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UNIFORM STRESS RESULTANTS INSIDE
TWO NONELLIPTICAL INHOMOGENEITIES IN

ISOTROPIC LAMINATED PLATES

XU WANG, LIANG CHEN AND PETER SCHIAVONE

We use complex variable methods to establish two sets of specific conditions which ensure the existence
of uniform and hydrostatic internal membrane stress resultants and bending moments inside two through-
thickness nonelliptical elastic inhomogeneities embedded in an infinite isotropic laminated Kirchhoff
plate subjected to uniform remote membrane stress resultants and bending moments. These conditions
can be interpreted as restrictions on the remote membrane stress resultants and bending moments for
the given material and geometric parameters. We show that when these conditions are met, explicit
expressions are available for the uniform stress resultants inside the two inhomogeneities and the constant
hoop stress resultants on the matrix side along the two interfaces.

1. Introduction

Establishing uniformity of stresses inside multiple elastic inhomogeneities is both a fascinating and
challenging area of study which continues to attract considerable attention in the literature (see, for
example, Kang et al. 2008; Liu 2008; Wang 2012; Wang and Schiavone 2016; Dai et al. 2015; 2016).
The majority of these investigations although confined to planar elasticity, antiplane elasticity, or con-
ductivity have generated ideas and procedures which lend themselves well to other areas which play an
equally important role in the engineering sciences. One such area concerns the analysis of laminated
plate structures which are used extensively in mechanical, civil, aviation, and aerospace applications. A
simple and elegant complex variable formulation, originally presented by Beom and Earmme [1998], was
recently developed by Wang and Zhou [2014] to tackle the coupled stretching and bending deformations
of isotropic laminated plates within the context of the celebrated Kirchhoff plate theory [Timoshenko
and Woinowsky-Krieger 1959; Reddy 1997].

In this paper, we adopt the complex variable formulation of Wang and Zhou [2014] and the conformal
mapping in Wang [2012] to study the coupled stretching and bending deformations of an infinite isotropic
laminated plate in which there are embedded two through-thickness nonelliptical elastic inhomogeneities
when the surrounding (plate) matrix is subjected to uniform remote membrane stress resultants and
bending moments. The internal stress resultants (here, internal membrane stress resultants and bending
moments for the plate) inside the two inhomogeneities are uniform and hydrostatic when either a set of
three or two conditions on the remote loading is satisfied for the given material and geometric parame-
ters. In addition, the hoop membrane stress resultant and hoop bending moment on the matrix side are
uniformly distributed along the two inhomogeneity-matrix interfaces and the two inhomogeneities also
satisfy the “harmonic field condition” of Bjorkman and Richards [1976]. In contrast to previous results
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in [Wang 2012; Wang and Schiavone 2016], the coefficient 3 appearing in the mapping function should
be determined through the solution of a generalized eigenvalue problem for two 2× 2 real symmetric
matrices. Both cases of when the two real symmetric matrices are either proportional or nonproportional
to each other have been discussed in detail.

2. Complex variable formulation for isotropic laminated plates

In this section, we review the complex variable formulation for an isotropic laminated plate. Consider
an undeformed plate of uniform thickness h in a Cartesian coordinate system {xi } (i = 1, 2, 3) with its
reference plane (not the midplane) at x3 = 0. The plate is composed of an isotropic, linearly elastic
material which can be inhomogeneous in the thickness direction. In what follows, Greek and Latin
indices take the values 1, 2 and 1, 2, 3, respectively and we sum over repeated indices.

The displacement field in the Kirchhoff plate theory is assumed to take the form

ũα(xi )= uα + x3ϑα, ũ3(xi )= w, (1)

where the two in-plane displacements uα, the deflection w, and the slopes ϑα =−w,α on the reference
plane are all independent of x3.

The coordinate system is chosen judiciously so that the two in-plane displacements and the deflection
on the reference plane are decoupled in the equilibrium equations [Beom and Earmme 1998]. We in-
troduce the integral operator Q(· · ·)=

∫ h−h0
−h0

(· · ·) dx3 in which h0 is the distance between the reference
plane and the lower surface of the plate. Accordingly, the membrane stress resultants and bending
moments defined by Nαβ = Qσαβ , Mαβ = Qx3σαβ (with σαβ being the in-plane stress components), the
transverse shearing forces Rβ = Mαβ,α, in-plane displacements, deflection, and slopes on the reference
plane of the plate as well as the four stress functions ϕα and ηα can be expressed concisely in terms of
four analytic functions φ(z), ψ(z), 8(z), and 9(z) of the complex variable z = x1+ i x2 as [Beom and
Earmme 1998; Wang and Zhou 2014]

N11+ N22 = 4 Re{φ′(z)+ B8′(z)},

N22− N11+ 2i N12 = 2[z̄φ′′(z)+ψ ′(z)+ Bz̄8′′(z)+ B9 ′(z)],
(2)

M11+M22 = 4D(1+ νD)Re{8′(z)}+ B(κ A
−1)
µ

Re{φ′(z)},

M22−M11+ 2i M12 =−2D(1− νD)[z̄8′′(z)+9 ′(z)] − B
µ
[z̄φ′′(z)+ψ ′(z)],

R1− iR2 = 4D8′′(z)+ B(κ A
+1)

2µ
φ′′(z),

(3)

2µ(u1+ iu2)= κ
Aφ(z)− zφ′(z)−ψ(z),

ϑ1+ iϑ2 =8(z)+ z8′(z)+9(z), w =−Re{z̄8(z)+ γ (z)},

ϕ1+ iϕ2 = i[φ(z)+ zφ′(z)+ψ(z)] + i B[8(z)+ z8′(z)+9(z)],

η1+ iη2 = i D(1− νD)[κD8(z)− z8′(z)−9(z)] + i B
2µ
[κ Aφ(z)− zφ′(z)−ψ(z)],

(4)



UNIFORM STRESS RESULTANTS IN ISOTROPIC LAMINATED PLATES 533

in which 9(z)= γ ′(z), and

µ= 1
2(A11− A12), B = B12, D = D11, νA

=
A12

A11
, νD

=
D12

D11
,

κ A
=

3A11− A12

A11+ A12
=

3− νA

1+ νA , κD
=

3D11+ D12

D11− D12
=

3+ νD

1− νD ,

(5)

with Ai j = QCi j , Bi j = Qx3Ci j , and Di j = Qx2
3Ci j (i j = 11, 12). The parameters C11 and C12 can

be expressed in terms of the Young’s modulus E = E(x3) and Poisson’s ratio ν = ν(x3) of the plate as
C11= E/(1−ν2) and C12= νE/(1−ν2). The distance h0 is determined as h0=

∫ h
0 X3C11dX3/

∫ h
0 C11dX3

with X3 = x3+ h0 being the vertical coordinate of the given point from the lower surface of the plate.
In addition, the membrane stress resultants, bending moments, transverse shearing forces, and modi-

fied Kirchhoff transverse shearing forces V1 =R1+M12,2 and V2 =R2+M21,1 (which apply exclusively
to free edges), can be expressed in terms of the four stress functions ϕα and ηα [Cheng and Reddy 2002] as

Nαβ =−∈βω ϕα,ω, Mαβ =−∈βω ηα,ω−
1
2 ∈αβ ηω,ω, Rα=−

1
2 ∈αβ ηω,ωβ, Vα=−∈αω ηω,ωω, (6)

with ∈αβ denoting the components of the two-dimensional permutation tensor.
In a new coordinate system {x̂i } (i = 1, 2, 3) in which x̂3 = 0 lies on an arbitrary plane parallel to

the reference plane and x̂α = xα, the in-plane displacements ûα and slopes ϑ̂α on x̂3 = 0 and the stress
functions ϕ̂α and η̂α in the new coordinate system can be given quite simply as

ϑ̂1+ i ϑ̂2 = ϑ1+ iϑ2, û1+ i û2 = u1+ iu2− ĥ(ϑ1+ iϑ2),

ϕ̂1+ i ϕ̂2 = ϕ1+ iϕ2, η̂1+ i η̂2 = η1+ iη2+ ĥ(ϕ1+ iϕ2).
(7)

Here,

ĥ = h0− h1, (8)

and h1 is the distance between x̂3 = 0 and the lower surface of the plate (we note that h1 is positive or
negative, respectively, if x̂3 = 0 is above or below the lower surface of the plate). In the new coordinate
system, the stress resultants N̂αβ = Q̂σαβ and M̂αβ = Q̂x̂3σαβ with Q̂(· · ·)=

∫ h−h1
−h1

(· · ·) dx̂3, the transverse
shearing forces R̂β = M̂αβ,α , and the modified Kirchhoff transverse shearing forces V̂1 = R̂1+ M̂12,2 and
V̂2 = R̂2+ M̂21,1 can also be expressed in terms of the newly introduced stress functions ϕ̂α and η̂α as

N̂αβ =−∈βω ϕ̂α,ω, M̂αβ =−∈βω η̂α,ω−
1
2 ∈αβ η̂ω,ω, R̂α=−

1
2 ∈αβ η̂ω,ωβ, V̂α=−∈αω η̂ω,ωω . (9)

3. Uniform stress resultants inside two nonelliptical inhomogeneities

Consider an infinite isotropic laminated plate containing two through-thickness nonelliptical elastic inho-
mogeneities. Let S1, S2, and S3 denote the left inhomogeneity, the surrounding matrix, and the right inho-
mogeneity, respectively, all of which are perfectly bonded through the respective left and right interfaces
L1 and L2. The matrix is subjected to uniform remote membrane stress resultants (N∞11 , N∞22 , N∞12 ) and
bending moments (M∞11 ,M∞22 ,M∞12 ). Throughout the paper, the subscripts 1, 2, and 3 are used to identify
the quantities in S1, S2, and S3, respectively. In what follows, the new coordinate system {x̂i } (i = 1, 2, 3)
is common to all three phases and is chosen such that x̂3 = 0 is on the reference plane of the matrix.
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Applying the aforementioned conditions, the corresponding boundary value problem reduces to the
following system of equations in the analytic functions φ(z), ψ(z), 8(z), and 9(z) defined in each of
S1, S2, and S3:

1
2µ2
[κ A

2 φ2(z)− zφ′2(z)−ψ2(z)]

=
1

2µ1
[κ A

1 φ1(z)− zφ′1(z)−ψ1(z)] − ĥ1[81(z)+ z8′1(z)+91(z)],

82(z)+ z8′2(z)+92(z)=81(z)+ z8′1(z)+91(z),

φ2(z)+ zφ′2(z)+ψ2(z)+ B2[82(z)+ z8′2(z)+92(z)]

= φ1(z)+ zφ′1(z)+ψ1(z)+ B1[81(z)+ z8′1(z)+91(z)],
B2

2µ2
[κ A

2 φ2(z)− zφ′2(z)−ψ2(z)] + D2(1− νD
2 )[κ

D
2 82(z)− z8′2(z)−92(z)]

=
B1

2µ1
[κ A

1 φ1(z)− zφ′1(z)−ψ1(z)] + D1(1− νD
1 )[κ

D
1 81(z)− z8′1(z)−91(z)]

+ ĥ1[φ1(z)+ zφ′1(z)+ψ1(z)] + ĥ1 B1[81(z)+ z8′1(z)+91(z)], z ∈ L1, (10a)

1
2µ2
[κ A

2 φ2(z)− zφ′2(z)−ψ2(z)]

=
1

2µ3
[κ A

3 φ3(z)− zφ′3(z)−ψ3(z)] − ĥ3[83(z)+ z8′3(z)+93(z)],

82(z)+ z8′2(z)+92(z)=83(z)+ z8′3(z)+93(z),

φ2(z)+ zφ′2(z)+ψ2(z)+ B2[82(z)+ z8′2(z)+92(z)]

= φ3(z)+ zφ′3(z)+ψ3(z)+ B3[83(z)+ z8′3(z)+93(z)],
B2

2µ2
[κ A

2 φ2(z)− zφ′2(z)−ψ2(z)] + D2(1− νD
2 )[κ

D
2 82(z)− z8′2(z)−92(z)]

=
B3

2µ3
[κ A

3 φ3(z)− zφ′3(z)−ψ3(z)] + D3(1− νD
3 )[κ

D
3 83(z)− z8′3(z)−93(z)]

+ ĥ3[φ3(z)+ zφ′3(z)+ψ3(z)] + ĥ3 B3[83(z)+ z8′3(z)+93(z)], z ∈ L2, (10b)

φ2(z)∼= δ1z+ O(1), ψ2(z)∼= δ2z+ O(1),

82(z)∼= γ1z+ O(1), 92(z)∼= γ2z+ O(1), |z| →∞, (10c)

where

δ1 =
µ2 D2(1+ νD

2 )(N
∞

11 + N∞22 )− B2µ2(M∞11 +M∞22 )

4µ2 D2(1+ νD
2 )− B2

2 (κ
A
2 − 1)

,

γ1 =
4µ2(M∞11 +M∞22 )− B2(κ

A
2 − 1)(N∞11 + N∞22 )

16µ2 D2(1+ νD
2 )− 4B2

2 (κ
A
2 − 1)

,

δ2 =
µ2 D2(1− νD

2 )(N
∞

22 − N∞11 + 2i N∞12 )+ B2µ2(M∞22 −M∞11 + 2i M∞12 )

2µ2 D2(1− νD
2 )− B2

2
,

γ2 =
−2µ2(M∞22 −M∞11 + 2i M∞12 )− B2(N∞22 − N∞11 + 2i N∞12 )

4µ2 D2(1− νD
2 )− 2B2

2
.

(11)
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We assume the matrix S2 in the z-plane is mapped onto an annulus 1≤ |ξ | ≤ ρ−1/2 in the ξ -plane by
the following conformal mapping function [Wang 2012]

z = ω(ξ)= R
[

1
ξ−λ

+
p

ξ−λ−1 +
3−1 p
ρξ−λ−1 +

+∞∑
n=1

(anξ
n
+ a−nξ

−n)

]
,

ξ(z)= ω−1(z), 1≤ |ξ | ≤ ρ−1/2,

(12)

where R is a real scaling constant; λ (1< λ < ρ−1/2) is a real constant; p is a complex constant; 3, an ,
and a−n are unknown complex coefficients to be determined. Using the mapping function in (12), the
two interfaces L1 and L2 in the z-plane are mapped onto two coaxial circles with radii 1 and ρ−1/2 in
the ξ -plane, respectively. In addition, z =∞ is mapped to the point ξ = λ.

In order to ensure that the stress resultants inside the two inhomogeneities are uniform, the analytic
functions defined in the two elastic inhomogeneities should take the following form:

φ1(z)=
4µ1(κ

A
2 + 1)[D1(1+ νD

1 )+ D2(1− νD
2 )+ ĥ1(B1+ B2)]X − 16µ1 D2(B1− B2− 2µ2ĥ1)Y

11
z,

81(z)=
−(κ A

2 + 1)[(B1− B2)(κ
A
1 − 1)+ 4µ1ĥ1]X + 8D2[µ2(κ

A
1 − 1)+ 2µ1]Y

11
z,

ψ1(z)=91(z)= 0, z ∈ S1; (13)

φ3(z)=
4µ3(κ

A
2 + 1)[D3(1+ νD

3 )+ D2(1− νD
2 )+ ĥ3(B3+ B2)]X − 16µ3 D2(B3− B2− 2µ2ĥ3)Y

13
z,

83(z)=
−(κ A

2 + 1)[(B3− B2)(κ
A
3 − 1)+ 4µ3ĥ3]X + 8D2[µ2(κ

A
3 − 1)+ 2µ3]Y

13
z,

ψ3(z)=93(z)= 0, z ∈ S3; (14)

where X and Y are two real coefficients, and

11 = 4[µ2(κ
A
1 − 1)+ 2µ1][D1(1+ νD

1 )+ D2(1− νD
2 )+ ĥ1(B1+ B2)]

− 2(B1− B2− 2µ2ĥ1)[(B1− B2)(κ
A
1 − 1)+ 4µ1ĥ1],

13 = 4[µ2(κ
A
3 − 1)+ 2µ3][D3(1+ νD

3 )+ D2(1− νD
2 )+ ĥ3(B3+ B2)]

− 2(B3− B2− 2µ2ĥ3)[(B3− B2)(κ
A
3 − 1)+ 4µ3ĥ3].

(15)

By enforcing continuity of displacements and stress resultants across the left interface L1 in (10a), we
arrive at

φ2(ξ)= φ2(ω(ξ))= Xω(ξ),

82(ξ)=82(ω(ξ))= Yω(ξ),
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ψ2(ξ)= ψ(ω(ξ))

=

{ X
11

(
8[µ1(κ

A
2 − 1)−µ2(κ

A
1 − 1)][D1(1+ νD

1 )+ D2(1− νD
2 )+ ĥ1(B1+ B2)]

− 2[(κ A
1 − 1)(B1− B2)+ 4µ1ĥ1][(κ

A
2 − 1)(B1− B2)+ 4µ2ĥ1]

)
+

Y
11

(
16µ2 D2[(κ

A
1 − 1)(B1− B2)+ 4µ1ĥ1]

)}
ω̄
(1
ξ

)
,

92(ξ)=92(ω(ξ))

=

{
−

X
11

(
2(κ A

2 + 1)[(κ A
1 − 1)(B1− B2)+ 4µ1ĥ1]

)
−

Y
11

(
8[µ2(κ

A
1 − 1)+ 2µ1][D1(1+ νD

1 )− D2(1+ νD
2 )+ ĥ1(B1+ B2)]

− 4(B1− B2− 2µ2ĥ1)[(κ
A
1 − 1)(B1− B2)+ 4µ1ĥ1]

)}
ω̄
(1
ξ

)
,

1≤ |ξ | ≤ ρ−1/2. (16)

Similarly, by enforcing continuity of displacements and stress resultants across the right interface L2

in (10b), we arrive at

φ2(ξ)= Xω(ξ),

82(ξ)= Yω(ξ),

ψ2(ξ)=
{ X
13

(
8[µ3(κ

A
2 − 1)−µ2(κ

A
3 − 1)][D3(1+ νD

3 )+ D2(1− νD
2 )+ ĥ3(B3+ B2)]

− 2[(κ A
3 − 1)(B3− B2)+ 4µ3ĥ3][(κ

A
2 − 1)(B3− B2)+ 4µ2ĥ3]

)
+

Y
13
(16µ2 D2[(κ

2
3 − 1)(B3− B2)+ 4µ3ĥ3])

}
ω̄
( 1
ρξ

)
,

92(ξ)=
{
−

X
13

2(κ A
2 + 1)[(κ A

3 − 1)(B3− B2)+ 4µ3ĥ3]

−
Y
13

(
8[µ2(κ

A
3 − 1)+ 2µ3][D3(1+ νD

3 )− D2(1+ νD
2 )+ ĥ3(B3+ B2)]

− 4(B3− B2− 2µ2ĥ3)[(κ
A
3 − 1)(B3− B2)+ 4µ3ĥ3]

)}
ω̄
( 1
ρξ

)
,

1≤ |ξ | ≤ ρ−1/2. (17)

In order to ensure that the elastic field in the matrix is unique, the two sets of functions φ2(ξ), 82(ξ),
ψ2(ξ), and 92(ξ) obtained in (16) and (17) should coincide. Consequently, we find that

3=
c11 X + c12Y
d11 X + d12Y

=
c12 X + c22Y
d12 X + d22Y

, (18)

and

an =
λ−n−1

+ p3−1ρnλn+1

1−3ρ−n , a−n =
λn−1
+ pλ1−n

3−1ρ−n − 1
, n = 1, 2, . . . ,+∞, (19)
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where

c11 =
1
13

(
4[µ3(κ

A
2 − 1)−µ2(κ

A
3 − 1)][D3(1+ νD

3 )+ D2(1− νD
2 )+ ĥ3(B3+ B2)]

− [(κ A
3 − 1)(B3− B2)+ 4µ3ĥ3][(κ

A
2 − 1)(B3− B2)+ 4µ2ĥ3]

)
,

c12 =
8µ2 D2

13
[(κ A

3 − 1)(B3− B2)+ 4µ3ĥ3],

c22 =
16µ2 D2

13(κ
A
2 + 1)

(
2[µ2(κ

A
3 − 1)+ 2µ3][D3(1+ νD

3 )− D2(1+ νD
2 )+ ĥ3(B3+ B2)]

− (B3− B2− 2µ2ĥ3)[(κ
A
3 − 1)(B3− B2)+ 4µ3ĥ3]

)
, (20a)

d11 =
1
11

(
4[µ1(κ

A
2 − 1)−µ2(κ

A
1 − 1)][D1(1+ νD

1 )+ D2(1− νD
2 )+ ĥ1(B1+ B2)]

− [(κ A
1 − 1)(B1− B2)+ 4µ1ĥ1][(κ

A
2 − 1)(B1− B2)+ 4µ2ĥ1]

)
,

d12 =
8µ2 D2

11
[(κ A

1 − 1)(B1− B2)+ 4µ1ĥ1],

d22 =
16µ2 D2

11(κ
A
2 + 1)

(
2[µ2(κ

A
1 − 1)+ 2µ1][D1(1+ νD

1 )− D2(1+ νD
2 )+ ĥ1(B1+ B2)]

− (B1− B2− 2µ2ĥ1)[(κ
A
1 − 1)(B1− B2)+ 4µ1ĥ1]

)
. (20b)

Equation (18) can be rewritten in the form[
c11 c12

c12 c22

] [
X
Y

]
=3

[
d11 d12

d12 d22

] [
X
Y

]
, (21)

which is a generalized eigenvalue problem for the two 2× 2 real symmetric matrices[
c11 c12

c12 c22

]
and

[
d11 d12

d12 d22

]
, (22)

with 3 the eigenvalue and v = [X Y ]T the associated eigenvector. In what follows, we first address the
case in which the above two matrices are not proportional to each other, i.e.,[

c11 c12

c12 c22

]
6= k

[
d11 d12

d12 d22

]
, (23)

where k is an arbitrary real constant.
In this case, the two eigenvalues of (21) can be determined explicitly as

31,2 =
c11d22+ c22 d11− 2c12d12±

√
(c11d22− c22 d11)2+ 4(c11d12− c12d11)(c22 d12− c12d22)

2(d11d22− d2
12)

, (24)

and the two eigenvectors associated with the two eigenvalues are then

v1 =

[
c12−31d12

31d11− c11

]
, v2 =

[
c12−32 d12

32 d11− c11

]
, (25)
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which implies that the two coefficients X and Y are not independent. It is necessary that the two eigen-
values 31 and 32 should be real. Consequently, it is seen from (24) that the following inequality must
be satisfied:

(c11d22− c22 d11)
2
+ 4(c11d12− c12 d11)(c22 d12− c12 d22)≥ 0.

A comparison of (16) with the asymptotic behaviors at infinity specified in (10c) leads to

δ1 = X, γ1 = Y, δ2 =−2 p̄λ2(d11 X + d12Y ), γ2 = p̄λ2 κ
A
2 + 1

4µ2 D2
(d12 X + d22Y ). (26)

The necessary and sufficient condition for the existence of the real coefficient X (or Y ) simultaneously
satisfying the four conditions in (26) is found to be

N∞22 − N∞11 + 2i N∞12

N∞11 + N∞22

=
p̄λ2

8µ2 D2[c12−3j d12+ B2(3j d11− c11)]

×
{
8µ2 D2(c11d12− c12d11)+ B2(κ

A
2 + 1)[c12d12− c11d22+3j (d11d22− d2

12)]
}
,

M∞11 +M∞22

N∞11 + N∞22
=

4µ2 D2(1+ νD
2 )(3j d11− c11)+ B2(κ

A
2 − 1)(c12−3j d12)

4µ2[c12−3j d12+ B2(3j d11− c11)]
,

M∞22 −M∞11 + 2i M∞12

N∞11 + N∞22

=−
p̄λ2

8µ2[c12−3j d12+ B2(3j d11− c11)]

×
{
(1− νD

2 )(κ
A
2 + 1)[c12d12− c11d22+3j (d11d22− d2

12)] + 4B2(c11d12− c12d11)
}
,

j = 1, 2. (27)

For the given material and geometric parameters, the three conditions in (27) can be considered as
restrictions on the remote loading.

The internal uniform hydrostatic stress resultants inside the two nonelliptical inhomogeneities can be
expressed in terms of the two loading parameters δ1 and γ1 defined in (11) as

N11 = N22 = f11δ1+ f12γ1, N12 = 0,

M11 = M22 = g11δ1+ g12γ1, M12 = 0, z ∈ S1,
(28)

N11 = N22 = f31δ1+ f32γ1, N12 = 0,

M11 = M22 = g31δ1+ g32γ1, M12 = 0, z ∈ S3,
(29)

where the eight coefficients f j1, f j2, g j1, g j2, j = 1, 3 are defined by
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f j1

κ A
2 +1

=
1
1 j

{
8µ j [D j (1+νD

j )+D2(1−νD
2 )+ĥ j (B j+B2)]−2B j [(B j−B2)(κ

A
j −1)+4µ j ĥ j ]

}
,

f j2

16D2
=

1
1 j
[B jµ2(κ

A
2 −1)+2B2µ j+4µ jµ2ĥ j ],

g j1

κ A
2 +1

=
1
1 j

{
2B j (κ

A
j −1)[D j (1+νD

j )+D2(1−νD
2 )+ĥ j (B j+B2)]

−2D j (1+νD
j )[(B j−B2)(κ

A
j −1)+4µ j ĥ j ]

}
,

g j2

8D2
=

1
1 j

{
2D j (1+νD

j )[µ2(κ
A
j −1)+2µ j ]−B j (κ

A
j −1)[(B j−B2)−2µ2ĥ j ]

}
, j = 1, 3. (30)

It should be emphasized that, in view of (27)2, δ1 and γ1 can ultimately be expressed in terms of only
N∞11 + N∞22 . In addition, N11+ N22 and M11+M22 are uniformly distributed in the matrix as

N11+ N22 = 4(δ1+ B2γ1), M11+M22 =
B2(κ

A
2 − 1)
µ2

δ1+ 4D2(1+ νD
2 )γ1, z ∈ S2. (31)

The above result implies that the two elastic inhomogeneities will not disturb the quantities N11+ N22

and M11 + M22 when inserted into the surrounding (uncut) matrix (i.e., N11 + N22 = N∞11 + N∞22 and
M11+M22 = M∞11 +M∞22 for z ∈ S2). Thus the two elastic inhomogeneities are “harmonic” [Bjorkman
and Richards 1976; 1979; Richards and Bjorkman 1980; Wang and Schiavone 2015]. In addition, it
follows from (28), (29), and (31) that the hoop membrane stress resultant and hoop bending moment are
constant along the two interfaces L1 and L2 on the matrix side and are given by

Nt t = (4− f11)δ1+ (4B2− f12)γ1,

Mt t =

[
B2(κ

A
2 − 1)
µ2

− g11− ĥ1 f11

]
δ1+ [4D2(1+ νD

2 )− g12− ĥ1 f12]γ1, z ∈ L1,
(32)

Nt t = (4− f31)δ1+ (4B2− f32)γ1,

Mt t =

[
B2(κ

A
2 − 1)
µ2

− g31− ĥ3 f31

]
δ1+ [4D2(1+ νD

2 )− g32− ĥ3 f32]γ1, z ∈ L2.
(33)

Next, we address the case in which the two matrices in (22) are proportional to each other, i.e.,[
c11 c12

c12 c22

]
= k

[
d11 d12

d12 d22

]
. (34)

In this case, it is seen from (18) that 3= k, and that the two coefficients X and Y are now independent
of each other. The necessary and sufficient condition for the existence of the two real coefficients X and Y
simultaneously satisfying the four conditions in (26) is quite simply derived as

δ2 =−2 p̄λ2(d11δ1+ d12γ1), γ2 = p̄λ2 κ
A
2 + 1

4µ2 D2
(d12δ1+ d22γ1), (35)

or more explicitly

N∞11 − N∞22 + 2i N∞12 = pλ2
[χ11(N∞11 + N∞22 )+χ12(M∞11 +M∞22 )],

M∞11 −M∞22 + 2i M∞12 = pλ2
[χ21(N∞11 + N∞22 )+χ22(M∞11 +M∞22 )],

(36)
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with the four coefficients χ11, χ12, χ21, and χ22 being defined by

χ11 =
1

4µ2 D2[8µ2 D2(1+ νD
2 )− 2B2

2 (κ
A
2 − 1)]

×
{
8µ2 D2[4d11µ2 D2(1+ νD

2 )− d12 B2(κ
A
2 − 1)]

− B2(κ
A
2 + 1)[4d12µ2 D2(1+ νD

2 )− d22 B2(κ
A
2 − 1)]

}
,

χ12 =
8µ2 D2(d12− d11 B2)− B2(κ

A
2 + 1)(d22− d12 B2)

D2[8µ2 D2(1+ νD
2 )− 2B2

2 (κ
A
2 − 1)]

,

χ21 =
1

4µ2[8µ2 D2(1+ νD
2 )− 2B2

2 (κ
2
2 − 1)]

×
{
(1− νD

2 )(κ
A
2 + 1)[4d12µ2 D2(1+ νD

2 )− d22 B2(κ
A
2 − 1)]

− 4B2[4d11µ2 D2(1+ νD
2 )− d12 B2(κ

A
2 − 1)]

}
,

χ22 =
(1− νD

2 )(κ
A
2 + 1)(d22− d12 B2)− 4B2(d12− d11 B2)

8µ2 D2(1+ νD
2 )− 2B2

2 (κ
A
2 − 1)

. (37)

An example of when the two 2× 2 real symmetric matrices are proportional to each other arises when
the two inhomogeneities have identical elastic properties (i.e., µ1 = µ3, D1 = D3, B1 = B3, νA

1 = ν
A
3 ,

νD
1 = ν

D
3 ) and ĥ1 = ĥ3. In this example, we will have c11 = d11, c12 = d12, c22 = d22. Consequently,

3 = k = 1. Various shapes of the two nonelliptical inhomogeneities in the case 3 = 1 (in (12)) have
been illustrated numerically in [Wang 2012].

For given material and geometric parameters, the two conditions in (36) can be considered as con-
straints on the remote loading. Once the two conditions in (36) are satisfied, (28) and (29) for the
internal uniform hydrostatic stress resultants and (32) and (33) for the constant hoop stress resultants on
the matrix side along the two interfaces remain valid for this case. Recall that now δ1 and γ1 can be
expressed in terms of N∞11 + N∞22 and M∞11 +M∞22 in view of the fact that X and Y are independent.

4. Conclusions

We have identified the shapes of the two nonelliptical elastic inhomogeneities and the conditions leading
to uniform interior stress resultants inside the two inhomogeneities. When the inequality in (23) is
satisfied, two values of the real coefficient3 are determined from (24) for the given material parameters of
the composite plate. Three conditions on remote loading for the given material and geometric parameters
are derived in (27). Once these conditions are satisfied, elementary expressions of the internal uniform
hydrostatic stress resultants and constant hoop stress resultants on the matrix side along the two interfaces
in terms of only N∞11 + N∞22 are presented in (28), (29), (32), and (33). When (34) is valid, a single value
of 3= k is found. Two conditions on remote loading for the given material and geometric parameters are
derived in (36). In this case, the internal uniform hydrostatic stress resultants and constant hoop stress
resultants on the matrix side along the two interfaces can be expressed in terms of both N∞11 + N∞22 and
M∞11 +M∞22 .

The complex coefficients an and a−n can be uniquely determined from (19) for given values of λ,
ρ, p, and 3. Consequently, the shapes of the two inhomogeneities are known. In addition, the two
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inhomogeneities are “harmonic” in the sense that they satisfy the harmonic field condition of Bjorkman
and Richards [1976] in that their introduction will not cause any disturbance of the fields N11+ N22 and
M11+M22 in the surrounding matrix.
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