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THREE-DIMENSIONAL TREFFTZ COMPUTATIONAL GRAINS
FOR THE MICROMECHANICAL MODELING OF HETEROGENEOUS MEDIA

WITH COATED SPHERICAL INCLUSIONS

GUANNAN WANG, LEITING DONG, JUNBO WANG AND SATYA N. ATLURI

Three-dimensional computational grains based on the Trefftz method (TCGs) are developed to directly
model the micromechanical behavior of heterogeneous materials with coated spherical inclusions. Each
TCG is polyhedral in geometry and contains three phases: an inclusion, the surrounded coating (or
interphase) and the matrix. By satisfying the 3D Navier’s equations exactly, the internal displacement
and stress fields within the TCGs are expressed in terms of the Papkovich–Neuber (P–N) solutions, in
which spherical harmonics are employed to further express the P–N potentials. Further, the Wachspress
coordinates are adopted to represent the polyhedral-surface displacements that are considered as nodal
shape functions, in order to enforce the compatibility of deformations between two TCGs. Two tech-
niques are developed to derive the local stiffness matrix of the TCGs: one is directly using the multi-field
boundary variational principle (MFBVP) while the other is first applying the collocation technique for
the continuity conditions within and among the grains and then employing a primal-field boundary vari-
ational principle (PFBVP). The local stress distributions at the interfaces between the 3 phases, as well
as the effective homogenized material properties generated by the direct micromechanical simulations
using the TCGs, are compared to other available analytical and numerical results in the literature, and
good agreement is always obtained. The material and geometrical parameters of the coatings/interphases
are varied to test their influence on the homogenized and localized responses of the heterogeneous media.
Finally, the periodic boundary conditions are applied to the representative volume elements (RVEs) that
contain one or more TCGs to model the heterogeneous materials directly.

1. Introduction

Heterogeneous materials reinforced with spherical-shaped inclusions have been widely applied in the
aviation industry and the automobile industry due to their higher property-to-volume ratios relative to
the monoclinic materials. In recent years, the effect of the interfaces between the inclusions and the
matrices in particle-filled composites has received increasing attention because of the need to tailor the
composite materials to meet specific requirements. Thus a good understanding of interfacial effects in
composites, and establishing effective and highly efficient numerical models, when coatings/interfaces
are considered, will be beneficial for the design and development of coated particulate composites.

Various classical micromechanical models were generalized to study the coated particulate composites.
For example, the initial composite spherical assemblage (CSA) model proposed by Hashin [1962] was
generalized to the three-phase domain to study the elastic moduli of coated particulate composites [Qiu
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and Weng 1991; Herve and Zaoui 1993] or mineral materials [Nguyen et al. 2011]. The (generalized)
self-consistent scheme (GSCS) was also employed to study the multiphase heterogeneous materials
[Cherkaoui et al. 1994; Quang and He 2007]; The Mori–Tanaka (M–T) model was modified to calculate
the properties of composites reinforced with uniformly distributed particles with interphases [Jiang et al.
2009]. The classical semi-analytical homogenization techniques largely provide the currently available
tools, and even provide explicit expressions in the analysis of coated particulate composites, and thus have
gained wide acceptance within the communities of mechanics and materials. However, most of these mod-
els are based on the assumption of the mean-field homogenization which only predicts accurate effective
properties but cannot effectively recover the local inter-phase stress distributions, which are essentially
important in the prediction of the possible failures and damages in the lifetime of heterogeneous materials.

Compared to the classical homogenization techniques, the simple finite-element (FE) methods can
overcome the disadvantages mentioned above. The finite element method [Marur 2004; Liu et al. 2005;
Tsui et al. 2006; Zhang et al. 2007; Jiang et al. 2008] has been widely used in investigating various
aspects of particulate composites with coatings/interfaces, including computing the homogenized moduli,
local stress concentrations, damage, and strengthening. However, the disadvantages of these simple finite
elements are also well-known, such as unsatisfactory performance in problems which involve constraints
(shear/membrane/incompressibility locking), low convergence rates for problems which are of singular
nature (stress concentration problems and fracture mechanics problems), difficulty to satisfy higher-order
continuity requirements (plates and shells), sensitivity to mesh distortion, etc. In order to capture the
stress field accurately, the usual finite element methods involve extensive and laborious mesh generation,
and very fine meshes involving large computational costs. Taking Figure 1, left, as an example [Chen
et al. 2016; 2017], a total of 3952 hexahedron linear elements are adopted to discretize a single grain
with an inclusion. If an RVE of a heterogeneous composite has to be modeled, with say a hundred
or thousand grains, to not only generate effective properties but also capture the stress concentrations
at the interfaces of inhomogeneities, the usual finite element method becomes almost impossible to be
applied without using very high-performance super computers. Some other numerical techniques were
also proposed to improve the stability and accuracy of the FE methods in micromechanical modeling of
complex microstructures, for instance, fast Fourier transforms (FFT) [Moulinec and Suquet 1998; Michel
et al. 2000], extended finite element method (XFEM) [Yvonnet et al. 2011; Zhu et al. 2011], etc.

In order to effectively reduce the computational efforts without sacrificing the accuracy, the concept
of Trefftz computational grains (TCGs) was developed by Dong and Atluri [2012c; 2012b; 2012a],
and Bishay and Atluri [2013; 2014; 2015; Bishay et al. 2014] used radial basis functions as well as
Trefftz formulation based computational grains for multi-functional composites. Instead of applying
the simple finite element discretization of the microstructures, an arbitrarily shaped TCG composed of
fiber/coating/matrix constituents is treated as a “super” element (Figure 1, right), whose internal dis-
placement and traction fields are represented by the Trefftz solutions. Based on the Trefftz concept
[Qin 2005] of using the complete analytical solutions which satisfy the Navier’s equations of elasticity,
the development of the highly accurate and efficient two- and three-dimensional polyhedral computa-
tional grains was achieved. It should be noted that the idea of the VCFEM was initially proposed to
investigate the particle reinforced composites [Ghosh et al. 1995; Moorthy and Ghosh 1998] in the 2D
cases. However, the VCFEM developed in [Ghosh et al. 1995; Moorthy and Ghosh 1998] was based on
the hybrid-stress finite element method, with both domain and boundary integrations for each Voronoi
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Figure 1. Left: the usual FE mesh discretization of spherical particulate composites
[Chen et al. 2016; 2017]. Right: a single polyhedral Trefftz computational grain (TCG)
with three phases.

element, and adopted incomplete stress functions (in the hybrid stress finite element method), leading
to the inefficient computational efforts and highly inaccurate internal and interfacial stress distributions.
The new version of the TCGs [Dong and Atluri 2012a; 2012b; 2012c] differ from the hybrid stress
VCFEM in [Ghosh et al. 1995; Moorthy and Ghosh 1998] in the following ways 1) a complete Trefftz
trial displacement solution is assumed in the TCG by satisfying both the equilibrium and compatibility
conditions a priori; 2) only boundary integrals are involved in the newly developed TCG, ensuring its
better accuracy and efficiency in the micromechanical computations. All of these characteristics prove
that the Trefftz computational grains are reliable tools in generating both effective properties as well as
the inter-phase local stress field distributions in the micromechanics of heterogeneous materials.

Based on the framework established by Dong and Atluri [2012a; 2012b; 2012c], the Trefftz computa-
tional grains (TCGs) are generalized in this paper, for the micromechanical modeling of heterogeneous
materials reinforced with coated particles (or particles with interphases). By avoiding the large-scale
mesh discretization of a microstructure within the normal FE framework, each arbitrarily shaped TCG in
the present situation is composed of a particulate inclusion, a coating/interphase and the surrounding
matrix phase, Figure 1, right. The trial displacement solutions of each constituent are obtained by
employing Papkovich–Neuber (P–N) solutions [Lurie 2005], in which the P–N potentials are further
represented by the spherical harmonics. Two approaches are then used to develop the local stiffness
matrix of the TCGs: First, a multi-field boundary variational principle is proposed to enforce conti-
nuities between adjacent constituents and TCGs, as well as the external boundary conditions, if any;
Second, the collocation technique [Dong and Atluri 2012b; 2012c; Wang et al. 2018] is applied to satisfy
the interfacial continuity conditions, while a primal-field boundary variational principle is employed to
satisfy the interphase continuities and the boundary conditions, a technique which we name as CPFBVP.
Both approaches generate accurate predictions as compared to the currently available semi-analytical and
numerical results. Finally, an easy implementation of periodic boundary conditions (PBCs) is achieved
on the representative volume elements by surface-to-surface constraint scheme.
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The remainder of the paper is organized as follows: Section 2 solves the displacement fields in each
constituent of a TCG in terms of the P–N solutions and develops the local stiffness matrix of the TCGs.
Section 3 validates the homogenized moduli and local inter-phase stress distributions through comparing
with the CSA and detailed fine-mesh FE results. The influence of the coatings/interphases on the various
properties of composites materials is thoroughly investigated in Section 4. Finally, the effects of the
periodic boundary conditions on the RVEs are studied in Section 5. Section 6 concludes this contribution.

2. Development of polyhedral Trefftz computational grains (TCGs) with coated spherical
inclusions/voids

2.1. Boundary displacement field for a polyhedral TCG. For an arbitrarily polyhedral-shaped TCG
in the 3D space, each surface is a polygon, Figure 1, right. Constructing an inter-TCG compatible
displacement on the boundary of the polyhedral element is not as simple as that for the 2D version. One
way of doing this is to use barycentric coordinates as nodal shape functions on each polygonal face of
the 3D TCGs.

Consider a polygonal face Vn with n nodes x1, x2, . . . , xn , within barycentric coordinates, denoted
as λi (i = 1, 2, . . . , n). The coordinates λi depend only on the position vector xi . To obtain a good
performance of a TCG, we only consider barycentric coordinates that satisfy the following properties:

1. Being nonnegative: λi ≤ 0 in the polygon Vn .

2. Smoothness: λi is at least C1 continuous in the polygon Vn .

3. Linearity along each edge that composes the polygon Vn .

4. Linear completeness: For any linear function f (x), the equation f (x)=
∑n

i=1 f (x i )λi holds.

5. Partition of unity:
∑n

i=1 λi ≡ 1.

6. Dirac delta property: λi (x j )= δi j .

Among the many barycentric coordinates that satisfy these conditions, Wachspress coordinate is the
most simple and efficient [Wachspress 1975].

A point x ∈ Vn within the polygon is determined in terms of two parameters: Bi as the area of the
triangle with the vertices of xi−1, x i and xi+1, and Ai (x) as the area of the triangle with vertices of x,
x i and xi+1, Figure 2. Thus, the Wachspress coordinate of the point x can be written as

λi (x)=
wi (x)∑n

j=1w j (x)
, (1)

wherein the weight function is defined as

wi (x)=
Bi (xi−1, xi , xi+1)

Ai−1(xi−1, xi , x)Ai (xi , xi+1, x)
. (2)

The inter-TCG compatible displacement field is therefore expressed in terms of the nodal shape func-
tions for the polygonal surface vertices and the nodal displacements in the Cartesian coordinates:

ũi (x)=
n∑

k=1

λk(x) ui (xk) x ∈ Vn, Vn ⊂ ∂�
e, (3)
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Figure 2. Definition of Wachspress coordinates on each surface of a polyhedron.

where ∂�e denotes the surface of each TCG.

2.2. The governing equations of linear elasticity for each phase of the TCGs. As shown in Figure 3,
the solutions of the 3D linear elasticity for the matrix and inclusion phases should satisfy the equilibrium
equations, strain-displacement compatibilities, as well as the constitutive relations in each element �e:

σ k
i j, j + f k

i = 0, (4)

εk
i j =

1
2

(
uk

i, j + uk
j,i
)
, (5)

σ k
i j = λ

kεk
mmδi j + 2µkεk

i j , (6)

where the superscript k = m, c, p denotes the matrix, the coating and the inclusion (particle) phases, uk
i ,

εk
i j , σ

k
i j are the displacement, strain and stress components, f k

i is the body force, which is neglected in
this situation, and Here, λk and µk are the Lamé constants of each phase.

At the interfaces between the constituents within each TCG, the displacement continuities and traction
reciprocities can be written as

um
i = uc

i at ∂�e
c, (7)

−n jσ
m
i j + n jσ

c
i j = 0 at ∂�e

c, (8)

uc
i = u p

i at ∂�e
p, (9)

−n jσ
c
i j + n jσ

p
i j = 0 at ∂�e

p, (10)

where ∂�e
c and ∂�e

p are the outer surfaces of the coating and inclusion phases, respectively. The external
boundary conditions for each TCG can be written as

um
i = ūi at Se

u, (11)

n jσ
m
i j = t̄i at Se

t , (12)

(n jσ
m
i j )
+
+ (n jσ

m
i j )
−
= 0 at ρe, (13)

where Se
u , Se

t and ρe are displacement, traction and other boundaries of the domain �e, respectively, and
∂�e
= Se

u ∪ Se
t ∪ ρ

e. ūi , t̄i are the prescribed boundary displacement and traction components when they
exist.
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Figure 3. A polyhedral Trefftz computational grain and its nomenclature.

2.3. Papkovich–Neuber solutions as the trial internal displacement fields within each TCG. Navier’s
equation can be derived from (4)–(6):

(λk
+µk) uk

j, j i +µ
k1uk

i = 0. (14)

Solving the displacement components directly from (14) is a rather difficult task. Papkovich [1932]
and Neuber [1934] suggested that the solutions can be represented in the forms of harmonic functions:

uk
=

4(1− νk)Bk
−∇(R · Bk

+ Bk
0 )

2µk , (15)

where Bk
0 and Bk =

[
Bk

1 Bk
2 Bk

3

]T
are scalar and vector harmonic functions. R is the position vector.

µk is the shear modulus of the k-th constituent.
The number of independent harmonic functions in (15) is more than the number of independent dis-

placement components. Therefore, it is desired to keep only three of the four harmonic functions. Thus,
by dropping Bk

0 we have the following solution:

uk
=

4(1− νk)Bk
−∇R · Bk

2µk . (16)

The general solution of (16) is complete for an infinite domain external to a closed surface. However,
for a simply-connected domain, equation (16) is only complete when ν 6= 0.25. M. G. Slobodyansky
proved that, by expressing Bk

0 as a specific function of Bk , the derived general solution of (14) is complete
for a simply-connected domain with any valid Possion’s ratio:

uk
=

4(1− νk)Bk
+ R · ∇Bk

− R∇ · Bk

2µk . (17)

The harmonic vector B needs to be further expressed using the special functions to define various do-
main surfaces. To accommodate the spherical inclusion and its coating, spherical harmonics are adopted
and introduced in the next section.
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2.4. Spherical harmonics. Consider a point with Cartesian coordinates x1, x2, x3 and the corresponding
spherical coordinates q1

= R, q2
= θ , q3

= ϕ having the following relationship:

x1 = R sin θ cosϕ, x2 = R sin θ sinϕ, x3 = R cos θ. (18)

From (18), we have

∂x1

∂R
= sin θ cosϕ,

∂x1

∂θ
= R cos θ cosϕ,

∂x1

∂ϕ
=−R sin θ sinϕ,

∂x2

∂R
= sin θ sinϕ,

∂x2

∂θ
= R cos θ sinϕ,

∂x2

∂ϕ
= R sin θ cosϕ,

∂x3

∂R
= cos θ,

∂x3

∂θ
=−R sin θ,

∂x3

∂ϕ
= 0,

(19)

and
∂qs

∂xk
=

1
H 2

s

∂xk

∂qs ,
∂R
∂qr ·

∂R
∂qs = δrs Hr Hs, (20)

where
H1 = HR = 1, H2 = Hθ = R, H3 = Hϕ = R sin θ, (21)

are called Lamé’s coefficients. By defining a set of orthonormal base vectors of the spherical coordinate
system:

gr =
1

Hr

∂R
∂qr , (22)

we have
∂ gR

∂R
= 0,

∂ gR

∂θ
= gθ ,

∂ gR

∂ϕ
= gϕ sin θ,

∂ gθ
∂R
= 0,

∂ gθ
∂θ
=−gR,

∂ gθ
∂ϕ
= gϕ cos θ,

∂ gϕ
∂R
= 0,

∂ gϕ
∂θ
= 0,

∂ gϕ
∂ϕ
=−(gR sin θ + gθ sin θ).

(23)

Therefore, the Laplace operator of a scalar f has the following form:

∇
2 f =∇ ·∇ f =

1
Hr

gr
∂

∂qr
·

1
Hs

gs
∂ f
∂qs

=
1
R

[ ∂
∂R

R2 ∂ f
∂R
+
∂

∂ξ
(1− ξ 2)

∂ f
∂ξ
+

1
1− ξ 2

∂ f
∂λ2

]
, (24)

where the new variable ξ = cos θ is introduced. By assuming that f = L(R)M(ξ) N (ϕ) and using k2

and n(n+ 1) as separating constants, it can be shown that L , M , N satisfy the following equations:

N ′′(ϕ)+ k2 N (ϕ)= 0, (25)

[(1− ξ 2)M ′(ξ)]′+
[
n(n+ 1)−

k2

1− ξ 2

]
M(ξ)= 0, (26)

[R2L ′(R)]′− n(n+ 1)L(R)= 0. (27)
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Equation (25) leads to particular solutions cos kϕ and sin kϕ for a nonnegative integer k, because of
the periodicity of N (ϕ). Equation (26), which is clearly the associated Legendre’s differential equation,
leads to the associated Legendre’s functions of the first and the second kinds, where only the associated
Legendre’s functions of the first kind are valid for constructing M(ξ). Denoting them as Pk

n (ξ), we have

Pk
n (ξ)= (−1)k(1− ξ 2)k/2

dk

dξ k Pn(ξ), Pn(ξ)=
1

22n!

[ dn

dξ n (ξ
2
− 1)n

]
. (28)

The product of M(ξ)N (ϕ) are called spherical surface harmonics, and can be normalized to be

Y k
n (θ, ϕ)=

√
2n+ 1

4π
(n− k)!
(n+ k)!

Pk
n (cos(θ)) eikϕ

=

√
2n+ 1

4π
(n− k)!
(n+ k)!

Pk
n (cos(θ))[cos(kϕ)+ i sin(kϕ)]

= Y Ck
n(θ, ϕ)+ iY Sk

n(θ, ϕ), (29)

such that ∫ 2π

0

∫ π

0
Y k

n (θ, ϕ)Y
k′
n′(θ, ϕ) sin θ dθ dϕ = δkk′ δnn′ . (30)

Finally, equation (27) leads to particular solutions Rn and R−(m+1). For different problems, different
forms of L(R) should be used, which leads to different forms of spherical harmonics. For the internal
problem of a sphere, only Rn is valid. f can be expanded as

f p =

∞∑
n=0

Rn
{

a0
0Y C0

0(θ, ϕ)+

n∑
j=1

[
a j

n Y C j
n (θ, ϕ)+ b j

nY S j
n (θ, ϕ)

]}
. (31)

For external problems in an infinite domain, only R−(m+1) is valid, f can be expanded as

fk =

∞∑
m=0

R−(m+1)
{

c0
0Y C0

0(θ, ϕ)+

m∑
j=1

[
c j

mY C j
m(θ, ϕ)+ d j

mY S j
m(θ, ϕ)

]}
, (32)

where a j
n , b j

n , c j
m and d j

m are the unknown coefficients that can be solved through their implementations
into the elasticity solutions and variational principles. The numbers of the unknown coefficients depend
on the harmonic terms employed in the calculations, which are further dependent on the complexity of
the problems.

As is mentioned in [Liu 2007a; 2007b], the above trial functions will lead to ill-conditioned systems of
equations when being applied in the Trefftz method to numerically solve a boundary value problem. Thus,
the characteristic lengths are introduced to scale the equations (31) and (32) [Dong and Atluri 2012b;
2012c; Liu 2007a; 2007b] to better condition the relevant matrices that arise in the Trefftz method.

For a specific domain of interest, two characteristic lengths Rnon and Rsig are defined, which are respec-
tively the maximum and minimum values of the radial distance R of points where boundary conditions
are specified. Therefore, (R/Rnon)

n and (Rsig/R)−(m+1) is confined between 0 and 1 for any positive
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integers n and m. Harmonics are therefore scaled as

f p =

∞∑
n=0

(
R

Rnon

)n{
a0

0Y C0
0(θ, ϕ)+

n∑
j=1

[
a j

n Y C j
n (θ, ϕ)+ b j

nY S j
n (θ, ϕ)

]}
, (33)

fk =

∞∑
m=0

(
R

Rsig

)−(m+1){
c0

0Y C0
0(θ, ϕ)+

m∑
j=1

[
c j

mY C j
m(θ, ϕ)+ d j

mY S j
m(θ, ϕ)

]}
. (34)

2.5. Trefftz trial displacement fields. For an element with an inclusion as well as the coating of spher-
ical geometries, the displacement field in the inclusion can be derived by substituting the nonsingular
harmonics, equation (33) into (17):

up
= [4(1− ν p)B pi

+ R · ∇B pi
− R∇ · B pi

]/(2µp). (35)

The displacement fields in the matrix and the coating phases are the summation of uki (the nonsingular
part) and uke (the singular part, with the singularity being located at the center of the inclusion). uki can
be derived by substituting (33) into (17), and uke can be derived by substituting (34) into (16):

uk
= uki

+ uke (k = m, c),

uki
= [4(1− νk)Bki

+ R · ∇Bki
− R∇ · Bki

]/(2µk),

uke
= [4(1− νk)Bke

−∇R · Bke
]/(2µk).

(36)

A more detailed illustration is given in [Dong and Atluri 2012b]. The expressions of strains and
stresses can be then calculated by using Wolfram Mathematica 8.0, and are too complicated to be explic-
itly presented here. To obtain the converged results in this presentation, we let n = 3 for the nonsingular
solution of the particulate phase, equation (35), and n = 4, m = 3 for the elastic solutions of the coating
and matrix phases, equation (36).

2.6. TCGs through the multi-field boundary variational principle. The four-field energy functional of
the 3-phase Trefftz computational grains can be expressed for an elastic coated particulate reinforced
heterogeneous media:

π(ũm
i , um

i , uc
i , u p

i )=
∑

e

{∫
∂�e+∂�e

c

−
1
2

tm
i um

i d S+
∫
∂�e

tm
i ũm

i d S+
∫
∂�e

c

tm
i uc

i d S
}

+

∑
e

∫
∂�e

c+∂�
e
p

1
2

tc
i uc

i d S+
∑

e

{∫
∂�e

p

−
1
2

t p
i u p

i d S+
∫
∂�e

p

t p
i uc

i d S
}
−

∫
St

t̄i ũi d S, (37)

where the matrix strain energy, coating strain energy, inclusion strain energy, as well as the work done by
external force are included. A first variation of the functional in (37) yields the Euler–Lagrange equations
expressed in (7)–(13).
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By assuming the displacement and stress fields in the vector forms:

ũm = Ñq at ∂�e (38)

um = Nmα in �e
m (39a)

tm = Rmα at ∂�e, ∂�e
c (39b)

uc = Ncβ in �e
c (40a)

tc = Rcβ at ∂�e
c, ∂�

e
p (40b)

up = Npγ in �e
p (41a)

tp = Rpγ at ∂�e
p (41b)

and substituting them into (37), the finite element equations can be deducted by making the first variation:

δ

{
q
β

}T
[

GT
αq H−1

αα Gαq GT
αq H−1

αα Gαβ

GT
αβH−1

αα Gαq GT
αβH−1

αα Gαβ+Hββ+GT
βγ H−1

γ γ Gβγ

]{
q
β

}
= δ

{
q
β

}T {Q
0

}
, (42)

where α and γ are eliminated in the above equation and expressed in terms of β and q, and

Hαα =

∫
∂�e+∂�e

c

RT
m Nm d S, Hββ =

∫
∂�e

c+∂�
e
p

RT
c Nc d S, Hγ γ =

∫
∂�e

p

RT
p Np d S,

Gαβ =

∫
∂�e

c

RT
m Nc d S, Gαq =

∫
∂�e

RT
m Ñ d S, Gβγ =

∫
∂�e

p

RT
c Np d S, Q =

∫
∂�e

ÑT t̄ d S.

By defining kqq = GT
αq H−1

αα Gαq , kqβ = GT
αq H−1

αα Gαβ and kββ = GT
αβH−1

αα Gαβ+Hββ+GT
βγ H−1

γ γ Gβγ ,
the local stiffness matrix of a TCG is

klocal = kqq− kqβ kββ kT
qβ, (43)

with the vectors of unknown coefficients in terms of the nodal displacement field:

α = H−1
αα

(
Gαq−Gαβk−1

ββ kT
qβ
)
q,

β =−k−1
ββ kT

qβq,

γ =−H−1
γ γ Gβq k−1

ββ kT
qβq.

(44)

It should be noted that the six rigid-body modes in the field expressions should be eliminated for the
application of MFBVP but not for the CPFBVP. By displaying the displacement and stress expressions
in matrix forms, the following three modes only make contributions to the total resultant forces at the
source point and should be taken out:

c0
0 =

{
1 0 0

}T
, c0

0 =
{
0 1 0

}T
, c0

0 =
{
0 0 1

}T
, (45)
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while the following modes need to be eliminated because they only contribute to the total resultant
moments at the source point:

c0
1 =

{
1 0 0

}T
, c1

1 =
{
0 0

√
2
}T
,

c0
1 =

{
0 1 0

}T
, c1

1 =
{
0
√

2 0
}T
, (46)

c0
1 =

{
0 1 0

}T
, d1

1 =
{
−1 0 0

}T
.

2.7. TCGs through collocation and the primal-field boundary variational principle. An alternative to
the MFBVP is employing a collocation technique for the internal displacement continuity and traction
reciprocity conditions between adjacent constituents and applying the primal field boundary variational
principle for the inter-element conditions.

By using collocation technique, a certain number of collocation points are usually uniformly dis-
tributed along the interfaces of heterogeneities ∂�e

c, ∂�e
p as well as the boundary of the elements ∂�e.

The coordinates of the collocation points are denoted as follows: xmh
i ∈ ∂�

e, h = 1, 2, . . . ; xck
i ∈ ∂�

e
c,

k = 1, 2, . . . ; and x pl
i ∈ ∂�

e
p, l = 1, 2, . . . .

For a TCG with a coated elastic inclusion, the conditions of displacement continuities and traction
reciprocities are applied at the local collocation points of the interfaces between adjacent constituents:

um
i (x

ck
j ,α)= uc

i (x
ck
j ,β), xck

j ∈ ∂�
e
c,

wtm
i (x

ck
j ,α)+wtc

i (x
ck
j ,β)= 0, xck

j ∈ ∂�
e
c, (47)

uc
i (x

pl
j ,β)= u p

i (x
pl
j , γ ), x pl

j ∈ ∂�
e
p,

wtc
i (x

pl
j ,β)+wt p

i (x
pl
j , γ )= 0, x pl

j ∈ ∂�
e
p, (48)

as well as the relationship between internal displacements and nodal functions:

um
i (x

mh
j ,α)= ũi (xmh

i , q) xmh
j ∈ ∂�

e, (49)

where the parameter “w” is used to balance the displacement and traction equations, avoiding the effect
of the material properties on the discrepancy of the magnitude. In this situation w = 1/(2µc).

From the above relations, a system of equations can be easily set up for the unknown coefficients of
different phases:

Ae
αqα = Be

αq q, Ae
αβα = Be

αββ, Ae
βγβ = Be

βγ γ , (50)

which yield to a system of equations as following:

Ae
αβ −Be

αβ 0
0 Ae

βγ −Be
βγ

Ae
αq 0 0


α

β

γ

=
 0

0
BeT
αq

T

q. (51)
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E (GPa) ν

Al2O3 Particle 390.0 0.24
SiC Coating 413.6 0.17
Al Matrix 74 0.33

Table 1. The material properties of a TCG composed of Al2O3/SiC/Al.

After relating the trial internal displacement expressions with nodal shape function of each TCG, a
primal-field boundary variational principle is then introduced to derive the local stiffness matrix:

π4(ui )=
∑

e

{∫
∂�e

1
2

ti ui d S−
∫

Se
t

t̄i ui d S
}
. (52)

Substituting the displacement expressions into the above functional and making the first variation lead
to ∑

e

(
δqT CT

αq M−1
αα Cαq q−δqT Q

)
= 0, (53)

in which Mαα =
∫
∂�e RT

m Nm d S.

Remarks: Using MFBVP is plagued by LBB conditions because of the Lagrange multipliers involved
[Babuška 1973; Brezzi 1974; Punch and Atluri 1984; Rubinstein et al. 1983], while CPFBVP avoids the
LBB violation by introducing the collocation technique. In addition, only one matrix Mαα is integrated
in the CPFBVP, while several matrices are evaluated in the MFBVP. Thus, the CPFBVP should be more
computationally efficient than the MFBVP, which is also proved by the following numerical examples.

3. Numerical validations

3.1. Condition numbers. As is introduced in the previous section, the characteristic parameters Rnon and
Rsig are introduced to scale the T-Trefftz trial functions. The magnitudes of Rnon and Rsig are determined
by the geometries of the investigated domains. Here we study the effect of the characteristic parameters
on the condition numbers of the coefficient matrices involved in the calculations. In this example, a TCG
with the material properties listed in Table 1 is investigated; see Figure 4. The dimensions of the TCG
are L×W ×H = 200×200×200µm3, and the outer radii of inclusion and coating are Rp = 72.56µm
and Rc = 79.82µm, respectively. Tables 2 and 3 list the condition numbers of the inverted matrices in
both MFBVP and CPFBVP, with or without introducing Rnon and Rsig. It can be easily observed that
when the characteristic parameters are not adopted (Rnon = 1 and Rsig = 1), the condition numbers are
too large to generate accurate results. The usage of Rnon and Rsig can significantly reduce the condition
numbers and guarantee calculation precision.

3.2. Patch test. The one-element patch test is conducted in this section. The same element is considered
with same geometrical parameters and material properties listed in Table 1; see Figure 4. A uniform
loading is applied to the right face (y = 100µm), while the essential boundary conditions are applied
at the left face (y =−100µm). The exact solutions for the deformation of a homogeneous cube can be
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Matrix Without Rnon, Rsig With Rnon, Rsig

Hαα 3.819×1031 1.678×102

Hγ γ 2.094×1010 0.991×102

Table 2. Condition numbers of the matrices of (42) used in MFBVP.

Matrix Without Rnon, Rsig With Rnon, Rsig

Mαα 4.593×1033 7.605×104

Table 3. Condition numbers of the matrix of (53) used in CPFBVP.

z

x
y

100

50

0

−50

−100
100

0

−100 −100

0

100

Figure 4. A TCG used to generate the condition numbers and patch test.

expressed as:

u1 =−
pν
E

x1, u2 =
p
E

x2, u3 =−
pν
E

x3, (54)

which are compared with the numerical nodal displacement q on the right face, and the error is defined
as

1=
‖q−qexact

‖

‖qexact‖
. (55)

The errors generated by MFBVP and CPFBVP are 1.737×10−6 and 1.827×10−4, respectively, in-
dicating both approaches obtain results with high accuracy. The execution time of the MFBVP and
CPFBVP to generate the local stiffness matrix of the TCG is 29.351 s and 6.51 s, respectively. The
execution time of the MFBVP is a bit longer because the MFBVP involves more matrices to be integrated.

3.3. Homogenized material properties and localized interphase stress distributions. In order to vali-
date the present theory in the micromechanical modeling of composites reinforced with coated particles,
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(Rc− Rp)/Rp CSA (GPa) CPFBVP (GPa) errors MFBVP (GPa) errors

Homogeneous 72.55 72.55 0.00% 72.55 0.00%
0 79.77 80.39 0.78% 79.81 0.05%
0.1 82.12 82.69 0.69% 82.17 0.06%
0.3 88.70 89.40 0.79% 88.89 0.21%
0.5 98.90 99.11 0.21% 99.27 0.37%

Table 4. Homogenized bulk modulus generated by the TCG and CSA models for various
thicknesses of the coating.

both the homogenized bulk moduli as well as the local interphase stress distributions generated by the
TCGs are compared with the composite sphere assemblage (CSA) model. The detailed derivation of
CSA model is illustrated in the Appendix.

A TCG with the dimension of L×W ×H = 200×200×200µm3 is used in this case and the par-
ticulate volume fraction is 10%. The material properties of the three constituents are listed in Table 1.
For a better test of the TCG, the thickness of the coating is varied for comparison. Both MFBVP and
CPFBVP are adopted to generate the bulk modulus. Table 4 shows that both methods generate well-
matched predictions relative to the CSA model with the maximum error of less than 1%, and MFBVP
usually generates smaller errors than CPFBVP for various thicknesses.

Then the local inter-phase stress concentrations are verified against CSA model. The stress compo-
nents σxx(z = 0), σyy(z = 0), σxy(z = 0) at the inner radius of coating (Rp) and the inner radius of the
matrix (Rc) are thoroughly compared in Figures 5 and 6. Both MFBVP and CPFBVP agree well with
the CSA results at the interface between the coating and matrix, while CPFBVP generates slightly offset
results at the interface between the particle and coating relative to the other two methods.

Finally, the homogenized moduli are generated for a TCG with hard core/soft shell system, which has
extensive applications in various structures [Xu et al. 2014a; 2014b]. In the present situation, the Young’s
modulus and bulk modulus generated by CPFBVP are compared with a very fine-mesh FEM [Tsui et al.
2001] and the CSA model, respectively. Figure 7 compares the generated homogenized moduli with
material properties listed in Table 5. Three sets of thickness parameters are used for the comparison.
Since the glass bead and Polycarbonate matrix are connected by a weak interphase, the overall moduli
are decreased as the thickness of coating increases. It can be easily observed that the overall moduli
computed by the TCGs are in good agreement with both the very detailed FE and the CSA results.

It should be pointed out that the CSA model usually generates reasonably accurate bulk modulus and
only the upper and lower bounds of the Young’s modulus for coated particulate composites. In addition,
the phase-to-phase interaction is ignored within the model’s assumptions, leading to inaccurate interphase
stress fields for composites with large particulate volume fractions. Those concerns are alleviated in
the TCGs, which adopt complete Trefftz solutions to calculate the effective properties and also recover
exactly the local field concentrations at the interfaces of inhomogeneities. What’s more, the effect of the
locations of the particulates is also considered in the present technique, which cannot be easily captured
by most of the existing methods.
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Figure 5. Variations of the three components σxx(z = 0), σyy(z = 0), σxy(z = 0) at the
inner radius of the coating Rp.

E (GPa) ν

4µm Glass bead 70.0 0.22
Coating 0.50 0.30
Polycarbonate Matrix 2.28 0.38

Table 5. The material properties of a TCG with hard core/soft shell system.

4. Numerical studies

In the last section, the accuracy of the TCG is validated by generating the effective properties as well as
the localized interphase stresses in composites with coated particles. In this section, we employ the TCGs
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Figure 6. Variations of the three components σxx(z = 0), σyy(z = 0), σxy(z = 0) at the
inner radius of matrix Rc.

to study the effect of coatings/interphases on the micromechanical behavior of composite materials. The
Al2O3/Al particle/matrix system is adopted in this section, while the material properties and thickness
of coating/interphase are varied.

4.1. Effective properties. In this example, A TCG is still employed with the dimensions of L×W ×H =
200×200×200µm3 and the particle volume fraction of 0.2. The Young’s modulus of the coating varies
from 0 to 1000 GPa, and the ratio of thickness of the coating to the radius of the particle varies from 0
to 0.1. The homogenized moduli of the composite materials are illustrated in Figure 8. It can be easily
observed that the homogenized moduli increase with the increase of the coating’s moduli and thickness
(Ec/Em ≥ 1). In addition, for a smaller magnitude of coating’s material properties, the homogenized
moduli of composites are very small no matter which thickness is adopted. This is due to the fact that
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by using the TCGs, against the very fine-mesh FE and CSA results, respectively, for
glass bead/polycarbonate composite with coatings of different thicknesses.

160

140

120

100

80

60

40

20

1000

800

600

400

200

0

E
   (

G
P

a)
c

t  / Rc p

0.00 0.02 0.04 0.06 0.08 0.10

Young’s modulus
140

120

100

80

60

40

20

1000

800

600

400

200

0

E
   (

G
P

a)
c

t  / Rc p

0.00 0.02 0.04 0.06 0.08 0.10

bulk modulus

Figure 8. The effects of Young’s modulus and thickness of the coating on the effective
(left) Young’s modulus and (right) bulk modulus of the composite.

the connection between fiber/matrix is very weak and the particle/coating domains can be treated as
porosities.

4.2. Local interphase stress concentrations. The coating system plays an important role in the stress
transfer between the constituents [Wang and Pindera 2016a]. Thus, herein the stress concentrations are
studied by still tailoring the properties of the coatings. The definition of the stress concentration factor is
SCF= σθθ/σ 0

yy in this situation. According to the transformations between the spherical and Cartesian
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Figure 9. The effect of Young’s modulus of the coating on the stress components
σyy(θ = 0, ϕ = 0) and σxx(θ = π/2, ϕ = 0).

coordinates, σθθ = σyy(θ = 0, ϕ = 0) and σθθ = σxx(θ = π/2, ϕ = 0), SCF = σyy/σ
0
yy at θ = 0, ϕ = 0

locations and SCF= σxx/σ
0
yy at θ = π/2, ϕ = 0 locations.

The effect of the Young’s modulus of the coating is firstly generated in Figure 9 by fixing its thickness
as tc/Rp = 0.05. The radius of the spherical particle is of one-quarter length of the TCG. The Young’s
modulus of the coating is varied from 0.01 GPa to 800 GPa. It can be easily observed that the largest
SCFs occur at the interface between the coating and matrix. As is already mentioned before, when the
coating has a low elastic modulus (0.01 GPa), the particle and coating can be treated as a porosity domain,
and the corresponding stresses are essentially zeros (solid black line). When the modulus increases from
50 GPa to 800 GPa, the stress σyy at zero degree within the particle domain maintains within a narrow
range of variations. Meanwhile, σyy/σ

0
yy increases dramatically (from about 0.17 to over 3.09) in the

coating domain, and then reduces and stabilizes at around 0.18 in the matrix phase. Conversely, the other
component σxx/σ

0
yy increases and stabilizes when Ec is larger than a certain amount, and shows more

variations in the particle domain.
In contrast to the Young’s modulus of the coating, the thickness of the coating plays a less important

role in affecting the stress distributions, as illustrated in Figure 10. The magnitudes of the stresses barely
change for different thicknesses. It should be noted that the SiC properties are used for the coating
(Table 4) in this situation.

5. Implementation of periodic boundary conditions

To apply the periodic boundary conditions, the classical methods [Miehe and Koch 2002; Wang and
Pindera 2016b] usually enforce the same values for the degrees of freedom of matching nodes on two
opposite RVE sides. Thus, it requires a periodic mesh, which has the same mesh distribution on two oppo-
site parts of the RVE boundary. However, the mesh of a TCG is generally nonperiodic so that the classical
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Figure 10. The effect of thickness of the coating on the stress components σyy(θ =
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Figure 11. An RVE enforced with periodic displacement boundary conditions.

method cannot be directly employed. In this study, we developed a simple methodology to enforce peri-
odic displacement boundary conditions on one RVE based on the surface-to-surface constraint scheme.

Figure 11 is a simple RVE with the origin point “O” located at the center. The point “A” is the mirror
image of the point “B” relative to the original point. According to the reflectional symmetries with the
reference to the y = 0 plane, the displacement components between “A” and “B” points should have the
following relations [Drago and Pindera 2007]:

u B
x −u A

x = ε̄xi · L i , u B
y −u A

y = ε̄yi · L i , u B
z −u A

z = ε̄zi · L i , (56)

where i = x, y, z. ε̄i j is the macroscopic strain component and L i is the dimension of the microstructure.
Similar relations are applied to each pair of the symmetric points at the boundaries of the RVE.
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Figure 12. An RVE of 125 TCGs with the particle volume fraction of 1%.

Next an RVE including 125 coated spherical particles is considered in Figure 12, each particle is
embedded within one TCG. The coating thickness is only 1% of the radius of the particle.

In a 3D RVE, the boundary points are composed of points on the six different faces, which are denoted
as p+i or p−i (i = x, y, z), where “+” and “−” signs stand for the positive and negative sides of the domain.
Thus, the periodic boundary conditions are expressed as:

u(p+x )−N(p−x ) u(p−x )= ε̄ · L x ,

u(p+y )−N(p−y ) u(p−y )= ε̄ · L y,

u(p+z )−N(p−z ) u(p−z )= ε̄ · L z,

(57)

where u is the displacement vector and ε̄ is the applied macroscopic strain. L x , L y , L z are the dimensions
of the RVE in the Cartesian coordinate. N is the interpolation function. After assembling the local
stiffness matrices and equivalent nodal forces, the periodic boundary conditions can be directly enforced
to the final global equations as essential boundary conditions, where all the nodal points at the boundaries
of the RVE are involved. Equation (57) is applied at every boundary point on each face of RVE against its
counterpart on the opposite face. For two points of the opposite faces which are exactly well matched, the
periodic boundary conditions are easy to be applied by setting N = 1; while a point on one face which
doesn’t have the matched point on the other face, we locate the matched location, search the points
close to this location, and apply the periodic conditions at those points using interpolations within the
Wachspress coordinates [Dong and Atluri 2012b]. By validating the boundary conditions, we calculate
the effective moduli by applying 1% macroscopic strain in the y-direction. Table 6 lists the generated
results by assigning homogenous matrix properties (listed in Table 1) to the composite constituents,
where the results perfectly recover the material properties of the matrix in the former case. In addition,
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Material properties E (GPa) ν

Homogeneous (matrix) 73.926 0.330
Composites 75.090 0.329

Table 6. Calculated effective properties by the RVE with 125 TCGs with different con-
stituent properties.
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Figure 13. Distributions of (top) maximum principal stress (Unit: MPa) and (bottom)
strain energy density (Unit: MJ/mm3) in the RVE containing 125 coated particles.

the local field distributions are illustrated in Figure 13, where three cross-sections of the domain are
focused upon. The principal stresses and energy densities are presented, and the concentrations always
appear at the interfaces of the constituents, which help to identify the possible failure modes in the
three-phase composite materials.
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6. Conclusions

A Trefftz computational grain is developed based on the Voronoi Cell framework for the direct microme-
chanical modeling of heterogeneous materials reinforced with coated particulate inclusions. In order to
dramatically reduce the mesh discretization effort as well as the computational effort, each TCG is treated
as a three-phase particle/coating/matrix grain, wherein the exact internal displacement field is assumed in
terms of the P–N solutions that are further represented by the spherical harmonics. Two approaches are
adopted to set up the local stiffness matrix of TCGs, where the MFBVP implements the continuity and
boundary conditions through Lagrange multipliers, while the CPFBVP uses the collocation technique for
continuity conditions and a primal variational principle for the boundary condition implementation. Both
approaches generate accurate homogenized moduli as well as exact local interphase stress distributions,
with good agreement to the very fine-mesh FE technique and the CSA model. The effects of the material
properties as well as the thickness of the coating system on the effective properties and localized stress
concentrations are also examined for the TCGs, where the former parameters play more important roles
than the latter one in altering the response of composite materials. Finally, an easy implementation of
periodic boundary conditions is applied on the RVEs through the surface-to-surface constraints of dis-
placement field on the opposite faces. The developed TCGs provide accurate and efficient computational
tools in the direct modeling of the micromechanical behavior of the particulate composites reinforced
with coatings/interphases, which cannot be easily competed by the off-the-shelf FE packages and classical
models.
Appendix: Derivation of CSA model. The only existing Navier’s equation for all the three phases is

d2u(k)r

dr2 +
2
r

du(k)r

dr
−

2u(k)r

r2 = 0 (k = p, c,m), (A1)

which yields the displacement expression:

u(k)r = A(k)r+ B(k)/r2, u(k)θ = u(k)ϕ = 0. (A2)

Through the strain-displacement and stress-strain relations, the stress components can be expressed
as

σ (k)rr = 3K (k)A(k)−4G(k)B(k)/r3,

σ
(k)
θθ = 3K (k)A(k)+2G(k)B(k)/r3,

σ (k)ϕϕ = 3K (k)A(k)+2G(k)B(k)/r3,

(A3)

where K and G are bulk and shear modulus of each phase. It should be noted that B(p) = 0 since the
displacements or stresses should be bounded at the origin of the particle phase. Beyond what is discussed
above, the continuity conditions between the adjacent constituents are applied:

u(p)r (r = a)= u(c)r (r = a)⇒ A(p)a = A(c)a+ B(c)/a2,

σ (p)rr (r = a)= σ (c)rr (r = a)⇒ 3K (p)A(p) = 3K (c)A(c)−4G(c)B(c)/a3,
(A4)

u(c)r (r = b)= u(m)r (r = b)⇒ A(c)b+ B(c)/b2
= A(m)b+ B(m)/b2,

σ (c)rr (r = b)= σ (m)rr (r = b)⇒ 3K (c)A(c)−4G(c)B(c)/b3
= 3K (m)A(m)−4G(m)B(m)/b3.

(A5)
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In addition, a homogeneous surface stress loading σ 0 is applied at the outermost radius (r = c) to
calculate the bulk modulus, and

σ (m)rr (r = c)= σ 0
⇒ 3K (m)A(m)−4G(m)B(m)/c3

= σ 0. (A6)

Thus, five equations are established for the five unknowns A(p), A(c), B(c), A(m), B(m), and finally,
through the definition of bulk modulus:

K ∗ =
σ
(m)
rr (r = c)

u(m)r (r = c)/c
. (A7)

The replacement scheme is also used by Qiu and Weng [1991] to obtain the exact expression of the
homogenized bulk modulus for the three-phase composites, which is also programmed to validate the
above equations.
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