, the contributions of higher-order modes are not pro-
nounced, as demonstrated in Figure 13, in which the proportions of the lowest four modes for determining
the displacement of v have been quantitatively shown. It is observed that the microwire’s displacement
is mainly associated with the first and second modes. With the increase of magnetic field parameter, the
first-mode contribution becomes smaller while the second-mode contribution becomes larger.
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Figure 10. The evolution of postbuckling shapes of clamped-clamped microwires with
increasing magnetic field parameter for µ= 0.1, p = 0, and α = 800: (a) α3/2 f I = 435,
(b) α3/2 f I = 495, (c) α3/2 f I = 900, (d) α3/2 f I = 3300. Solid lines indicate results
where initial conditions were from (38), and dashed lines indicate results where initial
conditions were from (39).

Figure 11. The evolution of postbuckling shapes of pinned-pinned microwires with in-
creasing magnetic field parameter for µ= 0.1, p = 0, and α = 800: (a) α3/2 f I = 158,
(b) α3/2 f I = 176, (c) α3/2 f I = 308, (d) α3/2 f I = 1155; Solid lines indicate results
where initial conditions were from (38), and dashed lines indicate results where initial
conditions were from (39).
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Figure 12. The effect of magnetic field parameter on the postbuckling shapes of v for
µ= 0.1, p = 0, and α = 800: clamped-clamped boundary conditions (left) and pinned-
pinned boundary conditions (right).

Figure 13. The proportions of the lowest four modes for various magnetic field parame-
ters and µ= 0.1, p = 0, and α = 800: clamped-clamped boundary conditions (left) and
pinned-pinned boundary conditions (right).

5.4. Effect of material length scale parameter on the stability boundaries. The stability problem of a
slender beam has been investigated by many researchers. In particular, the exact solution of postbuckling
configurations of beams has been obtained by Nayfeh and his coworkers [Nayfeh and Emam 2008]. In
this section, the stability boundaries of the CCMW under both axial compression and magnetic force
are studied, for various values of dimensionless material length scale parameter µ, to show the effect
of µ on the buckling behaviors of the microwire. Typical results with α = 800 are shown in Figure 14
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Figure 14. The stability boundaries for α = 800 and µ= 0, 0.1, and 0.2 for clamped-
clamped and (left) and pinned-pinned boundary conditions (right).

and Figure 15, for both clamped-clamped and pinned-pinned boundary conditions. The dimensionless
material length scale parameter is chosen to be µ= 0, 0.1, and 0.2 for calculations.

The results given in Figure 14 show the stability boundaries for µ= 0, 0.1, and 0.2. From Figure 14,
it is noted that the critical magnetic field parameter is α3/2 f I c ≈ 394.3 for p = 0 and µ = 0, which is
in accordance with the linear result of Wang et al. [2015] for microwires with clamped-clamped ends.
It is obviously seen that the material length scale parameter can stabilize the microwire system while
both the magnetic field parameter and axial compression would destabilize the microwire. When the
magnetic field parameter and axial compression are small and locate below the stability boundary, the
microwire is stable. If, however, the magnetic field parameter and axial compression are large and locate
beyond the stability boundary, the microwire is buckled. Utilizing the critical buckling curves shown in
Figure 14, an expected critical value of magnetic field parameter may be achieved by choosing a suitable
compressive load as a trigger of automatic devices.

Based on the nonlinear governing equations of (26), the maximum amplitudes of lateral displace-
ments (max[

√
v̄(ξ, τ )2+ w̄(ξ, τ )2 ]) are plotted in Figure 15. It is observed that the material length scale

can decrease the buckling amplitudes of the microwire, again, indicating that the material length scale
parameter plays a stabilizing effect on the microwire system.

5.5. Effect of axial compression on the postbuckling configurations. The effect of axial compression
on the postbuckling configurations of the microwire can be seen in Figure 16, where the parameters
were chosen as µ= 0.1, α3/2 f I = 1000, and α = 800. The initial conditions defined by (38) were used
for calculations. An interesting feature of Figure 16 is that the axial compression does not affect the
postbuckling shapes at all, although it does affect the postbuckling amplitudes of the microwire. This
implies that the main role of an axial compression is to promote the occurrence of buckling instability and
change the postbuckling amplitude of the microwire. Thus, even if the axial compression is sufficiently
large, the postbuckling configuration (shape) is still dominated by the first-order mode or the second-order
mode. In fact, higher modes can only slightly affect the postbuckling configuration of the microwire.
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Figure 15. The maximum amplitude of lateral displacements as a function of the di-
mensionless magnetic field parameter for α = 800, p = 0 and three different values of
µ for clamped-clamped and (left) and pinned-pinned boundary conditions (right).

Figure 16. The evolution of postbuckling configurations of the microwire with increas-
ing axial compression for µ= 0.1, α = 800, and α3/2 f I = 1000: with clamped-clamped
boundary conditions (left), and with pinned-pinned boundary conditions; all results were
obtained using initial conditions of (38) (right).

Before leaving Section 5, it should be mentioned that the stability and postbuckling response of the
microwire were not analyzed from the point of view of energy, although the governing equations were
derived from Hamilton’s principle. In the above analysis, the postbuckling responses and critical loads
were evaluated by numerically solving (26). The connection with energy of the system in the pre- and
post-buckling responses may be another interesting topic for the system of current-carrying microwires.
This needs more extensive analysis in the future.
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6. Conclusions

This paper studies the stability and nonplanar postbuckling of a current-carrying microwire subjected
to a longitudinal magnetic field, by taking into account the geometric nonlinearities caused by the axial
elongation of the microwire’s centerline. Based on the Euler–Bernoulli beam assumptions, the modified
couple stress theory and Hamilton’s principle, the dimensionless version of nonplanar nonlinear equations
of the microwire is derived. Using the Galerkin’s approach and a fourth-order Runge–Kutta method,
numerical results for both clamped-clamped and pinned-pinned boundary conditions are obtained. The
effects of several dimensionless parameters associated with slenderness ratio, magnetic field, compressive
load, and material length scale on the nonplanar buckling and postbuckling configurations are analyzed.
Among others, some major conclusions are summarized as follows:

The slenderness ratio parameter α has an obvious effect on the stability and the postbuckling amplitude
of the microwire. The most interesting result obtained is that the nonplanar postbuckling shapes of
the microwire under a longitudinal magnetic field may change when the initial conditions were varied,
indicating that the nontrivial equilibria are sensitive to the initial conditions used for calculations. The
dependence of postbuckling shapes on initial conditions makes it difficult to accurately determine the final
postbuckling configurations of the microwires in practice. It is also expected that such high sensitivity
of postbuckling configurations to initial conditions can be validated experimentally in the future. If such
sensitivity is physically true, then how to minimize or control such a sensitivity is another interesting
topic. In addition, one may also envision that some other methods such as a stochastic approach, or
perhaps a statistical method can help understand such a sensitivity further.

The influence of magnetic field parameter on the postbuckling shapes is found to be remarkable in
many cases. With the increase of magnetic field parameter, the postbuckling configurations are mostly
associated with the first- and second-mode components, and the proportion of the second-mode com-
ponent becomes larger while the proportion of the first-mode component decreases. In all cases, the
proportion of higher-order modes (e.g., third or fourth modes) is low and may be neglected.

The effect of material length scale parameter on the stability and postbuckling amplitude of the mi-
crowire may be foreseen using one’s experience. With the increase of dimensionless material length scale
parameter, the microwire becomes more stable. For a buckled microwire, the postbuckling amplitude
would decrease with increasing material length scale parameter.

Finally, it is found that the axial compressive load has an obvious effect on the postbuckling amplitude
while it does not affect the postbuckling shape of the microwire. Moreover, the presence of an axial
compression may reduce the threshold value of the magnetic field parameter for buckling instability.
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