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APPLICATION OF THE HYBRID COMPLEX VARIABLE METHOD TO
THE ANALYSIS OF A CRACK AT A PIEZOELECTRIC-METAL INTERFACE

VOLODYMYR GOVORUKHA AND MARC KAMLAH

A plane strain problem for an electrically conducting interface crack between linear transversely isotropic
piezoelectric and isotropic elastic conductor materials under remote mechanical loading is considered.
The attention is focused on a hybrid complex variable method which combines the Stroh formalism
for piezoelectric materials with the Muskhelishvili formalism for conducting isotropic elastic materials.
This method is illustrated in detail for the open crack model and the contact zone crack model. Using
special presentations of mechanical quantities via sectionally analytic functions, a combined Dirichlet–
Riemann and Hilbert boundary value problem is formulated and solved analytically. Stress intensity
factors as well as the crack tip energy release rate are found in a clear analytical form. Furthermore,
transcendental equations for the determination of the realistic contact zone length and the location of the
first interpenetration point have been obtained. A significant influence of the external mechanical loading
on the crack opening and the stresses as well as the contact zone and interpenetration region lengths is
observed. The dependencies of the mentioned values on the intensities of the mechanical loading are
presented in tables and associated diagrams.

1. Introduction

With the rapid development of modern industry, piezoelectric-metal composites have been widely used
in various electromechanical devices. Due to excellent piezoelectric effects as well as good mechanical
properties, these composites have become attractive candidates for use in transducers and actuators for
vibration control and biomedical imaging applications [Pritchard et al. 2001]. What is even more com-
mon, piezoelectric-metal bimaterials have an apparent application in any kind of piezoelectric sensors and
transducers, where metal electrodes are always placed on piezoelectric material surfaces to introduce high
applied electric fields. However, various defects may occur on the interface of the metal and piezoelectric
phases due to flaws during manufacturing, impact, cooling or other unexpected reasons. These defects
cause geometric, electric and mechanical discontinuities and thus induce strong stress and electric field
concentrations, which may induce crack initiation and crack growth, eventually causing fracture and
failure. Therefore, it is important to understand and be able to analyze the fracture characteristics of
piezoelectric-metal structures so that reliable service life predictions of the pertinent devices can be
conducted.

The earliest research on this topic appears to have been done by Kudriavtsev et al. [1975a; 1975b],
who modeled an interface crack between a piezoelectric ceramic and an elastic isotropic conductor as
rectilinear and axisymmetric, respectively. Liu and Hsia [2003] provided a result for a double edged
crack in such a bimaterial under in-plane electric loading. Based on the integral transformation technique,
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Parton [1976] and Bakirov [2004] studied the plane problem of a crack on a piezoelectric-metal interface,
in which the axis of axisymmetry of the transversely isotropic piezoelectric materials is normal to the
interface and a normal homogeneous tensile loading is applied at infinity. As presented by Bakirov and
Kim [2009], the plane strain problem of a crack on an interface between an isotropic elastic conductor
and a transversely isotropic piezoelectric material was reduced to the boundary equations on the interface,
which make it possible to calculate the crack tip energy release rate with respect to the distribution of the
loading applied to the crack surfaces. A more detailed review of the interface crack problem investigation
in piezoelectric-metal composites was presented in the review paper by Govorukha et al. [2016].

Since piezoelectric ceramics and metals are two different kinds of solids, especially concerning elec-
tronic transport, it is quite difficult to combine their constitutive equations in an interface crack analysis.
For convenience, Ou and Chen [2004] and Li and Chen [2007; 2009] assumed that the metal phase
could be considered as a special piezoelectric material with extremely large permittivity and extremely
small piezoelectricity and in this way used the extended Stroh formalism to treat this interface crack
problem. Although a nonpiezoelectric isotropic elastic material can be treated as a special case of piezo-
electric materials with vanishing piezoelectric constants, the well-known Stroh formalism, on which
almost all of the existing works on interface cracks in piezoelectric media have been based, breaks down
or becomes complicated in the degenerate case of isotropic elastic materials due to the appearance of
multiple eigenvalues [Ting and Chou 1981]. In order to eliminate this discrepancy, a hybrid complex
variable method was proposed by Ru [2008], in which the isotropic elastic material was handled with the
convenient and powerful Muskhelishvili formalism while the piezoelectric material was analyzed with
the Stroh formalism. This method was illustrated for an insulating interface crack between a piezoelectric
half-plane and an isotropic elastic half-plane.

It should be noted that most of the above-mentioned solutions for interface cracks in piezoelectric-
metal composites have oscillatory singularities, as in the case of elasticity [Williams 1959], which causes
the overlapping of crack faces, a physically unreasonable phenomenon. To correct this shortcoming,
Comninou [1977] developed a contact zone model for a crack between two nonpiezoelectric materials.
On the basis of this model, a numerical analysis of an interface crack between a piezoelectric ceramic
and an elastic isotropic conductor has been performed by Govorukha and Loboda [2000]. However an
analytical investigation of an interface crack with contact zones in a piezoelectric-metal bimaterial is
unknown, at least to the authors of this paper.

In the present paper a closed-form solution for a conducting interface crack between a piezoelectric
half-plane and a conducting isotropic elastic half-plane is obtained with the use of hybrid complex
variable method. The open crack model and the contact zone crack model are utilized. A significant
influence of the external mechanical loading on the crack opening, stresses as well as the contact zone
and interpenetration region lengths is demonstrated.

2. Basic equations

The constitutive and equilibrium equations for a linear piezoelectric material in the absence of body
forces and free charges can be represented in the form [Pak 1992]∏

m J

= EmJKl VK ,l, (1)
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m J,m

= 0, (2)

where

VK =

{
uk, K = 1, 2, 3,
ϕ, K = 4,

∏
m J

=

{
σmj , m, J = 1, 2, 3,
Dm, m = 1, 2, 3; J = 4,

EmJKl =


cmjkl, m, J, K , l = 1, 2, 3,
elm j , m, J, l = 1, 2, 3; K = 4,
emkl, m, K , l = 1, 2, 3; J = 4,
−εml, m, l = 1, 2, 3; J, K = 4.

Here, uk , ϕ, σmj , and Dm are the elastic displacements, electric potential, stresses, and electric displace-
ments, while cmjkl , emjk , and εmj are the elastic, piezoelectric, and dielectric constants, respectively.
Lower case subscripts range from 1 to 3, upper case subscripts range from 1 to 4, and summation
over repeated subscripts is implied. The subscript comma denotes partial derivative with respect to
the Cartesian coordinates. In addition, the electric field Em is related to the electric potential ϕ by

Em =−ϕ,m .

For a two-dimensional problems in which uk and ϕ depend on x1 and x3 only, a general solution of
(1), (2) according to the method originally proposed by Eshelby et al. [1953] and used by Stroh [1958]
can be written as

V = A f (z)+ A f (z), (3)

t = B f ′(z)+ B f ′(z), (4)

where V =[u1, u2, u3, ϕ]
T , t=[σ13, σ23, σ33, D3]

T , and f (z) consists of four arbitrary analytic functions
of the respective variables zα = x1+ pαx3 (α = 1, 2, 3, 4) as

f (z)=
[

f1(z), f2(z2), f3(z3), f4(z4)
]T
.

Matrices A and B are defined by the material constants, and pα are four distinct complex roots with
positive imaginary parts of the characteristic equation described by Suo et al. [1992]. Here and afterwards,
the superscript T denotes transposition and the overbar stands for the complex conjugate.

In this paper, we consider transversely isotropic piezoelectric materials poled in the x3-direction. In
this case, the displacement u2 decouples in the (x1, x3)-plane from (u1, u3, ϕ). Because of the simplicity
of the u2-determination our attention will be devoted to the in-plane problem which is characterized by
the displacements u1, u3 and the electric potential ϕ. Thus, the second row and the second column will
be deleted from all matrices in (3) and (4).

In the case of the plane problems for the isotropic elastic materials, the stresses and associated elastic
displacements can be expressed in terms of the Muskhelishvili complex potentials [1953] φ(z) and ψ(z):

2µ(u1− iu3)= κφ(z)− z̄φ′(z)−ψ(z),

σ33+ iσ13 = φ
′(z)+φ′(z)+ z̄φ′′(z)+ψ ′(z),
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where κ = 3− 4ν for plane strain and κ = (3− ν)/(1+ ν) for plane stress, and µ and ν are the shear
modulus and Poisson’s ratio, respectively.

Introducing new analytic functions by the formulas

9(z)= z̄φ′′(z)+ψ ′(z), 8(z)= φ′(z),

one can write,

2µ(u′1− iu′3)= κ8(z)−8(z)−9(z), (5)

σ33+ iσ13 =8(z)+8(z)+9(z). (6)

The attention is focused in the following on a hybrid complex variable method which combines the
Stroh formalism of the piezoelectric materials with the Muskhelishvili formalism of the conducting
isotropic elastic materials (such as metal).

3. Complex function representation for the stresses and displacement jumps at the interface

In this section, we develop as a major novelty expressions by which the solution of various mixed bound-
ary conditions at the interface, i.e., different models for cracks between a piezoelectric and a metal, can
be obtained. Consider a bimaterial composition, where the piezoelectric phase occupies the upper half-
plane (x3 ≥ 0) and the metal phase occupies the lower half-plane (x3 ≤ 0). We assume, that the stresses
and the tangential component of the electric field are continuous across the whole bimaterial interface.
The part of the interface which is mechanically bounded is denoted by L . Then, the boundary conditions
at the interface x3 = 0 are

E±1 (x1, 0)= 0 for x1 ∈ (−∞,∞), (7)

σ+33(x1, 0)+ iσ+13(x1, 0)= σ−33(x1, 0)+ iσ−13(x1, 0) for x1 ∈ (−∞,∞), (8)

u+1 (x1, 0)− iu+3 (x1, 0)= u−1 (x1, 0)− iu−3 (x1, 0) for x1 ∈ L , (9)

where the superscripts “+” and “−” indicate the limit values takes from the upper and the lower half-
planes, respectively.

It should be noted that, due to the compatibility conditions at the bonded interface, the respective
uniform remote loadings given in the two half-planes must be compatible, in order to give rise to uniform
stress and electric fields in the absence of the interface crack. In particular, the component E∞1 of remote
uniform electric field parallel to the interface in the upper half-plane must be zero, because it must be
compatible with the vanishing tangential electric field of the lower half-plane along the bonded interface.

The electro-elastic field in the upper half-plane is described by the Stroh formalism and given in
terms of the three functions fk(zk) of the respective variables zk (k = 1, 3, 4), while the elastic field in
the lower half-plane is described by the Muskhelishvili formalism and given in terms of the two functions
8(z) and 9(z) of the single complex variable z. Thus, the problem is to determine the three analytic
functions fk(zk) in the upper half-plane and two analytic functions 8(z) and 9(z) in the lower half-plane.

Let us define three analytic functions of the single complex variable z in the upper half-plane, in terms
of the functions fk(zk) as

g(z)= A f ′(z), (10)
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where g(z)= [g1(z), g3(z), g4(z)]T .
Using relation (10), the expressions (3) and (4) can be represented in the form

V ′ = g(z)+ g(z), (11)

t = Dg(z)+ D g(z), (12)

where D = iY−1, Y = i AB−1.
In this paper, as defined before, we consider transversely isotropic piezoelectric materials of the sym-

metry class 6 mm poled in the x3-direction which have an essential practical significance. For this case,
the matrix D has the form

D =

id11 d13 d14

d31 id33 id34

d41 id43 id44

 ,
where all dij are real and d31 =−d13, d41 =−d14, d43 = d34 hold true.

Further, the boundary condition (7) along the whole bimaterial interface and the condition E∞1 = 0 at
infinity give

g4(z)≡ 0, x3 ≥ 0.

In view of the interface conditions (8) and the relations (6) and (12), the continuity of mechanical
tractions along the whole real axis gives

q11 g+1 (x1)+ q12 g+1 (x1)+ iq21 g+3 (x1)+ iq22 g+3 (x1)=8
−(x1)+8−(x1)+9

−(x1),

which can be rewritten as

q11g+1 (x1)+iq21g+3 (x1)−8
+(x1)=8

−(x1)+9
−(x1)−q12ḡ−1 (x1)−iq22ḡ−3 (x1), x1∈(−∞,∞), (13)

where q11 = d31− d11, q12 = d31+ d11, q21 = d13+ d33, q22 = d13− d33.
The left-hand side of (13) is the boundary value of a function analytic in the upper half-plane, and the

right-hand side is the boundary value of another function analytic in the lower half-plane. Hence, both
functions are equal to a function defined as

M(z)=
{

q11g1(z)+ iq21g3(z)−8(z) for x3 > 0,
8(z)+9(z)− q12ḡ1(z)− iq22ḡ3(z) for x3 < 0,

(14)

which is analytic in the whole plane.
Taking into account that the stresses are bounded at infinity, it follows that M(z)|z→∞ = M (0)

= const.
But according to Liouville’s theorem, this means that M(z)=M (0) holds true in the whole plane. Because
g1(z), g3(z), 8(z), and 9(z) are arbitrary functions, without loss of generality, one can choose M (0)

= 0.
Thus, Equation (14) leads to

q11g1(z)+ iq21g3(z)−8(z)= 0, x3 > 0,

8(z)+9(z)− q12ḡ1(z)− iq22ḡ3(z)= 0, x3 < 0,
and then

iq21g3(z)=−q11g1(z)+8(z), x3 > 0,

q219(z)= (q12q21+ q11q22)ḡ1(z)− (q21+ q22)8(z), x3 < 0.
(15)
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Hence, the problem is reduced to the determination of the two functions: g1(z) in the upper half-plane
and 8(z) in the lower half-plane.

Now taking the derivatives of both sides in the interface condition (9) and using the relations (5)
and (11) we obtain

g+1 (x1)− ig+3 (x1)−
κ

2µ
8+(x1)=−ḡ−1 (x1)+ i ḡ−3 (x1)−

1
2µ
8−(x1)−

1
2µ
9−(x1), x1 ∈ L . (16)

Continuity of the displacement across the bonded interface, as inferred from (16), implies that a function
defined as

�(z)=
{

g1(z)− ig3(z)− (κ/2µ)8(z) for x3 > 0,
−ḡ1(z)+ i ḡ3(z)− (1/2µ)8(z)− (1/2µ)9(z) for x3 < 0,

is analytic in the whole plane with a cut along (−∞,∞) \ L and tends to a constant as |z| →∞.
Thus, g1(z) and 8(z) can be expressed via �(z) as

g1(z)= p11�(z)+ p128(z), x3 > 0, 8(z)= p21�(z)+ p228(z), x3 < 0, (17)

where

p11 =
2µ
1
(q22− 2µ), p12 =

2µ
1
(2µ+ κq21), p21 =

4µ2

1
(q11+ q21),

p22 =
2µ
1
[2µ(q21− q11)+ q12q21+ q11q22], 1= (2µ− κq11)(q22− 2µ)− (2µ+ κq21)(q12+ 2µ).

Substituting (15) and (17) into (6), we may express the stresses on the whole interface in terms of the
single function 8(z):

σ33(x1, 0)+ iσ13(x1, 0)= s11�
+(x1)+ s128

+(x1)+ s21�
−(x1)+ s228

−(x1),

σ33(x1, 0)− iσ13(x1, 0)= s118
−(x1)+ s12�

−(x1)+ s218
+(x1)+ s22�

+(x1),
(18)

where s11 = p22, s12 = p21, s21 = p12q12+ q22(p12q11− p21)/q21, s22 = p21. It should be noted that the
same expressions of the stresses can be found from relation (12).

Similarly, using (5) and (11), we may evaluate the derivatives of the displacement jumps and find

〈u′1(x1)〉− i〈u′3(x1)〉 =�
+(x1)−�

−(x1),

〈u′1(x)〉+ i〈u′3(x1)〉 =8
−(x1)−8

+(x1).
(19)

Here and afterwards the brackets 〈 · · · 〉 denote the jump of the corresponding function over bimaterial
interface.

Introducing the new functions

Fj (z)=
s11+αj s22

s11− s12+αj (s22− s21)

{
�(z)+

s12+αj s21

s11+αj s22
8(z)

}
, (20)

having the same properties as 8(z), and combining the first and second equation of (18) one can write

σ33(x1, 0)+ im jσ13(x1, 0)= tj [F+j (x1)+ γj F−j (x1)], (21)
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where α j are the roots of the quadratic equation

s12+αs21

s11+αs22
=

s22+αs11

s21+αs12
,

and

m j =
1−αj

1+αj
, γj =

s21+αj s12

s11+αj s22
, tj =

s11− s12+αj (s22− s21)

1+αj
, j = 1, 2.

On the other hand, (19) and (20) lead to the expression for the derivatives of the displacement jumps

〈u′1(x1)〉+ isj 〈u′3(x1)〉 = F+j (x1)− F−j (x1), (22)

where s1,2 = −m1,2. Numerical analysis shows that the constants αj , m j , γj , tj are real, and besides
γ2 = 1/γ1 holds true.

The expressions (21) and (22) play an important role in the following analysis because by means
of these expressions the problems of linear relationship for various mixed boundary conditions at the
interface can be formulated.

4. Open crack model

Consider now the same bimaterial as in the previous chapter and assume that an electrically conducting
interface crack is situated in the region −b ≤ x1 ≤ b, x3 = 0 (Figure 1). Taking into account that the
stress intensity factors and the energy release rate for an electrically conducting interface crack depend
on the material properties and the applied mechanical loads, but not on the applied electric loads [Zhang
and Gao 2004], we pay our attention to the influence of the external mechanical loading only. Therefore,
it is assumed that the half-planes are loaded at infinity with uniform stresses σ ( j)

33 = σ
∞

33 , σ ( j)
13 = σ

∞

13 ,
and σ ( j)

11 = (σ
∞

11 )j which satisfy the continuity conditions at the interface ( j = 1 stands for the upper
half-plane and j = 2 for the lower one). Because the load does not depend on the coordinate x2, the
plane strain problem in the (x1, x3)-plane can be considered. The open crack model based upon the
initial assumption that the crack is completely open is employed in the following analysis.

For a traction- and charge-free electrically conducting crack, the continuity and boundary conditions
at the interface x3 = 0 are

〈σ13(x1)〉 = 0, 〈σ33(x1)〉 = 0, E±1 (x1, 0)= 0 for x1 ∈ (−∞,∞), (23)

〈u1(x1)〉 = 0, 〈u3(x1)〉 = 0 for x1 /∈ (−b, b), (24)

σ±13(x1, 0)= 0, σ±33(x1, 0)= 0 for x1 ∈ (−b, b). (25)

The stress components and the derivatives of the displacement jumps at the bimaterial interface can
be represented by means of the expressions (21) and (22), respectively. Due to the method of construc-
tion of these expressions, they automatically satisfy the boundary conditions (23) and (24). To satisfy
additionally the boundary conditions (25), the homogeneous Hilbert problem

F+j (x1)+ γj F−j (x1)= 0, x1 ∈ (−b, b), (26)

by using expression (21) arises [Muskhelishvili 1953]. Taking into account that for x1 /∈ (−b, b) the
relation F+j (x1) = F−j (x1) is valid, by use of (21) and the prescribed remote mechanical loads the
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Figure 1. An open interface crack subject to remote uniform mechanical loading.

conditions at infinity for the functions Fj (z) can be written as

Fj (z)|z→∞ =
σ∞33 + im jσ

∞

13

tj (1+ γj )
. (27)

By applying the relation γ2 = 1/γ1, the solution of this problem for j = 2 can be obtained from the
associated solution for j = 1. Therefore, in the following our attention will be focused only to the case
j = 1. According to the results by Muskhelishvili [1953] the most general solution of the homogeneous
Hilbert problem (26), analytic at infinity, has the form

F1(z)= (z+ b)−1/2+iε1(z− b)−1/2−iε1 P(z),

where ε1 = (ln γ1)/2π , P(z)= C1z+C0, and C0, C1 are arbitrary constants.
Further, by means of the condition at infinity (27) and the condition of the single-valuedness of the

displacements, which due to (22) can be written as∫ b

−b
{F+1 (x1)− F−1 (x1)} dx1 = 0,

the expressions

C0 =
−ilε1(σ

∞

33 + im1σ
∞

13 )

t1(1+ γ1)
, C1 =

σ∞33 + im1σ
∞

13

t1(1+ γ1)

for the unknown coefficients of the polynomial P(z) are found and the function F1(z) can be represented
in the form

F1(z)=
σ∞33 + im1σ

∞

13

t1(1+ γ1)
(z+ b)−1/2+iε1(z− b)−1/2−iε1(z− ilε1), (28)

where l = 2b is the crack length.
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Substituting (28) into (21), we get the expressions

σ33(x1, 0)+ im1σ13(x1, 0)=
σ∞33 + im1σ

∞

13
√
(x1+ b)(x1− b)

(x1− ilε1)

[
x1+ b
x1− b

]iε1

(29)

for the stresses at the bonded part x1 > b of the bimaterial interface. Substituting (28) into (22), the
expressions for the derivatives of the crack face’s displacement jumps can be written as

〈u′1(x1)〉+ is1〈u′3(x1)〉 =
σ∞33 + im1σ

∞

13

i t1
√
γ1(x1+ b)(b− x1)

(x1− ilε1)

[
x1+ b
b− x1

]iε1

. (30)

Integrating the last expression, one obtains

〈u1(x1)〉+ is1〈u3(x1)〉 =
i(σ∞33 + im1σ

∞

13 )

t1
√
γ1

√
(x1+ b)(b− x1)

[
x1+ b
b− x1

]iε1

. (31)

Introducing similarly to Rice [1988] the complex stress intensity factor (SIF) is

K1+ im1K2 = lim
x1→b+0

√
2π(x1− b) [σ33(x1, 0)+ im1σ13(x1, 0)](x1− b)iε1l−iε1

at the right crack tip, associated to the crack length and using (29) one arrives at the expression for the
conjugating SIF:

K1− im1K2 =
√

1
2πl(1+ 2iε1)(σ

∞

33 − im1σ
∞

13 ). (32)

The crack-tip field of an interface crack is uniquely determined by the complex SIF (32) or by its
real and imaginary parts, respectively. Employing a polar coordinate system (ρ, θ) with the origin at the
right crack tip, the near-tip tractions along the bonded interface part (θ = 0) are expressed as

σ33(ρ, 0)− im1σ13(ρ, 0)=
K1− im1K2
√

2πρ
(ρ/ l)iε1 for ρ→ 0. (33)

The corresponding near-tip expression for the discontinuity in displacement across the crack (θ = π) is

〈u3(ρ)〉+
i
s1
〈u1(ρ)〉 =

2
s1t1
√
γ1

K1− im1K2

1+ 2iε1

√
ρ

2π
(ρ/ l)iε1 for ρ→ 0. (34)

Using
(ρ/ l)iε1 = cos[ε1 ln(ρ/ l)] + i sin[ε1 ln(ρ/ l)],

it can be seen that the asymptotic fields (33) and (34) change their sign an infinite number of times in a
small neighboring area of the crack tip. This means that for the open crack model the well-known oscillat-
ing singularity is observed [Williams 1959]. It is characterized by physically unrealistic interpenetration
of the two materials along the crack faces. The degree of oscillation is determined by parameter ε1, which
depends on the ratio of the stiffness characteristics of the two materials. With the definitions employed
for γ1 and ε1, γ1 > 1 implies ε1 > 0. For identical materials it holds that γ1 = 1 and ε1 = 0. It should
also be noticed that transposition of the half-planes yields a change in the sign of ε1.

Defining the phase angle of the complex SIF as ψK = arg(K1− im1K2) and taking into account that

K1− im1K2 = |K1− im1K2| eiψK , 1+ 2iε1 =
√

1+ 4ε2
1 ei arctan(2ε1),
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hold true and separating real and imaginary parts of the expression (34), we have

〈u3(ρ)〉 =
2

s1t1
√
γ1

|K1− im1K2|
√

1+ 4ε2
1

√
ρ

2π
cos[ψu(ρ)] for ρ→ 0, (35)

with

ψu(ρ)= ψK + ε1 ln(ρ/ l)− arctan(2ε1). (36)

As the opening of the crack, 〈u3(ρ)〉, oscillates, an infinite number of interpenetration zones exists, in
which 〈u3(ρ)〉< 0. By means of the expression (35), we can estimate the length of the interpenetration
region at the crack tip. For this purpose, we identify the location of the first interpenetration point ρI

where the crack opening 〈u3(ρ)〉 due to the oscillation becomes zero for the first time. As pointed out
by Hills and Barber [1993], imposing 〈u3(ρ)〉 < 0 in (35), interpenetration zones are defined by the
condition cos[ψu(ρ)]< 0, which results in the intervals(

2n− 3
2

)
π < ψu(ρ) <

(
2n− 1

2

)
π,

with n being any integer. Therefore, in view of (36), the interpenetration zones are characterized by the
intervals

ρL < ρ < ρR, (37)

where

ρL = l exp
{ 1
ε1

[(
2n− 3

2

)
π −ψK + arctan(2ε1)

]}
, ρR = l exp

{ 1
ε1

[(
2n− 1

2

)
π −ψK + arctan(2ε1)

]}
.

Equation (37) defines an infinite sequence of interpenetration zones as n takes all integer values,
positive and negative. Hills and Barber [1993] concluded that the location of the first interpenetration
point ρI can be obtained as the largest value of ρR which is lower than the crack length, i.e.,

ρI = l exp
{ 1
ε1

[(
2n− 1

2

)
π −ψK + arctan(2ε1)

]}
. (38)

It is worth reminding that the relation (38) is valid for ε1 > 0 only. In the case ε1 < 0, the inequali-
ties (37) must be reversed, and therefore the location of the first interpenetration point is defined by the
largest value of ρL which is lower than the crack length [Graciani et al. 2007].

For the open crack model, the energy release rate (ERR) at the right crack tip is defined as [Parton
and Kudryavtsev 1988]

G = lim
1l→0

1
21l

∫ b+1l

b
σ33(τ, 0)〈u3(τ −1l)〉+ σ13(τ, 0)〈u1(τ −1l)〉 dτ. (39)

The electrical component of the energy release rate is missing since the drop of electric potential for an
electrically conducting crack is zero along the entire material interface.

Substituting expressions (33) and (34) into (39), we get

G =−
K 2

1 +m2
1K 2

2

2m1t1(1+ γ1)
. (40)
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In deriving (40), the identity∫ 1l

0

(
1l−τ
τ

)(1/2)+iε1
dτ = 1

2π1l(1+ 2iε1) sech(πε1),

has been used with ε1 > 0 and 1l > 0.

5. Contact zone model

Considering the same type of loadings at infinity, following Comninou [1977], we introduce a frictionless
contact zone a < x1 < b at the right crack tip to avoid an oscillating singularity, where the position of
the point a is chosen arbitrarily for the time being (Figure 2). For a such an arbitrary position of point a,
we have an artificial contact zone model, which is not physically justified, but from this model the
specific value of a for the realistic contact zone length in the sense of Comninou will be found. Taking
into consideration only the right contact zone is justified by the fact that the left contact zone under
considered loading is extremely short and its influence upon the longer right contact zone is negligibly
small [Dundurs and Gautesen 1988].

The boundary conditions at the crack faces for the considered model can be written as

σ±13(x1, 0)= 0, σ±33(x1, 0)= 0 for x1 ∈ (−b, a), (41)

σ±13(x1, 0)= 0, 〈u3(x1)〉 = 0 for x1 ∈ (a, b). (42)

Satisfying conditions (41), (42) by means of the expressions (21), (22) leads to the homogeneous
combined Dirichlet–Riemann boundary value problem

F+1 (x1)+ γ1 F−1 (x1)= 0, x1 ∈ (−b, a), Im F±1 (x1)= 0, x1 ∈ (a, b). (43)

The behavior of the function F1(z) at infinity is determined by (27).

− b b
0

x3

σ ∞
33

σ ∞
33

σ ∞
13

σ( )∞
11 1

σ( )∞
11 2

σ( )∞
11 1

σ( )∞
11 2

σ ∞
13

σ ∞
13 σ ∞

13x1

Piezoelectric material

Metal material

Figure 2. An interface crack with one contact zone subject to remote uniform mechan-
ical loading.
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Following Nakhmein and Nuller [1986] and Herrmann and Loboda [2000], the general solution of the
problem (43) can be represented in the form

F1(z)= P(z)X1(z)+ Q(z)X2(z), (44)

where

X1(z)=
ieiθ(z)

√
(z+ b)(z− b)

, X2(z)=
eiθ(z)

√
(z+ b)(z− a)

, θ(z)= 2ε1 ln
√
(b− a)(z+ b)

√
l(z− a)+

√
(a+ b)(z− b)

,

and P(z)= C1z+C0, Q(z)= D1z+ D0 are polynomials with arbitrary real coefficients. Constants C0,
C1, D0, D1 can be found from the condition (27) at infinity in the form

C0 =−β1 D1, D0 = β1C1−
a−b

2
D1,

C1 =
m1σ

∞

13 cosβ − σ∞33 sinβ
t1(1+ γ1)

, D1 =
σ∞33 cosβ +m1σ

∞

13 sinβ
t1(1+ γ1)

,

where

β = ε1 ln
λ

2(1+
√

1− λ)− λ
, β1 = ε1

√
l(a+ b) .

The parameter λ= (b− a)/ l defines the relative length of the contact zone of the crack faces and will
be found later.

Substituting the formula (44) into (21), (22) and taking into account that F+1 (x1)= F−1 (x1) for x1 > b
and F−1 (x1)=−F+1 (x1)/γ1 for x1 ∈ (−b, a), the following expressions are obtained for the stresses and
the derivatives of the displacement jumps at the material interface for x1 > b :

σ33(x1, 0)+ im1σ13(x1, 0)=
t1(1+ γ1) eiθ(x1)

√
x1+ b

[
Q(x1)
√

x1− a
+ i

P(x1)
√

x1− b

]
, (45)

for x1 ∈ (−b, a),

〈u′1(x1)〉+ is1〈u′3(x1)〉 =
(1+ γ1) eiθ∗(x1)

√
γ (x1+ b)

[
P(x1)
√

b− x1
− i

Q(x1)
√

a− x1

]
; (46)

for x1 ∈ (a, b),

σ33(x1, 0)=
t1(1+ γ1)P(x1)
√
(x1+ b)(b− x1)

[
sinh θ̃ (x1)+

1− γ1

1+ γ1
cosh θ̃ (x1)

]
+

t1(1+ γ1)Q(x1)
√
(x1+ b)(x1− a)

[
cosh θ̃ (x1)+

1− γ1

1+ γ1
sinh θ̃ (x1)

]
, (47)

〈u′1(x1)〉 =
2

√
x1+b

[
P(x1)
√

b− x1
cosh θ̃ (x1)+

Q(x1)
√

x1− a
sinh θ̃ (x1)

]
, (48)

where

θ∗(x1)= 2ε1 ln
√
(b− a)(x1+ b)

√
l(a− x1)+

√
(a+ b)(b− x1)

, θ̃ (x1)= 2ε1 arctan

√
(a+ b)(b− x1)

l(x1− a)
.
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As it follows from the analysis of the formulas (45) and (47) the normal stress is limited for x1→ b+0.
On the other hand, the shear stress is singular for x1→ b+ 0 as well as the normal stress for x1→ a+ 0.
The stress intensity factors are introduced to characterize these singularities:

k1 = lim
x1→a+0

√
2π(x1− a) σ33(x1, 0), k2 = lim

x1→b+0

√
2π(x1− b) σ13(x1, 0).

Using relations (45) and (47) leads to the expressions

k1 =

√
2πlγ1

1+ γ1

[√
1− γ (σ∞33 cosβ +m1σ

∞

13 sinβ)− 2ε1(σ
∞

33 sinβ −m1σ
∞

13 cosβ)
]
,

k2 =−
1

m1

√
1
2πl

[
σ∞33 sinβ −m1σ

∞

13 cosβ + 2ε1
√

1− λ (σ∞33 cosβ +m1σ
∞

13 sinβ)
]
.

(49)

We define the energy release rate near the right crack tip as [Parton and Kudryavtsev 1988]

G = lim
1l→0

1
21l

{∫ a+1l

a
σ33(x1, 0)〈u3(x1−1l)〉 dx1+

∫ b+1l

b
σ13(x1, 0)〈u1(x1−1l)〉 dx1

}
. (50)

Substituting the asymptotic formulas for the stresses and the displacement jumps in the vicinity of the
points a and b into (50) and calculating the corresponding integrals, we get

G = 1
2t1

(
1+ γ1

4s1γ1
k2

1 −
m1

1+ γ1
k2

2

)
. (51)

The obtained solution is mathematically correct for any position of the point a, and the associated
interface crack model was called an artificial contact zone model [Herrmann and Loboda 2000]. However,
it is physically justified if the inequalities

σ33(x1, 0)≤ 0, x1 ∈ (a, b), 〈u3(x1)〉 ≥ 0, x1 ∈ (−b, a), (52)

are valid. The first inequality ensures that the crack faces are closing on (a, b), and the second one
excludes their interpenetration on (−b, a) (it violates only in a very small area near the left crack tip
because of oscillation, but it does not significantly influence in the vicinity of the right crack tip, as
mentioned before). In this case a realistic contact zone in the sense of Comninou [1977] is present at the
crack tip.

The inequalities in (52) are satisfied simultaneously in the case of a smooth closing of the crack at the
point a, i.e., when k1 = 0 [Loboda 1993]. The latter condition is a necessary one for the satisfaction of
the inequalities in (52) and, from (49), it leads to the transcendental equation

tanβ =

√
1− λ σ∞33 + 2ε1m1σ

∞

13

2ε1σ
∞

33 −
√

1− λm1σ
∞

13

, (53)

with respect to the parameter λ. Usually (53) is solved numerically and the maximum root λ= λ0 from
interval (0, 1) should be selected. For small values of λ, assuming

√
1− λ≈ 1, we get the asymptotic

formula

λ0 = 4 exp
{
−

1
ε1

[
arctan(2ε1)− arctan

(
m1σ

∞

13

σ∞33

)
−π(n− 0, 5)

]}
, (54)

where the integer n is chosen to provide λ0 as the maximum root of (54) in the interval (0, 1).
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Figure 3. The variation of the normalized crack opening along the crack region for
σ∞33 = 1 MPa and σ∞13 /σ

∞

33 = −1 (line 1), σ∞13 /σ
∞

33 = −20 (line 2), σ∞13 /σ
∞

33 = −50
(line 3).

6. Numerical results and discussion

We pay our attention to the influence of the external mechanical loading on the crack opening and the
stresses as well as the contact zone and interpenetration region lengths. The bimaterial consisting of
piezoceramic PZT-4 [Pak 1992] (the upper material) and steel (Young’s modulus E = 21.0× 1010 N/m2

and Poisson’s ratio ν = 0.3) (the lower one) is chosen for the numerical calculations. In the SI system
of units, matrix D for the piezoceramic PZT-4 has the form4.69302 · 1010 i 5.80012 · 109 11.5642

−5.80012 · 109 4.39991 · 1010 i 12.3926 i
−11.5642 12.3926 i −5.81112 · 10−9i

 .
At the beginning, the variation of the normalized normal crack displacement jump (crack opening)

along the crack region for the open crack model is shown in Figure 3. The graphs are presented for
different shear loads σ∞13 = −1 MPa (line 1), σ∞13 = −20 MPa (line 2), and σ∞13 = −50 MPa (line 3)
with fixed σ∞33 = 1 MPa. The obtained results confirm the essential influence of normal-shear loading
coefficient on the crack opening.

Figure 4 shows the graph of the normalized displacement jump at the right crack tip for the open crack
model. Curves 1, 2, and 3 in this figure correspond to the values σ∞13 /σ

∞

33 =−50, σ∞13 /σ
∞

33 =−80, and
σ∞13 /σ

∞

33 =−100, respectively. It follows from the analysis of these graphs that crack opening is negative
in some areas, i.e., a physically impossible overlapping of the crack faces is observed there. If σ∞13 /σ

∞

33 =

−50 this overlapping is invisibly small although it takes place, but for σ∞13 /σ
∞

33 =−80 it is quite noticeable
and for σ∞13 /σ

∞

33 = −100 the overlapping covers one tenth of the crack length. It is clear that in such
cases the open crack model is not adequate to reality and the contact zone model should be used.

The distribution of the normalized normal stress σ33(x1, 0)/σ∞33 in the contact zone x1 ∈ (a, b) for
σ∞33 = 1 MPa, σ∞13 /σ

∞

33 = −70 and different values of the relative contact zone length λ is shown in
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Figure 4. The variation of the normalized crack opening along the near-crack tip region
for σ∞33 = 1 MPa and σ∞13 /σ
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Figure 5. Variation of the normalized normal stress σ33(x1, 0)/σ∞33 in the contact zone
(a, b) for σ∞33 = 1 MPa, σ∞13 /σ

∞

33 =−70, and λ= 0.03 (line 1), λ= λ0≈ 0.01238 (line 2),
λ= 0.001 (line 3).

Figure 5. Curve 1 corresponds to λ = 0.03 (λ > λ0), curve 2 to λ = λ0 ≈ 0.01238, and curve 3 to
λ= 0.01 (λ < λ0). It is seen that for λ > λ0, normal stress is tensile in most parts of the interval (a, b)
and is compressive only near the point b. A decrease of λ leads to an increase of the compressive stress
field zone. For λ≤ λ0, the normal stress becomes negative throughout the interval (a, b). Only for λ= λ0

the stress σ33(x1, 0) at the point a becomes equal to zero. This means that for λ = λ0, the crack faces
are compressed against each other in the entire interval (a, b) and their closure in point a is smooth.

Figure 6 shows the normalized crack opening 〈u3(x1)〉/ l in the left neighboring area of the point a
for the same materials and loads, as in Figure 5. Curve 1 corresponds to λ= 0.03 (λ > λ0), curve 2 to
λ= λ0≈ 0.01238, and curve 3 to λ= 0.001 (λ< λ0). It follows from the analysis of the above results that
for λ≥ λ0 the second inequality in (52) is satisfied for all x1 ∈ (−b, a), except limx1→a−0〈u′3(x1)〉 → 0,
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∞

33 =−40 (line 1), σ∞13 /σ
∞

33 =

−50 (line 2), σ∞13 /σ
∞

33 =−80 (line 3).

and equality 〈u′3(a)〉 = 0 holds true only for λ= λ0. On the other hand, if λ < λ0, physically incorrect
overlapping of the crack faces is observed, which increases with λ decreasing. Thus, the results presented
in Figure 5 and Figure 6 numerically confirm the fact that the inequalities in (52) are satisfied only for
λ= λ0.

The results of the calculations of the normalized normal stress σ33(x1, 0)/σ∞33 at the crack continua-
tions are shown in Figure 7. Curves 1, 2, and 3 in this figure correspond to the values σ∞13 /σ

∞

33 =−40,
σ∞13 /σ

∞

33 =−50, and σ∞13 /σ
∞

33 =−80, respectively. These results demonstrate that, although the normal
stress σ33(x1, 0) is not singular in the right neighborhood of the point b, its value remains very high in
this region and can contribute crack propagation.
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σ∞13 /σ
∞

33 ρI / l λ0 G/(lσ∞33 )

−10 4.08058 · 10−12 2.20907 · 10−12 1.20334 · 10−3

−20 1.95214 · 10−6 1.05682 · 10−6 4.77593 · 10−3

−30 1.55536 · 10−4 8.41908 · 10−5 1.07303 · 10−2

−40 1.39120 · 10−3 7.52293 · 10−4 1.90663 · 10−2

−50 5.18241 · 10−3 2.79381 · 10−3 2.97841 · 10−2

−60 1.24555 · 10−2 6.67549 · 10−3 4.28836 · 10−2

−70 2.33029 · 10−2 1.23814 · 10−2 5.83648 · 10−2

−80 3.72787 · 10−2 1.95898 · 10−2 7.62278 · 10−2

Table 1. The variation of the relative interpenetration region length ρI / l, the relative
contact zone length λ0, and the normalized energy release rate G/(lσ∞33 ) with respect to
different shear loads σ∞13 /σ

∞

33 for σ∞33 = 1 MPa.

In Table 1, the magnitudes of the relative interpenetration region length ρI / l, the relative contact zone
length λ0 and the energy release rate G for different values of the shear loads are presented. It can be seen
that all these values increase with the increase of magnitude of the applied shear load. In the absence of
shear stress, the contact zone and interpenetration region lengths for piezoelectric-metal structures are
several orders less than the characteristic size of the crack. However, for an essential shear field they
become longer and even comparable with the crack length.

Comparing the results shown in Table 1, we can note that under the same loads the relative length
of the material interpenetration region is always longer than the relative length of the realistic contact
zone. This finding can be useful for the prediction of the first approximation for the realistic contact zone
length, which can be refined later by an iterative procedure.

Carrying out a similar analysis for σ13(x1, 0) for x1→ b+0, one can see that the size of the area in the
vicinity of the crack tip, where the stress changes its sign an infinite number of times, is approximately
equal to ρI .

7. Conclusion

An interface crack between a piezoelectric material and a conducting isotropic elastic material under
the action of a mechanical loading has been considered. By using a hybrid complex variable method
which combines the Stroh formalism of piezoelectric materials with the Muskhelishvili formalism of
isotropic elastic materials, the stresses and the derivatives of the displacement jumps via sectionally
holomorphic functions have been presented. On the base of these representations, the exact analytical
solutions for two interface crack models — the open crack one and the contact zone one — have been
found. Furthermore, the explicit expressions of the crack tip ERR and the crack tip SIF have been
obtained when the piezoelectric-metal bimaterial is subjected to the mechanical loading at infinity.

The present investigation shows that the structure of the singular fields near the conducting interface
crack tip within the framework of the open crack model consists of an oscillating singularity, which is
similar to that in the linear elastic dissimilar anisotropic materials but quite different from that under
the impermeable crack assumption. It can be concluded that the electric boundary condition along
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an interface crack in piezoelectric-metal bimaterials exerts significant influence on the structure of the
singularity of the near-tip fields. An oscillating singularity is characterized by physically unrealistic
interpenetration of the two materials along the crack faces. The degree of oscillation is determined by
parameter ε1, which depends on the ratio of the stiffness characteristics of the two materials. The zone of
crack face interpenetrations at the crack tip has been investigated and, in particular, the distance between
the point of first interpenetration and the crack tip in the open crack model solution has been estimated.

The contact zone model in Comninou’s sense has been derived as a particular case of the obtained
solution within the framework of the artificial contact zone model. A simple transcendental equation
and corresponding asymptotic formulas have been found for the determination of the realistic contact
zone length. It is shown that at the same loads the relative length of the material interpenetration region
is always longer than the relative length of the realistic contact area. This finding can be useful for the
prediction of the first approximation for the realistic contact zone length, which can be refined later by
an iterative procedure.
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