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PREDICTION OF SPRINGBACK AND RESIDUAL STRESS OF
A BEAM/PLATE SUBJECTED TO THREE-POINT BENDING

QUANG KHOA DANG, PEI-LUN CHANG, SHIH-KANG KUO AND DUNG-AN WANG

A model for prediction of springback and residual stress distribution of a beam/plate subjected to three-
point bending and reverse bending is developed based on a mechanical-geometrical approach. A con-
verged solution that satisfies both the Euler–Bernoulli beam theory and the geometrical constraints is
obtained by a recursive scheme. The model can be applied to bending/unbending analyses of plates when
the beam bending approaches a plane strain condition. Springback and residual stress distribution of a
plate is predicted quite accurately by the model as verified by finite element analyses and experiments.
Accuracy of springback and residual stress prediction of the model is examined with consideration of
various geometry parameters of the beam and the fulcrum/support cylinders. The goal of this investiga-
tion is to develop an accurate and efficient model to predict the profile and residual stress of plates curved
by bending in the postyield range. The developed model can serve as a unit cell of a more sophisticated
model for leveling analyses of metal plates as multiple rollers are involved.

1. Introduction

Accurate estimation of springback and residual stress distribution of metal plates under leveling pro-
cess is necessary for appropriate and efficient adjustment of the roller settings of the leveling machines.
Development of an analytical model of the critical to the production process. The adjustment of the
roller settings of the levelers is complicated and an efficient analytical model can assist the operators in
obtaining high quality of the products. Levelers consist of rollers to deform sheet metal by alternative
bending. The leveling process with multiple rollers can be viewed as a cyclic three-point bending process.
An accurate three-point bending model with an efficient numerical algorithm is essential in implementing
an analytical model of levelers to determine its relevant key characteristics. Three-point bending test was
also designed to achieve a weight efficient structure of sandwiched beams [Li et al. 2011].

When modeling three-point bending, a beam subjected to displacements of a punch cylinder contacts
the punch cylinder and two fulcrum cylinders tangentially and does not penetrate cylinder surface. Con-
way [1947] and Theocaris et al. [1977] investigated deflections of beams under three-point bending by
elliptical integrals method. Ohtsuki [1986] analyzed large deflection bending stress of an elastic beam
under three-point bending based on a Legendre–Jacobi form’s elliptic integrals. Arnautov [2005] also
adopted elliptical integrals to provide a bending stress solution to the problem. Batista [2015] gave an
equilibrium configuration of an elastic beam subjected to three-point bending in terms of Jacobi elliptical
functions. Deflection behaviors of beams under three-point bending have also been investigated by clas-
sical beam theory [Mujika 2006; Mohyeddin and Fereidoon 2014]. These solutions of the three-point
bending problems were obtained by assuming elastic behavior of the beam material. Considering material
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hardening in the analyses, Hill [1950] and Gao [1994] derived solutions of pure bending of beams by
assuming elastic, linear plastic material. Pure bending of a plate made of a power-law-hardening material
was studied by Triantaflyllidis [1980] and Zhu [2007]. Kang and Li [2009] investigated bending stress
of a cantilever beam with power-law nonlinearity.

Prediction of final shape of beams/plates is a complex task in metal forming industries. Residual
stress distribution of beams/plates after springback has a strong influence on their final shape. Analytical
solutions for springback of beams and plates under pure bending were developed by Johnson and Yu
[1981]. Lin and Hua [2000] developed an analytical method to compute large deflection and springback
of a thin plate with strain hardening under four-roll bending process. Gergess and Sen [2016] derived
closed form solutions of load to deformation relation and profiles of steel members under point bending.
For more complex bending problems, however, numerical techniques are adopted. Sitar et al. [2015] pre-
sented a numerical procedure to compute springback of beams with asymmetric cross-sections. Zhang
et al. [2007] developed a model to predict springback of sheet metals after U-bending. They applied
kinematic, isotropic, and combined hardening laws in their model to account for stretching, bending,
and unbending of sheet metals during the U-bending process. Chiew et al. [2016] employed a numerical
modeling procedure to obtain residual stress distribution of steel members produced by three-roller bend-
ing. They proposed a residual stress model to predict residual stress distribution of the curved member.
Kuwabara et al. [1996] presented an analytical model to predict the amount of springback of a sheet
metal subjected to bending-unbending under tension. Given the curvatures of the sheet metal before the
deformation process, they calculated the residual stress distribution and residual curvature of the sheet
metal at the point of interest. Takahashi et al. [1996] performed a die bending test to verify the calculated
residual curvature by Kuwabara et al. [1996]. Kuwabara et al. [1999] established a numerical analysis
method for analyzing bending/unbending process of sheet metal at the point of interest. Their model
incorporates a three-dimensional constitutive model and the Ziegler’s kinematic hardening model.

In this investigation, a one-dimensional model of three-point bending tests capable of calculating
path/curvature of beams/plates, induced stress/strain histories, and hence final residual stress distribution
is developed. The stress/curvature distribution along the span of the beams/plates over the supports can
be calculated by the model. This model can be extended to simulate roller leveling process, which can
be approximated by a sequence of three-point bends between rollers. A phenomenological combined
hardening parameter is adopted to take isotropic and kinematic hardening into account during reverse
bending. In the model, support contact is incorporated into the pure bending problem of beams under
three-point bending in order to obtain springback and residual stress solutions. A recursive scheme
considering Euler–Bernoulli beam theory and geometrical constraints is adopted to obtain converged
solutions of beams under three-point bending and reverse bending. The model with consideration of the

Fulcrum cylinder

Punch cylinder
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Figure 1. A schematic of a three-point bending test and a Cartesian coordinate system.
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material strain hardening is based on proportional straining conditions. Two-dimensional, plane strain
finite element analysis of beams subjected to three-point bending and reverse bending is carried out to
verify the model. The analysis is performed for various displacement loadings as well as different values
of radius of fulcrum cylinders. Experiments of three-point bending are performed to test the applicability
of developed analytical model. Finally, discussions and conclusions are given.

2. Model

Besides the assumptions of Euler–Bernoulli beam theory, friction forces at the roller supports, longi-
tudinal forces along the beam, gravity, and span shortening caused by deflection are neglected in the
numerical model. Figure 1 schematically shows a three-point bending test of a beam. The beam has a
length of L + d L , a thickness of h and a width of w. The overhang length of the beam is d L/2. The
radius of the punch cylinder and fulcrum cylinders is R. A Cartesian coordinate system is also shown
in the figure, where x represents the longitudinal direction, y represents the thickness direction, and z is
the width direction of the beam. The origin of the y coordinate is at the middle of the beam as shown in
the figure. Longitudinal strain εx can be written as

εx =−κy, (1)

where εx is the longitudinal strain, and κ represents the curvature. Large deflection of beams under three-
point bending may induce significant plastic deformation in the beam material. It is critical to study
the large plastic deformation of beams under three-point bending. When the beam is considered as an
elastic-linear plastic material, the effective stress σ̄ is given as

σ̄ = σ0+ E p(ε̄− σ0/E), (2)

where σ0 is the yield stress and ε̄ is the effective total strain. E and E p are the Young’s modulus and
plastic modulus, respectively. Assuming the von Mises criterion and plane-strain condition apply, the
stress in the width direction σz is

σz =
1
2(σx + σy), (3)

where σx and σy are the stresses in the longitudinal direction and thickness direction, respectively. Under
pure bending, the stress in the thickness direction σy is negligible, and the effective stress σ̄ is

σ̄ =
√

3
2 |σx |. (4)

Assuming volume conservation and plane-strain condition apply, the effective total strain can be ex-
pressed as

ε̄ = 2
√

3
|εx |. (5)

As described by Hill [1950] and Zhu [2007], the volume conservation is needed here to solve exactly
the pure bending problem of beams or plates in the elastic and plastic region. Relatively large plastic
deformation is considered in this investigation. This assumption contributes to a very small fraction of
error to the results. Because of symmetry, the bending moment M is given as

M =−2w
∫ h/2

0
σx y dy. (6)
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Figure 2. A schematic of cylinders below and above the beam.

The sign convention for the moment M and the curvature κ is related to the orientation of the coordinate
axes.

In order to estimate the contact points at which the beam contacts with the cylinders, it is assumed
that the beam contacts each cylinder tangentially as shown in Figure 2. As seen in the figure, Re is the
expanded radius of the roller and is given as

Re = R+ 1
2 h. (7)

The gradient of the longitudinal axis of the beam is equal to the tangent of the contact angle λi as [Müller
et al. 2013]

dy
dx

∣∣∣
xi
= tan λi , (8)

where y(x) is the longitudinal axis of the beam, (xi , yi ) is the i-th contact point, and λi is the i-th contact
angle. The contact point (xi , yi ) can be expressed as

xi = xc+ Re sin λi , yi = yc− Re cos λi , (9)

where (xc, yc) is the coordinates of the center of the punch/fulcrum cylinder.
The curvature, bending moment, deflected curve of the beam, and the contact points may be deter-

mined through a recursive scheme. First, the location of the three contact points and the beam curvature
κi at the i-th contact point are assumed. The bending moment Mi at the i-th contact point is computed
based on (1)–(6). Neglecting weight of the beam, the bending moment at the two fulcrum cylinders can
be taken as zero and it has an extreme value at the punch cylinder. The curvature of the deflected beam
is estimated based on the linear distribution of the bending moment between the fulcrum cylinder and
the punch cylinder. Once the curvature distribution κ(x) is known, the beam profile is given by

y(x)=
∫∫

κ(x) dx +C1x +C2, (10)



PREDICTION OF SPRINGBACK AND RESIDUAL STRESS SUBJECTED TO THREE-POINT BENDING 425

parameters value

Poisson’s ratio 0.33
Young’s modulus (GPa) 70.3
tensile strength (MPa) 175.1
plastic modulus (MPa) 1579

Table 1. Material properties for AA5052.

where the constants C1 and C2 can be determined by the contact points at the fulcrum cylinders. The
recursive scheme is shown in Figure 3. A converged solution of the beam profile, moment distribution,
curvature distribution, and contact points that satisfies both the Euler–Bernoulli beam theory and the
geometrical constraints can be obtained by the recursive scheme. The recursive scheme outlined in
Figure 3 is based on a procedure presented by Higo et al. [2016]. Pure bending moment/curvature
equation has been used to simulate deflections of beams with elastoplastic behavior [Natarajan and
Peddieson 2011]. Pandit and Srinivasan [2016] described a method to analyze large deflections of a
curved beam subjected to a tip-concentrated follower load. Based on a linearly hardening model, they
obtained a moment-curvature constitutive law for their bending problem.

As the punch cylinder is lifted and loses contact with the beam, the beam springs back elastically and
the internal stress distribution results in a zero bending moment. Assuming no reverse yielding during
unloading, the curvature after unbending κ ′ can be expressed as [Hosford and Caddell 1993]

κ ′ = κ −M/(E I ), (11)

where κ and M are the curvature and moment, respectively, before springback, and I is the second
moment of inertia of the beam cross section.

Finite element analyses are carried out to verify the simple model for springback estimation of the
beam. The commercial software ABAQUS is used in this investigation. Due to the symmetry, only the
right half of the specimen is modeled. The finite element model is shown in Figure 4 (top). The punch
cylinder and the right fulcrum cylinder are also schematically shown in the figure. Two-dimensional
plane strain 4-noded CPE4R elements are used in the model. The number of elements is 8436 in the
finite element model. Figure 4 (bottom) is a close up view of the mesh near the punch cylinder. The
finite element mesh is made denser in the region under the punch and over the fulcrum. In ABAQUS,
the “rigid surface” option is used to describe the punch cylinder and the fulcrum cylinders, and the
“contact pair” option is used to describe the contact between the punch and the fulcrums with the beam.
The displacement of the rigid punch is controlled in the analyses. The material properties for AA5052
aluminum alloy used in this investigation are listed in Table 1. Figure 5 shows a stress-strain curve for
the AA5052 from tensile tests. The plastic modulus of the elastic linear plastic material behavior of the
AA5052 is taken as the slope of the fitted line shown in the figure. The strain is up to 0.025 during the
tensile tests. As seen in Figure 5, the stress at this strain value only goes to about 200 MPa. The stress
is computed by a linear extrapolation scheme for the strain higher than 0.025. The model can be applied
to various metals with specified strain hardening behaviors.
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input initial curvature, stress, and strain;
assume contact points xi , curvature κi ;

compute xi ; compute Mi ;

modify κi ;compute M(x), κ(x);

modify θi ;

estimate
beam profile y(x);

does beam profile
pass assumed
contact points?

no

yes

no dy
dx

∣∣∣
xi
= tan θi ?

beam profile;

Figure 3. A recursive scheme.

3. Numerical results

The beam considered in this investigation has a length of 400 mm, a width of 100 mm, and a thickness
of 6 mm. The overhang length of the beam d L/2 is 60 mm. The radius of the punch cylinder and fulcrum
cylinders is 1 mm. Finite element computational results are used to evaluate the applicability of the
developed model. Table 1 lists the material properties for the beam material, AA5052, with elastic linear
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Punch cylinder
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Figure 4. Top: a finite element model for the right half of a specimen. Bottom: a close
up view of the mesh near the punch cylinder.
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Figure 5. Tensile stress-strain curve for the AA5052 aluminum alloy.
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Figure 6. Beam profiles after bending and springback based on computational results
of the model and FEA.

plastic material behavior. Computational grids of the analytical model are taken as 40 and 100 in the
thickness direction and the longitudinal direction of the beam, respectively. The downward displacement
of the punch cylinder is 16.81 mm.

Figure 6 shows the computational results based on the model (model) and the finite element analyses
(fea). Seven contact point iterations and five contact angle iterations are required to reach a converged
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Figure 7. Stress distributions across beam thickness based on the model and the finite
element analyses.

solution. The code based on the model takes 2.82 seconds to run on an AMD Phenom II X2 550
3.10 GHz processor. As seen in the figure, the beam profile after bending based on computational results
of the model agrees with that based on the finite element analyses. The beam profile based on the
model is estimated by the double integral of the curvature as in (6). The agreement between the model
and the finite element analyses demonstrates the feasibility of the recursive scheme for calculation of
the moment distribution and curvature distribution of the beam under three-point bending. The beam
profile after springback is also shown in Figure 6. The displacements of the center of the beam due to
springback based on the model and the finite element analyses are 8.02 mm and 8.28 mm, respectively.
The percentage error in the springback estimation between the model and the finite element analyses is
nearly 3%. The beam profile after springback predicted by the model is very close to that based on the
finite element analyses.

After unloading, elastic springback occurs, and considerable residual stress results. Figure 7 shows
the longitudinal stress distributions across beam thickness at the center of the beam based on the model
and the finite element analyses. After bending and unloading, the stress σx based on the model agrees
well with the finite element analyses. The stress distribution in the elastic region is a straight line with
a slope of 1/(κE). As seen in the figure, the slopes of the lines based on the model are slightly less
than those based on the finite element analyses. This may be because the curvature κ in the model is
approximated by κ ≈ d2 y/dx2, and the curvature of a plane curve y = y(x) is

κ =
d2 y/dx2

(1+ (dy/dx)2)3/2
. (12)

The applicability of the developed model for springback and residual stress distribution for beams under
three-point bending is verified by the finite element analyses. The cases of plates under three-point
bending can be approached by the plane strain condition considered in the derivation of the model.
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Figure 8. A photo of a three-point bending setup for beam specimens.

Figure 9. Photos of a beam specimen: after bending (top) and springback (bottom).

4. Experiments and results

Specimens used in experiments were fabricated with AA5052 aluminum alloy. The material properties
of AA5052 aluminum alloy are listed in Table 1. The specimens were loaded in a three-point bending
setup. A photo of the three-point bending setup is shown in Figure 8. It is seen that the punch cylinder
is placed under the specimen and can be moved upward and downward by turning a knob under the
punch cylinder. The beam specimens used in this investigation have a width of 100 mm and a length
of 400 mm. The thickness of the beam specimens is 6 mm. The radius of the punch cylinder and fulcrum
cylinder is 1 mm. The distance L between the two fulcrums is 280 mm. The length of the two overhangs
is 60 mm. The loading rate of the punch was 5 mm per minute. A video camera was used to record the
deformation of the beam specimens on one side of the beam specimens. A strain gauge was attached
to the top surface of the beam specimen. Loading was applied by the punch cylinder until the desired
displacement of the punch was reached. The displacement of the punch was controlled by reading the
output of the strain gauge. In this investigation, the displacement of the punch was set as 16.81 mm.

Figure 9 (top and bottom) shows photos of a beam specimen after bending and springback, respectively.
Three tests were performed and the photos of the specimen profiles were taken by the camera. Figure 10
shows the beam profiles after bending and springback based on computational results of the model and
the experiments. The experimental results show some discrepancies due to the alignment error of the
experimental setup and sliding between the beam specimens and the punch/fulcrum cylinders. One of
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Figure 10. Beam profiles after bending and springback based on computational results
of the model and experiments.
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h
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Figure 11. A schematic of the slitting method.

the three experimental results was discarded since it deviates from the other two experimental results
in a greater amount. The average amount of springback at the center of the beam based on the two
experimental results is 8.66 mm. Compared to the springback amount based on the model, 8.02 mm,
the error in springback estimation of the model is 7%. This discrepancy can be accepted considering
the alignment/measurement errors and sliding between specimens and punch/fulcrum cylinders during
experiments.

The residual stress of the bent beam was measured by a slitting method [Schajer and Prime 2006].
Figure 11 is a schematic of the slitting method. In the figure, a represents the depth of the slit. A strain
gauge is attached to a surface opposite to the slit. The method is based on the principle that residual
stress causes a body to deform when it is cut. The deformation is measured by strain gauges while cutting
progressively through the body. The strain record allows calculation of the residual stress distribution. In
this investigation, a slit was cut by electrical discharge machining (EDM) through the thickness direction
at the center of the specimen to a final depth of 5.33 mm (0.89% of specimen thickness). Strain at
each depth was measured by strain gauges. Residual stress results were obtained by the pulse stress
function and regularization as described in Schajer and Prime [2006]. Figure 12 shows the residual
stress distributions in the thickness direction at the center of the specimen based on the model and the
experiment. The stress results based on the model have good agreement with the stresses measured by
the slitting method.

In order to explore the feasibility of the developed model for estimation of profile and residual stress
of specimens subjected to three-point bending, the effects of punch displacement on the amount of
springback after unloading are examined. The values of the material constants are listed in Table 1.
Figure 13 shows the error in springback as a function of the normalized punch displacement for the
aluminum material. The normalized punch displacement ranges from 1 to 5. The punch displacement is
normalized by the specimen thickness. The percentage error in springback is calculated by the difference
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Figure 12. Residual distributions across beam thickness based on the model and the experiments.
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Figure 13. Percentage error in springback as a function of the normalized punch displacement.

in the springback at the center of the specimen between the model and the finite element analyses divided
by that of the finite element analyses. As shown in the figure, the error increases almost linearly as the
normalized punch displacement increases. At the normalized punch displacement of 5, the springback
amount predicted by the model has a percentage error of 6.7%.

Figure 14 shows the stress distributions at various punch displacements ranging from 6 mm to 30 mm,
corresponding to the normalized punch displacements ranging from 1 to 5. Due to the pressure of the
punch cylinder on the top surface of the specimen in the finite element analyses, a stress concentration
region is located near the contact point at the top surface of the specimen. Therefore, the longitudinal
stresses near the top surface of the specimen based on the finite element analyses are erroneous. The
stress after bending and the residual stress after springback computed by the model agree with those
based on the finite element analyses. The yielding fraction of the beam thickness is 31 % when the
punch displacement is 6 mm. The yielding fraction reaches 90 % when the punch displacement is 30 mm.
The model provides a relatively accurate estimation of the residual stress distributions under three-point
bending.
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Figure 14. Stress distributions across beam thickness based on the model and the finite
element analyses at the punch displacement of 6 mm (top left), 12 mm (top right), 18 mm
(center left), 24 mm (center right), and 30 mm (bottom).

The position of contact point of the specimen with the fulcrum cylinders varies as the specimen
rolls over the fulcrum cylinders during three-point bending tests. When the contact points changes
significantly, the position of the contact point has a major effect on the specimen profiles after springback.
An analytical model should be able to model the position of the contact point accurately and efficiently.
Figure 15 shows the percentage error of the springback prediction of the model for different normalized
radii of the fulcrum radius. The downward displacement of the punch cylinder is 16.81 mm. The fulcrum
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Figure 15. Percentage error in springback as a function of the normalized fulcrum radius.

radius R is normalized by the specimen thickness h. The percentage error is the difference between the
model prediction and computed value of the finite element analyses divided by the value of the finite
element analyses and is given as a percent. For the considered R/h values of 0.5, 1, 1.5, 2, 2.5, the
percentage errors are nearly 3%. When the R/h = 2.5 and the downward displacement of the punch is
16.81 mm, the rotation of the beam over the fulcrum cylinders is 8.75◦. For the R/h ratios considered, the
model provides acceptable prediction of the springback of the beam under three-point bending compared
to the results based on the finite element analyses.

Figure 16 and Figure 17 show the specimen’s profiles and residual stress distributions, respectively,
after bending and springback based on the model and the finite element analyses for various values
of the normalized radius of the fulcrum cylinder. The profiles after springback and the residual stress
distributions predicted by the model are in good agreement with those based on the finite element analyses.
Note that the stresses near the top surface of the specimen are erroneous due to the stress concentration
caused by the pressure from the punch cylinder in the finite element analyses, where the stress gets much
larger than that predicted by the model.

Reverse bending has practical importance in sheet forming processes. A reverse bending process is in-
vestigated in order to verify the possibility to utilize the present model to leveling processes. Figure 18 (top)
shows a setup of a three-point bending test considered in the model. The setup for reverse bending is
schematically shown in Figure 18 (bottom). The curvature and deflected curve of the beam after bending
and reverse bending are determined by the recursive scheme as shown in Figure 3. The curvature and
stress distributions of the beam after the bending process are taken as the initial curvature and stress
during the reverse bending process. Assuming isotropic hardening and using (1)–(6) and (11), the stress
distributions after reverse bending and springback can be computed.

Due to the constraint of the available experimental apparatus, a reverse bending and springback ex-
periment cannot be performed. Finite element analysis is sought to verify the deflected curve and stress
distributions obtained by the model. Figure 19 (top) shows a schematic of a finite element model where
two punches are in contact with the center of the beam. Two pairs of vertically aligned fulcrums are
located near the left end and right end of the beam, a left pair and a right pair, respectively. Figure 19
(second row) is a schematic of the finite element model during bending. During reverse bending of
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Figure 16. Beam profiles after bending and springback based on computational results
of the model and finite element analyses at various values of the normalized radius of
the fulcrum cylinder of 0.5 (top left), 1 (top right), 1.5 (center left), 2 (center right), and
2.5 (bottom).

the finite element analysis, the lower fulcrums of the left pair and the right pair and the upper punch
are removed; see Figure 19 (third row). The lower punch is removed for the springback analysis; see
Figure 19 (bottom).

In the analysis, the punch is moved downward 16.81 mm then moved upward 16.81 mm for bending
and reverse bending, respectively. The radius of the punch and the fulcrum is taken as 1 mm. The beam
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Figure 17. Stress distributions across beam thickness based on the model and the finite
element analyses at the normalized fulcrum radius of 0.5 (top left), 1 (top right), 1.5
(center left), 2 (center right), and 2.5 (bottom).

has a length of 400 mm, a width of 100 mm and a thickness of 6 mm. Figure 20 (top) shows the meshes
of the finite element model of the right half of the beam in its initial configuration. The meshes after
bending, reverse bending, and springback are shown in second row, third row, and bottom of Figure 20,
respectively.

Figure 21 shows the specimen’s profiles after reverse bending and springback based on the model and
the finite element analyses. The profiles after reverse bending and springback predicted by the model
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Figure 18. Schematics of: a three-point bending setup (top) and a three-point reverse
bending setup (bottom).

are in good agreement with those based on the finite element analyses. Figure 22 shows the stress
distributions after reverse bending and springback based on the model and the finite element analyses.
The residual stress distributions predicted by the model agree with those based on the finite element
analyses.

For materials that exhibit a combined isotropic and kinematic hardening behaviors, the yield stress
in reverse loading is usually lower than that in the case of continuous loading. During the three-point

Figure 19. Schematics of a finite element model where two punches are in contact with
the center of the beam.



PREDICTION OF SPRINGBACK AND RESIDUAL STRESS SUBJECTED TO THREE-POINT BENDING 437

Figure 20. Meshes of the finite element model of the right half of the beam: in its initial
configuration (top), after bending (second row), after reverse bending (third row), and
after springback (bottom).
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Figure 21. Beam profiles after reverse bending and springback based on the model and
the finite element analyses.

reverse bending, the isotropic hardening model is no longer an adequate approximation. Therefore, under
reverse bending, consideration of a combined hardening model is required for prediction of a realistic
stress distribution and springback [Geng et al. 2002]. In order to extend the applicability of the developed
model in roller leveling process, a phenomenological combined hardening parameter is adopted to take
isotropic and kinematic hardening into account during reverse bending. Under reverse bending condition,
change in effective stress 1σ̄ can be given as [Zhang et al. 2007]

|1σ̄ | =

{
E |1ε̄| |1ε̄|< |1σ̄ |lim/E,
σ0+ E p(|1ε̄| − |1σ̄ |lim/E) |1ε̄| ≥ |1σ̄ |lim/E,

(13)

where |1ε̄| is the absolute value of the change in effective total strain from the initial loading point to
the current loading point during reverse bending; |1σ̄ |lim is the limiting value of effective stress change
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Figure 22. Stress distributions across beam thickness after reverse bending and spring-
back based on the model and the finite element analyses.
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Figure 23. Beam profiles after reverse bending and springback based on the model and
the finite element analyses for the case of kinematic hardening.

in the elastic regime after reverse bending and is written as

|1σ̄ |lim = (1+m)|σ̄r | + (1−m)(2σ0− |σ̄r |), (14)

where |σ̄r | is the absolute value of effective stress when the reverse bending occurs and m is a combined
hardening coefficient. The value of m can be taken as 1 or 0 corresponding to isotropic hardening or
kinematic hardening, respectively. For combined isotropic and kinematic hardening, the value of m is
between 0 and 1.

Assuming kinematic hardening during reverse bending, the feasibility of the present model for mate-
rials with kinematic hardening is investigated. Using (1)–(6), (11), and (13)–(14) with m = 0, the stress
distributions after reverse bending and springback can be computed. Figure 23 shows the specimen’s
profiles after reverse bending and springback based on the model and the finite element analyses for
the case of kinematic hardening. Good agreement is obtained between model results and finite element
analyses results. Figure 24 shows the stress distributions after reverse bending and springback based on
the model and the finite element analyses for the case of kinematic hardening. The stress results obtained
from the model show good agreement with those based on the finite element analyses.
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Figure 24. Stress distributions across beam thickness after reverse bending and springback
based on the model and the finite element analyses for the case of kinematic hardening.

It is noted that the bending/unbending model presented by Kuwabara et al. [1996] can predict the
residual curvature relatively accurately and their model was compared with results of finite element
analyses in draw-bending processes by Hama et al. [2008]. Compared to the model presented in this
investigation, Kuwabara’s model is more sophisticated with the consideration of tension in bending
processes and Ziegler’s kinematic hardening law. The advantage of the present model is that it can
calculate the residual stress and curvature distribution along the span of the beam over the supports. In
the model, the deformed profile of the beam is obtained based on the curvature distribution and the com-
bined isotropic and kinematic hardening during reverse bending is accounted for by a phenomenological
combined hardening parameter. The model’s prediction of the residual stress distribution and profile of
the beam after bending and reverse bending is verified by experiments and finite element analyses.

5. Conclusions

A model for analyzing springback and residual stress distribution of beams under three-point bending
is developed. Complex material hardening during bending and reverse bending can be modeled by a
phenomenological combined hardening parameter in the model. The converged solutions of deflection
and stress distribution of beams over the span of the supports under three-point bending and reverse
bending with consideration of material plastic hardening behavior are computed very efficiently by the
recursive scheme. Its feasibility to characterize the beam’s profile and residual stress distribution after
springback is verified by experiments and finite element analyses. The beam material is assumed to be
elastic, linear plastic, and the plastic behavior of the beam is described by the von Mises yield criterion.
Experimental results further confirm the accuracy of the model by comparing the experimental beam
profiles and residual stress distribution after bending and springback with the results obtained by the
model. Depending on the plastic behavior of the beam material, various hardening laws can be modeled
and incorporated into the analytical model.

Since the multiroller leveling process of metal plates can be viewed as a series of bending/unbending
of plates under three-point bending configurations, the developed model has the potential to be extended
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to analyze the profile and residual stress of plates during the leveling process. Accuracy of the model
for large deflection and relative large radius of fulcrum cylinders suggests that it is a reasonable building
block for development of an analytical model of multiroller leveling of metal plates in steel mills.
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CHARACTERIZATION OF CNT PROPERTIES USING
SPACE-FRAME STRUCTURE

MUHAMMAD ARIF AND JACOB MUTHU

We studied the elastic properties of different carbon nanotubes (CNTs), i.e., pristine and defective
single-wall (SWCNTs), double-wall (DWCNTs), and multiwall (MWCNTs) for zigzag and armchair
configurations. CNTs atomic geometry was replicated with an equivalent space frame structure (SFS).
Coordinates definition of SFS of CNTs was developed in MATLAB code and transferred to the finite
element analysis (FEA) software ANSYS. The basic entity of SFS, the C-C chemical bond, was designed
as a circular beam with orthotropic properties. The properties were determined by linking the energy
equation of molecular mechanics to structural mechanics along with a parametric study. The van der
Waals forces between intershells of DWCNTs and MWCNTs were modeled as linear elastic springs in
a simplified way. The simplified model avoided the problems due to the nonlinear behavior of van der
Waals forces and improved the performance of the FEA software. The effect of chirality, vacancy defects,
different diameters, and number of walls on the elastic properties of CNTs were calculated, tabulated,
and compared with each other. The result of the proposed SFS model with orthotropic properties was
compared with other’s results. The space frame structure (SFS) model is found to be better than the
equivalent shell model as the defects can be placed at exact locations and a more realistic behavior
can be predicted. The SFS models can developed with any type of defect, any number of walls, van
der Waals force interactions, and agglomerated forms with variable geometries. These models could
be directly embedded in the matrix with a designable interface region to predict tensile and torsional
properties of future nanocomposites.

1. Introduction

The discovery of carbon nanotubes (CNTs) [Iijima 1991] has attracted immense interest in the field of
high strength structural composite materials due to CNTs extraordinary mechanical properties (elastic
modulus 0.5–5 TPa and tensile strength 50–200 GPa) [Qian et al. 2002; Treacy et al. 1996]. These
mechanical properties made them as a potential contender for reinforcing matrices such as polymer
[Muthu and Dendere 2014], ceramic [Inam et al. 2014], and metal [Tjong 2013]. Mahmoud [Shokrieh
et al. 2013] and Kundalwal[Kundalwal and Ray 2014] have shown that adding a small amount of CNTs
to the polymer matrix improved the mechanical, thermal, and electrical properties of the composites.
Other research works [Inam et al. 2014; Sharma and Shukla 2014] have also reported that the addition
of 1% CNTS increased the elastic modulus, flexural, and tensile strength of epoxy composites by 49%,
38%, and 52% respectively.

However, these experimental results are much lower than the theoretically expected values for CNT
reinforced composites [Zuberi and Esat 2015]. Researchers have attributed these discrepancies between

Keywords: carbon nanotubes, numerical modeling, continuum Mechanics, finite element analysis, properties.
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a b c d

Figure 1. Different kinds of defects in CNTs: hexagonal arrangement (a), vacancy de-
fect (b), Stone–Wales defect (c), adatom (d).

experimental and theoretical results to the inconsistency in CNT diameter [Nam et al. 2015], chirality
(rolled up angle of graphene sheet) [Ranjbartoreh and Wang 2010], number of CNT walls [Jia et al.
2011], and defects in the CNT structure [Xiao and Hou 2006]. Different kinds of defects such as vacancy,
Stone–Wales, and adatom (Figure 1) are developed in CNTs during synthesis [Tachibana 2013] and play
an important role in defining their properties. Researches [Yang et al. 2016] have shown that the vacancy
defects (Figure 1b) are the most influential factor in degrading the overall CNT properties. In addition, as
pointed out by Popov et al. [Popov et al. 2000] that the properties of CNTs along the tube axial direction
are always greater than the transverse directions (orthotropic behavior) and a similar conclusion was also
drawn by Kundalwal and Kumar [Kundalwal and Kumar 2016]. Therefore, it is essential to understand
the effect of the above factors (diameter, chirality, number of walls, vacancy defects, and the orthotropic
behavior) on the CNTs mechanical properties, which will further be helpful in choosing suitable CNTs
as composites reinforcement to obtain improved mechanical properties.

Various experimental techniques such as Raman spectroscopy, scanning electron spectroscopy, trans-
mission electron microscopy, nanoindentation, and x-ray diffraction have been used to characterize the
CNT’s properties [Chabalala et al. 2011]. However, the main challenges faced with these experimental
techniques are that they are either expensive or technically not feasible to obtain the nanoscale behavior
of CNTs. Moreover, the conventional theoretical models such as rule of mixtures [Han et al. 2014b],
effective field models [Zohdi and Wriggers 2005], and continuum mechanics models [Tserpes et al. 2008]
also have limitations in predicting the behavior of CNTs at nanolength scales [Han et al. 2014b]. Hence,
researchers have focused on developing molecular scale models such as molecular dynamics (MD) and
molecular mechanics (MM) methods. These methods are powerful and can provide details at the molecu-
lar scale level. However, their limitations in analyzing the number of atoms, length, and time scales along
with the computational cost have restricted their applications within a limited span [Han et al. 2014a].

To overcome the length scale limitations in molecular models, an equivalent continuum model (ECM)
was proposed [Hernández-Pérez and Avilés 2010]. In the ECM model, the individual carbon nanotube
was modeled either as a shell or as a beam with isotropic properties [Roy Chowdury et al. 2014; Hu et al.
2007]. Moreover, in these models, the hexagonal atomic structure of a CNT was completely ignored [Muc
2011] and thus resulted in exaggerated CNT properties. In addition, these models could not include the
effects of vacancy defects, chirality, and van der Waals force interactions between the walls. Hence, for
incorporating the CNTs atomic structure, a space frame structure (SFS) model was proposed [Ghavamian
et al. 2013]. In the SFS model, the chemical bond between two carbon atoms (C-C) was modeled as a
circular beam with isotropic properties in such a way that one carbon molecule was modeled using six
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Figure 2. Equivalent SFS.

Figure 3. Rolling angle and chiral vector.

circular beams in a hexagonal shape, as shown in Figure 2. The chemical bond properties were obtained
from both solid and molecular mechanic analysis.

However, the CNTs orthotropic properties [Muc 2010] were again ignored by the SFS model including
the other important parameters as explained above. Hence the objectives of this paper were defined as
to characterize the zigzag and armchair CNTs using SFS model by considering the effects of CNTs
diameters, chirality, number of walls, vacancy defects, and the van der Waals interactions between the
walls (double and multiwalled). In addition, this research also focused on understanding the effect of
orthotropic behavior of CNTs on their properties.

2. Methodology for simulation

2A. SFS modeling of CNTs. Since CNTs are formed by rolling the graphene sheets, the parameters
such as chiral angle (θ) and chiral vector (Ch) define the types of CNTs such as zigzag and armchair.
Figure 3 shows a schematic of chiral vector, chiral angle, and the relevant geometrical parameters.
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zigzag

n m diameter (Å)

7 0 5, 481
11 0 8, 61
14 0 10, 96
20 0 15, 657
28 0 21, 92

armchair
n m diameter (Å)

4 4 5, 424
6 6 8, 13
8 8 10, 84

11 11 14, 916
16 16 21, 696

Table 1. Configuration properties. Note that all MWCNTs have three walls. Further-
more, the intershell distance ds-s range is 3.4 Å–3.8 Å, and the bond length L range is
1.41 Å–1.42 Å [Harik 2011].

The chiral vector (Ch) is mathematically defined by the unit vectors a1 and a2 combined with the step
integer n and m, which basically determine the chirality or twist of the nanotube:

ECh = nEa1+mEa2. (2-1)

Different roll-up directions of graphene (chiral angle, θ) give different configurations of CNTs and
are defined by

θ = sin−1
[ √

3m
2(n2+ nm+m2)

]
, (2-2)

where θ is the chiral angle.
Mathematically, if the step integers n 6= 0 and m = 0 (θ = 0◦) are set then a zigzag CNT could be

defined and an armchair structure could be generated for the step integers n =m (θ = 30◦) [Rahmandoust
and Öchsner 2009]. In addition, the CNTs diameters are also obtained using the step integers as

d = 0.783
√

n2+ nm+m2 (2-3)

2B. CNTs model development. Using the above equations, a CNT was modeled by defining its coor-
dinates in a MATLAB code for the different types of CNTs such as zigzag, armchair, single, defective,
double, and multiwall. The required chiral angle and chiral vector were obtained and given in Table 1.

A general methodology that followed for producing both zigzag or armchair configurations was that a
basic unit cell (a carbon molecule) was developed along the tube circumference. At first, a single carbon
molecule was divided into six equivalent triangles. The height h and half of the base b of the individual
triangle were used to draw the positions of the individual carbon atoms and then the carbon molecule unit
cell. The angle ψ defines the number of carbon molecules along the circumference based on the base
length b with respect to the center of the CNT. Figure 4 shows the schematic of the modeling process.

The base unit cell was then extended further to obtain a base ring and then the full carbon nanotube
(Figure 5). Double and multiwall CNTs were developed using the same procedure. The distance between
the consecutive walls (d(s−s)) was kept at 3.4 ∼ 3.8 Å [Ghavamian et al. 2013]. Figure 6 shows the double
wall and multiwall CNTs modeled using the proposed procedure.
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Figure 4. Modeling process of CNTs.

Figure 5. CNTs modeling process: armchair (a) and zigzag (b).

The vacancy defects were randomly generated by removing a point (carbon atom) at three different
places: top, center, and bottom of the CNTs. These defects were approximately 120◦ apart from each
other (Figure 7).

The macrofiles containing the CNT coordinates were transferred to ANSYS for developing an IGES-
ANSYS workbench multibody CNT model. The in-built ANSYS workbench shared topology method
was utilized to convert the multibody CNT SFS-model into a single part. This method joins each equiv-
alent circular beam to the other beams through the edge joints method. Figure 8 shows the transferred
ANSYS workbench CNT model developed in MATLAB. Five different diameters were used for both
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Figure 6. DWCNT and MWCNT modeling process.

Figure 7. CNT with vacancy defects.

MATLAB Model Mechanical APDL
        Model

ANSYS Workbench
           Model

Figure 8. Equivalent SFS modeling process of CNTs.

the zigzag and armchair configurations. Pristine and defective single-walled and pristine double and
multiwalled CNTs were considered for the analysis.

2C. C-C chemical bond orthotropic properties. The next step is to define the C-C chemical bond prop-
erties. As briefly discussed before, most of the research works have considered CNTs as an isotropic
material. However, theoretical studies [Muc 2010] have shown that the CNTs behave like an orthotropic
material. Hence, in this research, the orthotropic properties of CNTs were obtained by assuming or-
thotropic response from the individual C-C bond. Hence two different methods were used to obtain both
axial and transverse response of the C-C bonds.

2C1. C-C bond axial direction response. The axial direction response of the C-C bond was obtained
by equating the energy of the atomistic system (molecular mechanics) with the beam model (classical
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bond strength
Vr

bond angle variation
Vθ

dihedral angle torsion
Vφ

inversion
Vw

van der Waals interaction
Vvdw

Figure 9. Graphical representation of steric potential energy.

structural mechanics). Based on molecular mechanics, the C-C chemical bond could be expressed using
steric potential energies, which gives the total potential energy (Vt ) [Rahmandoust and Öchsner 2012]
of the individual C-C bond as

Vt =
∑

Vr +
∑

Vθ +
∑

Vφ +
∑

Vω+
∑

Vvdw, (2-4)

where Vr , Vθ , Vφ , Vw, Vvdw are the bond strength, bond angle variation, dihedral angle torsion, inversion,
and interaction strain energies respectively (Figure 9).

Since the inversion and the interaction energies have very little influence on the total potential energy
equation, the bond strength, bond angle variation, and dihedral angle torsion energies are only considered
for the current analysis. These energies are expressed as

Vr =
1
2 kr (L − L0)

2
=

1
2 kr (1L)2, (2-5)

Vθ = 1
2 kθ (θ − θ0)

2
=

1
2 kθ (1θ)2, (2-6)

Vφ = Vw = 1
2 kτ (1β)2. (2-7)

Here, kr , kθ , and kτ are bond stretching, bond angle variation, and torsion resistance force constants,
respectively; 1L , 1θ , and 1β are the bond stretching, bond angle variation, and angle variation of bond
twist, respectively. The C-C chemical bond characteristics are assumed to be an analogue to a structural
mechanics beam element (Figure 10). Here, the carbon atoms act as joints of the beam element and hence
the stiffness equations associated with the structural mechanics for a beam element could be equated with
the force constants of molecular mechanics to define the C-C chemical bond along the axial direction.

According to classical structural mechanics, the strain energy equations of a beam under uniform axial,
bending, and torsional loads are given by

UA =
1
2

∫ L

0

F2

E A
d L = 1

2
F2L
E A
=

1
2

E A
L
1L2, (2-8)

UM =
1
2

∫ L

0

M2

E I
d L = 1

2
M2L
E I
=

1
2

E I
L
1θ2, (2-9)

UT =
1
2

∫ L

0

T 2

G J
d L = 1

2
T 2L
G J
=

1
2

G J
L
1β2, (2-10)
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x
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L

Carbon
atom

C-C bond
interactions

Figure 10. Equivalent beam model.

kr 938 kcal ·mol−1
·A−2

= 6.52× 10−7 N · nm−1

Kθ 126 kcal ·mol−1
·A−2

= 8.76× 10−10N · nm−1

Kτ 39.986 kcal ·mol−1
·A−2

= 2.780× 10−10 N · nm−1

Table 2. Molecular mechanics constant values; note that the bond length L = 0.142 nm
[Tersoff and Ruoff 1994].

where E is the elastic modulus, A is the cross sectional area, L is the beam length, I is the moment of
inertia, G is the polar moment of inertia, J is the polar moment of inertia, θ is rotational angle, and β is
relative rotation between the two ends.

By considering analogues and equating the corresponding energy equations, the relationship between
structural mechanics (E A, E I , and G J ) and the molecular mechanics parameters (kr , kθ , and kτ ) are
deduced as [Li and Chou 2003b]

kr =
E A
L
, kθ =

E I
L
, kτ =

G J
L
. (2-11)

These above equations were used to obtain the C-C bond axial direction response. The parameters for
calculating the C-C bond axial response are given in Table 2.

Using the above values, the C-C bond axial responses are calculated as

dc-c = 4

√
Kθ

Kr
= 0.14660 nm, Ezz =

(Kr )
2L

4πKθ
= 5.49 TPa, Gxy =

(Kr/Kθ )Kτ L
8π

= 0.871 TPa.

2C2. C-C bond transverse direction response. The transverse direction responses of C-C bonds were
obtained using an ANSYS parametric study. The space frame structure model of a single-wall zigzag
CNT with diameter 0.861 nm was chosen along with the C-C bond axial response values previously
obtained for this analysis. The parametric study was carried out by using the range of values of elastic
modulus, shear modulus, and Poisson’s ratio as given in Table 3. The analysis was repeated until the SFS
model radius modulus was equivalent to 650 GPa [Reich et al. 2002]. Then the corresponding orthotropic
properties were selected to define the transverse response of the C-C bond interactions.

The overall orthotropic response of the C-C bond is given in Table 4.
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elastic modulus (GPa) shear modulus (GPa) Poisson’s ratio

Exx Eyy Gxy G yz γxy γyz γxz

4.5–5.5 4.5–5.5 3–8.71 3–8.71 0.1–0.25 0.1–0.25 0.1–0.25

Table 3. Range of values for parametric study variables.

Figure 11. Radial test model.

modulus (GPa) shear (GPa)

Exx Eyy Ezz Gxy G yz Gxz

523 523 5490 409 409 871

Table 4. Orthotropic properties of CNTs. Note that the ratio γxy = γyz = γxz = 0.1.

2D. Modeling of van der Waals forces. DWCNTs and MWCNTs contain two or more concentric shells
at distances 3.4 Å to 3.8 Å from each other and interact through the van der Waals (Fvdw) forces. In
addition, these forces are effective within 0.85 nm range [Zuberi and Esat 2015] and the atoms which
are not within the range will be coupled with the adjacent range atoms. Based on the above assumption,
a single carbon atom of one shell interacts with 58 atoms of an adjacent shell (0.85 nm range) as shown
in Figure 12a. Generally, the van der Waals forces are calculated using Lennard–Jones potentials [1924],
given as

F(vdw) = 4ε
[
−12

(
σ

ds−s

)12
+ 6

(
σ

ds−s

)6
]
. (2-12)

Ali and coworkers [Ghavamian et al. 2013] modeled the van der Waals force (Fvdw) interaction be-
tween two carbon atoms as a spring with a stiffness (Ksingle C-C) of 0.24245 N/m. However, with a large
number of van der Waals interactions, modeling each interaction could lead to computational difficulties.
Hence these intershell interactions were modeled as equivalent springs (Figure 12b).

Four equivalent springs at 90◦ intervals were inserted between two adjacent shells to model the total
van der Waals force interactions. The stiffness of a single equivalent spring (Keq) was calculated from
the total spring stiffness Kn . Hence, Kn = 58× Ksingle C-C× total number of atomic interactions from
first shell to the second shell (TAI).

Where n = (1st shell, 2nd shell, . . .) and Ksingle C-C is the spring stiffness between two carbon atoms.
The total atomic interactions (TAI) between one shell to the other were estimated by the following
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Figure 12. Van der Waals force interactions between different shells (a) and equivalent
spring constant between shells (b).

Figure 13. End points of CNTs.

equation:

T AI = Ptotal− 0.5Pend1− 0.5Pend2− 0.875P2ndend1− 0.875P2ndend2, (2-13)

where Ptotal is the total number of atoms in a single shell, Pend1 is the number of atoms in the end rows,
and P2ndend1 is the number of atoms in second end rows (Figure 13).

Since Pend1 = Pend2 and P2ndend1 = P2ndend2, the TAI equation becomes

T AI = Ptotal− Pend− 1.75P2ndend.
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van der Waals forces between consecutive walls
of DWCNTs and MWCNTs

K
eq

zigzag 1st and 2nd wall

zigzag 2nd and 3rd wall

armchair 1st and 2nd wall

armchair 2nd and 3rd wall

diameter (Å)

Figure 14. Van der Waals forces between consecutive walls.

Using the above TAI values, the total spring stiffnesses (Kn) were obtained and then Keq for the
individual springs were estimated using

Keq =
K1stshell+ K2ndshell

S0
, (2-14)

where S0 is the number of springs to be inserted.
The values of equivalent spring constant Keq obtained for all different CNTs are given in Table 5.

Figure 14 shows that the van der Waals forces become more significant increasing diameter and increasing
number of walls.

2E. Analysis procedure. The proposed SFS model was analyzed using the equivalent properties (EP)
method for determining the CNTs properties. The equivalent properties method was defined based on
the assumption that the deformation of two SFS-models could be equated when the applied load, CNT
length, and area are equal. Here, the first SFS model was defined using a reference material and the
second SFS was defined using the proposed orthotropic material. Based on the above definition, the
CNT properties could be obtained from

ESFS-CNT

ESFS-Ref
=
1LSFS-CNT

1LSFS-Ref
, (2-15)

GSFS-CNT

GSFS-Ref
=
1θSFS-CNT

1θSFS-Ref
. (2-16)

The proposed analysis was carried out by constraining the CNT model at one end and applying a load
at other end. As explained in the EP method, the C-C bond properties were assigned with a reference
material and an orthotropic material individually. The first analysis was conducted with structured steel
(reference material) properties of elastic modulus 200 GPa and a Poisson’s ratio of 0.3. A similar analysis
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zigzag (DWCNTs)

diameter (Å)
first wall second wall

Keq (N/m)
Pend P2ndend

total
points

total working
points Pend P2ndend

total
points

total working
points

5.481 16 16 168 124 30 30 384 302 1498
8.613 22 22 264 204 40 40 480 370 2017

10.962 28 28 336 259 46 40 552 442 2465
15.66 40 40 480 370 58 58 696 537 3189

21.924 60 60 672 507 74 74 936 733 4360

armchair (DWCNTs)

diameter (Å)
first wall second wall

Keq (N/m)
Pend P2ndend

total
points

total working
points Pend P2ndend

total
points

total working
points

5.424 16 16 161 117 36 36 359 260 1326
8.13 24 24 241 175 48 48 479 347 1836
0.84 32 32 321 233 52 52 519 376 2141

14.916 44 44 441 320 68 68 679 492 2855
21.696 64 64 641 465 84 84 839 608 3773

zigzag (MWCNTs)

diameter (Å)
second wall third wall

Keq (N/m)
Pend P2ndend

total
points

total working
points Pend P2ndend

total
points

total working
points

5.481 30 30 384 302 48 48 576 444 2623
8.613 40 40 480 370 58 58 696 537 3189

10.962 46 40 552 442 64 64 768 592 3579
15.66 58 58 696 537 76 76 912 703 4360

21.924 74 74 936 733 92 92 1104 851 5569

armchair (MWCNTs)

diameter (Å)
second wall third wall

Keq (N/m)
Pend P2ndend

total
points

total working
points Pend P2ndend

total
points

total working
points

5.424 36 36 359 260 56 56 560 406 2690
8.13 48 48 479 347 68 68 680 493 3418

10.84 52 52 519 376 72 72 720 522 3660
14.916 68 68 679 492 88 88 880 638 4630
21.696 84 84 839 608 104 104 1040 754 5601

Table 5. Equivalent spring stiffness values. For all cases, Kc-c = 0.24245 N/m.
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zig zag (SWCNT)

diameter (Å)
elastic modulus (GPa) shear modulus (GPa)

pristine vacancy defects pristine vacancy defects

5.481 768.525 260.328 320.259 104.663
8.61 769.163 245.471 322.764 89.1

10.96 769.231 235.844 323.164 87.5
15.657 770.442 220.186 320.189 83.5
21.92 774.39 209.463 311.66 70.3

armchair (SWCNT)

diameter (Å)
elastic modulus (GPa) shear modulus (GPa)

pristine vacancy defects pristine vacancy defects

5.424 755.213 257.637 362.658 97.8
8.13 755.149 240.937 360.011 92.9

10.84 755.659 231.113 359.075 89.0
14.916 759.881 221.317 358.563 85.0
21.696 765.583 228.005 358.125 84.0

Table 6. Properties of pristine SWCNTs and SWCNTs with vacancy defects (zigzag and armchair).

was again carried out by using the orthotropic properties as explained in the previous section. Then the
EP method was used to obtain the overall properties of the SFS CNT-model.

3. Results and discussion

The analysis was carried out for obtaining the elastic properties of single, double and multiwall CNTs
configurations. The results clearly showed the effect of chirality, defects, number of walls, and the C-C
bond orthotropic properties on the overall CNTs properties.

3A. Effect of chirality on the mechanical properties. Since the chirality defines the types of CNT con-
figurations, both zigzag and armchair were modeled and analyzed. Table 6 shows the elastic and shear
modulus values of both zigzag and armchair configurations of a single-wall carbon nanotube (SWCNT).

It is evident that the elastic modulus of the zigzag configuration is higher than the armchair one. The
difference between the elastic modulus of the two configurations (zigzag and armchair) decreased as the
CNT’s diameter increased. On the other hand, the armchair configuration has a higher shear modulus
than the zigzag. It is evident from these results that the chirality of the CNT primarily affected the shear
strength rather than the tensile strength.

The variations in elastic and shear modulus for both zigzag and armchair configurations are attributed
to the direction of the hexagonal unit cell to the applied tensile and torsional loads. For the zigzag
configuration, all six C-C bonds of a hexagonal unit have contributed towards carrying the applied load
(Figure 15a), while the armchair unit cell have used only four C-C bonds for the similar types of loading
(Figure 15b). Therefore the tensile strength of zigzag is higher than armchair. However, for the torsional
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(a)

(b)

(c)

(d)

(a)

(b)

(c)

(d)

Figure 15. The deformation pattern of hexagonal units: armchair (a), zigzag-tensile
load (b), armchair (c), and zigzag-applied moment (d).

loading, the reverse phenomenon could be seen as compared to the tensile loading (Figure 15c, d). The
comparison based on chirality suggested that the zigzag SWCNTs of higher diameters could increase the
properties of nanocomposites in the axial direction. For better transverse properties, armchair configura-
tions with smaller diameters would be a better choice as a reinforcement.

The current analysis results align with the experimental values of 400 GPa to 800 GPa as given by
Treacy [Treacy et al. 1996]. Further, the results are also comparable with the other numerical analysis
carried out by Mohammad [Mohammadpour and Awang 2011], where they used the continuum mechan-
ics method with nonlinear material properties and obtained the elastic properties of 881 GPa (elastic
modulus) and 116 GPa (shear modulus). In addition, the molecular dynamics [Agrawal et al. 2006]
results (elastic modulus 550–760 GPa for diameters in the range of 7–25 Å) for SWCNTs also align well
with the SFS analysis results.

3B. Effect of vacancy defects. The elastic properties of both zigzag and armchair configurations of
SWCNTs with vacancy defects were analyzed and their results were almost 70% lower than the corre-
sponding pristine configurations (Table 6). In addition, the vacancy defects have shown more influence
on both the elastic and shear modulus of both armchair and zigzag configurations as the diameter of the
CNT was increased from 5.48 Å to 21.92 Å. The percentile decrease in CNT properties for the increase
in diameter of a zigzag configuration was approximately 69.58% for the elastic modulus and 72.79%
for the shear modulus. For the armchair configuration, the percentile decrease was 68.9% for the elastic
modulus and 75.04% for the shear modulus, respectively (Table 7). Similar results were obtained by Ying
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zigzag (SWCNT)
diameter (Å) elastic modulus (%) shear modulus (%)

5.481 66.13 67.32
8.61 68.09 72.38

10.96 69.34 72.91
15.657 71.42 73.89
21.92 72.95 77.43

average 69.58 72.79

armchair (SWCNT)
diameter (Å) elastic modulus (%) shear modulus (%)

5.424 65.89 73.01
8.13 68.09 74.19

10.84 69.42 75.19
14.916 70.87 76.29
21.696 70.22 76.53

average 68.9 75.04

Table 7. Percentile decrease of elastic and shear modulus due to vacancy defects (zigzag
and armchair).

et al. [Yang et al. 2017] with elastic modulus of 270 GPa for SWCNTs with defects. Sakhaee [Sakhaee-
Pour 2009] showed that the elastic and shear modulus of defective SWCNTs were 470 GPa and 160 GPa,
respectively. The properties reported by these research works matched well with the results of the current
research work.

It could be concluded from the results that the SWCNTs with armchair configuration with vacancy
defects have shown better properties than the zigzag configuration. Moreover, the phenomenon was more
significant for the diameter greater than 15 Å. From the above results, it could be pointed out that the
armchair configuration with vacancy defects have shown improved properties compared to the zigzag
configuration as the CNT’s diameter increases.

3C. Effect of the number of walls. The effect of the number of walls on the CNTs properties were
also analyzed using SFS CNT models. The elastic and shear modulus of both DWCNTs and MWCNTs
approximately remains the same (Table 8). For the individual cases, the elastic modulus of the zigzag
configuration is higher than armchair one and the armchair shear modulus is higher than the zigzag config-
uration. The elastic modulus varied inversely to the CNT’s diameter until the value reached 15.697 Å and
then the variation of elastic modulus became proportional to the CNT’s diameter. The elastic modulus
of DWCNT was higher at lower diameters and was gradually reduced as the CNT diameter reached
15.657 Å. Then, for further increases in diameter, the elastic modulus was increased again. For the
MWCNT case, the elastic modulus values increased proportionally to the CNT’s number of walls and
the diameter. However, the shear modulus of both DWCNTs and MWCNTs increased as the diameter
increased up to 15.697 Å, and then started to decrease with the increase in diameter.
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zigzag

diameter (Å)
elastic modulus
DWCNT (GPa)

shear modulus
DWCNT (GPa)

elastic modulus
MWCNT (GPa)

shear modulus
MWCNT (GPa)

5.481 794.199 320.235 794.199 320.23
8.61 783.311 322.752 783.311 322.75

10.96 770.318 323.312 770.318 323.31
15.657 761.661 328.514 761.661 328.51
21.92 782.353 311.379 782.353 311.38

armchair

diameter (Å)
elastic modulus
DWCNT (GPa)

shear modulus
DWCNT (GPa)

elastic modulus
MWCNT (GPa)

shear modulus
MWCNT (GPa)

5.424 757.671 366.795 756.71 301.52
8.13 753.1 359.754 753.1 297.13

10.84 759.974 358.317 759.974 292.26
14.916 766.225 358.959 766.225 357.69
21.696 772.855 358.112 772.855 359.67

Table 8. Properties of DWCNTs and MWCNTs with zigzag and armchair CNTs.

type of CNT diameter (Å) elastic modulus (GPa) shear modulus (GPa) reference

DWCNT 10.0–30.0 1000–1100 400 [Li and Chou 2003a]

DWCNT zigzag 5.41–21.92 761–794 311–323 proposed
SFS modelDWCNT armchair 5.424–21.69 753–772 358–366

MWCNT 3.91–27.13 704 - [Yu et al. 2000]
MWCNT 5–8 990–1029 213–228 [Sakhaee-Pour 2009]

MWCNT zigzag 5.41–21.92 761–794 310–323 proposed
SFS modelMWCNT armchair 5.424–21.69 651–786 292–360

Table 9. CNT elastic properties compared between the current study and other researches.

Table 9 shows a comparative analysis of results from other research works along with the current SFS
model research work. It could be concluded here that the SFS structure with orthotropic C-C chemical
bond could provide accurate elastic properties of both zigzag and armchair configurations for both pristine
and CNTs with vacancy defects.

4. Conclusions and recommendations

In this research, the effect of chirality (zigzag and armchair), vacancy defects, and number of walls on
the elastic properties of CNTs were characterized by the space frame structure method. The orthotropic
properties of C-C bonds were calculated by comparing structural mechanics and molecular mechanics
energy expressions along with a parametric study. A mathematical model using equivalent springs for van
der Waals interactions between consecutive walls was developed to analyze their effect on DWCNTs and
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MWCNTs. It has been found that the zigzag configuration elastic modulus was greater than the armchair
configuration for CNTs with the same diameter. The shear modulus of the armchair configuration is
greater than the zigzag configuration. Vacancy defects significantly reduced the elastic properties of
SWCNTs and the effect of the vacancy defects increased as the diameter was increased further. The rate
of decrease in the elastic and shear modulus of defective armchair nanotubes become insignificant as
the diameter increased further. Comparatively DWCNTs have higher elastic modulus and shear modulus
(average) than SWCNTs and MWCNTs for the smaller CNTs diameter range. The results shows that
the SFS model elastic properties were in good agreement with the experimental and theoretical values
found in the literature.
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ANALYTICAL APPROACH TO THE PROBLEM OF AN AUXETIC LAYER
UNDER A SPATIALLY PERIODIC LOAD

HENRYK KAMIŃSKI AND PAWEŁ FRITZKOWSKI

The problem of an infinite elastic layer under a periodic load is considered. A mathematical model is
formulated for the plane strain state. An analytical procedure based on the Fourier integral transformation
is discussed. The displacement components are obtained as infinite sums directly via the inverse Fourier
transform. Semianalytical results are presented in a nondimensional form for the case of conventional
elastic materials (positive Poisson’s ratio) and auxetic materials (negative Poisson’s ratio). The deforma-
tion of the loaded boundary and other characteristic surfaces of the layer is analyzed, and the displace-
ment and stress fields are demonstrated. The effect of Poisson’s ratio on the system behavior is studied.
The results are compared with the purely numerical solutions obtained using the finite element method.

1. Introduction

Nowadays, in times of advanced numerical methods and modern simulation software, the classical math-
ematical modeling and analytical treatment of formulated problems seem to belong to the past. Engineers
and researchers almost automatically reach for powerful computer tools, even if an analytical approach
could be applied easily. Beyond any doubt, most of the contemporary problems in computational me-
chanics are of a complex nature due to their geometry as well as the load and constraint conditions.
However, often an analytical solution to a simplified model may become a strong base for further studies
of more sophisticated and realistic systems.

In the field of linear elasticity, many fundamental problems have been formulated on strong assump-
tions. For instance, an unbounded (fully or partially) character of a domain (e.g., elastic space/plane, half-
space/plane, elastic layer or strip) and/or a specific case of stress-strain state (plane stress/strain) have
been considered. Such an approach has allowed for analytical treatment of the problems by means of
the complex potentials method, integral transforms, Fourier series, and stress functions, etc. [Teodorescu
2013; Sadd 2004; Saada 1974; Nowacki 1970; Timoshenko and Goodier 1951].

In fact, exact solutions have significant advantages over the numerical ones. First of all, they facilitate
a qualitative analysis of a given problem and enable one to draw more general conclusions. Secondly,
analytical solutions play a role of a reference point for brand new or improved computational methods
and algorithms. Moreover, the analytical approach may be useful for simulation studies of more complex
or unconventional systems. A good example are auxetics, i.e., materials with negative Poisson’s ratio.
Analytical solutions to purely theoretical problems can cast new light on unusual deformation behav-
ior of auxetic systems with numerous potential applications [Evans and Alderson 2000; Prawoto 2012;
Alderson and Alderson 2007; Fritzkowski and Kamiński 2016; Sanami et al. 2014; Carneiro et al. 2013].

This work has been supported by 02/21/DSPB/3477 and 02/21/DSPB/3493 grants.
Keywords: linear elasticity, elastic layer, deformation, auxetic materials, Fourier transform, approximate methods.
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It should be noted that, although auxetics have been known since the 1980s, their properties (mechan-
ical, thermal, and others) and mechanisms of the anomalous deformation still draw attention of many
researchers. However, a significant majority of the studies are based on the purely numerical approach
(e.g., see [Walczak et al. 2014; Strek et al. 2010; Jopek and Strek 2015; Salit and Weller 2009]).

This paper is devoted to stress and deformation analysis of an elastic solid layer subjected to a spatially
periodic load. Since a state of plane strain is assumed, the problem is reduced to a two-dimensional
one. The displacement field equations are solved by a semianalytical approach, i.e., the Fourier integral
transform is applied in combination with numerical evaluation of the displacement and stress components.
The main aim of this work is to investigate the effect of Poisson’s ratio on the behavior of the elastic
system.

The paper is divided into five sections. In Section 2, a mathematical formulation of the elasticity
problem is presented. The semianalytical solution procedure is presented in Section 3. Section 4, in turn,
contains simulation results and discussion. Finally, some conclusions and closing remarks are provided
in Section 5.

2. Formulation of the problem

Let us consider the elastic layer illustrated in Figure 1. The term “layer” should be understood as a part
of an elastic space (infinite domain) bounded by two parallel planes at a finite distance h [Teodorescu
2013]. The upper boundary face (xz) is subjected to a distributed normal load p(x) which is periodic
along the x-axis:

p(x)= p(x + 2a). (2-1)

The solid material that occupies the domain is assumed to be linearly elastic, homogeneous, and isotropic.
It is characterized by shear modulus G and Poisson’s ratio ν. In the case of auxetics, ν < 0.

Taking into account the domain and loading geometry (independent of the z coordinate), the spatial
problem can be reduced to a two-dimensional formulation. The specified case falls into the category of
plane strain problems, and consequently we focus on a semiinfinite planar region

�=

{
−∞≤ x <∞,
−h ≤ y ≤ 0.

(2-2)

Figure 1. Infinite elastic layer under a periodic load.
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Let u(x, y)= [ux , u y]
T be the displacement vector. The strain-displacement relations involving only

the allowable strains are given by

εx =
∂ux

∂x
, εy =

∂u y

∂y
, εxy =

1
2

(
∂ux

∂y
+
∂u y

∂x

)
. (2-3)

From Hooke’s law, the corresponding stress components become

σx = λ(εx + εy)+ 2µεx , σy = λ(εx + εy)+ 2µεy, σxy = 2µεxy, (2-4)

where λ and µ are Lamé constants, given as

λ=
2Gν

1−2ν
, µ= G. (2-5)

Finally, in the case of zero body forces, the Navier–Lamé equations reduce to [Nowacki 1970; Sadd
2004]

µ∇2ux + (λ+µ)
∂

∂x

(
∂ux

∂x
+
∂u y

∂y

)
= 0, (2-6a)

µ∇2u y + (λ+µ)
∂

∂y

(
∂ux

∂x
+
∂u y

∂y

)
= 0. (2-6b)

Moreover, for the given problem, the unknown vector-valued function u(x, y) must satisfy the following
traction boundary conditions:

σy(x, 0)= p(x), (2-7a)

σxy(x, 0)= 0, (2-7b)

σy(x,−h)= 0, (2-7c)

σxy(x,−h)= 0. (2-7d)

Thus, the resulting mathematical model consists of the system of coupled partial differential equations
(2-6) together with the set of boundary conditions (2-7).

3. Analytical solution procedure

3.1. Transformation of the problem. Let f (x) be a real function of a real variable x , which satisfies
Dirichlet’s conditions and is absolutely integrable. For further purposes, the following definition of the
Fourier integral transform of f is used [Bronsztejn et al. 2004; Sneddon 1951; Teodorescu 2013]:

F[ f (x)] =
∫
∞

−∞

f (x)e−isx dx, (3-1)

where the variable s is real.
Now, let ũx and ũ y denote the Fourier transforms of the displacements with respect to the x-coordinate,

that is,
ũx(s, y)= Fx [ux(x, y)], ũ y(s, y)= Fx [u y(x, y)]. (3-2)
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Taking the transform of the governing equations (2-6), one can obtain

(κ − 1)
∂2ũx

∂y2 + i2s
∂ ũ y

∂y
− s2(κ + 1)ũx = 0, (3-3a)

(κ + 1)
∂2ũ y

∂y2 + i2s
∂ ũx

∂y
− s2(κ − 1)ũ y = 0, (3-3b)

where κ denotes the Kolosov constant:
κ = 3− 4ν. (3-4)

It should be noticed that these equations have simpler form than the original ones.
Next, consider the boundary conditions (2-7). Let pb(x) be a basis function of the distributed load,

i.e., the load over one period (−a ≤ x ≤ a), so that periodic summation can be used:

p(x)=
∞∑

k=−∞

pb(x − 2ka). (3-5)

In the given case

pb(x)= p0
[
−η(x + a)+ 2η

(
x + 1

2a
)
− 2η

(
x − 1

2a
)
+ η(x − a)

]
, (3-6)

where p0 is the load intensity and η denotes the Heaviside step function. The Fourier transform of (3-6)
is given by

p̃b(s)=
i p0

s
[eisa
− e−isa

+ 2eisa/2
− 2e−isa/2

]. (3-7)

Taking into account formula (3-5) as well as the linearity and shifting (translation) properties of the
Fourier transform, for the whole periodic load applied to the infinite boundary one can write [Bronsztejn
et al. 2004; Zemanian 1965]

p̃(s)= p̃b(s)
∞∑

k=−∞

e−i2kas . (3-8)

Now, boundary conditions (2-7) can be converted to

σ̃y(s, 0)= p̃(s), (3-9a)

σ̃xy(s, 0)= 0, (3-9b)

σ̃y(s,−h)= 0, (3-9c)

σ̃xy(s,−h)= 0, (3-9d)
where

σ̃x(s, y)= Fx [σx(x, y)],

σ̃y(s, y)= Fx [σy(x, y)],

σ̃xy(s, y)= Fx [σxy(x, y)].

To sum up, after the transformation the boundary value problem is composed of the equilibrium
equations (3-3) and associated boundary conditions (3-9).
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3.2. Solution of the transformed problem. Due to its relatively simple form, the transformed problem
can be solved in a quite conventional way. For the second-order partial differential equations (3-3), the
trial solution is

ũx(s, y)= C1er y, ũ y(s, y)= C2er y, (3-10)

where C1 and C2 are real constants, while r is generally a complex parameter to be determined. Inserting
(3-10) into the homogeneous system (3-3) leads to a characteristic equation for r . There are two double
roots:

r1,2 = s, r3,4 =−s,

thus, the general solution is given by

ũx(s, y)= A11esy
+ A12 yesy

+ B11e−sy
+ B12 ye−sy, (3-11a)

ũ y(s, y)= A21esy
+ A22 yesy

+ B21e−sy
+ B22 ye−sy, (3-11b)

where Ai j , Bi j (for i, j = 1, 2) are complex constants. Substituting ũx and ũx into (3-3), one obtains

α11esy
+α12 yesy

+β11e−sy
+β12 ye−sy

= 0, (3-12a)

α21esy
+α22 yesy

+β21e−sy
+β22 ye−sy

= 0, (3-12b)

where αi j , βi j (for i, j = 1, 2) denote certain functions of s and y, involving the constants Ai j , Bi j . Equat-
ing to zero the coefficients αi j and βi j , one can find that system (3-12) is fulfilled (for every s and y) if

A12 = i A22, B22 = i B12 (3-13)
and

B12 =−
s
κ
(i B21+ B11), A22 =−

s
κ
(i A11+ A21). (3-14)

Now, the transformed displacements with four independent constants are

ũx(s, y)=
[

A11+ (A11− i A21)
sy
κ

]
esy
+

[
B11− (B11+ i B21)

sy
κ

]
e−sy, (3-15a)

ũ y(s, y)=
[

A21− (A21+ i A11)
sy
κ

]
esy
+

[
B21+ (B21− i B11)

sy
κ

]
e−sy . (3-15b)

The constants can be determined from the prescribed boundary conditions. Obviously, it is necessary to
use relations (2-3) and (2-4) to express σ̃y , σ̃xy in terms of ũx , ũ y . The traction conditions (3-9a) and
(3-9b) require

A21 =−
p̃(s)e2hs

[4h2s2
− (κ + 1)(e2hs

+ 2hs− 1)]
4Gs[e4hs − 2e2hs(1+ 2h2s2)+ 1]

,

B21 =
p̃(s)e2hs

[4h2s2
− (κ + 1)(e−2hs

− 2hs− 1)]
4Gs[e4hs − 2e2hs(1+ 2h2s2)+ 1]

.

(3-16)

Then, conditions (3-9c) and (3-9d) lead to

A11 =−
i[2κB21e2hs

− A21(4h2s2
+ 4κhs+ κ2

+ 1)]
4h2s2− κ2+ 1

,

B11 =
i[2κA21e−2hs

− B21(4h2s2
− 4κhs+ κ2

+ 1)]
4h2s2− κ2+ 1

.

(3-17)
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On the basis of (3-15) together with relationships (3-16) and (3-17), one can find expressions for the
Fourier transforms of the displacement components:

ũx(s, y)=
i p̃(s)
4G

φx(s, y)
ψ(s, y)

, ũ y(s, y)=
p̃(s)
4G

φy(s, y)
ψ(s, y)

, (3-18)

where

φx(s, y)= A1 sinh(sy)+ A2 sinh(s(y+ 2h))+ B1 cosh(sy)+ B2 cosh(s(y+ 2h)),

φy(s, y)= B ′1 sinh(sy)+ B ′2 sinh(s(y+ 2h))+ A′1 cosh(sy)+ A2 cosh(s(y+ 2h)),

ψ(s, y)= s[2h2s2
− cosh(2hs)+ 1],

(3-19)

and

A1 =−2s(y− κh+ h), A2 = 2sy, A′1 =−2s(y+ κh+ h),

B1 = 4hs2(y+ h)− κ + 1, B2 = κ − 1, B ′1 = 4hs2(y+ h)+ κ + 1, B ′2 =−κ − 1.

These results can be subjected to the inverse Fourier transformation in order to obtain the unknown
displacements ux and u y as well as the stresses and strains.

3.3. Inverse transformation. In view of the definition (3-1), the corresponding inverse Fourier transform
is represented by [Bronsztejn et al. 2004; Sneddon 1951; Teodorescu 2013]

f (x)= F−1
[ f̃ (s)] = 1

2π

∫
∞

−∞

f̃ (s)eisx ds. (3-20)

In computational practice, direct evaluation of the above integral is usually complicated (if possible), and
therefore is rarely conducted. However, this approach can be used in the case under investigation.

It is clear from (3-18) that the complexity of the inversion procedure is mainly affected by the form of
the image function p̃(s). To simplify the calculations, Poisson’s summation formula is applied [Zemanian
1965]:

∞∑
k=−∞

eiks
= 2π

∞∑
k=−∞

δ(s− 2πk), (3-21)

where δ denotes the Dirac delta function. Hence, the expression (3-8) can be written alternatively as

p̃(s)= π
a

p̃b(s)
∞∑

k=−∞

δ
(

s− πk
a

)
. (3-22)

According to the general definition (3-20), the inverse Fourier transforms of (3-18) are

ux(x, y)= 1
2π

∫
∞

−∞

i p̃(s)
4G

φx(s, y)
ψ(s, y)

eisx ds, u y(x, y)= 1
2π

∫
∞

−∞

p̃(s)
4G

φy(s, y)
ψ(s, y)

eisx ds. (3-23)
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Substituting (3-22) into (3-23), converting (3-7) to trigonometric form, and taking into account the sifting
property of the Dirac delta leads to the following result:

ux(x, y)=
2i p0

Ga

∞∑
k=−∞

sin3( 1
4ask

)
cos
( 1

4ask
) φx(sk, y)

skψ(sk, y)
eisk x , (3-24a)

u y(x, y)=
2p0

Ga

∞∑
k=−∞

sin3( 1
4ask

)
cos
( 1

4ask
) φy(sk, y)

skψ(sk, y)
eisk x , (3-24b)

where sk = πk/a. Finally, after some manipulations and observations, one can find

ux(x, y)=
p0

Ga

∞∑
k=1

(−1)k sin(s ′k x)
φx(s ′k, y)

s ′kψ(s
′

k, y)
, (3-25a)

u y(x, y)=−
p0

Ga

∞∑
k=1

(−1)k cos(s ′k x)
φy(s ′k, y)

s ′kψ(s
′

k, y)
, (3-25b)

where s ′k = s2k−1 = π(2k − 1)/a. The displacements can be used to determine the strain and stress
components by means of the relations (2-3) and (2-4).

For example, the full form of the k-th term for the horizontal displacement is

uxk =
(−1)k p0 sin(s ′k x)

Gas ′k
2
[2h2s ′k

2
− cosh(2hs ′k)+ 1][
−2s ′k(y− κh+ h) sinh(s ′k y)+ 2s ′k y sinh(s ′k(y+ 2h))

+ (4hs ′k
2
(y+ h)− κ + 1) cosh(s ′k y)+ (κ − 1) cosh(s ′k(y+ 2h))

]
. (3-26)

Similarly, the k-th term for the normal stress σx , for instance, can be written as

σxk =
4(−1)k p0 cos(s ′k x)

as ′k[2h2s ′k
2
− cosh(2hs ′k)+ 1][

−s ′k(y− 2h) sinh(s ′k y)+ s ′k y sinh(s ′k(y+ 2h))

+ (2hs ′k
2
(y+ h)− 1) cosh(s ′k y)+ cosh(s ′k(y+ 2h))

]
. (3-27)

As can be seen from the sample analytical results, the expressions for the displacement components natu-
rally involve Poisson’s ratio ν (via the constant κ), while the stress field is independent of the parameter.

4. Simulation results

4.1. Semianalytical results. The results reported below have been obtained for the special case when
a/h= 1. For natural reasons, in numerical computations the infinite sums in formulae (3-25) are truncated
to a finite number of terms:

ux(x, y)≈
n∑

k=1

uxk, u y(x, y)≈
n∑

k=1

u yk . (4-1)
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Figure 2. Vertical displacement of the loaded surface (solid) and the midsurface
(dashed) for various values of Poisson’s ratio. Top left: ν = 0.25. Top right: ν =−0.25.
Bottom left: ν =−0.5. Bottom right: ν =−0.75. Results obtained for n = 50.

Moreover, the results have a nondimensional form. More precisely, the dimensionless displacements are
introduced as

Ux(x, y)= G
p0a

ux(x, y), Uy(x, y)= G
p0a

u y(x, y). (4-2)

Analogously, the following nondimensional stresses are defined as

Sx(x, y)= 1
p0
σx(x, y), Sy(x, y)= 1

p0
σy(x, y), Sxy(x, y)= 1

p0
σxy(x, y). (4-3)

Let us start with a displacement analysis of the layer. In Figure 2 the vertical displacements Uy of
the loaded surface (y = 0) and the midsurface (y = −h/2) for 0 ≤ x ≤ 2a are presented for various
values of Poisson’s ratio. For ease of comparison, all the graphs have equal axis scales. The deformation
behavior is intuitively reasonable and qualitatively identical in each case. The maximum absolute values,
max |Uy|, occur at x = ka for k = 0, 1, 2, . . . , i.e., in the middle of each subinterval of the upward or
downward load. As can be seen, the values grow with decreasingly lower ν. The surfaces have zero
displacement at x = (2k− 1)a for k = 1, 2, . . . , where the load changes its direction.

Similar plots for the horizontal displacement are shown in Figure 3. Now, the maximum absolute
values, max |Ux |, arise at x = (2k− 1)a for k = 1, 2, . . . , while zero values can be observed at x = ka
for k = 0, 1, 2, . . . . However, the displacements of the midsurface are much smaller, and a change of
sign occurs as Poisson’s ratio is decreased.
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Figure 3. Horizontal displacement of the loaded surface (solid) and the midsurface
(dashed) for various values of Poisson’s ratio. Top left: ν = 0.25. Top right: ν =−0.25.
Bottom left: ν =−0.5. Bottom right: ν =−0.75. Results obtained for n = 50.

To give a more systematic insight into changes of the displacements when ν is varied, the following
quantities are used:

U max
y =Uy|x=0, U max

x =Ux |x=a/2

The functions U max
y (ν) and U max

x (ν) related to the top-, mid- and bottom-surface of the layer are presented
in Figure 4. As can be seen, the maximum vertical displacement for all the surfaces is always positive
and increases linearly with decreasing Poisson’s ratio. The character of U max

x is also linear. However, the
midsurface has near zero displacement, while in case of the bottom-surface the displacement is negative
and it decreases with decreasing ν.

The discussed results have been obtained for n = 50. This number of terms of the analytical solution
ensures a good approximation of the layer displacements. The maximal values U max

y in the function of
n for selected values of Poisson’s ratio are plotted in Figure 5. As can be seen, the results converge
rapidly, and for n > 50 there are no significant deviations in U max

y . It should be noted that over the whole
analyzed range (10≤ n ≤ 200) the displacement values differ by less than 0.15%.

Let us turn to an overall look at the displacement field. Figure 6 shows the distribution of the horizontal
and vertical displacements (scaled by a factor of 102) within an elementary cell of the layer: 〈0, 2a〉×
〈−h, 0〉, for three values of Poisson’s ratio: ν = 0.25, ν =−0.25 and ν =−0.5. When it comes to Ux ,
there are two types of zero isolines: vertical (at x = a) and approximately horizontal. Position of the
latter one is affected by ν. In the case of a conventional material (ν > 0), one can observe an evident
disproportion between the area above and below the contour of zero value. In the distribution of Uy , there
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Figure 4. Maximal vertical (left) and horizontal (right) displacements versus Poisson’s
ratio for the surfaces at y = 0 (solid), y =−h/2 (dashed), and y =−h (dotted). Results
obtained for n = 50.

Figure 5. Approximated value of the maximal vertical displacement versus the number
of summed terms of the analytical solution for various values of Poisson’s ratio. Top
left: ν = 0.25. Top right: ν =−0.25. Bottom left: ν =−0.5. Bottom right: ν =−0.75.

are only vertical zero isolines (at x = a/2 and x = 3a/2). Some differences arise in their neighborhood:
the nearby contours become increasingly barrel-shaped as Poisson’s ratio is decreased.

The longitudinal displacement (Ux ) of the cell through its thickness is plotted in Figure 7. More
precisely, the curves that represent the layer cross-sectional deplanation at x = a/4 (or x = 3a/4) and
x = a/2 are presented for selected values of Poisson’s ratio. As can be seen from Figure 3 and Figure 6,
Ux(x, y)= 0 for every y at x = 0, x = a, x = 2a. The displacement profiles at x = 5a/4 (or x = 7a/4)
and x = 3a/2, in turn, are mirror images of the respective curves for x = a/4 (or x = 3a/4) and x = a/2
about the central transverse axis x = a.

Although the displacements increase with decreasing ν (see Figure 3), all the curves intersect at one
point. Its location can be found based on (3-26). Since the second and the next terms of the series (4-1)
decay strongly, they are negligible compared with the first term. Now, for two arbitrary values of the
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Figure 6. Displacement distribution in a rectangular cell — horizontal displacement
Ux × 102 (left column) and vertical displacement Uy × 102 (right column). Top
row: ν = 0.25. Middle row: ν =−0.25. Bottom row: ν =−0.5.

Kolosov constant, κ1 and κ2, the displacements ux ≈ ux1 (for every x) are equal if

2πh sinh
(
π

y
a

)
− a cosh

(
π

y
a

)
+ a cosh

(
π

y+2h
a

)
= 0. (4-4)

In the special case when h = a, the solution of the transcendental equation is

y = a
2π

ln
(

2π + 1− e−2π

2π − 1+ e2π

)
≈−0.686a, (4-5)

which can be treated as a sufficiently accurate approximation of the intersection point. Needless to say,
the vertical location is independent of both x and ν.

When it comes to the point of zero longitudinal displacement (Ux = 0), it moves down as ν is decreased.
Because the point corresponds to the nearly horizontal zero isoline mentioned before (see Figure 6, left
column), its y-position is similar over the whole range 0 ≤ x ≤ a (see Figure 7). Using again the first
term of the series solution, the average horizontal displacement can be defined as

u(avg)
x =

1
a

∫ a

0
ux1 dx . (4-6)
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Figure 7. Deplanation of the layer cross-section for ν = 0.25 (dashed), ν = 0 (solid),
ν =−0.25 (dot-dashed), and ν =−0.75 (dotted). Left: x = a/4 and x = 3a/4. Right:
x = a/2.

Figure 8. Vertical position of the zero average horizontal displacement versus Poisson’s
ratio: approximate solutions (marks); the cubic curve (solid) and line (dotted) fitted in
the least-squares sense.

Now, the algebraic equation u(avg)
x (y)= 0 can be solved numerically to find the approximate (averaged)

vertical position y0 of the zero point (zero isoline) for 0 ≤ x ≤ a (and a ≤ x ≤ 2a). The solutions for
varying Poisson’s ratio within the range−1≤ ν≤ 0.5 (with the step1ν= 0.1) are shown in Figure 8. This
discrete dependence y0(ν) can be approximated, for example, by the standard polynomial curve fitting
in a least-square sense. Here, two subintervals have been considered separately, related to nonauxetic
and auxetic materials (0≤ ν ≤ 0.5 and −1≤ ν ≤ 0). A linear function and a cubic curve have been fitted
to the data, respectively. In both cases, the root-mean-square error of the approximations is less than 1%
(about 0.22% and 0.47%). It can be concluded that the characteristics become “softer” in the auxetic
range, i.e., the value y0 drops increasingly slower as Poisson’s ratio tends to −1.
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Figure 9. Stress distribution in a rectangular cell. Left: normal stress Sx × 10. Right:
normal stress Sy × 10. Bottom: shear stress Sxy × 10.

Distributions of normal stress Sx , Sy and shear stress Sxy (all scaled by a factor of 10) are presented
in Figure 9. Note that the quantities are independent of ν, according to the remark on (3-26) and (3-27).
As can be seen, the vertical contours of zero normal stresses correspond to zero contours of Uy . In the
case of shear stress, in turn, the zero isoline coincides with the one for Ux = 0.

The lack of dependence of the stress field on Poisson’s ratio may seem curious. The problem has been
considered within the classical linear elasticity framework, for the whole (thermodynamically admissible)
range of ν. Thus, one can state that Sx , Sy , Sxy are always the same, identical for both the auxetic
and conventional materials (homogeneous and isotropic in each case). However, such a solution is
not so unusual: results of this nature can arise within linear elasticity [Timoshenko and Goodier 1951;
Timoshenko 1930; Ventsel and Krauthammer 2001; Boresi et al. 1993]. For instance, the analyzed elastic
layer problem may be confronted with the case of cylindrical bending of a rectangular plate (finite or
infinite). Thus, consider a clamped-clamped thin plate of length a in the x-direction and infinitely long
in the z-direction (xz is the middle plane), subjected to a uniform transverse load p = constant (upward
or downward). It is well known that an expression for the plate deflection u y(x) would include Poisson’s
ratio (via the flexural rigidity), while the normal stress σx would be free of this elastic constant. Obviously,
the classical thin plate theory further assumes that σy = σyz = 0 (plane stress relative to the xz-plane),
which is too strong a constraint not consistent with our formulation. But even if the stress components σy ,
σyz are approximately determined through the use of the differential equations of equilibrium (against
Kirchhoff’s assumptions), they also are not influenced by ν [Ventsel and Krauthammer 2001; Boresi et al.
1993; Jaeger 1964; Szilard 2004].

4.2. FEM results. Exact solutions, achievable for simple geometry and load cases, are often used to
assess accuracy and efficiency of new or modified numerical techniques. Vice versa, a well-established
computer method can be applied in order to validate newly developed analytical solutions. Unarguably,



476 HENRYK KAMIŃSKI AND PAWEŁ FRITZKOWSKI

Figure 10. FEM results for a rectangular cell. Top left: Uy × 102 for ν = 0.25. Top
right: Uy × 102 for ν =−0.5. Bottom left: Sx × 10. Bottom right: Sxy × 10.

the finite element method (FEM) is one of the most common approaches to modeling and simulation
in science and engineering, including solid mechanics. For example, FEM-based reference results were
used in [Walczak et al. 2014; Fritzkowski and Kamiński 2016] to examine exact solutions or numerical
solutions obtained via meshless methods. Similarly, comparative simulations have been conducted for
the present case, by means of COMSOL Multiphysics software.

Due to the spatial periodicity of the layer, the linear static analysis is focused on a finite-sized domain,
i.e., the rectangular cell:

�̂=

{
0≤ x ≤ 2a,
−h ≤ y ≤ 0.

(4-7)

Apart from boundary conditions (2-7a) and (2-7c), the following ones are imposed on the left and right
edges (roller supports):

ux(0, y)= 0, ux(2a, y)= 0. (4-8)

Moreover, two pointwise displacement conditions are introduced as

u y
( 1

2a, 0
)
= 0, u y

( 3
2a, 0

)
= 0. (4-9)

On the one hand, these assumptions can be concluded from the semianalytical results. On the other
hand, such a behavior of the loaded surface is a natural consequence of the fact that the resultant of the
distributed load on the periodic cell is zero.

A uniform rectangular mesh is generated in the entire domain (a swept mesh). The quadratic quadri-
lateral finite elements are used. The presented results have been obtained for ne = 5000 finite elements
(100× 50) and ndof = 40602 degrees of freedom.

The distribution of displacement Uy and stress Sx obtained numerically for ν = 0.25 and ν =−0.5 are
shown in Figure 10. Thus, the graphs can be compared to the ones in Figure 6, top row and bottom row,
and Figure 9, left and bottom. For convenience, the same isolines have been included in the FEM-based
plots. As can be seen, the displacement and stress fields provided by two different methods are in very
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ν 0.49 0.25 0 −0.25 −0.5 −0.75 −0.99

U max
y

semianalytical 0.2119 0.3117 0.4155 0.5194 0.6233 0.7272 0.8269
FEM 0.2119 0.3117 0.4156 0.5195 0.6233 0.7272 0.8270

U max
x

semianalytical 0.0215 0.1488 0.2814 0.4140 0.5466 0.6792 0.8064
FEM 0.0210 0.1484 0.2809 0.4133 0.5457 0.6779 0.8048

Table 1. Semianalytical vs. FEM results: maximal displacements.

Figure 11. FEM results — deformation of a rectangular cell. Left: ν = 0.25. Right: ν =−0.5.

close agreement with each other. Table 1 contains the maximal displacements U max
y and U max

x obtained
with FEM (ndof = 40602) and the semianalytical procedure (n = 50). It turns out that the values are
almost identical.

Deformation of the rectangular cell for ν = 0.25 and ν = −0.5 (drawn at the same scale) can be
observed in Figure 11. In full accordance with the analytical results depicted in Figure 4, vertical
displacements within the cell increase with decreasing Poisson’s ratio.

5. Conclusions

In this paper, elastic deformation of an infinite layer under a periodic load has been considered. The
semibounded character of the domain allows for an analytical treatment of the problem. The displace-
ments of the loaded surface and other surfaces of the layer have been presented and discussed. Moreover,
the distributions of the displacements as well as the normal and shear stresses in the periodic cell of the
domain have been presented. The effect of Poisson’s ratio on the system behavior has been analyzed.

Although the Fourier integral transform has been applied, evaluation of the inverse transforms for the
displacements and stresses does not require numerical computation of residues, as for example in the
case of elastic quarter-space [Fritzkowski and Kamiński 2016]. The analytical solution is represented by
an infinite single series of relatively simple form. The results indicate quite fast convergence of these
series. Furthermore, they are in high agreement with the purely numerical solutions obtained by means
of the finite element method (FEM).

It has been demonstrated that the horizontal and vertical displacements of the layer surface grow (in
absolute value) with decreasing ν at constant G. In the studied case, the relationship between the system
response and Poisson’s ratio turns out to be linear. Hence, in the context of contact mechanics, e.g., when
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a rigid punch is pressed against an elastic material, one can expect that the indentation depth will be
higher for auxetics than for conventional solids. Such behavior seems to contradict the effect of practical
importance, highlighted by many authors: the indentation resistance increases with the auxeticity of the
material [Sanami et al. 2014; Greaves et al. 2011; Carneiro et al. 2013]. However, in the mathematical
description of deformable solids, Young’s modulus and Poisson’s ratio (E , ν) are usually employed
instead of shear modulus and Poisson’s ratio (G, ν). When the latter pair is used (as in this paper),
the conclusions of a physical nature can change: the application of more auxetic materials (at constant
shear modulus) does not necessarily suppress the deformation [Lim 2015]. So, the selection of elastic
constants is crucial, and must not be ignored or underestimated by engineers and researchers.

The horizontal displacements of the layer through its thickness have been analyzed carefully. It has
been shown that all the deplanation profiles for various values of ν have a common point. Location of
the zero point (zero average longitudinal displacement), in turn, is strongly affected by Poisson’s ratio.
As ν is lowered, the vertical position decreases linearly in the conventional range, and in a cubic manner
in the auxetic range. The stress components for the system, in turn, are independent of Poisson’s ratio.

The presented semianalytical approach and the results can be a benchmark for future research on, for
example, periodic cell structures made of conventional and auxetic materials.
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STABILITY AND NONPLANAR POSTBUCKLING BEHAVIOR OF
CURRENT-CARRYING MICROWIRES IN A

LONGITUDINAL MAGNETIC FIELD

YUANZHUO HONG, LIN WANG AND HU-LIANG DAI

The stability and nonplanar buckling problem of current-carrying microwires in the presence of longitudi-
nal magnetic field are investigated by accounting for the nonlinearities resulted from the axial elongation
of the microwire’s centerline. Based on the Euler–Bernoulli beam theory, modified couple stress theory,
and Hamilton’s principle, the nonlinear governing equations of the nonplanar motions of the microwire
are derived. By application of Galerkin’s approach, the nonplanar dynamic responses are evaluated for
both clamped-clamped and pinned-pinned boundary conditions. The effects of dimensionless material
length scale parameter, compressive load, magnetic field force, and slenderness ratio on the nonplanar
buckling instability and the postbuckling configuration are discussed in detail. The obtained results show
that the nonplanar buckling instability of microwires occurs when the magnetic field force becomes
sufficiently large and the postbuckling configuration depends on the magnitude of magnetic field force,
slenderness ratio, and initial conditions. The material length scale parameter can stabilize the microwire.
Moreover, the stability boundaries for the magnetic field parameter and compressive load are analyzed,
showing that an expected critical value of magnetic field parameter may be achieved by choosing a
suitable compressive load as a trigger of automatic devices. Interestingly, it is found that the presence
of an axial compressive load has no effect on the postbuckling shape, although it can destabilize the
microwire system and amplify the postbuckling amplitude.

1. Introduction

With the flourish of nanomaterials and nanotechnology [Lee et al. 2013; Tao et al. 2010; Atashbar
and Singamaneni 2005; McFarland and Colton 2005], miniaturization is becoming one of the main
features in microelectromechanical systems (MEMS) and microelectronic devices [Lee et al. 2008; Li
et al. 2007; Luo et al. 2006; Pauzauskie and Yang 2006; Singh 2009]. For that reason, many scientific
researchers have paid great attention to the mechanical behaviors of micro/nano structures. In many
practical applications, microstructures may be subjected to various physical fields, such as a magnetic
field, electric field, or fluid flow. It has been experimentally observed in the scale of micrometers that
strong small-length scale effects may occur in both nonmetallic and metallic materials [McFarland and
Colton 2005; Fleck et al. 1994; Stölken and Evans 1998]. Namely, the mechanical properties of mi-
croscale structures may depend on their geometrical size. Obviously, such size-dependent properties
cannot be classical/conventional continuum mechanics theories. Some experimental results [McFarland
and Colton 2005; Fleck et al. 1994; Stölken and Evans 1998] showed that with the decrease of structural
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Keywords: nonplanar postbuckling configuration, microwire carrying electric current, modified couple stress theory,

longitudinal magnetic field, buckling instability.
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characteristic size, the effective stiffness of microscale structures generally becomes higher than that
predicted by using the classical continuum mechanics theories, i.e., the error between the experimental
result and the result from classical continuum mechanics theories might be remarkable in some cases.
Therefore, several nonclassical continuum theories have been established, such as the nonlocal elasticity
theory [Wang 2009; Wang et al. 2006; Chang and Yeh 2014], surface elasticity theory [Kiani 2014a; He
and Lilley 2008], strain gradient elasticity theory [Ebrahimi and Barati 2017a], and couple stress theory
[Yang et al. 2002; Mindlin and Tiersten 1962].

According to the nonlocal elasticity theory, the stress state at a given point is assumed to depend on the
strain state of itself and its neighborhood [Wang et al. 2006]. The surface elasticity theory presumes that
the surface energy cannot be ignored, and with the increase of ratio between surface/interface area and
volume, the effect of surface layer may play a significant role in predicting the mechanical behavior of
nanoscale structures [Wang 2009]. The couple stress theory is originally developed by Mindlin and Tier-
sten [1962] and further modified by Yang et al. [2002]. In the modified couple stress theory, not only the
classical normal and shear stresses, but also the couple stresses, which are related to the deformation via
a new material constant called the material length scale parameter, have been taken into account. So far,
many researchers have utilized the modified couple stress theory to describe the size effect of microstruc-
tures [Tsiatas 2009; Dai et al. 2015; Dehrouyeh-Semnani et al. 2015; Mohammadabadi et al. 2015].

In the framework of the above nonclassical continuum theories, there were a few studies focused on
the mechanical behavior of carbon nanotubes in magnetic fields [Kiani 2014c; Arani et al. 2015; Wang
et al. 2016]. In the presence of a magnetic field, the Lorentz force generated by the induced current needs
to be taken into account in some cases. For instance, Kiani [2014c] investigated the instability of a single-
walled carbon nanotube (SWCNT) subjected to a three-dimensional (3D) magnetic field and obtained the
critical transverse magnetic field at which buckling instability of the SWCNT occurs. Arani et al. [2015]
studied the nonlinear vibration of two coupled nanotubes conveying fluid under a two-dimensional (2D)
magnetic field, showing that the effect of a transverse magnetic field on the stability of CNTs is more
obvious than that of a longitudinal magnetic field. More recently, Wang et al. [2016] studied the natural
frequency and stability of fluid-conveying carbon nanotubes in a longitudinal magnetic field, and they
found that the magnetic field can increase the critical flow velocity for flutter instability.

In addition, there were some studies associated with the vibration characteristics of micro/nano-beams
acted upon by magnetic fields [Chang 2016; Ebrahimi and Barati 2016; 2017b]. For instance, Chang
[2016] analyzed the effect of a magnetic field on the frequency of nonlinear nanobeams based on nonlo-
cal elasticity theory and found that the magnetic force decreases the frequency and hence the nonlocal
parameter can destabilize the nanobeam. Ebrahimi and Barati [2016] established a dynamical model of
thermo-piezo-electrically actuated nanobeams under a magnetic field. On the basis of nonlocal strain
gradient theory, Ebrahimi and Barati [2017b] investigated the flexural wave propagation of functionally
graded (FG) nanobeams in a longitudinal magnetic field. It was shown that the wave propagation charac-
teristics of FG nanobeams depend on various parameters including material graduation, magnetic field
intensity, and length scale parameter.

In the past years, several investigations have been carried out regarding the dynamics of micro/nano-
wires carrying electric current in the presence of magnetic fields [Kiani 2014a; 2015a; Wang et al. 2015].
In the dynamical model of current-carrying micro/nano-wires under magnetic fields, the induced current
for the change of magnetic flux was assumed to be negligible if compared with the initial current. Hence,



STABILITY AND NONPLANAR POSTBUCKLING BEHAVIOR IN A LONGITUDINAL MAGNETIC FIELD 483

the Lorentz force produced by the exerted magnetic field and initial current is the key factor needed to
be accounted for.

Reviewing the studies on instability and vibration of magnetically affected micro/nano-wires carrying
electric current, Kiani [2014a] studied the forced vibration of current-carrying nanowires (CCNW) in a
longitudinal magnetic field accounting for both surface energy and nonlocal size effects. The influence of
excitation frequency, magnetic force and small scale parameter on the maximum magnitude of transverse
displacements of the CCNW was discussed. Using surface elasticity theory and considering the effect
of longitudinal magnetic field, Keivan also investigated the column buckling of doubly parallel slender
CCNW [Kiani 2016], and the free vibration and instability of a single CCNW modeled by a string [Kiani
2014b] or by an Euler–Bernoulli beam [Kiani 2015a]. The work of Kiani [2015b] was concerned with the
vibration and buckling instability of pretensioned CCNWs acted upon by a suddenly applied 3D magnetic
field. Using the differential quadrature method, Wang et al. [2015] calculated the natural frequency and
buckling shapes of current-carrying microwires (CCMW) immersed in a longitudinal magnetic field. It
was shown that both first- and second-mode buckling instabilities of microwires with clamped-clamped
ends might occur when the magnetic field parameter becomes sufficiently large.

Amongst the valuable studies reviewed above, most researchers employed linear analytical models to
analyze the dynamical system of magnetically affected CCNWs/CCMWs. However, some key questions
associated with nonlinear phenomena cannot be answered excepted by nonlinear theory. For example,
when a magnetically affected CCMW is buckled, the original straight equilibrium has become unstable
and any motions actually would take place about the new nontrivial equilibrium points. In such a case,
the postbuckling behavior must be assessed in the framework of nonlinear theories. Therefore, it is
instructive for us to develop nonlinear analytical models for investigating the nonlinear postbuckling
behaviors of CCMWs/CCNWs acted upon by magnetic fields.

In the present study, using the modified couple stress theory proposed by Yang et al. [2002], a nonlinear
analytical model for magnetically affected CCMWs is developed to explore the microwire’s dynamical
behavior. Using Hamilton’s principle, the nonplanar governing equations are derived by significantly
accounting for the nonlinearity associated with the axial extension of the microwire when lateral displace-
ments occur. The main feature of this analytical model is that it is capable of predicting the nonplanar
configuration of the CCMW during buckling. The partial differential equations were discretized by
Galerkin’s approach and the resultant ordinary differential equations (ODE) were further solved via a
fourth-order Runge–Kutta method. The effects of slenderness ratio, magnetic field force, axial com-
pressive load, material length scale parameter, and initial conditions on the instability and nonplanar
postbuckling configurations are evaluated, interestingly showing that the postbuckling shape of CCMWs
is sensitive to the magnetic field parameter as well as the initial conditions employed.

2. Definition, assumption, and modeling of the problem

Consider a straight elastic microwire of length L illustrated in Figure 1. The microwire is immersed in a
longitudinal magnetic field B and a constant electric current I is flowing through it. It is assumed that the
microwire is slender enough such that the microwire can be modeled by a Euler–Bernoulli microbeam
of density ρ, circular cross-sectional area A, and classical flexural rigidity E I . The effects of gravity
are neglected while the axial extension of the microwire’s centerline is taken into account. The initial
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Figure 1. Schematic of a current-carrying microwire in a longitudinal magnetic field.

stress of the microwire may be nonzero due to the action of a given axial compressive load P . In the
following analysis, using the rectangular Cartesian coordinate system (x, y, z) shown in Figure 1, the
x-axis is assumed to be coincident with the centroidal axis of the undeformed microwire. The microwire
may deflect along the y-axis and the z-axis, as shown in Figure 1.

According to the modified couple stress theory [Yang et al. 2002], the relation between the deviatoric
part of the coupled stress tensor mi j and the symmetric curvature tensor xi j is given by

mi j = 2l2Gxi j , (1)

where G and l represent the shear modulus and the material length scale parameter respectively. By
referring to the derivation of Mojahedi and Rahaeifard [2016], the nonzero components of the symmetric
curvature tensor can be written as

xxy = xyx =−
1
2
∂2w

∂x2 , xxz = xzx =−
1
2
∂2v

∂x2 . (2)

Substituting (2) into (1), one has

mxy = m yx =−Gl2 ∂
2w

∂x2 , mxz = mzx =−Gl2 ∂
2v

∂x2 . (3)

As shown in Figure 1, the components of the displacement vector of the point (x, 0, 0) on the centroidal
axis can be described as u = u(x, t), v = v(x, t), and w = w(x, t). According to the Euler–Bernoulli
beam theory, the displacement field can be written as

u1(x, y, z, t)= u(x, t)− z ∂w(x, t)
∂x

− y ∂v(x, t)
∂x

, u2 = v(x, t), u3 = w(x, t), (4)

where u1, u2, and u3 are, respectively, the x-, y-, and z-components of the displacement vector u of a
point (x, y, z) on a beam cross-section.

The initial axial strain induced by the axial compressive load can be written as

ε0 =−
P

E A
. (5)

The axial strain caused by the beam’s deformation can be obtained by the von-Kármán relation and is
given by

ε1 =
∂u1

∂x
+

1
2

(
∂w

∂x

)2
+

1
2

(
∂v

∂x

)2
=
∂u
∂x
− z

∂2w

∂x2 − y
∂2v

∂x2 +
1
2

(
∂w

∂x

)2
+

1
2

(
∂v

∂x

)2
. (6)
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It is assumed that the effect of motions on the initial axial strain could be neglected for small defor-
mations. Thus, the total axial strain of the microwire is obtained as

εx =−
P

E A
+
∂u
∂x
− z

∂2w

∂x2 − y
∂2v

∂x2 +
1
2

(
∂w

∂x

)2
+

1
2

(
∂v

∂x

)2
, (7)

and the axial stress can be written as

σx = E
[
−

P
E A
+
∂u
∂x
− z

∂2w

∂x2 − y
∂2v

∂x2 +
1
2

(
∂w

∂x

)2
+

1
2

(
∂v

∂x

)2
]
. (8)

Now the total strain energy in the microwire can be expressed as

V = 1
2

∫
L

∫∫
A
(σxεx +mxy xxy +m yx xyx +mxzxxz +mzx xzx) dA dx . (9)

Substituting (2), (3), (7), and (8) into (9), one obtains

V = 1
2

∫
L

∫∫
A

{
E
[
−

P
E A
+
∂u
∂x
− z

∂2w

∂x2 − y
∂2v

∂x2 +
1
2

(
∂w

∂x

)2
+

1
2

(
∂v

∂x

)2
]2

+Gl2
(
∂2w

∂x2

)2

+Gl2
(
∂2v

∂x2

)2}
dA dx . (10)

The kinetic energy of the microwire is given by

T = 1
2ρA

∫ L

0

[(
∂u
∂t

)2
+

(
∂v

∂t

)2
+

(
∂w

∂t

)2]
dx, (11)

where the components of the velocity vector of the point (x, 0, 0) on the centroidal axis are utilized to
determine the kinetic energy of the system.

On the basis of Lorentz’s formula, the CCMW immersed in a magnetic field would be subjected to a
Lorentz force. For small deformations, I = I0(1+∂u/∂x) ex+ I0(∂w/∂x) ey+ I0(∂v/∂x) ez is the electric
current vector with amplitude I0. According to the derivation of He and Lilley [2008], the Lorentz force
per unit length of the microwire immersed in a longitudinal magnetic field can be evaluated by

fm = I × B = B0 I0

(
0 ex ,

∂w

∂x
ey,−

∂v

∂x
ez

)
, (12)

where ex , ey , and ez represent the unit vectors associated with x-, y-, and z-axes, respectively; B0 is
the magnitude of the magnetic induction vector B. It is noted that an induced current may be generated
because of the electromagnetic induction, yielding an additional magnetic force. According to deriva-
tion of Narendar et al. [2012], one obtains the additional magnetic forces along the z- and y-axes are
ηAH 2

x ∂
2w/∂x2 and ηAH 2

x ∂
2v/∂x2, respectively, where η is the magnetic field permeability and Hx is

the magnetic flux vector with amplitude Hx in the x direction. In this paper, the microwire is considered
to be nonferromagnetic. For nonferromagnetic materials (e.g., copper or silver), the magnetic field per-
meability η is approximately to be 4π × 10−7 H/m and the magnetic field intensity Hx is approximately
equal to the magnetic induction B. In this case, the Lorentz force plays a major role. Thus the effect of
the additional magnetic force will be neglected in this work.
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Then, the variation of the virtual work resulted from the Lorentz’s force is given by

δW = B I0

∫ L

0

(
∂w

∂x
δv−

∂v

∂x
δw
)

dx . (13)

According to Hamilton’s principle, one has∫ t2

t1
(δV − δT − δW ) dt = 0. (14)

Substituting (10), (11), and (13) into (14) and considering the pinned-pinned or clamped-clamped bound-
ary conditions of the microwire, the nonplanar version of the governing equations of the microwire
carrying current in a longitudinal magnetic field takes the form

ρA
∂2u
∂t2 − E A

∂2u
∂x2 − E A ∂v

∂x
∂2v

∂x2 − E A∂w
∂x

∂2w

∂x2 = 0, (15a)

ρA
∂2v

∂t2 + (AGl2
+ E I )

∂4v

∂x4 + E A
[

P
E A
−
∂u
∂x
−

1
2

(
∂w

∂x

)2
−

3
2

(
∂v

∂x

)2
]
∂2v

∂x2

− E A
(
∂2u
∂x2 +

∂w

∂x
∂2w

∂x2

)
∂v

∂x
= B I0

∂w

∂x
, (15b)

ρA
∂2w

∂t2 + (AGl2
+ E I )

∂4w

∂x4 + E A
[

P
E A
−
∂u
∂x
−

1
2

(
∂v

∂x

)2
−

3
2

(
∂w

∂x

)2
]
∂2w

∂x2

− E A
(
∂2u
∂x2 +

∂v

∂x
∂2v

∂x2

)
∂w

∂x
=−B I0

∂v

∂x
. (15c)

From (15), it is seen that the distributed Lorentz force is not constant but actually depends upon the
deformed configuration of the microwire. When we consider the interaction between the magnetic field
and microwire, it is also assumed that there is no coupling at the material level but only through the
Lorentz force, which is applied as a body force in (15b) and (15c).

In consideration of no distributed axial load, the longitudinal inertia could be neglected [Kahrobaiyan
et al. 2011] and (15a) can be reduced to the following form

−E A
∂2u
∂x2 − E A ∂v

∂x
∂2v

∂x2 − E A∂w
∂x

∂2w

∂x2 = 0, (16)

namely,

−
∂2u
∂x2 =

1
2

{
∂

∂x

[(
∂v

∂x

)2
+

(
∂w

∂x

)2]}
. (17)

Carrying out two integrations of (17) and applying the corresponding boundary conditions, one obtains

u =−1
2

∫ x

0

[(
∂v

∂x

)2
+

(
∂w

∂x

)2]
dx + x

2L

∫ L

0

[(
∂v

∂x

)2
+

(
∂w

∂x

)2]
dx . (18)
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Substituting (18) into (15b) and (15c), the governing equations of the microwire can be simplified to
two-dimensional forms, as follows:

(AGl2
+ E I )

∂4v

∂x4 + E A
[ P

E A
−

C
2L

]∂2v

∂x2 + ρA
∂2v

∂t2 = B I0
∂w

∂x
, (19a)

(AGl2
+ E I )

∂4w

∂x4 + E A
[ P

E A
−

C
2L

]∂2w

∂x2 + ρA
∂2w

∂t2 =−B I0
∂v

∂x
, (19b)

where the parameter C represents the axial elongation of the centroidal axis and is defined by

C =
∫ L

0

[(
∂v

∂x

)2
+

(
∂w

∂x

)2]
dx . (20)

The resultant equations may be rendered dimensionless through the use of

ξ =
x
L
, v̄ =

v

L
, w̄ =

w

L
, τ =

[ E I
ρA

]1/2 t
L2 . (21)

The dimensionless equations are

(µ+ 1)
∂4v̄

∂ξ 4 + (p−αc)
∂2v̄

∂ξ 2 −α
3/2 f I

∂w̄

∂ξ
+
∂2v̄

∂τ 2 = 0, (22a)

(µ+ 1)
∂4w̄

∂ξ 4 + (p−αc)
∂2w̄

∂ξ 2 +α
3/2 f I

∂v̄

∂ξ
+
∂2w̄

∂τ 2 = 0, (22b)

where several other dimensionless parameters are defined by

µ=
AGl2

E I
, p= P L2

E I
, f I =

2
√

2 B I0

EπD
, α=

AL2

2I
=8

( L
D

)2
, c=

∫ 1

0

[(∂v̄
∂ξ

)2
+

(∂w̄
∂ξ

)2]
dξ. (23)

The various dimensionless parameters in (23) denote, respectively, the dimensionless material length
scale parameter, dimensionless compressive load, dimensionless magnetic force, dimensionless parame-
ter associated with slenderness ratio, and dimensionless axial elongation of the centerline. In the follow-
ing analysis, the effects of the first four dimensionless parameters appearing in (23) on the stability and
nonplanar buckling of the microwire will be discussed in detail.

In the case of a clamped-clamped microwire carrying current, the dimensionless boundary conditions
to be satisfied are as follows:

v̄(0, τ )= v̄(1, τ )= 0, ∂v̄(0, τ )
∂ξ

=
∂v̄(1, τ )
∂ξ

= 0, (24a)

w̄(0, τ )= w̄(1, τ )= 0, ∂w̄(0, τ )
∂ξ

=
∂w̄(1, τ )
∂ξ

= 0. (24b)
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The dimensionless boundary conditions for a pinned-pinned microwire may be written in a similar
way:

v̄(0, τ )= v̄(1, τ )= 0,
∂2v̄(0, τ )
∂ξ 2 =

∂2v̄(1, τ )
∂ξ 2 = 0, (25a)

w̄(0, τ )= w̄(1, τ )= 0,
∂2w̄(0, τ )
∂ξ 2 =

∂2w̄(1, τ )
∂ξ 2 = 0. (25b)

3. Solutions based on Galerkin’s approach

In this section, the Galerkin’s approach is applied to transform the governing equations from partial
differential equations (PDEs) to ordinary differential equations (ODEs). The resultant ODEs will be
further solved by using a fourth-order Runge–Kutta (R–K) method. For the sake of eliminating the
effects of initial conditions on the transient responses and achieving steady buckling deformation of the
microwire, an additional damping term is added to the governing equations; thus, we have

(µ+ 1)
∂4v̄

∂ξ 4 + (p−αc)
∂2v̄

∂ξ 2 −α
3/2 f I

∂w̄

∂ξ
+
∂2v̄

∂τ 2 + γ
∂v̄

∂τ
= 0, (26a)

(µ+ 1)
∂4w̄

∂ξ 4 + (p−αc)
∂2w̄

∂ξ 2 +α
3/2 f I

∂v̄

∂ξ
+
∂2w̄

∂τ 2 + γ
∂w̄

∂τ
= 0, (26b)

where γ is a dimensionless damping coefficient. It should be explained that the additional damping
term cannot affect the postbuckling configuration of the current-carrying microwire. In what follows, the
damping coefficient of γ = 1 is adopted for the purpose of obtaining fast convergence speed.

According to the Galerkin’s approach, the dimensionless lateral displacements of the microwire may
be expressed as

v̄(ξ, τ )=

N∑
n=1

φn(ξ) qvn(τ ), (27a)

w̄(ξ, τ )=

N∑
n=1

φn(ξ) qwn(τ ), (27b)

where N is the number of considered modes and φn(ξ) is the n-th mode function of an Euler–Bernoulli
beam with corresponding boundary conditions; qvn(τ ) and qwn(τ ) are the two generalized coordinates
of the discretized system. It is presumed that the approximate expansion of series (27) may be reliable
at a suitably high value of N .

Substituting (27a) and (27b) into (26a) and (26b), one obtains the following set of nonlinear algebraic
equations: [

K vv(τ ) K vw

Kwv Kww(τ )

]{
qv
qw

}
+

{
q̈v
q̈w

}
+ γ

{
q̇v
q̇w

}
= 0, (28)

where single and double dots denote first- and second-order derivatives with respect to the dimensionless
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time τ . In (28), several vectors and matrices are defined by

qv =


qv1(τ )
...

qvN (τ )

 , qw =


qw1(τ )
...

qwN (τ )

 , (29a)

K vv
mn(τ )= Kww

mn (τ )= (µ+ 1)λ4
mδmn + η(τ) cmn, (29b)

K vw
mn =− f I bmn, (29c)

Kwv
mn = f I bmn. (29d)

The values of bmn , cmn , and λn , which are related to the boundary conditions of the microwire, may
be evaluated in closed form by defining the following set of constants:

bmn =

∫ 1

0
φm(ξ) φ

′

n(ξ) dξ, cmn =

∫ 1

0
φm(ξ) φ

′′

n (ξ) dξ. (30)

For clamped-clamped boundary conditions, we have

λ1 = 4.7300, λ2 = 7.8532, λn ≈
(
n+ 1

2

)
π (n = 3, 4, 5, . . .), (31a)

φn(ξ)= cos(λnξ)− cosh(λnξ)−
cos(λ)− cosh(λn)

sin(λn)− sinh(λn)
[sin(λnξ)− sinh(λnξ)]. (31b)

For pinned-pinned boundary conditions, one has

λn = nπ (n = 1, 2, 3, . . .), (32a)

φn(ξ)=
√

2 sin(λnξ). (32b)

It should be noted that the dimensionless parameter η(τ) in (29b) represents the equivalent axial com-
pression p determined by the initial axial compression and the time-varying axial elongation c(τ ), i.e.,

η(τ)= p− ac(τ ), (33)

c(τ )=
∫ 1

0

{[ N∑
n=1

φ′n(ξ) qvn(τ )

]2

+

[ N∑
n=1

φ′n(ξ) qwn(τ )

]2}
dξ. (34)

In order to apply the Runge–Kutta method, we define two new vectors as follows

q =
{

qv
qw

}
, Q =

{
q̇
q

}
. (35)

Then one obtains

Q̇ = F(τ, Q)=
[
−γ ×[I] −[K ]
[I] [0]

]{
{q̇}
{q̇}

}
, (36)

where [I] is a unit diagonal matrix and [0] is a zero element matrix.
By use of the fourth-order Runge–Kutta method, the dynamic responses of the CCMW immersed in a

longitudinal magnetic field may be calculated. Selecting a set of system parameters defined in (23), one
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can analyze the effects of slenderness ratio, magnetic force, axial compression and material length scale
parameter on the stability and nonplanar postbuckling behaviors of the microwire.

4. Validity of the developed nonlinear model and proposed computational procedure

It is noted that, due to the presence of Lorentz’s force, (26) could not be solved analytically. In the
case of f I = 0, however, the exact solutions for the postbuckling amplitudes of a microwire under axial
compression are available [Nayfeh and Emam 2008]. In this section, first, numerical simulations based
on (26) are performed in order to check the validity of the developed nonlinear model and proposed com-
putational procedure. For that purpose, the postbuckling configuration of an axially loaded microbeam
in the absence of magnetic fields is numerically calculated and compared to that obtained analytically.

In the case of µ= 0 and f I = 0, (26) is reduced to the buckling problem of a classical Euler–Bernoulli
beam subjected to a compressive load. The governing equation for the planar deflection of the microwire
becomes

ψ iv(ξ)+ pψ ′′(ξ)−αψ ′′
∫ 1

0
ψ ′2(ξ) dξ = 0. (37a)

Now consider a simply-supported beam with an axial compressive load of p = 10π2. In this case, the
analytical solution for the buckling configuration is given by [Sun et al. 2017]

ψ1(ξ)=±
3
√

2α
α

sin(πξ). (37b)

As seen in Figure 2, compared with the analytical solution of (37b), our numerical results for the
buckling amplitude of the microwire achieve low relative error below 0.01% for N > 4, thus demon-
strating the validation and accuracy of the Runge–Kutta procedure. Synthesizing both the accuracy and
computational efficiency, therefore, N = 5 will be chosen for the following calculations.
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Figure 2. The relative error of numerical results for postbuckling amplitude as a func-
tion of the truncated mode number N for µ= 0, f I = 0, α = 800, and p = 10π2.
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5. Results and discussion

This section examines the nonlinear behavior of the CCMW employing the nonlinear model developed in
Section 2. More specifically, the postbuckling amplitudes of the microwire are examined in Section 5.1,
for different values of α and f I . The effect of initial conditions on the postbuckling configurations
(amplitude and shape) of the microwire is analyzed in Section 5.2. The influence of magnetic field
parameter on the postbuckling configurations of the microwire is discussed in Section 5.3. Section 5.4
evaluates the effect of material length scale parameter on the stability and postbuckling amplitudes of
the microwire. In Section 5.5, the effect of axial compressive load on the postbuckling configuration is
studied.

5.1. Postbuckling amplitudes of the microwire for various α and fI . The microwire’s stability and
postbuckling amplitude are examined by setting µ = 0.1 and p = 0, and varying the value of α. To
observe the stability evolution of the microwire, the dimensionless magnetic force f I is successively
increased.

Figure 3 shows the buckling responses of the microwire through plots of the transverse amplitudes as
a function of f I , for clamped-clamped or pinned-pinned boundary conditions. The results are obtained
for a microwire with α = 800, 1200, 1600, or 2000. In Figure 3, the transverse amplitudes of the
microwire are denoted as max(

√
v̄(ξ, τ )2+ w̄(ξ, τ )2 ). From this figure, one may find that the buckling

instability of a clamped-clamped microwire occurs at f I c ≈ 0.0192, 0.0104, 0.0068, and 0.0048 for four
different values of α (α = 800, 1200, 1600, and 2000), respectively. For a pinned-pinned microwire, the
buckling instability occurs at f I c ≈ 0.0069, 0.0038, 0.0024, and 0.0018 for α = 800, 1200, 1600, and
2000, respectively. Since f I c represents the onset value of dimensionless magnetic force for buckling
instability, it is termed as the critical magnetic force. Thus, by changing the value of α and maintaining
other system parameters unchanged, the slenderness ratio parameter α is found to have significant effect
on the critical magnetic force and hence the postbuckling amplitudes of the microwire. The evolution of
postbuckling amplitudes as a function of α is in accord with one’s common experience. Based on further
calculations, it is found that at the onset of buckling instability, we have α3/2 f I c ≈ 433.7 for clamped-
clamped ends and α3/2 f I c ≈ 157.1 for pinned-pinned ends. For a given set of boundary conditions,
therefore, the combined parameter α3/2 f I may be viewed as an essential index for examining the stability
of CCMW acted upon by a longitudinal magnetic field. In the following discussion, we define α3/2 f I as
a new magnetic field parameter.

5.2. Postbuckling configurations for various initial conditions. The results shown in Figure 3 were
concerned with the transverse amplitudes of the microwire. Some calculations for the postbuckling
shapes of the microwire are further conducted here. In our numerical calculations, it is noted that the
initial conditions can significantly affect the final postbuckling shapes of the microwire. This trend may
be the most interesting finding in this work. Some typical results are plotted in Figure 4 and Figure 5,
where the dimensionless magnetic field parameter α3/2 f I remains unchanged while the value of α is
varied. In Figure 4, the initial conditions for calculations were chosen as

q̇v(0)= q̇w(0)= {0, 0, 0, 0, 0}, qv(0)= qw(0)= {a, 0, 0, 0, 0}, (38)
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Figure 3. The maximum transverse amplitudes of the microwire as a function of the
dimensionless magnetic force f I , for µ = 0.1, p = 0, and various values of α: for
clamped-clamped boundary conditions (left), and for pinned-pinned boundary condi-
tions (right).

where a is a given constant and is fixed to be 0.001 in our calculations. In Figure 5, however, another
set of initial conditions were used:

q̇v(0)= q̇w(0)= {0, 0, 0, 0, 0}, qv(0)= {a, 0, 0, 0, 0}, qw(0)= {0, a, 0, 0, 0}. (39)

As shown by the results of Figure 4 and Figure 5, for a given set of system parameters, the buckling
shapes in the x-o-y and x-o-z planes are different from each other. Interestingly, the postbuckling shapes
depend on the combined parameter α3/2 f I and the buckling amplitudes are affected by the slenderness ra-
tio parameter α. Moreover, the postbuckling configurations shown in Figure 4 (left column) (or Figure 4,
right column) contain both first-mode and second-mode components of a beam with clamped-clamped
(or pinned-pinned) boundary conditions. As shown by the results of Figure 5, however, the postbuckling
shapes for v in x-o-y plane and w in x-o-z plane mainly contains the first-mode and second-mode
components, respectively.

More extensive calculations have been done for several other possible types of initial conditions. The
results are presented in Figure 6 for clamped-clamped boundary conditions and in Figure 7 for pinned-
pinned boundary conditions. From the results of Figure 6 and Figure 7, it is observed that the postbuckling
shapes of the microwire are strongly dependent on the initial conditions used. For a set of given initial
conditions, the buckling shape for v in the x-o-y plane may mainly contain the first-mode component
of a clamped-clamped beam. For other initial conditions, however, it may be mainly associated with the
second-mode component. To the authors’ knowledge, this strong dependence of postbuckling shapes on
the initial conditions is a relatively new finding for CCNWs and has not been reported previously.

An alternative, perhaps easier-to-understand form of the results of Figure 6 and Figure 7, is represented
in a cylindrical coordinate, as shown in Figure 8 and Figure 9. In these two figures, the radius r and
angle θ , respectively, denote the minimum distance from the deformed microwire to the x-axis and
the minimum clockwise rotation angle from vector {v ey, w ez} to the unit vector ey. From Figure 8
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Figure 4. The postbuckling shapes of the microwire in the x-o-y and x-o-z planes for
µ= 0.1, p= 0, and various values of α, for: clamped-clamped boundary conditions with
α3/2 f I = 1000 (left column), and pinned-pinned boundary conditions with α3/2 f I = 500;
the initial conditions of (38) were chosen for all calculations (right column).

Figure 5. The postbuckling shapes of the microwire in the x-o-y and x-o-z planes for
µ= 0.1, p= 0, and various values of α, for: clamped-clamped boundary conditions with
α3/2 f I = 1000 (left column), and pinned-pinned boundary conditions with α3/2 f I = 500;
the initial conditions of (39) were chosen for all calculations (right column).

and Figure 9, one can observe two obvious but important features. First, the dimensionless radius r
for a fixed ξ is identical for various different initial conditions, for either clamped-clamped or pinned-
pinned boundary conditions. This implies that initial conditions have no effect on the “overall” nonplanar
amplitudes of the CCMW. However, initial conditions can affect the spatial shapes of the microwire, as
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Figure 6. The postbuckling shapes of the microwire with clamped-clamped ends for
different initial conditions: µ= 0.1, p = 0, α3/2 f I = 2000, and α = 800.

Figure 7. The postbuckling shapes of the microwire with pinned-pinned ends for differ-
ent initial conditions: µ= 0.1, p = 0, α3/2 f I = 1000, and α = 800.

may be observed in Figure 8, right, and Figure 9, right. Second, the total relative rotation angles of
clamped-clamped microwire and pinned-pinned microwire are 150 and 120 degrees respectively, which
are independent of initial conditions.

To explain the strong dependence of postbuckling shapes on initial conditions, let us analyze the
eigenvectors of the stiffness matrix [K ] in (8). For a given set of system parameters, extensive calcu-
lations showed that the dimensionless axial elongation of the microwire’s centerline do not change for
various initial conditions. This means that the stiffness matrix [K ] does not change. Putting the value of
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Figure 8. The postbuckling configurations of a clamped-clamped microwire shown in a
cylindrical coordinate system for different initial conditions and µ= 0.1, p= 0, α3/2 f I =

2000, and α = 800.

Figure 9. The postbuckling configurations of a pinned-pinned microwire shown in
a cylindrical coordinate system, for different initial conditions and µ = 0.1, p = 0,
α3/2 f I = 1000, and α = 800.

dimensionless axial elongation of the centerline into the stiffness matrix [K ], one has[
K vv K vw

Kwv Kww

]{
qv
qw

}
= 0. (40)

It is assumed that a particular nontrivial solution of (40) may be expressed as{
qv
qw

}
=

{
X1

X2

}
. (41)
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Bearing in mind the expression of (29), one has

K vv
= Kww, K vw

=−Kwv. (42)

It is noted that, therefore, another particular solution satisfying (40) can be written as{
qv
qw

}
=

{
X2

−X1

}
. (43)

Thus, it follows from (41) and (43) that there may exist infinite kinds of possible solutions to (28).
This implies that infinite kinds of postbuckling shapes may occur, mainly determined by the chosen
initial conditions. Indeed, the feature of kaleidoscopic postbuckling shapes is due to the antisymmetry
of the stiffness matrix [K ]. This new feature for nonplanar microwires has not been detected in previous
studies of microwires under buckling in a single plane.

In fact, the initial displacement conditions may be viewed as an initial disturbance for the microwire.
From this point of view, a set of initial velocity conditions may be also employed as an initial disturbance.

5.3. Effect of magnetic field parameter on the postbuckling configurations. The main results obtained,
plotted in Figures 10–12, show that the magnetic field parameter may, sometimes, affect the postbuckling
configurations of the microwire. In Figure 10 and Figure 11, four values of magnetic field parameter have
been chosen for calculations for clamped-clamped or pinned-pinned boundary conditions. With initial
conditions defined by (39), it is clear that the magnetic field parameter does not have visible effect on the
postbuckling shape of the microwire. With initial conditions of (38), however, it is seen that the effect
of magnetic field parameter on the postbuckling shape is obvious. For example, the results of Figure 10
(right) show that with increasing magnetic field parameter, the buckling shape of w in the x-o-z plane
contains more and more second-mode components of a clamped-clamped beam. Similar trends may be
found for pinned-pinned boundary conditions.

In addition, it is found that the buckling instability cannot appear in higher-order modes (e.g., the third
mode), even if the magnetic field parameter becomes sufficiently large.

More extensive calculations have produced the results of Figure 12, where the initial conditions of (38)
were utilized, for either clamped-clamped or pinned-pinned boundary conditions. In Figure 12 (left or
right), twenty different values of magnetic field parameter were selected for calculations, thus producing
twenty curves in each figure. Only the configurations of v have been plotted for clarity. It should be stated
that the results of postbuckling amplitudes shown in Figure 12 have been normalized for the purpose of
intuitive comparison. From Figure 12 (left and right), it is clearly seen that, with the increase of magnetic
field parameter, the postbuckling configuration evolves from the first-mode shape to a hybrid shapes of
both first and second modes.

Strictly speaking, the displacement v (or w) would contain contributions of all the modes according to
the basic idea of the Galerkin’s approach. However, the contributions of higher-order modes are not pro-
nounced, as demonstrated in Figure 13, in which the proportions of the lowest four modes for determining
the displacement of v have been quantitatively shown. It is observed that the microwire’s displacement
is mainly associated with the first and second modes. With the increase of magnetic field parameter, the
first-mode contribution becomes smaller while the second-mode contribution becomes larger.
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Figure 10. The evolution of postbuckling shapes of clamped-clamped microwires with
increasing magnetic field parameter for µ= 0.1, p = 0, and α = 800: (a) α3/2 f I = 435,
(b) α3/2 f I = 495, (c) α3/2 f I = 900, (d) α3/2 f I = 3300. Solid lines indicate results
where initial conditions were from (38), and dashed lines indicate results where initial
conditions were from (39).

Figure 11. The evolution of postbuckling shapes of pinned-pinned microwires with in-
creasing magnetic field parameter for µ= 0.1, p = 0, and α = 800: (a) α3/2 f I = 158,
(b) α3/2 f I = 176, (c) α3/2 f I = 308, (d) α3/2 f I = 1155; Solid lines indicate results
where initial conditions were from (38), and dashed lines indicate results where initial
conditions were from (39).
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Figure 12. The effect of magnetic field parameter on the postbuckling shapes of v for
µ= 0.1, p = 0, and α = 800: clamped-clamped boundary conditions (left) and pinned-
pinned boundary conditions (right).

Figure 13. The proportions of the lowest four modes for various magnetic field parame-
ters and µ= 0.1, p = 0, and α = 800: clamped-clamped boundary conditions (left) and
pinned-pinned boundary conditions (right).

5.4. Effect of material length scale parameter on the stability boundaries. The stability problem of a
slender beam has been investigated by many researchers. In particular, the exact solution of postbuckling
configurations of beams has been obtained by Nayfeh and his coworkers [Nayfeh and Emam 2008]. In
this section, the stability boundaries of the CCMW under both axial compression and magnetic force
are studied, for various values of dimensionless material length scale parameter µ, to show the effect
of µ on the buckling behaviors of the microwire. Typical results with α = 800 are shown in Figure 14
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Figure 14. The stability boundaries for α = 800 and µ= 0, 0.1, and 0.2 for clamped-
clamped and (left) and pinned-pinned boundary conditions (right).

and Figure 15, for both clamped-clamped and pinned-pinned boundary conditions. The dimensionless
material length scale parameter is chosen to be µ= 0, 0.1, and 0.2 for calculations.

The results given in Figure 14 show the stability boundaries for µ= 0, 0.1, and 0.2. From Figure 14,
it is noted that the critical magnetic field parameter is α3/2 f I c ≈ 394.3 for p = 0 and µ = 0, which is
in accordance with the linear result of Wang et al. [2015] for microwires with clamped-clamped ends.
It is obviously seen that the material length scale parameter can stabilize the microwire system while
both the magnetic field parameter and axial compression would destabilize the microwire. When the
magnetic field parameter and axial compression are small and locate below the stability boundary, the
microwire is stable. If, however, the magnetic field parameter and axial compression are large and locate
beyond the stability boundary, the microwire is buckled. Utilizing the critical buckling curves shown in
Figure 14, an expected critical value of magnetic field parameter may be achieved by choosing a suitable
compressive load as a trigger of automatic devices.

Based on the nonlinear governing equations of (26), the maximum amplitudes of lateral displace-
ments (max[

√
v̄(ξ, τ )2+ w̄(ξ, τ )2 ]) are plotted in Figure 15. It is observed that the material length scale

can decrease the buckling amplitudes of the microwire, again, indicating that the material length scale
parameter plays a stabilizing effect on the microwire system.

5.5. Effect of axial compression on the postbuckling configurations. The effect of axial compression
on the postbuckling configurations of the microwire can be seen in Figure 16, where the parameters
were chosen as µ= 0.1, α3/2 f I = 1000, and α = 800. The initial conditions defined by (38) were used
for calculations. An interesting feature of Figure 16 is that the axial compression does not affect the
postbuckling shapes at all, although it does affect the postbuckling amplitudes of the microwire. This
implies that the main role of an axial compression is to promote the occurrence of buckling instability and
change the postbuckling amplitude of the microwire. Thus, even if the axial compression is sufficiently
large, the postbuckling configuration (shape) is still dominated by the first-order mode or the second-order
mode. In fact, higher modes can only slightly affect the postbuckling configuration of the microwire.
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Figure 15. The maximum amplitude of lateral displacements as a function of the di-
mensionless magnetic field parameter for α = 800, p = 0 and three different values of
µ for clamped-clamped and (left) and pinned-pinned boundary conditions (right).

Figure 16. The evolution of postbuckling configurations of the microwire with increas-
ing axial compression for µ= 0.1, α = 800, and α3/2 f I = 1000: with clamped-clamped
boundary conditions (left), and with pinned-pinned boundary conditions; all results were
obtained using initial conditions of (38) (right).

Before leaving Section 5, it should be mentioned that the stability and postbuckling response of the
microwire were not analyzed from the point of view of energy, although the governing equations were
derived from Hamilton’s principle. In the above analysis, the postbuckling responses and critical loads
were evaluated by numerically solving (26). The connection with energy of the system in the pre- and
post-buckling responses may be another interesting topic for the system of current-carrying microwires.
This needs more extensive analysis in the future.
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6. Conclusions

This paper studies the stability and nonplanar postbuckling of a current-carrying microwire subjected
to a longitudinal magnetic field, by taking into account the geometric nonlinearities caused by the axial
elongation of the microwire’s centerline. Based on the Euler–Bernoulli beam assumptions, the modified
couple stress theory and Hamilton’s principle, the dimensionless version of nonplanar nonlinear equations
of the microwire is derived. Using the Galerkin’s approach and a fourth-order Runge–Kutta method,
numerical results for both clamped-clamped and pinned-pinned boundary conditions are obtained. The
effects of several dimensionless parameters associated with slenderness ratio, magnetic field, compressive
load, and material length scale on the nonplanar buckling and postbuckling configurations are analyzed.
Among others, some major conclusions are summarized as follows:

The slenderness ratio parameter α has an obvious effect on the stability and the postbuckling amplitude
of the microwire. The most interesting result obtained is that the nonplanar postbuckling shapes of
the microwire under a longitudinal magnetic field may change when the initial conditions were varied,
indicating that the nontrivial equilibria are sensitive to the initial conditions used for calculations. The
dependence of postbuckling shapes on initial conditions makes it difficult to accurately determine the final
postbuckling configurations of the microwires in practice. It is also expected that such high sensitivity
of postbuckling configurations to initial conditions can be validated experimentally in the future. If such
sensitivity is physically true, then how to minimize or control such a sensitivity is another interesting
topic. In addition, one may also envision that some other methods such as a stochastic approach, or
perhaps a statistical method can help understand such a sensitivity further.

The influence of magnetic field parameter on the postbuckling shapes is found to be remarkable in
many cases. With the increase of magnetic field parameter, the postbuckling configurations are mostly
associated with the first- and second-mode components, and the proportion of the second-mode com-
ponent becomes larger while the proportion of the first-mode component decreases. In all cases, the
proportion of higher-order modes (e.g., third or fourth modes) is low and may be neglected.

The effect of material length scale parameter on the stability and postbuckling amplitude of the mi-
crowire may be foreseen using one’s experience. With the increase of dimensionless material length scale
parameter, the microwire becomes more stable. For a buckled microwire, the postbuckling amplitude
would decrease with increasing material length scale parameter.

Finally, it is found that the axial compressive load has an obvious effect on the postbuckling amplitude
while it does not affect the postbuckling shape of the microwire. Moreover, the presence of an axial
compression may reduce the threshold value of the magnetic field parameter for buckling instability.
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THREE-DIMENSIONAL TREFFTZ COMPUTATIONAL GRAINS
FOR THE MICROMECHANICAL MODELING OF HETEROGENEOUS MEDIA

WITH COATED SPHERICAL INCLUSIONS

GUANNAN WANG, LEITING DONG, JUNBO WANG AND SATYA N. ATLURI

Three-dimensional computational grains based on the Trefftz method (TCGs) are developed to directly
model the micromechanical behavior of heterogeneous materials with coated spherical inclusions. Each
TCG is polyhedral in geometry and contains three phases: an inclusion, the surrounded coating (or
interphase) and the matrix. By satisfying the 3D Navier’s equations exactly, the internal displacement
and stress fields within the TCGs are expressed in terms of the Papkovich–Neuber (P–N) solutions, in
which spherical harmonics are employed to further express the P–N potentials. Further, the Wachspress
coordinates are adopted to represent the polyhedral-surface displacements that are considered as nodal
shape functions, in order to enforce the compatibility of deformations between two TCGs. Two tech-
niques are developed to derive the local stiffness matrix of the TCGs: one is directly using the multi-field
boundary variational principle (MFBVP) while the other is first applying the collocation technique for
the continuity conditions within and among the grains and then employing a primal-field boundary vari-
ational principle (PFBVP). The local stress distributions at the interfaces between the 3 phases, as well
as the effective homogenized material properties generated by the direct micromechanical simulations
using the TCGs, are compared to other available analytical and numerical results in the literature, and
good agreement is always obtained. The material and geometrical parameters of the coatings/interphases
are varied to test their influence on the homogenized and localized responses of the heterogeneous media.
Finally, the periodic boundary conditions are applied to the representative volume elements (RVEs) that
contain one or more TCGs to model the heterogeneous materials directly.

1. Introduction

Heterogeneous materials reinforced with spherical-shaped inclusions have been widely applied in the
aviation industry and the automobile industry due to their higher property-to-volume ratios relative to
the monoclinic materials. In recent years, the effect of the interfaces between the inclusions and the
matrices in particle-filled composites has received increasing attention because of the need to tailor the
composite materials to meet specific requirements. Thus a good understanding of interfacial effects in
composites, and establishing effective and highly efficient numerical models, when coatings/interfaces
are considered, will be beneficial for the design and development of coated particulate composites.

Various classical micromechanical models were generalized to study the coated particulate composites.
For example, the initial composite spherical assemblage (CSA) model proposed by Hashin [1962] was
generalized to the three-phase domain to study the elastic moduli of coated particulate composites [Qiu

Leiting Dong is the corresponding author.
Keywords: Trefftz computational grains, heterogeneous materials, coated spherical inclusions, Papkovich–Neuber solutions,
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and Weng 1991; Herve and Zaoui 1993] or mineral materials [Nguyen et al. 2011]. The (generalized)
self-consistent scheme (GSCS) was also employed to study the multiphase heterogeneous materials
[Cherkaoui et al. 1994; Quang and He 2007]; The Mori–Tanaka (M–T) model was modified to calculate
the properties of composites reinforced with uniformly distributed particles with interphases [Jiang et al.
2009]. The classical semi-analytical homogenization techniques largely provide the currently available
tools, and even provide explicit expressions in the analysis of coated particulate composites, and thus have
gained wide acceptance within the communities of mechanics and materials. However, most of these mod-
els are based on the assumption of the mean-field homogenization which only predicts accurate effective
properties but cannot effectively recover the local inter-phase stress distributions, which are essentially
important in the prediction of the possible failures and damages in the lifetime of heterogeneous materials.

Compared to the classical homogenization techniques, the simple finite-element (FE) methods can
overcome the disadvantages mentioned above. The finite element method [Marur 2004; Liu et al. 2005;
Tsui et al. 2006; Zhang et al. 2007; Jiang et al. 2008] has been widely used in investigating various
aspects of particulate composites with coatings/interfaces, including computing the homogenized moduli,
local stress concentrations, damage, and strengthening. However, the disadvantages of these simple finite
elements are also well-known, such as unsatisfactory performance in problems which involve constraints
(shear/membrane/incompressibility locking), low convergence rates for problems which are of singular
nature (stress concentration problems and fracture mechanics problems), difficulty to satisfy higher-order
continuity requirements (plates and shells), sensitivity to mesh distortion, etc. In order to capture the
stress field accurately, the usual finite element methods involve extensive and laborious mesh generation,
and very fine meshes involving large computational costs. Taking Figure 1, left, as an example [Chen
et al. 2016; 2017], a total of 3952 hexahedron linear elements are adopted to discretize a single grain
with an inclusion. If an RVE of a heterogeneous composite has to be modeled, with say a hundred
or thousand grains, to not only generate effective properties but also capture the stress concentrations
at the interfaces of inhomogeneities, the usual finite element method becomes almost impossible to be
applied without using very high-performance super computers. Some other numerical techniques were
also proposed to improve the stability and accuracy of the FE methods in micromechanical modeling of
complex microstructures, for instance, fast Fourier transforms (FFT) [Moulinec and Suquet 1998; Michel
et al. 2000], extended finite element method (XFEM) [Yvonnet et al. 2011; Zhu et al. 2011], etc.

In order to effectively reduce the computational efforts without sacrificing the accuracy, the concept
of Trefftz computational grains (TCGs) was developed by Dong and Atluri [2012c; 2012b; 2012a],
and Bishay and Atluri [2013; 2014; 2015; Bishay et al. 2014] used radial basis functions as well as
Trefftz formulation based computational grains for multi-functional composites. Instead of applying
the simple finite element discretization of the microstructures, an arbitrarily shaped TCG composed of
fiber/coating/matrix constituents is treated as a “super” element (Figure 1, right), whose internal dis-
placement and traction fields are represented by the Trefftz solutions. Based on the Trefftz concept
[Qin 2005] of using the complete analytical solutions which satisfy the Navier’s equations of elasticity,
the development of the highly accurate and efficient two- and three-dimensional polyhedral computa-
tional grains was achieved. It should be noted that the idea of the VCFEM was initially proposed to
investigate the particle reinforced composites [Ghosh et al. 1995; Moorthy and Ghosh 1998] in the 2D
cases. However, the VCFEM developed in [Ghosh et al. 1995; Moorthy and Ghosh 1998] was based on
the hybrid-stress finite element method, with both domain and boundary integrations for each Voronoi
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Figure 1. Left: the usual FE mesh discretization of spherical particulate composites
[Chen et al. 2016; 2017]. Right: a single polyhedral Trefftz computational grain (TCG)
with three phases.

element, and adopted incomplete stress functions (in the hybrid stress finite element method), leading
to the inefficient computational efforts and highly inaccurate internal and interfacial stress distributions.
The new version of the TCGs [Dong and Atluri 2012a; 2012b; 2012c] differ from the hybrid stress
VCFEM in [Ghosh et al. 1995; Moorthy and Ghosh 1998] in the following ways 1) a complete Trefftz
trial displacement solution is assumed in the TCG by satisfying both the equilibrium and compatibility
conditions a priori; 2) only boundary integrals are involved in the newly developed TCG, ensuring its
better accuracy and efficiency in the micromechanical computations. All of these characteristics prove
that the Trefftz computational grains are reliable tools in generating both effective properties as well as
the inter-phase local stress field distributions in the micromechanics of heterogeneous materials.

Based on the framework established by Dong and Atluri [2012a; 2012b; 2012c], the Trefftz computa-
tional grains (TCGs) are generalized in this paper, for the micromechanical modeling of heterogeneous
materials reinforced with coated particles (or particles with interphases). By avoiding the large-scale
mesh discretization of a microstructure within the normal FE framework, each arbitrarily shaped TCG in
the present situation is composed of a particulate inclusion, a coating/interphase and the surrounding
matrix phase, Figure 1, right. The trial displacement solutions of each constituent are obtained by
employing Papkovich–Neuber (P–N) solutions [Lurie 2005], in which the P–N potentials are further
represented by the spherical harmonics. Two approaches are then used to develop the local stiffness
matrix of the TCGs: First, a multi-field boundary variational principle is proposed to enforce conti-
nuities between adjacent constituents and TCGs, as well as the external boundary conditions, if any;
Second, the collocation technique [Dong and Atluri 2012b; 2012c; Wang et al. 2018] is applied to satisfy
the interfacial continuity conditions, while a primal-field boundary variational principle is employed to
satisfy the interphase continuities and the boundary conditions, a technique which we name as CPFBVP.
Both approaches generate accurate predictions as compared to the currently available semi-analytical and
numerical results. Finally, an easy implementation of periodic boundary conditions (PBCs) is achieved
on the representative volume elements by surface-to-surface constraint scheme.
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The remainder of the paper is organized as follows: Section 2 solves the displacement fields in each
constituent of a TCG in terms of the P–N solutions and develops the local stiffness matrix of the TCGs.
Section 3 validates the homogenized moduli and local inter-phase stress distributions through comparing
with the CSA and detailed fine-mesh FE results. The influence of the coatings/interphases on the various
properties of composites materials is thoroughly investigated in Section 4. Finally, the effects of the
periodic boundary conditions on the RVEs are studied in Section 5. Section 6 concludes this contribution.

2. Development of polyhedral Trefftz computational grains (TCGs) with coated spherical
inclusions/voids

2.1. Boundary displacement field for a polyhedral TCG. For an arbitrarily polyhedral-shaped TCG
in the 3D space, each surface is a polygon, Figure 1, right. Constructing an inter-TCG compatible
displacement on the boundary of the polyhedral element is not as simple as that for the 2D version. One
way of doing this is to use barycentric coordinates as nodal shape functions on each polygonal face of
the 3D TCGs.

Consider a polygonal face Vn with n nodes x1, x2, . . . , xn , within barycentric coordinates, denoted
as λi (i = 1, 2, . . . , n). The coordinates λi depend only on the position vector xi . To obtain a good
performance of a TCG, we only consider barycentric coordinates that satisfy the following properties:

1. Being nonnegative: λi ≤ 0 in the polygon Vn .

2. Smoothness: λi is at least C1 continuous in the polygon Vn .

3. Linearity along each edge that composes the polygon Vn .

4. Linear completeness: For any linear function f (x), the equation f (x)=
∑n

i=1 f (x i )λi holds.

5. Partition of unity:
∑n

i=1 λi ≡ 1.

6. Dirac delta property: λi (x j )= δi j .

Among the many barycentric coordinates that satisfy these conditions, Wachspress coordinate is the
most simple and efficient [Wachspress 1975].

A point x ∈ Vn within the polygon is determined in terms of two parameters: Bi as the area of the
triangle with the vertices of xi−1, x i and xi+1, and Ai (x) as the area of the triangle with vertices of x,
x i and xi+1, Figure 2. Thus, the Wachspress coordinate of the point x can be written as

λi (x)=
wi (x)∑n

j=1w j (x)
, (1)

wherein the weight function is defined as

wi (x)=
Bi (xi−1, xi , xi+1)

Ai−1(xi−1, xi , x)Ai (xi , xi+1, x)
. (2)

The inter-TCG compatible displacement field is therefore expressed in terms of the nodal shape func-
tions for the polygonal surface vertices and the nodal displacements in the Cartesian coordinates:

ũi (x)=
n∑

k=1

λk(x) ui (xk) x ∈ Vn, Vn ⊂ ∂�
e, (3)
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Figure 2. Definition of Wachspress coordinates on each surface of a polyhedron.

where ∂�e denotes the surface of each TCG.

2.2. The governing equations of linear elasticity for each phase of the TCGs. As shown in Figure 3,
the solutions of the 3D linear elasticity for the matrix and inclusion phases should satisfy the equilibrium
equations, strain-displacement compatibilities, as well as the constitutive relations in each element �e:

σ k
i j, j + f k

i = 0, (4)

εk
i j =

1
2

(
uk

i, j + uk
j,i
)
, (5)

σ k
i j = λ

kεk
mmδi j + 2µkεk

i j , (6)

where the superscript k = m, c, p denotes the matrix, the coating and the inclusion (particle) phases, uk
i ,

εk
i j , σ

k
i j are the displacement, strain and stress components, f k

i is the body force, which is neglected in
this situation, and Here, λk and µk are the Lamé constants of each phase.

At the interfaces between the constituents within each TCG, the displacement continuities and traction
reciprocities can be written as

um
i = uc

i at ∂�e
c, (7)

−n jσ
m
i j + n jσ

c
i j = 0 at ∂�e

c, (8)

uc
i = u p

i at ∂�e
p, (9)

−n jσ
c
i j + n jσ

p
i j = 0 at ∂�e

p, (10)

where ∂�e
c and ∂�e

p are the outer surfaces of the coating and inclusion phases, respectively. The external
boundary conditions for each TCG can be written as

um
i = ūi at Se

u, (11)

n jσ
m
i j = t̄i at Se

t , (12)

(n jσ
m
i j )
+
+ (n jσ

m
i j )
−
= 0 at ρe, (13)

where Se
u , Se

t and ρe are displacement, traction and other boundaries of the domain �e, respectively, and
∂�e
= Se

u ∪ Se
t ∪ ρ

e. ūi , t̄i are the prescribed boundary displacement and traction components when they
exist.
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Figure 3. A polyhedral Trefftz computational grain and its nomenclature.

2.3. Papkovich–Neuber solutions as the trial internal displacement fields within each TCG. Navier’s
equation can be derived from (4)–(6):

(λk
+µk) uk

j, j i +µ
k1uk

i = 0. (14)

Solving the displacement components directly from (14) is a rather difficult task. Papkovich [1932]
and Neuber [1934] suggested that the solutions can be represented in the forms of harmonic functions:

uk
=

4(1− νk)Bk
−∇(R · Bk

+ Bk
0 )

2µk , (15)

where Bk
0 and Bk =

[
Bk

1 Bk
2 Bk

3

]T
are scalar and vector harmonic functions. R is the position vector.

µk is the shear modulus of the k-th constituent.
The number of independent harmonic functions in (15) is more than the number of independent dis-

placement components. Therefore, it is desired to keep only three of the four harmonic functions. Thus,
by dropping Bk

0 we have the following solution:

uk
=

4(1− νk)Bk
−∇R · Bk

2µk . (16)

The general solution of (16) is complete for an infinite domain external to a closed surface. However,
for a simply-connected domain, equation (16) is only complete when ν 6= 0.25. M. G. Slobodyansky
proved that, by expressing Bk

0 as a specific function of Bk , the derived general solution of (14) is complete
for a simply-connected domain with any valid Possion’s ratio:

uk
=

4(1− νk)Bk
+ R · ∇Bk

− R∇ · Bk

2µk . (17)

The harmonic vector B needs to be further expressed using the special functions to define various do-
main surfaces. To accommodate the spherical inclusion and its coating, spherical harmonics are adopted
and introduced in the next section.
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2.4. Spherical harmonics. Consider a point with Cartesian coordinates x1, x2, x3 and the corresponding
spherical coordinates q1

= R, q2
= θ , q3

= ϕ having the following relationship:

x1 = R sin θ cosϕ, x2 = R sin θ sinϕ, x3 = R cos θ. (18)

From (18), we have

∂x1

∂R
= sin θ cosϕ,

∂x1

∂θ
= R cos θ cosϕ,

∂x1

∂ϕ
=−R sin θ sinϕ,

∂x2

∂R
= sin θ sinϕ,

∂x2

∂θ
= R cos θ sinϕ,

∂x2

∂ϕ
= R sin θ cosϕ,

∂x3

∂R
= cos θ,

∂x3

∂θ
=−R sin θ,

∂x3

∂ϕ
= 0,

(19)

and
∂qs

∂xk
=

1
H 2

s

∂xk

∂qs ,
∂R
∂qr ·

∂R
∂qs = δrs Hr Hs, (20)

where
H1 = HR = 1, H2 = Hθ = R, H3 = Hϕ = R sin θ, (21)

are called Lamé’s coefficients. By defining a set of orthonormal base vectors of the spherical coordinate
system:

gr =
1

Hr

∂R
∂qr , (22)

we have
∂ gR

∂R
= 0,

∂ gR

∂θ
= gθ ,

∂ gR

∂ϕ
= gϕ sin θ,

∂ gθ
∂R
= 0,

∂ gθ
∂θ
=−gR,

∂ gθ
∂ϕ
= gϕ cos θ,

∂ gϕ
∂R
= 0,

∂ gϕ
∂θ
= 0,

∂ gϕ
∂ϕ
=−(gR sin θ + gθ sin θ).

(23)

Therefore, the Laplace operator of a scalar f has the following form:

∇
2 f =∇ ·∇ f =

1
Hr

gr
∂

∂qr
·

1
Hs

gs
∂ f
∂qs

=
1
R

[ ∂
∂R

R2 ∂ f
∂R
+
∂

∂ξ
(1− ξ 2)

∂ f
∂ξ
+

1
1− ξ 2

∂ f
∂λ2

]
, (24)

where the new variable ξ = cos θ is introduced. By assuming that f = L(R)M(ξ) N (ϕ) and using k2

and n(n+ 1) as separating constants, it can be shown that L , M , N satisfy the following equations:

N ′′(ϕ)+ k2 N (ϕ)= 0, (25)

[(1− ξ 2)M ′(ξ)]′+
[
n(n+ 1)−

k2

1− ξ 2

]
M(ξ)= 0, (26)

[R2L ′(R)]′− n(n+ 1)L(R)= 0. (27)
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Equation (25) leads to particular solutions cos kϕ and sin kϕ for a nonnegative integer k, because of
the periodicity of N (ϕ). Equation (26), which is clearly the associated Legendre’s differential equation,
leads to the associated Legendre’s functions of the first and the second kinds, where only the associated
Legendre’s functions of the first kind are valid for constructing M(ξ). Denoting them as Pk

n (ξ), we have

Pk
n (ξ)= (−1)k(1− ξ 2)k/2

dk

dξ k Pn(ξ), Pn(ξ)=
1

22n!

[ dn

dξ n (ξ
2
− 1)n

]
. (28)

The product of M(ξ)N (ϕ) are called spherical surface harmonics, and can be normalized to be

Y k
n (θ, ϕ)=

√
2n+ 1

4π
(n− k)!
(n+ k)!

Pk
n (cos(θ)) eikϕ

=

√
2n+ 1

4π
(n− k)!
(n+ k)!

Pk
n (cos(θ))[cos(kϕ)+ i sin(kϕ)]

= Y Ck
n(θ, ϕ)+ iY Sk

n(θ, ϕ), (29)

such that ∫ 2π

0

∫ π

0
Y k

n (θ, ϕ)Y
k′
n′(θ, ϕ) sin θ dθ dϕ = δkk′ δnn′ . (30)

Finally, equation (27) leads to particular solutions Rn and R−(m+1). For different problems, different
forms of L(R) should be used, which leads to different forms of spherical harmonics. For the internal
problem of a sphere, only Rn is valid. f can be expanded as

f p =

∞∑
n=0

Rn
{

a0
0Y C0

0(θ, ϕ)+

n∑
j=1

[
a j

n Y C j
n (θ, ϕ)+ b j

nY S j
n (θ, ϕ)

]}
. (31)

For external problems in an infinite domain, only R−(m+1) is valid, f can be expanded as

fk =

∞∑
m=0

R−(m+1)
{

c0
0Y C0

0(θ, ϕ)+

m∑
j=1

[
c j

mY C j
m(θ, ϕ)+ d j

mY S j
m(θ, ϕ)

]}
, (32)

where a j
n , b j

n , c j
m and d j

m are the unknown coefficients that can be solved through their implementations
into the elasticity solutions and variational principles. The numbers of the unknown coefficients depend
on the harmonic terms employed in the calculations, which are further dependent on the complexity of
the problems.

As is mentioned in [Liu 2007a; 2007b], the above trial functions will lead to ill-conditioned systems of
equations when being applied in the Trefftz method to numerically solve a boundary value problem. Thus,
the characteristic lengths are introduced to scale the equations (31) and (32) [Dong and Atluri 2012b;
2012c; Liu 2007a; 2007b] to better condition the relevant matrices that arise in the Trefftz method.

For a specific domain of interest, two characteristic lengths Rnon and Rsig are defined, which are respec-
tively the maximum and minimum values of the radial distance R of points where boundary conditions
are specified. Therefore, (R/Rnon)

n and (Rsig/R)−(m+1) is confined between 0 and 1 for any positive
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integers n and m. Harmonics are therefore scaled as

f p =

∞∑
n=0

(
R

Rnon

)n{
a0

0Y C0
0(θ, ϕ)+

n∑
j=1

[
a j

n Y C j
n (θ, ϕ)+ b j

nY S j
n (θ, ϕ)

]}
, (33)

fk =

∞∑
m=0

(
R

Rsig

)−(m+1){
c0

0Y C0
0(θ, ϕ)+

m∑
j=1

[
c j

mY C j
m(θ, ϕ)+ d j

mY S j
m(θ, ϕ)

]}
. (34)

2.5. Trefftz trial displacement fields. For an element with an inclusion as well as the coating of spher-
ical geometries, the displacement field in the inclusion can be derived by substituting the nonsingular
harmonics, equation (33) into (17):

up
= [4(1− ν p)B pi

+ R · ∇B pi
− R∇ · B pi

]/(2µp). (35)

The displacement fields in the matrix and the coating phases are the summation of uki (the nonsingular
part) and uke (the singular part, with the singularity being located at the center of the inclusion). uki can
be derived by substituting (33) into (17), and uke can be derived by substituting (34) into (16):

uk
= uki

+ uke (k = m, c),

uki
= [4(1− νk)Bki

+ R · ∇Bki
− R∇ · Bki

]/(2µk),

uke
= [4(1− νk)Bke

−∇R · Bke
]/(2µk).

(36)

A more detailed illustration is given in [Dong and Atluri 2012b]. The expressions of strains and
stresses can be then calculated by using Wolfram Mathematica 8.0, and are too complicated to be explic-
itly presented here. To obtain the converged results in this presentation, we let n = 3 for the nonsingular
solution of the particulate phase, equation (35), and n = 4, m = 3 for the elastic solutions of the coating
and matrix phases, equation (36).

2.6. TCGs through the multi-field boundary variational principle. The four-field energy functional of
the 3-phase Trefftz computational grains can be expressed for an elastic coated particulate reinforced
heterogeneous media:

π(ũm
i , um

i , uc
i , u p

i )=
∑

e

{∫
∂�e+∂�e

c

−
1
2

tm
i um

i d S+
∫
∂�e

tm
i ũm

i d S+
∫
∂�e

c

tm
i uc

i d S
}

+

∑
e

∫
∂�e

c+∂�
e
p

1
2

tc
i uc

i d S+
∑

e

{∫
∂�e

p

−
1
2

t p
i u p

i d S+
∫
∂�e

p

t p
i uc

i d S
}
−

∫
St

t̄i ũi d S, (37)

where the matrix strain energy, coating strain energy, inclusion strain energy, as well as the work done by
external force are included. A first variation of the functional in (37) yields the Euler–Lagrange equations
expressed in (7)–(13).
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By assuming the displacement and stress fields in the vector forms:

ũm = Ñq at ∂�e (38)

um = Nmα in �e
m (39a)

tm = Rmα at ∂�e, ∂�e
c (39b)

uc = Ncβ in �e
c (40a)

tc = Rcβ at ∂�e
c, ∂�

e
p (40b)

up = Npγ in �e
p (41a)

tp = Rpγ at ∂�e
p (41b)

and substituting them into (37), the finite element equations can be deducted by making the first variation:

δ

{
q
β

}T
[

GT
αq H−1

αα Gαq GT
αq H−1

αα Gαβ

GT
αβH−1

αα Gαq GT
αβH−1

αα Gαβ+Hββ+GT
βγ H−1

γ γ Gβγ

]{
q
β

}
= δ

{
q
β

}T {Q
0

}
, (42)

where α and γ are eliminated in the above equation and expressed in terms of β and q, and

Hαα =

∫
∂�e+∂�e

c

RT
m Nm d S, Hββ =

∫
∂�e

c+∂�
e
p

RT
c Nc d S, Hγ γ =

∫
∂�e

p

RT
p Np d S,

Gαβ =

∫
∂�e

c

RT
m Nc d S, Gαq =

∫
∂�e

RT
m Ñ d S, Gβγ =

∫
∂�e

p

RT
c Np d S, Q =

∫
∂�e

ÑT t̄ d S.

By defining kqq = GT
αq H−1

αα Gαq , kqβ = GT
αq H−1

αα Gαβ and kββ = GT
αβH−1

αα Gαβ+Hββ+GT
βγ H−1

γ γ Gβγ ,
the local stiffness matrix of a TCG is

klocal = kqq− kqβ kββ kT
qβ, (43)

with the vectors of unknown coefficients in terms of the nodal displacement field:

α = H−1
αα

(
Gαq−Gαβk−1

ββ kT
qβ
)
q,

β =−k−1
ββ kT

qβq,

γ =−H−1
γ γ Gβq k−1

ββ kT
qβq.

(44)

It should be noted that the six rigid-body modes in the field expressions should be eliminated for the
application of MFBVP but not for the CPFBVP. By displaying the displacement and stress expressions
in matrix forms, the following three modes only make contributions to the total resultant forces at the
source point and should be taken out:

c0
0 =

{
1 0 0

}T
, c0

0 =
{
0 1 0

}T
, c0

0 =
{
0 0 1

}T
, (45)
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while the following modes need to be eliminated because they only contribute to the total resultant
moments at the source point:

c0
1 =

{
1 0 0

}T
, c1

1 =
{
0 0

√
2
}T
,

c0
1 =

{
0 1 0

}T
, c1

1 =
{
0
√

2 0
}T
, (46)

c0
1 =

{
0 1 0

}T
, d1

1 =
{
−1 0 0

}T
.

2.7. TCGs through collocation and the primal-field boundary variational principle. An alternative to
the MFBVP is employing a collocation technique for the internal displacement continuity and traction
reciprocity conditions between adjacent constituents and applying the primal field boundary variational
principle for the inter-element conditions.

By using collocation technique, a certain number of collocation points are usually uniformly dis-
tributed along the interfaces of heterogeneities ∂�e

c, ∂�e
p as well as the boundary of the elements ∂�e.

The coordinates of the collocation points are denoted as follows: xmh
i ∈ ∂�

e, h = 1, 2, . . . ; xck
i ∈ ∂�

e
c,

k = 1, 2, . . . ; and x pl
i ∈ ∂�

e
p, l = 1, 2, . . . .

For a TCG with a coated elastic inclusion, the conditions of displacement continuities and traction
reciprocities are applied at the local collocation points of the interfaces between adjacent constituents:

um
i (x

ck
j ,α)= uc

i (x
ck
j ,β), xck

j ∈ ∂�
e
c,

wtm
i (x

ck
j ,α)+wtc

i (x
ck
j ,β)= 0, xck

j ∈ ∂�
e
c, (47)

uc
i (x

pl
j ,β)= u p

i (x
pl
j , γ ), x pl

j ∈ ∂�
e
p,

wtc
i (x

pl
j ,β)+wt p

i (x
pl
j , γ )= 0, x pl

j ∈ ∂�
e
p, (48)

as well as the relationship between internal displacements and nodal functions:

um
i (x

mh
j ,α)= ũi (xmh

i , q) xmh
j ∈ ∂�

e, (49)

where the parameter “w” is used to balance the displacement and traction equations, avoiding the effect
of the material properties on the discrepancy of the magnitude. In this situation w = 1/(2µc).

From the above relations, a system of equations can be easily set up for the unknown coefficients of
different phases:

Ae
αqα = Be

αq q, Ae
αβα = Be

αββ, Ae
βγβ = Be

βγ γ , (50)

which yield to a system of equations as following:

Ae
αβ −Be

αβ 0
0 Ae

βγ −Be
βγ

Ae
αq 0 0


α

β

γ

=
 0

0
BeT
αq

T

q. (51)
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E (GPa) ν

Al2O3 Particle 390.0 0.24
SiC Coating 413.6 0.17
Al Matrix 74 0.33

Table 1. The material properties of a TCG composed of Al2O3/SiC/Al.

After relating the trial internal displacement expressions with nodal shape function of each TCG, a
primal-field boundary variational principle is then introduced to derive the local stiffness matrix:

π4(ui )=
∑

e

{∫
∂�e

1
2

ti ui d S−
∫

Se
t

t̄i ui d S
}
. (52)

Substituting the displacement expressions into the above functional and making the first variation lead
to ∑

e

(
δqT CT

αq M−1
αα Cαq q−δqT Q

)
= 0, (53)

in which Mαα =
∫
∂�e RT

m Nm d S.

Remarks: Using MFBVP is plagued by LBB conditions because of the Lagrange multipliers involved
[Babuška 1973; Brezzi 1974; Punch and Atluri 1984; Rubinstein et al. 1983], while CPFBVP avoids the
LBB violation by introducing the collocation technique. In addition, only one matrix Mαα is integrated
in the CPFBVP, while several matrices are evaluated in the MFBVP. Thus, the CPFBVP should be more
computationally efficient than the MFBVP, which is also proved by the following numerical examples.

3. Numerical validations

3.1. Condition numbers. As is introduced in the previous section, the characteristic parameters Rnon and
Rsig are introduced to scale the T-Trefftz trial functions. The magnitudes of Rnon and Rsig are determined
by the geometries of the investigated domains. Here we study the effect of the characteristic parameters
on the condition numbers of the coefficient matrices involved in the calculations. In this example, a TCG
with the material properties listed in Table 1 is investigated; see Figure 4. The dimensions of the TCG
are L×W ×H = 200×200×200µm3, and the outer radii of inclusion and coating are Rp = 72.56µm
and Rc = 79.82µm, respectively. Tables 2 and 3 list the condition numbers of the inverted matrices in
both MFBVP and CPFBVP, with or without introducing Rnon and Rsig. It can be easily observed that
when the characteristic parameters are not adopted (Rnon = 1 and Rsig = 1), the condition numbers are
too large to generate accurate results. The usage of Rnon and Rsig can significantly reduce the condition
numbers and guarantee calculation precision.

3.2. Patch test. The one-element patch test is conducted in this section. The same element is considered
with same geometrical parameters and material properties listed in Table 1; see Figure 4. A uniform
loading is applied to the right face (y = 100µm), while the essential boundary conditions are applied
at the left face (y =−100µm). The exact solutions for the deformation of a homogeneous cube can be
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Matrix Without Rnon, Rsig With Rnon, Rsig

Hαα 3.819×1031 1.678×102

Hγ γ 2.094×1010 0.991×102

Table 2. Condition numbers of the matrices of (42) used in MFBVP.

Matrix Without Rnon, Rsig With Rnon, Rsig

Mαα 4.593×1033 7.605×104

Table 3. Condition numbers of the matrix of (53) used in CPFBVP.

z

x
y

100

50

0

−50

−100
100

0

−100 −100

0

100

Figure 4. A TCG used to generate the condition numbers and patch test.

expressed as:

u1 =−
pν
E

x1, u2 =
p
E

x2, u3 =−
pν
E

x3, (54)

which are compared with the numerical nodal displacement q on the right face, and the error is defined
as

1=
‖q−qexact

‖

‖qexact‖
. (55)

The errors generated by MFBVP and CPFBVP are 1.737×10−6 and 1.827×10−4, respectively, in-
dicating both approaches obtain results with high accuracy. The execution time of the MFBVP and
CPFBVP to generate the local stiffness matrix of the TCG is 29.351 s and 6.51 s, respectively. The
execution time of the MFBVP is a bit longer because the MFBVP involves more matrices to be integrated.

3.3. Homogenized material properties and localized interphase stress distributions. In order to vali-
date the present theory in the micromechanical modeling of composites reinforced with coated particles,
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(Rc− Rp)/Rp CSA (GPa) CPFBVP (GPa) errors MFBVP (GPa) errors

Homogeneous 72.55 72.55 0.00% 72.55 0.00%
0 79.77 80.39 0.78% 79.81 0.05%
0.1 82.12 82.69 0.69% 82.17 0.06%
0.3 88.70 89.40 0.79% 88.89 0.21%
0.5 98.90 99.11 0.21% 99.27 0.37%

Table 4. Homogenized bulk modulus generated by the TCG and CSA models for various
thicknesses of the coating.

both the homogenized bulk moduli as well as the local interphase stress distributions generated by the
TCGs are compared with the composite sphere assemblage (CSA) model. The detailed derivation of
CSA model is illustrated in the Appendix.

A TCG with the dimension of L×W ×H = 200×200×200µm3 is used in this case and the par-
ticulate volume fraction is 10%. The material properties of the three constituents are listed in Table 1.
For a better test of the TCG, the thickness of the coating is varied for comparison. Both MFBVP and
CPFBVP are adopted to generate the bulk modulus. Table 4 shows that both methods generate well-
matched predictions relative to the CSA model with the maximum error of less than 1%, and MFBVP
usually generates smaller errors than CPFBVP for various thicknesses.

Then the local inter-phase stress concentrations are verified against CSA model. The stress compo-
nents σxx(z = 0), σyy(z = 0), σxy(z = 0) at the inner radius of coating (Rp) and the inner radius of the
matrix (Rc) are thoroughly compared in Figures 5 and 6. Both MFBVP and CPFBVP agree well with
the CSA results at the interface between the coating and matrix, while CPFBVP generates slightly offset
results at the interface between the particle and coating relative to the other two methods.

Finally, the homogenized moduli are generated for a TCG with hard core/soft shell system, which has
extensive applications in various structures [Xu et al. 2014a; 2014b]. In the present situation, the Young’s
modulus and bulk modulus generated by CPFBVP are compared with a very fine-mesh FEM [Tsui et al.
2001] and the CSA model, respectively. Figure 7 compares the generated homogenized moduli with
material properties listed in Table 5. Three sets of thickness parameters are used for the comparison.
Since the glass bead and Polycarbonate matrix are connected by a weak interphase, the overall moduli
are decreased as the thickness of coating increases. It can be easily observed that the overall moduli
computed by the TCGs are in good agreement with both the very detailed FE and the CSA results.

It should be pointed out that the CSA model usually generates reasonably accurate bulk modulus and
only the upper and lower bounds of the Young’s modulus for coated particulate composites. In addition,
the phase-to-phase interaction is ignored within the model’s assumptions, leading to inaccurate interphase
stress fields for composites with large particulate volume fractions. Those concerns are alleviated in
the TCGs, which adopt complete Trefftz solutions to calculate the effective properties and also recover
exactly the local field concentrations at the interfaces of inhomogeneities. What’s more, the effect of the
locations of the particulates is also considered in the present technique, which cannot be easily captured
by most of the existing methods.
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Figure 5. Variations of the three components σxx(z = 0), σyy(z = 0), σxy(z = 0) at the
inner radius of the coating Rp.

E (GPa) ν

4µm Glass bead 70.0 0.22
Coating 0.50 0.30
Polycarbonate Matrix 2.28 0.38

Table 5. The material properties of a TCG with hard core/soft shell system.

4. Numerical studies

In the last section, the accuracy of the TCG is validated by generating the effective properties as well as
the localized interphase stresses in composites with coated particles. In this section, we employ the TCGs
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Figure 6. Variations of the three components σxx(z = 0), σyy(z = 0), σxy(z = 0) at the
inner radius of matrix Rc.

to study the effect of coatings/interphases on the micromechanical behavior of composite materials. The
Al2O3/Al particle/matrix system is adopted in this section, while the material properties and thickness
of coating/interphase are varied.

4.1. Effective properties. In this example, A TCG is still employed with the dimensions of L×W ×H =
200×200×200µm3 and the particle volume fraction of 0.2. The Young’s modulus of the coating varies
from 0 to 1000 GPa, and the ratio of thickness of the coating to the radius of the particle varies from 0
to 0.1. The homogenized moduli of the composite materials are illustrated in Figure 8. It can be easily
observed that the homogenized moduli increase with the increase of the coating’s moduli and thickness
(Ec/Em ≥ 1). In addition, for a smaller magnitude of coating’s material properties, the homogenized
moduli of composites are very small no matter which thickness is adopted. This is due to the fact that
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Figure 7. Comparison of (left) Young’s moduli E and (right) bulk moduli K computed
by using the TCGs, against the very fine-mesh FE and CSA results, respectively, for
glass bead/polycarbonate composite with coatings of different thicknesses.
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Figure 8. The effects of Young’s modulus and thickness of the coating on the effective
(left) Young’s modulus and (right) bulk modulus of the composite.

the connection between fiber/matrix is very weak and the particle/coating domains can be treated as
porosities.

4.2. Local interphase stress concentrations. The coating system plays an important role in the stress
transfer between the constituents [Wang and Pindera 2016a]. Thus, herein the stress concentrations are
studied by still tailoring the properties of the coatings. The definition of the stress concentration factor is
SCF= σθθ/σ 0

yy in this situation. According to the transformations between the spherical and Cartesian
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Figure 9. The effect of Young’s modulus of the coating on the stress components
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coordinates, σθθ = σyy(θ = 0, ϕ = 0) and σθθ = σxx(θ = π/2, ϕ = 0), SCF = σyy/σ
0
yy at θ = 0, ϕ = 0

locations and SCF= σxx/σ
0
yy at θ = π/2, ϕ = 0 locations.

The effect of the Young’s modulus of the coating is firstly generated in Figure 9 by fixing its thickness
as tc/Rp = 0.05. The radius of the spherical particle is of one-quarter length of the TCG. The Young’s
modulus of the coating is varied from 0.01 GPa to 800 GPa. It can be easily observed that the largest
SCFs occur at the interface between the coating and matrix. As is already mentioned before, when the
coating has a low elastic modulus (0.01 GPa), the particle and coating can be treated as a porosity domain,
and the corresponding stresses are essentially zeros (solid black line). When the modulus increases from
50 GPa to 800 GPa, the stress σyy at zero degree within the particle domain maintains within a narrow
range of variations. Meanwhile, σyy/σ

0
yy increases dramatically (from about 0.17 to over 3.09) in the

coating domain, and then reduces and stabilizes at around 0.18 in the matrix phase. Conversely, the other
component σxx/σ

0
yy increases and stabilizes when Ec is larger than a certain amount, and shows more

variations in the particle domain.
In contrast to the Young’s modulus of the coating, the thickness of the coating plays a less important

role in affecting the stress distributions, as illustrated in Figure 10. The magnitudes of the stresses barely
change for different thicknesses. It should be noted that the SiC properties are used for the coating
(Table 4) in this situation.

5. Implementation of periodic boundary conditions

To apply the periodic boundary conditions, the classical methods [Miehe and Koch 2002; Wang and
Pindera 2016b] usually enforce the same values for the degrees of freedom of matching nodes on two
opposite RVE sides. Thus, it requires a periodic mesh, which has the same mesh distribution on two oppo-
site parts of the RVE boundary. However, the mesh of a TCG is generally nonperiodic so that the classical



TREFFTZ GRAINS FOR MODELING MEDIA WITH SPHERICAL INCLUSIONS 523

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2
0.0 0.2 0.4 0.6 0.8 1.0

radius

σ 
   

/σ
yy

0

t  = 0.001Rc p
t  = 0.005Rc p
t  = 0.01Rc p
t  = 0.05Rc p
t  = 0.1Rc p

0.8

0.6

0.4

0.2

0.0

− 0.2

− 0.4
0.0 0.2 0.4 0.6 0.8 1.0

radius

σ 
   

/σ
xx

0

t  = 0.001Rc p
t  = 0.005Rc p
t  = 0.01Rc p
t  = 0.05Rc p
t  = 0.1Rc p

Figure 10. The effect of thickness of the coating on the stress components σyy(θ =

0, ϕ = 0) and σxx(θ = π/2, ϕ = 0).

uA

A

z

uA
y

uA
x

uB

B

z
z

O

uB
y

y

uB
x

x

Figure 11. An RVE enforced with periodic displacement boundary conditions.

method cannot be directly employed. In this study, we developed a simple methodology to enforce peri-
odic displacement boundary conditions on one RVE based on the surface-to-surface constraint scheme.

Figure 11 is a simple RVE with the origin point “O” located at the center. The point “A” is the mirror
image of the point “B” relative to the original point. According to the reflectional symmetries with the
reference to the y = 0 plane, the displacement components between “A” and “B” points should have the
following relations [Drago and Pindera 2007]:

u B
x −u A

x = ε̄xi · L i , u B
y −u A

y = ε̄yi · L i , u B
z −u A

z = ε̄zi · L i , (56)

where i = x, y, z. ε̄i j is the macroscopic strain component and L i is the dimension of the microstructure.
Similar relations are applied to each pair of the symmetric points at the boundaries of the RVE.
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Next an RVE including 125 coated spherical particles is considered in Figure 12, each particle is
embedded within one TCG. The coating thickness is only 1% of the radius of the particle.

In a 3D RVE, the boundary points are composed of points on the six different faces, which are denoted
as p+i or p−i (i = x, y, z), where “+” and “−” signs stand for the positive and negative sides of the domain.
Thus, the periodic boundary conditions are expressed as:

u(p+x )−N(p−x ) u(p−x )= ε̄ · L x ,

u(p+y )−N(p−y ) u(p−y )= ε̄ · L y,

u(p+z )−N(p−z ) u(p−z )= ε̄ · L z,

(57)

where u is the displacement vector and ε̄ is the applied macroscopic strain. L x , L y , L z are the dimensions
of the RVE in the Cartesian coordinate. N is the interpolation function. After assembling the local
stiffness matrices and equivalent nodal forces, the periodic boundary conditions can be directly enforced
to the final global equations as essential boundary conditions, where all the nodal points at the boundaries
of the RVE are involved. Equation (57) is applied at every boundary point on each face of RVE against its
counterpart on the opposite face. For two points of the opposite faces which are exactly well matched, the
periodic boundary conditions are easy to be applied by setting N = 1; while a point on one face which
doesn’t have the matched point on the other face, we locate the matched location, search the points
close to this location, and apply the periodic conditions at those points using interpolations within the
Wachspress coordinates [Dong and Atluri 2012b]. By validating the boundary conditions, we calculate
the effective moduli by applying 1% macroscopic strain in the y-direction. Table 6 lists the generated
results by assigning homogenous matrix properties (listed in Table 1) to the composite constituents,
where the results perfectly recover the material properties of the matrix in the former case. In addition,
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Material properties E (GPa) ν

Homogeneous (matrix) 73.926 0.330
Composites 75.090 0.329

Table 6. Calculated effective properties by the RVE with 125 TCGs with different con-
stituent properties.
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Figure 13. Distributions of (top) maximum principal stress (Unit: MPa) and (bottom)
strain energy density (Unit: MJ/mm3) in the RVE containing 125 coated particles.

the local field distributions are illustrated in Figure 13, where three cross-sections of the domain are
focused upon. The principal stresses and energy densities are presented, and the concentrations always
appear at the interfaces of the constituents, which help to identify the possible failure modes in the
three-phase composite materials.
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6. Conclusions

A Trefftz computational grain is developed based on the Voronoi Cell framework for the direct microme-
chanical modeling of heterogeneous materials reinforced with coated particulate inclusions. In order to
dramatically reduce the mesh discretization effort as well as the computational effort, each TCG is treated
as a three-phase particle/coating/matrix grain, wherein the exact internal displacement field is assumed in
terms of the P–N solutions that are further represented by the spherical harmonics. Two approaches are
adopted to set up the local stiffness matrix of TCGs, where the MFBVP implements the continuity and
boundary conditions through Lagrange multipliers, while the CPFBVP uses the collocation technique for
continuity conditions and a primal variational principle for the boundary condition implementation. Both
approaches generate accurate homogenized moduli as well as exact local interphase stress distributions,
with good agreement to the very fine-mesh FE technique and the CSA model. The effects of the material
properties as well as the thickness of the coating system on the effective properties and localized stress
concentrations are also examined for the TCGs, where the former parameters play more important roles
than the latter one in altering the response of composite materials. Finally, an easy implementation of
periodic boundary conditions is applied on the RVEs through the surface-to-surface constraints of dis-
placement field on the opposite faces. The developed TCGs provide accurate and efficient computational
tools in the direct modeling of the micromechanical behavior of the particulate composites reinforced
with coatings/interphases, which cannot be easily competed by the off-the-shelf FE packages and classical
models.
Appendix: Derivation of CSA model. The only existing Navier’s equation for all the three phases is

d2u(k)r

dr2 +
2
r

du(k)r

dr
−

2u(k)r

r2 = 0 (k = p, c,m), (A1)

which yields the displacement expression:

u(k)r = A(k)r+ B(k)/r2, u(k)θ = u(k)ϕ = 0. (A2)

Through the strain-displacement and stress-strain relations, the stress components can be expressed
as

σ (k)rr = 3K (k)A(k)−4G(k)B(k)/r3,

σ
(k)
θθ = 3K (k)A(k)+2G(k)B(k)/r3,

σ (k)ϕϕ = 3K (k)A(k)+2G(k)B(k)/r3,

(A3)

where K and G are bulk and shear modulus of each phase. It should be noted that B(p) = 0 since the
displacements or stresses should be bounded at the origin of the particle phase. Beyond what is discussed
above, the continuity conditions between the adjacent constituents are applied:

u(p)r (r = a)= u(c)r (r = a)⇒ A(p)a = A(c)a+ B(c)/a2,

σ (p)rr (r = a)= σ (c)rr (r = a)⇒ 3K (p)A(p) = 3K (c)A(c)−4G(c)B(c)/a3,
(A4)

u(c)r (r = b)= u(m)r (r = b)⇒ A(c)b+ B(c)/b2
= A(m)b+ B(m)/b2,

σ (c)rr (r = b)= σ (m)rr (r = b)⇒ 3K (c)A(c)−4G(c)B(c)/b3
= 3K (m)A(m)−4G(m)B(m)/b3.

(A5)
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In addition, a homogeneous surface stress loading σ 0 is applied at the outermost radius (r = c) to
calculate the bulk modulus, and

σ (m)rr (r = c)= σ 0
⇒ 3K (m)A(m)−4G(m)B(m)/c3

= σ 0. (A6)

Thus, five equations are established for the five unknowns A(p), A(c), B(c), A(m), B(m), and finally,
through the definition of bulk modulus:

K ∗ =
σ
(m)
rr (r = c)

u(m)r (r = c)/c
. (A7)

The replacement scheme is also used by Qiu and Weng [1991] to obtain the exact expression of the
homogenized bulk modulus for the three-phase composites, which is also programmed to validate the
above equations.
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UNIFORM STRESS RESULTANTS INSIDE
TWO NONELLIPTICAL INHOMOGENEITIES IN

ISOTROPIC LAMINATED PLATES

XU WANG, LIANG CHEN AND PETER SCHIAVONE

We use complex variable methods to establish two sets of specific conditions which ensure the existence
of uniform and hydrostatic internal membrane stress resultants and bending moments inside two through-
thickness nonelliptical elastic inhomogeneities embedded in an infinite isotropic laminated Kirchhoff
plate subjected to uniform remote membrane stress resultants and bending moments. These conditions
can be interpreted as restrictions on the remote membrane stress resultants and bending moments for
the given material and geometric parameters. We show that when these conditions are met, explicit
expressions are available for the uniform stress resultants inside the two inhomogeneities and the constant
hoop stress resultants on the matrix side along the two interfaces.

1. Introduction

Establishing uniformity of stresses inside multiple elastic inhomogeneities is both a fascinating and
challenging area of study which continues to attract considerable attention in the literature (see, for
example, Kang et al. 2008; Liu 2008; Wang 2012; Wang and Schiavone 2016; Dai et al. 2015; 2016).
The majority of these investigations although confined to planar elasticity, antiplane elasticity, or con-
ductivity have generated ideas and procedures which lend themselves well to other areas which play an
equally important role in the engineering sciences. One such area concerns the analysis of laminated
plate structures which are used extensively in mechanical, civil, aviation, and aerospace applications. A
simple and elegant complex variable formulation, originally presented by Beom and Earmme [1998], was
recently developed by Wang and Zhou [2014] to tackle the coupled stretching and bending deformations
of isotropic laminated plates within the context of the celebrated Kirchhoff plate theory [Timoshenko
and Woinowsky-Krieger 1959; Reddy 1997].

In this paper, we adopt the complex variable formulation of Wang and Zhou [2014] and the conformal
mapping in Wang [2012] to study the coupled stretching and bending deformations of an infinite isotropic
laminated plate in which there are embedded two through-thickness nonelliptical elastic inhomogeneities
when the surrounding (plate) matrix is subjected to uniform remote membrane stress resultants and
bending moments. The internal stress resultants (here, internal membrane stress resultants and bending
moments for the plate) inside the two inhomogeneities are uniform and hydrostatic when either a set of
three or two conditions on the remote loading is satisfied for the given material and geometric parame-
ters. In addition, the hoop membrane stress resultant and hoop bending moment on the matrix side are
uniformly distributed along the two inhomogeneity-matrix interfaces and the two inhomogeneities also
satisfy the “harmonic field condition” of Bjorkman and Richards [1976]. In contrast to previous results

Keywords: isotropic laminated plate, uniform stress resultants, complex variable method, conformal mapping.
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in [Wang 2012; Wang and Schiavone 2016], the coefficient 3 appearing in the mapping function should
be determined through the solution of a generalized eigenvalue problem for two 2× 2 real symmetric
matrices. Both cases of when the two real symmetric matrices are either proportional or nonproportional
to each other have been discussed in detail.

2. Complex variable formulation for isotropic laminated plates

In this section, we review the complex variable formulation for an isotropic laminated plate. Consider
an undeformed plate of uniform thickness h in a Cartesian coordinate system {xi } (i = 1, 2, 3) with its
reference plane (not the midplane) at x3 = 0. The plate is composed of an isotropic, linearly elastic
material which can be inhomogeneous in the thickness direction. In what follows, Greek and Latin
indices take the values 1, 2 and 1, 2, 3, respectively and we sum over repeated indices.

The displacement field in the Kirchhoff plate theory is assumed to take the form

ũα(xi )= uα + x3ϑα, ũ3(xi )= w, (1)

where the two in-plane displacements uα, the deflection w, and the slopes ϑα =−w,α on the reference
plane are all independent of x3.

The coordinate system is chosen judiciously so that the two in-plane displacements and the deflection
on the reference plane are decoupled in the equilibrium equations [Beom and Earmme 1998]. We in-
troduce the integral operator Q(· · ·)=

∫ h−h0
−h0

(· · ·) dx3 in which h0 is the distance between the reference
plane and the lower surface of the plate. Accordingly, the membrane stress resultants and bending
moments defined by Nαβ = Qσαβ , Mαβ = Qx3σαβ (with σαβ being the in-plane stress components), the
transverse shearing forces Rβ = Mαβ,α, in-plane displacements, deflection, and slopes on the reference
plane of the plate as well as the four stress functions ϕα and ηα can be expressed concisely in terms of
four analytic functions φ(z), ψ(z), 8(z), and 9(z) of the complex variable z = x1+ i x2 as [Beom and
Earmme 1998; Wang and Zhou 2014]

N11+ N22 = 4 Re{φ′(z)+ B8′(z)},

N22− N11+ 2i N12 = 2[z̄φ′′(z)+ψ ′(z)+ Bz̄8′′(z)+ B9 ′(z)],
(2)

M11+M22 = 4D(1+ νD)Re{8′(z)}+ B(κ A
−1)
µ

Re{φ′(z)},

M22−M11+ 2i M12 =−2D(1− νD)[z̄8′′(z)+9 ′(z)] − B
µ
[z̄φ′′(z)+ψ ′(z)],

R1− iR2 = 4D8′′(z)+ B(κ A
+1)

2µ
φ′′(z),

(3)

2µ(u1+ iu2)= κ
Aφ(z)− zφ′(z)−ψ(z),

ϑ1+ iϑ2 =8(z)+ z8′(z)+9(z), w =−Re{z̄8(z)+ γ (z)},

ϕ1+ iϕ2 = i[φ(z)+ zφ′(z)+ψ(z)] + i B[8(z)+ z8′(z)+9(z)],

η1+ iη2 = i D(1− νD)[κD8(z)− z8′(z)−9(z)] + i B
2µ
[κ Aφ(z)− zφ′(z)−ψ(z)],

(4)
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in which 9(z)= γ ′(z), and

µ= 1
2(A11− A12), B = B12, D = D11, νA

=
A12

A11
, νD

=
D12

D11
,

κ A
=

3A11− A12

A11+ A12
=

3− νA

1+ νA , κD
=

3D11+ D12

D11− D12
=

3+ νD

1− νD ,

(5)

with Ai j = QCi j , Bi j = Qx3Ci j , and Di j = Qx2
3Ci j (i j = 11, 12). The parameters C11 and C12 can

be expressed in terms of the Young’s modulus E = E(x3) and Poisson’s ratio ν = ν(x3) of the plate as
C11= E/(1−ν2) and C12= νE/(1−ν2). The distance h0 is determined as h0=

∫ h
0 X3C11dX3/

∫ h
0 C11dX3

with X3 = x3+ h0 being the vertical coordinate of the given point from the lower surface of the plate.
In addition, the membrane stress resultants, bending moments, transverse shearing forces, and modi-

fied Kirchhoff transverse shearing forces V1 =R1+M12,2 and V2 =R2+M21,1 (which apply exclusively
to free edges), can be expressed in terms of the four stress functions ϕα and ηα [Cheng and Reddy 2002] as

Nαβ =−∈βω ϕα,ω, Mαβ =−∈βω ηα,ω−
1
2 ∈αβ ηω,ω, Rα=−

1
2 ∈αβ ηω,ωβ, Vα=−∈αω ηω,ωω, (6)

with ∈αβ denoting the components of the two-dimensional permutation tensor.
In a new coordinate system {x̂i } (i = 1, 2, 3) in which x̂3 = 0 lies on an arbitrary plane parallel to

the reference plane and x̂α = xα, the in-plane displacements ûα and slopes ϑ̂α on x̂3 = 0 and the stress
functions ϕ̂α and η̂α in the new coordinate system can be given quite simply as

ϑ̂1+ i ϑ̂2 = ϑ1+ iϑ2, û1+ i û2 = u1+ iu2− ĥ(ϑ1+ iϑ2),

ϕ̂1+ i ϕ̂2 = ϕ1+ iϕ2, η̂1+ i η̂2 = η1+ iη2+ ĥ(ϕ1+ iϕ2).
(7)

Here,

ĥ = h0− h1, (8)

and h1 is the distance between x̂3 = 0 and the lower surface of the plate (we note that h1 is positive or
negative, respectively, if x̂3 = 0 is above or below the lower surface of the plate). In the new coordinate
system, the stress resultants N̂αβ = Q̂σαβ and M̂αβ = Q̂x̂3σαβ with Q̂(· · ·)=

∫ h−h1
−h1

(· · ·) dx̂3, the transverse
shearing forces R̂β = M̂αβ,α , and the modified Kirchhoff transverse shearing forces V̂1 = R̂1+ M̂12,2 and
V̂2 = R̂2+ M̂21,1 can also be expressed in terms of the newly introduced stress functions ϕ̂α and η̂α as

N̂αβ =−∈βω ϕ̂α,ω, M̂αβ =−∈βω η̂α,ω−
1
2 ∈αβ η̂ω,ω, R̂α=−

1
2 ∈αβ η̂ω,ωβ, V̂α=−∈αω η̂ω,ωω . (9)

3. Uniform stress resultants inside two nonelliptical inhomogeneities

Consider an infinite isotropic laminated plate containing two through-thickness nonelliptical elastic inho-
mogeneities. Let S1, S2, and S3 denote the left inhomogeneity, the surrounding matrix, and the right inho-
mogeneity, respectively, all of which are perfectly bonded through the respective left and right interfaces
L1 and L2. The matrix is subjected to uniform remote membrane stress resultants (N∞11 , N∞22 , N∞12 ) and
bending moments (M∞11 ,M∞22 ,M∞12 ). Throughout the paper, the subscripts 1, 2, and 3 are used to identify
the quantities in S1, S2, and S3, respectively. In what follows, the new coordinate system {x̂i } (i = 1, 2, 3)
is common to all three phases and is chosen such that x̂3 = 0 is on the reference plane of the matrix.
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Applying the aforementioned conditions, the corresponding boundary value problem reduces to the
following system of equations in the analytic functions φ(z), ψ(z), 8(z), and 9(z) defined in each of
S1, S2, and S3:

1
2µ2
[κ A

2 φ2(z)− zφ′2(z)−ψ2(z)]

=
1

2µ1
[κ A

1 φ1(z)− zφ′1(z)−ψ1(z)] − ĥ1[81(z)+ z8′1(z)+91(z)],

82(z)+ z8′2(z)+92(z)=81(z)+ z8′1(z)+91(z),

φ2(z)+ zφ′2(z)+ψ2(z)+ B2[82(z)+ z8′2(z)+92(z)]

= φ1(z)+ zφ′1(z)+ψ1(z)+ B1[81(z)+ z8′1(z)+91(z)],
B2

2µ2
[κ A

2 φ2(z)− zφ′2(z)−ψ2(z)] + D2(1− νD
2 )[κ

D
2 82(z)− z8′2(z)−92(z)]

=
B1

2µ1
[κ A

1 φ1(z)− zφ′1(z)−ψ1(z)] + D1(1− νD
1 )[κ

D
1 81(z)− z8′1(z)−91(z)]

+ ĥ1[φ1(z)+ zφ′1(z)+ψ1(z)] + ĥ1 B1[81(z)+ z8′1(z)+91(z)], z ∈ L1, (10a)

1
2µ2
[κ A

2 φ2(z)− zφ′2(z)−ψ2(z)]

=
1

2µ3
[κ A

3 φ3(z)− zφ′3(z)−ψ3(z)] − ĥ3[83(z)+ z8′3(z)+93(z)],

82(z)+ z8′2(z)+92(z)=83(z)+ z8′3(z)+93(z),

φ2(z)+ zφ′2(z)+ψ2(z)+ B2[82(z)+ z8′2(z)+92(z)]

= φ3(z)+ zφ′3(z)+ψ3(z)+ B3[83(z)+ z8′3(z)+93(z)],
B2

2µ2
[κ A

2 φ2(z)− zφ′2(z)−ψ2(z)] + D2(1− νD
2 )[κ

D
2 82(z)− z8′2(z)−92(z)]

=
B3

2µ3
[κ A

3 φ3(z)− zφ′3(z)−ψ3(z)] + D3(1− νD
3 )[κ

D
3 83(z)− z8′3(z)−93(z)]

+ ĥ3[φ3(z)+ zφ′3(z)+ψ3(z)] + ĥ3 B3[83(z)+ z8′3(z)+93(z)], z ∈ L2, (10b)

φ2(z)∼= δ1z+ O(1), ψ2(z)∼= δ2z+ O(1),

82(z)∼= γ1z+ O(1), 92(z)∼= γ2z+ O(1), |z| →∞, (10c)

where

δ1 =
µ2 D2(1+ νD

2 )(N
∞

11 + N∞22 )− B2µ2(M∞11 +M∞22 )

4µ2 D2(1+ νD
2 )− B2

2 (κ
A
2 − 1)

,

γ1 =
4µ2(M∞11 +M∞22 )− B2(κ

A
2 − 1)(N∞11 + N∞22 )

16µ2 D2(1+ νD
2 )− 4B2

2 (κ
A
2 − 1)

,

δ2 =
µ2 D2(1− νD

2 )(N
∞

22 − N∞11 + 2i N∞12 )+ B2µ2(M∞22 −M∞11 + 2i M∞12 )

2µ2 D2(1− νD
2 )− B2

2
,

γ2 =
−2µ2(M∞22 −M∞11 + 2i M∞12 )− B2(N∞22 − N∞11 + 2i N∞12 )

4µ2 D2(1− νD
2 )− 2B2

2
.

(11)
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We assume the matrix S2 in the z-plane is mapped onto an annulus 1≤ |ξ | ≤ ρ−1/2 in the ξ -plane by
the following conformal mapping function [Wang 2012]

z = ω(ξ)= R
[

1
ξ−λ

+
p

ξ−λ−1 +
3−1 p
ρξ−λ−1 +

+∞∑
n=1

(anξ
n
+ a−nξ

−n)

]
,

ξ(z)= ω−1(z), 1≤ |ξ | ≤ ρ−1/2,

(12)

where R is a real scaling constant; λ (1< λ < ρ−1/2) is a real constant; p is a complex constant; 3, an ,
and a−n are unknown complex coefficients to be determined. Using the mapping function in (12), the
two interfaces L1 and L2 in the z-plane are mapped onto two coaxial circles with radii 1 and ρ−1/2 in
the ξ -plane, respectively. In addition, z =∞ is mapped to the point ξ = λ.

In order to ensure that the stress resultants inside the two inhomogeneities are uniform, the analytic
functions defined in the two elastic inhomogeneities should take the following form:

φ1(z)=
4µ1(κ

A
2 + 1)[D1(1+ νD

1 )+ D2(1− νD
2 )+ ĥ1(B1+ B2)]X − 16µ1 D2(B1− B2− 2µ2ĥ1)Y

11
z,

81(z)=
−(κ A

2 + 1)[(B1− B2)(κ
A
1 − 1)+ 4µ1ĥ1]X + 8D2[µ2(κ

A
1 − 1)+ 2µ1]Y

11
z,

ψ1(z)=91(z)= 0, z ∈ S1; (13)

φ3(z)=
4µ3(κ

A
2 + 1)[D3(1+ νD

3 )+ D2(1− νD
2 )+ ĥ3(B3+ B2)]X − 16µ3 D2(B3− B2− 2µ2ĥ3)Y

13
z,

83(z)=
−(κ A

2 + 1)[(B3− B2)(κ
A
3 − 1)+ 4µ3ĥ3]X + 8D2[µ2(κ

A
3 − 1)+ 2µ3]Y

13
z,

ψ3(z)=93(z)= 0, z ∈ S3; (14)

where X and Y are two real coefficients, and

11 = 4[µ2(κ
A
1 − 1)+ 2µ1][D1(1+ νD

1 )+ D2(1− νD
2 )+ ĥ1(B1+ B2)]

− 2(B1− B2− 2µ2ĥ1)[(B1− B2)(κ
A
1 − 1)+ 4µ1ĥ1],

13 = 4[µ2(κ
A
3 − 1)+ 2µ3][D3(1+ νD

3 )+ D2(1− νD
2 )+ ĥ3(B3+ B2)]

− 2(B3− B2− 2µ2ĥ3)[(B3− B2)(κ
A
3 − 1)+ 4µ3ĥ3].

(15)

By enforcing continuity of displacements and stress resultants across the left interface L1 in (10a), we
arrive at

φ2(ξ)= φ2(ω(ξ))= Xω(ξ),

82(ξ)=82(ω(ξ))= Yω(ξ),
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ψ2(ξ)= ψ(ω(ξ))

=

{ X
11

(
8[µ1(κ

A
2 − 1)−µ2(κ

A
1 − 1)][D1(1+ νD

1 )+ D2(1− νD
2 )+ ĥ1(B1+ B2)]

− 2[(κ A
1 − 1)(B1− B2)+ 4µ1ĥ1][(κ

A
2 − 1)(B1− B2)+ 4µ2ĥ1]

)
+

Y
11

(
16µ2 D2[(κ

A
1 − 1)(B1− B2)+ 4µ1ĥ1]

)}
ω̄
(1
ξ

)
,

92(ξ)=92(ω(ξ))

=

{
−

X
11

(
2(κ A

2 + 1)[(κ A
1 − 1)(B1− B2)+ 4µ1ĥ1]

)
−

Y
11

(
8[µ2(κ

A
1 − 1)+ 2µ1][D1(1+ νD

1 )− D2(1+ νD
2 )+ ĥ1(B1+ B2)]

− 4(B1− B2− 2µ2ĥ1)[(κ
A
1 − 1)(B1− B2)+ 4µ1ĥ1]

)}
ω̄
(1
ξ

)
,

1≤ |ξ | ≤ ρ−1/2. (16)

Similarly, by enforcing continuity of displacements and stress resultants across the right interface L2

in (10b), we arrive at

φ2(ξ)= Xω(ξ),

82(ξ)= Yω(ξ),

ψ2(ξ)=
{ X
13

(
8[µ3(κ

A
2 − 1)−µ2(κ

A
3 − 1)][D3(1+ νD

3 )+ D2(1− νD
2 )+ ĥ3(B3+ B2)]

− 2[(κ A
3 − 1)(B3− B2)+ 4µ3ĥ3][(κ

A
2 − 1)(B3− B2)+ 4µ2ĥ3]

)
+

Y
13
(16µ2 D2[(κ

2
3 − 1)(B3− B2)+ 4µ3ĥ3])

}
ω̄
( 1
ρξ

)
,

92(ξ)=
{
−

X
13

2(κ A
2 + 1)[(κ A

3 − 1)(B3− B2)+ 4µ3ĥ3]

−
Y
13

(
8[µ2(κ

A
3 − 1)+ 2µ3][D3(1+ νD

3 )− D2(1+ νD
2 )+ ĥ3(B3+ B2)]

− 4(B3− B2− 2µ2ĥ3)[(κ
A
3 − 1)(B3− B2)+ 4µ3ĥ3]

)}
ω̄
( 1
ρξ

)
,

1≤ |ξ | ≤ ρ−1/2. (17)

In order to ensure that the elastic field in the matrix is unique, the two sets of functions φ2(ξ), 82(ξ),
ψ2(ξ), and 92(ξ) obtained in (16) and (17) should coincide. Consequently, we find that

3=
c11 X + c12Y
d11 X + d12Y

=
c12 X + c22Y
d12 X + d22Y

, (18)

and

an =
λ−n−1

+ p3−1ρnλn+1

1−3ρ−n , a−n =
λn−1
+ pλ1−n

3−1ρ−n − 1
, n = 1, 2, . . . ,+∞, (19)



UNIFORM STRESS RESULTANTS IN ISOTROPIC LAMINATED PLATES 537

where

c11 =
1
13

(
4[µ3(κ

A
2 − 1)−µ2(κ

A
3 − 1)][D3(1+ νD

3 )+ D2(1− νD
2 )+ ĥ3(B3+ B2)]

− [(κ A
3 − 1)(B3− B2)+ 4µ3ĥ3][(κ

A
2 − 1)(B3− B2)+ 4µ2ĥ3]

)
,

c12 =
8µ2 D2

13
[(κ A

3 − 1)(B3− B2)+ 4µ3ĥ3],

c22 =
16µ2 D2

13(κ
A
2 + 1)

(
2[µ2(κ

A
3 − 1)+ 2µ3][D3(1+ νD

3 )− D2(1+ νD
2 )+ ĥ3(B3+ B2)]

− (B3− B2− 2µ2ĥ3)[(κ
A
3 − 1)(B3− B2)+ 4µ3ĥ3]

)
, (20a)

d11 =
1
11

(
4[µ1(κ

A
2 − 1)−µ2(κ

A
1 − 1)][D1(1+ νD

1 )+ D2(1− νD
2 )+ ĥ1(B1+ B2)]

− [(κ A
1 − 1)(B1− B2)+ 4µ1ĥ1][(κ

A
2 − 1)(B1− B2)+ 4µ2ĥ1]

)
,

d12 =
8µ2 D2

11
[(κ A

1 − 1)(B1− B2)+ 4µ1ĥ1],

d22 =
16µ2 D2

11(κ
A
2 + 1)

(
2[µ2(κ

A
1 − 1)+ 2µ1][D1(1+ νD

1 )− D2(1+ νD
2 )+ ĥ1(B1+ B2)]

− (B1− B2− 2µ2ĥ1)[(κ
A
1 − 1)(B1− B2)+ 4µ1ĥ1]

)
. (20b)

Equation (18) can be rewritten in the form[
c11 c12

c12 c22

] [
X
Y

]
=3

[
d11 d12

d12 d22

] [
X
Y

]
, (21)

which is a generalized eigenvalue problem for the two 2× 2 real symmetric matrices[
c11 c12

c12 c22

]
and

[
d11 d12

d12 d22

]
, (22)

with 3 the eigenvalue and v = [X Y ]T the associated eigenvector. In what follows, we first address the
case in which the above two matrices are not proportional to each other, i.e.,[

c11 c12

c12 c22

]
6= k

[
d11 d12

d12 d22

]
, (23)

where k is an arbitrary real constant.
In this case, the two eigenvalues of (21) can be determined explicitly as

31,2 =
c11d22+ c22 d11− 2c12d12±

√
(c11d22− c22 d11)2+ 4(c11d12− c12d11)(c22 d12− c12d22)

2(d11d22− d2
12)

, (24)

and the two eigenvectors associated with the two eigenvalues are then

v1 =

[
c12−31d12

31d11− c11

]
, v2 =

[
c12−32 d12

32 d11− c11

]
, (25)



538 XU WANG, LIANG CHEN AND PETER SCHIAVONE

which implies that the two coefficients X and Y are not independent. It is necessary that the two eigen-
values 31 and 32 should be real. Consequently, it is seen from (24) that the following inequality must
be satisfied:

(c11d22− c22 d11)
2
+ 4(c11d12− c12 d11)(c22 d12− c12 d22)≥ 0.

A comparison of (16) with the asymptotic behaviors at infinity specified in (10c) leads to

δ1 = X, γ1 = Y, δ2 =−2 p̄λ2(d11 X + d12Y ), γ2 = p̄λ2 κ
A
2 + 1

4µ2 D2
(d12 X + d22Y ). (26)

The necessary and sufficient condition for the existence of the real coefficient X (or Y ) simultaneously
satisfying the four conditions in (26) is found to be

N∞22 − N∞11 + 2i N∞12

N∞11 + N∞22

=
p̄λ2

8µ2 D2[c12−3j d12+ B2(3j d11− c11)]

×
{
8µ2 D2(c11d12− c12d11)+ B2(κ

A
2 + 1)[c12d12− c11d22+3j (d11d22− d2

12)]
}
,

M∞11 +M∞22

N∞11 + N∞22
=

4µ2 D2(1+ νD
2 )(3j d11− c11)+ B2(κ

A
2 − 1)(c12−3j d12)

4µ2[c12−3j d12+ B2(3j d11− c11)]
,

M∞22 −M∞11 + 2i M∞12

N∞11 + N∞22

=−
p̄λ2

8µ2[c12−3j d12+ B2(3j d11− c11)]

×
{
(1− νD

2 )(κ
A
2 + 1)[c12d12− c11d22+3j (d11d22− d2

12)] + 4B2(c11d12− c12d11)
}
,

j = 1, 2. (27)

For the given material and geometric parameters, the three conditions in (27) can be considered as
restrictions on the remote loading.

The internal uniform hydrostatic stress resultants inside the two nonelliptical inhomogeneities can be
expressed in terms of the two loading parameters δ1 and γ1 defined in (11) as

N11 = N22 = f11δ1+ f12γ1, N12 = 0,

M11 = M22 = g11δ1+ g12γ1, M12 = 0, z ∈ S1,
(28)

N11 = N22 = f31δ1+ f32γ1, N12 = 0,

M11 = M22 = g31δ1+ g32γ1, M12 = 0, z ∈ S3,
(29)

where the eight coefficients f j1, f j2, g j1, g j2, j = 1, 3 are defined by
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f j1

κ A
2 +1

=
1
1 j

{
8µ j [D j (1+νD

j )+D2(1−νD
2 )+ĥ j (B j+B2)]−2B j [(B j−B2)(κ

A
j −1)+4µ j ĥ j ]

}
,

f j2

16D2
=

1
1 j
[B jµ2(κ

A
2 −1)+2B2µ j+4µ jµ2ĥ j ],

g j1

κ A
2 +1

=
1
1 j

{
2B j (κ

A
j −1)[D j (1+νD

j )+D2(1−νD
2 )+ĥ j (B j+B2)]

−2D j (1+νD
j )[(B j−B2)(κ

A
j −1)+4µ j ĥ j ]

}
,

g j2

8D2
=

1
1 j

{
2D j (1+νD

j )[µ2(κ
A
j −1)+2µ j ]−B j (κ

A
j −1)[(B j−B2)−2µ2ĥ j ]

}
, j = 1, 3. (30)

It should be emphasized that, in view of (27)2, δ1 and γ1 can ultimately be expressed in terms of only
N∞11 + N∞22 . In addition, N11+ N22 and M11+M22 are uniformly distributed in the matrix as

N11+ N22 = 4(δ1+ B2γ1), M11+M22 =
B2(κ

A
2 − 1)
µ2

δ1+ 4D2(1+ νD
2 )γ1, z ∈ S2. (31)

The above result implies that the two elastic inhomogeneities will not disturb the quantities N11+ N22

and M11 + M22 when inserted into the surrounding (uncut) matrix (i.e., N11 + N22 = N∞11 + N∞22 and
M11+M22 = M∞11 +M∞22 for z ∈ S2). Thus the two elastic inhomogeneities are “harmonic” [Bjorkman
and Richards 1976; 1979; Richards and Bjorkman 1980; Wang and Schiavone 2015]. In addition, it
follows from (28), (29), and (31) that the hoop membrane stress resultant and hoop bending moment are
constant along the two interfaces L1 and L2 on the matrix side and are given by

Nt t = (4− f11)δ1+ (4B2− f12)γ1,

Mt t =

[
B2(κ

A
2 − 1)
µ2

− g11− ĥ1 f11

]
δ1+ [4D2(1+ νD

2 )− g12− ĥ1 f12]γ1, z ∈ L1,
(32)

Nt t = (4− f31)δ1+ (4B2− f32)γ1,

Mt t =

[
B2(κ

A
2 − 1)
µ2

− g31− ĥ3 f31

]
δ1+ [4D2(1+ νD

2 )− g32− ĥ3 f32]γ1, z ∈ L2.
(33)

Next, we address the case in which the two matrices in (22) are proportional to each other, i.e.,[
c11 c12

c12 c22

]
= k

[
d11 d12

d12 d22

]
. (34)

In this case, it is seen from (18) that 3= k, and that the two coefficients X and Y are now independent
of each other. The necessary and sufficient condition for the existence of the two real coefficients X and Y
simultaneously satisfying the four conditions in (26) is quite simply derived as

δ2 =−2 p̄λ2(d11δ1+ d12γ1), γ2 = p̄λ2 κ
A
2 + 1

4µ2 D2
(d12δ1+ d22γ1), (35)

or more explicitly

N∞11 − N∞22 + 2i N∞12 = pλ2
[χ11(N∞11 + N∞22 )+χ12(M∞11 +M∞22 )],

M∞11 −M∞22 + 2i M∞12 = pλ2
[χ21(N∞11 + N∞22 )+χ22(M∞11 +M∞22 )],

(36)
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with the four coefficients χ11, χ12, χ21, and χ22 being defined by

χ11 =
1

4µ2 D2[8µ2 D2(1+ νD
2 )− 2B2

2 (κ
A
2 − 1)]

×
{
8µ2 D2[4d11µ2 D2(1+ νD

2 )− d12 B2(κ
A
2 − 1)]

− B2(κ
A
2 + 1)[4d12µ2 D2(1+ νD

2 )− d22 B2(κ
A
2 − 1)]

}
,

χ12 =
8µ2 D2(d12− d11 B2)− B2(κ

A
2 + 1)(d22− d12 B2)

D2[8µ2 D2(1+ νD
2 )− 2B2

2 (κ
A
2 − 1)]

,

χ21 =
1

4µ2[8µ2 D2(1+ νD
2 )− 2B2

2 (κ
2
2 − 1)]

×
{
(1− νD

2 )(κ
A
2 + 1)[4d12µ2 D2(1+ νD

2 )− d22 B2(κ
A
2 − 1)]

− 4B2[4d11µ2 D2(1+ νD
2 )− d12 B2(κ

A
2 − 1)]

}
,

χ22 =
(1− νD

2 )(κ
A
2 + 1)(d22− d12 B2)− 4B2(d12− d11 B2)

8µ2 D2(1+ νD
2 )− 2B2

2 (κ
A
2 − 1)

. (37)

An example of when the two 2× 2 real symmetric matrices are proportional to each other arises when
the two inhomogeneities have identical elastic properties (i.e., µ1 = µ3, D1 = D3, B1 = B3, νA

1 = ν
A
3 ,

νD
1 = ν

D
3 ) and ĥ1 = ĥ3. In this example, we will have c11 = d11, c12 = d12, c22 = d22. Consequently,

3 = k = 1. Various shapes of the two nonelliptical inhomogeneities in the case 3 = 1 (in (12)) have
been illustrated numerically in [Wang 2012].

For given material and geometric parameters, the two conditions in (36) can be considered as con-
straints on the remote loading. Once the two conditions in (36) are satisfied, (28) and (29) for the
internal uniform hydrostatic stress resultants and (32) and (33) for the constant hoop stress resultants on
the matrix side along the two interfaces remain valid for this case. Recall that now δ1 and γ1 can be
expressed in terms of N∞11 + N∞22 and M∞11 +M∞22 in view of the fact that X and Y are independent.

4. Conclusions

We have identified the shapes of the two nonelliptical elastic inhomogeneities and the conditions leading
to uniform interior stress resultants inside the two inhomogeneities. When the inequality in (23) is
satisfied, two values of the real coefficient3 are determined from (24) for the given material parameters of
the composite plate. Three conditions on remote loading for the given material and geometric parameters
are derived in (27). Once these conditions are satisfied, elementary expressions of the internal uniform
hydrostatic stress resultants and constant hoop stress resultants on the matrix side along the two interfaces
in terms of only N∞11 + N∞22 are presented in (28), (29), (32), and (33). When (34) is valid, a single value
of 3= k is found. Two conditions on remote loading for the given material and geometric parameters are
derived in (36). In this case, the internal uniform hydrostatic stress resultants and constant hoop stress
resultants on the matrix side along the two interfaces can be expressed in terms of both N∞11 + N∞22 and
M∞11 +M∞22 .

The complex coefficients an and a−n can be uniquely determined from (19) for given values of λ,
ρ, p, and 3. Consequently, the shapes of the two inhomogeneities are known. In addition, the two
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inhomogeneities are “harmonic” in the sense that they satisfy the harmonic field condition of Bjorkman
and Richards [1976] in that their introduction will not cause any disturbance of the fields N11+ N22 and
M11+M22 in the surrounding matrix.
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AN ANALYTICAL SOLUTION FOR HEAT FLUX DISTRIBUTION OF
CYLINDRICALLY ORTHOTROPIC FIBER REINFORCED COMPOSITES

WITH SURFACE EFFECT

JUNHUA XIAO, YAOLING XU AND FUCHENG ZHANG

A theoretical study is conducted on the problem of two-dimensional steady-state heat transfer of compos-
ites with cylindrically orthotropic fiber with surface effect containing isotropic core. By introducing an
appropriate coordinate transformation to convert the governing differential equation into a harmonic one,
an analytical solution to the heat flux fields of the cylindrically orthotropic nanofiber reinforced compos-
ites is derived based on the surface theory model. Numerical examples provide a better understanding
of interesting interaction effects of composite microstructures (geometric and physical parameters of the
fiber and core) in heat flux distribution. The radial and circumferential heat flux distributions in the
nanocomposites are investigated. The effects of size of the fiber, thermal conductivity of the core and
radius of the core on the heat flux distribution are discussed.

1. Introduction

Carbon fiber reinforced composites have been extensively used in modern industries including sports
equipment, civil engineering, mechanical engineering, aerospace structures, defense and automobile
industries [DeValve and Pitchumani 2013; Peng et al. 2017], because of their high specific strength,
modulus, stiffness, low density, thermal stability, and corrosion resistance [Khan et al. 2010; Wang
et al. 2012; Li et al. 2017]. Different from common fibers, carbon fibers exhibit special heterogeneity
and anisotropy [Hashin 1990; Christensen 1994], that is, polyacrylonitrile based carbon fibers generally
exhibit circumferential alignment of the graphite basal planes, and pitch based carbon fibers typically
show radial alignment [Yan et al. 2010; Avery and Herakovich 1986; Knott and Herakovich 1991].

Thermal performance is one of the most important properties of composites in many applications
as thermal protections, heat shields and heat guides [Gori and Corasaniti 2014]. In recent years, sig-
nificant progress has been made in addressing the effective thermal conductivity of composites from a
fundamental perspective by using theoretical, numerical and experimental methods.

The knowledge of heat flux fields is also important to understanding and predicting the thermal prop-
erties of composite in many heat conduction problems [Frankel et al. 2008; Stokes-Griffin and Compston
2016]. The heat flux distribution in composites is a basilica problem in inverse heat transfer problem
[Alifanov 1994; Orlande 2011]. The following are some representative literatures in recent years. By
presenting a finite element model, Rodríguez and Cabeza [1999] investigated the heat flux distribution in
a composite with cylindrically orthotropic and homogeneous fiber. Using a thermomechanical cohesive
zone model, Hattiangadi and Siegmund [2005] studied the distribution of total heat flux drop ahead
of the crack tip across an intact interface for different values of interface conductance. Based on the

Keywords: surface effect, nanofiber, size dependent, heat flux, cylindrically orthotropic fiber.
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conjugate gradient method, Yang and Chang [2006] estimated the heat and moisture fluxes of a double-
layer annular cylinder with interface resistance. Yin et al. [2008] derived the heat flux field for a single
particle embedded in a graded material by using the equivalent inclusion method. Frankel et al. [2010]
presented a new heat flux-temperature integral relationship for anisotropic materials and obtained both
an exact analytic solution for temperature and heat flux. Yang et al. [2010] estimated the heat flux
and temperature distributions for the system composed of a multilayer composite strip and semi-infinite
foundation based on the conjugate gradient method and the discrepancy principle. Yan et al. [2010]
examined the effects of the existence of the core and the cylindrical orthotropy of the fiber on the heat
flux at the center of the fiber. Lee et al. [2012] developed an inverse analysis for simultaneously estimating
the heat fluxes at the inner and outer boundary surfaces of a functionally graded hollow circular cylinder
from the knowledge of temperature measurements taken within the cylinder. Shi et al. [2013] calculated
the cold wall heat flux of silica-phenolic composite exposed to heat flux environments. Yang et al. [2013]
solved the inverse hyperbolic heat conduction problem in estimating the inner-wall heat flux of a hollow
cylinder from the knowledge of temperature measurements taken within the medium. Rylko [2015]
presented the temperature distribution and the heat flux expressed in terms of a series in the radius of
ideally conducting fibers in deterministic and random composites. Gounni and Alami [2017] studied the
optimal allocation of the phase change material within a composite wall for surface temperature and heat
flux reduction by an experimental approach.

To the best of our knowledge, the investigation on the distribution characteristics of the heat flux fields
in the nanocomposites reinforced with cylindrically orthotropic fiber has not been reported. Classical
heat transfer theory does not address size effect of the fibers in composites. However, size effect of the
heat properties for nanocomposites often become prominent when the size of reinforced fibers are on
the order of nanometer [Gyõry and Márkus 2014; Machrafi 2016; Sobolev 2017]. The surface effect of
nanofibers plays an important role in heat flux fields in the nanocomposites because of the high surface-to-
volume ratios of this solid material. By introducing interface physical constants, Gurtin-Murdoch surface
theory [Gurtin and Murdoch 1975; Gurtin and Murdoch 1978; Gurtin et al. 1998] takes into account the
nanoscale microresponse in the macroscopic response of the material, which has become an effective
analytical method for studying microscopic and macroscopic properties of the nanocomposites. Duan
and Karihaloo [2007] prove that when the thermoelastic term is included in the constitutive relation of
interface stress model, there exists an exact relation between the effective coefficient of thermal expansion
and the effective elastic moduli of the heterogeneous medium. Recent research [Xiao et al. 2018] shows
that the surface theory model can be applied to solve the heat transfer problem of nanofiber reinforced
composites.

This work investigates the heat flux distribution of composites reinforced with cylindrically orthotropic
nanofiber under two dimensional steady-state heat transfer conditions. An analytical solution to the heat
flux fields in the composites is derived by using the surface theory model. The effects of the fiber size,
the core thermal conductivity and the core radius on the heat flux fields are discussed.

2. Model and complex variable elasticity theory

Consider a cylindrically orthotropic fiber with surface effect containing isotropic core under two dimen-
sional steady-state heat conduction as shown in Figure 1, where (x, y) denotes the Cartesian coordinates
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Figure 1. A cylindrically orthotropic fiber with surface effect containing isotropic core
under far-field constant heat flux q∞x .

and (r, θ) denotes the polar coordinates. Random orientation of the graphite basal planes in the transverse
plane of the fiber would result in a transversely isotropic core in the carbon fiber [Avery and Herakovich
1986; Knott and Herakovich 1991], which is shown in the Figure. The regions �0, �f, �m denote the
isotropic fiber core, the cylindrically orthotropic nanofiber and the isotropic matrix, respectively. The
contour S with a radius R denotes the interface between the fiber and the matrix, which possesses different
thermal property from the fiber and the matrix. The contours S0 with a radius R0 denote the interfaces
between the fiber core and the fiber. The subscripts 0, f, m denote the fiber core, the fiber and the matrix,
respectively. Assuming the nanocomposites is subjected to a far-field constant heat flux q∞x along the
x axis. Based on the theory of Gurtin–Murdoch surface model [Gurtin and Murdoch 1975; Gurtin and
Murdoch 1978; Gurtin et al. 1998], the nanofiber interface S has its own thermal property, which is
regarded as a layer without thickness [Xiao et al. 2018].

The basic equation of the problem can be given as

∂qr

∂r
+

qr

r
+
∂qθ
r∂θ
= 0 in �0, �f, �m, (1)

[
Hr

Hθ

]
=

[
∂T/∂r

1
r
(∂T/∂θ)

]
in �0, �f, �m, (2)

{
qr

qθ

}
=−

[
kr 0
0 kθ

]{
Hr

Hθ

}
in �f, (3)

{
qr

qθ

}
=−

[
ki 0
0 ki

]{
Hr

Hθ

}
(i = 0,m) in �0, �m, (4)

where q, H and T denote heat flux, temperature gradient and temperature, respectively; kr and kθ are
the radial and circumferential conductivities, respectively.
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By substituting (2) and (3) into (1) yields the following governing differential equation:

∂

∂r

(
r
∂T
∂r

)
+ γ 2 1

r
∂2T
∂θ2 = 0 in �f, (5)

where γ =
√

kθ/kr . Define a complex plane z:

z = x + iy = reiθ . (6)

In general, γ 6= 1 (i.e. kr 6= kθ ), equation (5) is not a harmonic equation. Introduce a new complex
plane z1 as follows [Yan et al. 2010]

z1 = reiθ1, (7)

where θ1 = θ/γ . In the z1-plane, equation (5) is transformed into a harmonic equation:

∂

∂r

(
r
∂T
∂r

)
+

1
r
∂2T
∂θ2

1
= 0. (8)

The transformation from the z-plane to the z1-plane is not a conformal mapping. Introduce again a
complex plane ζ as follows

ζ = zγ1 = rγ−1z. (9)

It is a conformal mapping from z-plane to plane ζ .
The temperature field T is a harmonic function in ζ -plane and can be expressed as an analytical

function ω(ζ ):

T = 1
2
[ω(ζ )+ω(ζ )] = Re[ω(ζ )]. (10)

Define the heat transfer rate 8 along the arc ÂB:

8=
i
2

√
kr kθ [ω(ζ )−ω(ζ )]BA =−

√
kr kθ Im[ω(ζ )]|BA. (11)

By substituting (10) into (2) and (3), it is the following expressions are obtained that{
qr =−

γ

r kr Re[ω′(ζ )ζ ]

qθ = 1
r kθ Im[ω′(ζ )ζ ]

in �f. (12)

Then, equation (12) can be rewritten as

qr

γ kr
− i

qθ
kθ
=−

1
r
{
Re[ω′(ζ )ζ ] + i Im[ω′(ζ )ζ ]

}
=−

ζ

r
ω′(ζ ) in �f. (13)

When γ = 1 (i.e. kr = kθ = k), equations (11) and (13) degenerate into the following expressions:

8=
i
2

k[ω(ζ )−ω(ζ )]BA =−k Im[ω(ζ )]|BA, (14)

qr − iqθ =−
k
r
ω′(z) z, (15)

qx − iqy =−kω′(z). (16)
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3. Exact solution to heat flux fields

On the interface S, the nonclassical heat transfer boundary conditions can be written as [Xiao et al. 2018]

q f
r − qm

r =
1
R
∂q S

θ

∂θ
on S, (17)

q S1
θ =−ks H S

θ on S, (18)

where ks is the interface thermal constant.
For a coherent interface, the interfacial temperature gradient is equal to the associated temperature

gradient in the abutting bulk materials, i.e.

H S
θ = H f

θ (R)= H m
θ (R). (19)

Assuming the fiber-core interface S0 is perfect and the fiber-matrix interface S is imperfect, the bound-
ary conditions at the interfaces S0 and S can be given as

T0 = Tf on S0, (20)

80 =8f on S0, (21)

Tf = Tm on S, (22)

q f
r − qm

r =−
ks

R
∂H S

θ

∂θ
on S. (23)

In an annular region, the analytical function ω(z) can be expanded into Laurent series [Muskhelishvili
1953]:

ω(z)= a∗ ln z+
∞∑

k=−∞

akzk, (24)

where a∗ and ak are complex constants to be determined.
The complex potential ω0(z) and ωm(z) are expanded in z-plane and the complex potential ωf(ζ ) is

expanded in ζ-plane. It is seen that taking the following finite terms of the series can arrive at the exact
solution:

ω0(z)= A1z in �0, (25)

ωf(ζ )= B1ζ + B−1
1
ζ
= B1rγ−1z+

B−1

rγ−1
1
z

in �f, (26)

ωm(z)= C1z+C−1
1
z

in �m, (27)

where A1, B1, B−1, C1, and C−1 are constants to be determined.
Substituting (27) into (16) and integrating with the far field condition (qm

x − iqm
y )|z→∞ = q∞x − iq∞y ,

we obtain

C1 =−
q∞x
km
. (28)
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From (20)–(23), one obtains the following expressions:

A1 = B1 Rγ−1
0 +

B−1

Rγ+1
0

, (29)

k0 A1 =
√

kr kθ

(
B1 Rγ−1

0 −
B−1

Rγ+1
0

)
, (30)

B1 Rγ−1
+

B−1

Rγ+1 = C1+
C−1

R2 , (31)

km

(
C1−

C−1

R2

)
− γ kr

(
B1 Rγ−1

−
B−1

Rγ+1

)
=

ks

R

(
C1+

C−1

R2

)
. (32)

From (29)–(32), the coefficients B1, B−1, C1, and C−1 can be expressed by A1 as follows:

B1 = L1 A1 B−1 = L−1 A1 C1 = M1 A1 C−1 = M−1 A1, (33)

where

L1 =
R1−γ

0

2

(
1+

k0
√

kr kθ

)
,

L−1 =
R1+γ

0

2

(
1−

k0
√

kr kθ

)
,

M1 =
1

4km

[(
km +

ks

R
+ γ kr

)(
1+

k0
√

kr kθ

)
Rγ−1

Rγ−1
0

+

(
km +

ks

R
− γ kr

)
Rγ+1

0

Rγ+1

(
1−

k0
√

kr kθ

)]
,

M−1 =
R2

4km

[(
km −

ks

R
− γ kr

)(
1+

k0
√

kr kθ

)
Rγ−1

Rγ−1
0

+

(
km −

ks

R
+ γ kr

)
Rγ+1

0

Rγ+1

(
1−

k0
√

kr kθ

)]
.

(34)

From (28) and (33), it follows that

A1 =−
q∞x
Q
,

Q = 1
4

[(
km +

ks

R
+ γ kr

)(
1+

k0
√

kr kθ

)
Rγ−1

Rγ−1
0

+

(
km +

ks

R
− γ kr

)
Rγ+1

0

Rγ+1

(
1−

k0
√

kr kθ

)]
.

(35)

From (12), (15), (16), (25)–(27), the overall heat flux fields in the core, fiber and matrix can be
expressed as {

q0
r

q0
θ

}
= k0 A1

[
− cos θ

sin θ

]
in the core, (36){

q f
r

q f
θ

}
=

[
γ kr cos θ

( B−1
rγ+1 − B1rγ−1

)
kθ sin θ

( B−1
rγ+1 + B1rγ−1

)
]

in the fiber, (37)

{
qm

r
qm
θ

}
= km

[
cos θ

(C−1
r2 −C1

)
sin θ

(C−1
r2 +C1

)
]

in the matrix, (38)
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where the expression of coefficients A1, B1, B−1, C1, and C−1 are shown in (33)–(35).

4. Results and discussion

As an example discussion, take the carbon fiber reinforced epoxy resin as the computational object in
this work. The conductivity of the epoxy resin matrix is km = 0.19 W/mK. The unit of the interface
thermal constant ks is W/K. Due to the lack of research on the interface thermal constant of the nanofiber
in the existing literature, it is assumed that the ration of the thermal constant of the interface to that of
the matrix is a real constant ks/km = 2× 10−10 m according to the theory of surface elasticity [Xiao et al.
2018; Luo and Wang 2009].

The radial and circumferential conductivities of the cylindrically orthotropic fiber are not available and
hardly measured by an experiment [Yan et al. 2010]. According to a reasonable assumption by Hasselman
et al. [1993], the parameters are taken as kr/km = 100 and kθ/km = 2.4 for a radially orthotropic fiber,
and kr/km = 2.4 and kθ/km = 100 for a circumferentially orthotropic fiber. For the convenience of
comparison, choose the parameters with kr/km = kθ/km =

√
240 for a transversely isotropic fiber [Yan

et al. 2010].

Example 1. The variations of the dimensionless heat fluxes along the interfaces S of the fiber are plotted
in Figure 2, where km = 0.19 W/mK, ks/km = 2× 10−10 m, R0/R = 0.1, k0/km = 51.2 and fiber radius
R = 5 nm.

With the increase in angle θ from 0◦ to 90◦, the radial heat flux decreases to zero gradually, while
the circumferential heat flux increases from zero monotonously. It is seen that when the radial and
circumferential conductivities of the fiber change, it has little effect on the radial heat flux, whereas it
has a great effect on circumferential heat flux.
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Figure 2. Distributions of the dimensionless heat fluxes on the interfaces S of the fiber:
radial heat flux qr/q∞ (left) and circumferential heat flux qθ/q∞ (right).
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Figure 3. Effects of the size of the fiber on the dimensionless heat fluxes: radial heat
flux qr/q∞ at point A (left) and circumferential heat flux qθ/q∞ at point B (right).

Example 2. The effects of size of the fiber on the dimensionless heat fluxes at point A (maximum radial
heat flux on the fiber interface as seen in Figure 2, left) and point B (maximum circumferential heat
flux on the fiber interface as seen in Figure 2, right) are depicted in Figure 3, where km = 0.19 W/mK,
ks/km = 2× 10−10 m, R0/R = 0.1 and k0/km = 51.2.

Figure 3 (left) shows that when the size of the fiber is at the nanometer scale, the radial heat flux at
point A is size dependent, while the circumferential heat flux at point B has nothing to do with the size
of the fiber.

Example 3. The variations of the dimensionless heat fluxes at points A and B with the nondimensional
conductivity of the core k0/km are plotted in Figure 4, where km = 0.19 W/mK, ks/km = 2× 10−10 m,
R0/R = 0.1 and fiber radius R = 5 nm.

It is seen that with the increase of k0/km, the influence of the conductivity of the core on the radial
heat flux at point A is significant when kr > kθ , while becomes slight when kr > kθ . The change in the
conductivity of the core has little effect on the circumferential heat flux at point B on the fiber interface.

Example 4. The variations in the dimensionless heat fluxes at points A and B with the nondimensional
radius R0/R of the core are plotted in Figure 5, where km = 0.19 W/mK, ks/km = 2×10−10 m, k0/km =

51.2 and fiber radius R = 5 nm.

It is seen that the radial and circumferential heat fluxes increase monotonically when the core radius
R0/R increases gradually from 0 to 1. Figure 5 illustrates an interesting phenomenon in which the effect
of the core radius on the heat fluxes depends on the cylindrical orthotropy of the fiber. If kr� kθ , the
radial heat flux at point A first increases significantly (R0/R < 0.1), and then slowly tend to a constant
value. For the circumferential heat flux at point B, the influence of the core radius can be ignored. If
kr� kθ , the radial heat flux at point A first almost unchanged (R0/R< 0.8), and then drastically increases.
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Figure 4. Effects of the nondimensional conductivity of the core k0/km on the dimen-
sionless heat fluxes: radial heat flux qr/q∞ at point A (left) and circumferential heat
flux qθ/q∞ at point B (right).
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Figure 5. Effects of the nondimensional radius R0/R of the core on the dimensionless
heat fluxes: radial heat flux qr/q∞ at point A (left) and circumferential heat flux qθ/q∞

at point B (right).

For the circumferential heat flux at point B, the influence of the core radius is slight when R0/R < 0.8,
but becomes significant with the increase of R0/R.
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5. Conclusions

The problem of composites reinforced with cylindrically orthotropic nanofiber under two-dimensional
steady-state heat conduction is investigated based on the surface theory model and the theory of complex
variable elasticity. An analytical solution for the heat flux fields in the nanocomposites is obtained. The
effects of fiber size, core thermal conductivity and core radius on the heat flux fields are discussed. The
major results are: (a) Changes in the radial and circumferential conductivities of the fiber have little
effect on the radial heat flux, but have a great effect on circumferential heat flux. (b) When the size of
the fiber is at the nanometer scale, the radial heat fluxes are size dependent and the circumferential heat
fluxes shows size independent. (c) The influences of the core thermal conductivity and the core radius
on the radial and circumferential heat flux depend on the cylindrical orthotropy of the fiber.
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STRAIN GRADIENT FRACTURE OF A MODE III CRACK
IN AN ELASTIC LAYER ON A SUBSTRATE

JINE LI AND BAOLIN WANG

This paper studies the problem of a mode III crack in an elastic layer on a substrate under the framework
of strain gradient elasticity theory. The effects of volumetric and surface strain gradient parameters on
the crack tip asymptotic stress and crack shape are investigated. Due to strain gradient effect, the crack
opening, the magnitude of the stress ahead of the crack tip, and the stress intensity factor are significantly
higher than those in classical linear elastic fracture mechanics. More significantly, the direction of the
stress ahead of the crack tip with strain gradient is opposite to that in the classical linear elastic fracture
mechanics. The conventional linear elastic fracture mechanics results are recovered when the gradient
parameter reduces to zero. The influence of the substrate on the fracture mechanics parameters is very
significant when the strain gradient effect of the materials is considered.

1. Introduction

Continuum methods, being less computationally intensive, have been extensively used to investigate the
macro structural behavior on theoretical as well as the empirical grounds. Classical continuum elasticity
theories assume that the stresses in a material point depend only on the strain components at that point.
They do not account for the contributions of strain gradients therefore can not account for size effects of
materials, which are more evident when the dimensions of the structures are scaled down to the micro and
nano-domains. In that case, the material microstructural length scales become comparable to the length
scale of deformation field that tends to cause non-homogenous and scale/size dependent mechanical
behavior [Giannakopoulos and Stamoulis 2007].

Size dependent mechanical behavior in micro-scale elements have been observed extensively in exper-
iments [Fleck et al. 1994; Stolken 1997; Ma and Clarke 1995; McElhaney et al. 1998; Nix 1989; Poole
et al. 1996; Stelmashenko et al. 1993]. Size dependence of the stiffness of the material was also confirmed
by micro-cantilever experiments conducted by McFarland and Colton [2005]. It has been understood that
the non-classical continuum theories such as the higher-order gradient theories and couple stress theory
can interpret the scale-dependent behaviour of materials. Mindlin and Tiersten [1962], Toupin [1962],
and Koiter [1964] introduced the couple stress elasticity theory, incorporating two higher order material
constants to predict the size effects. The higher-order strain gradient theory was introduced by Mindlin
[1965] that includes the effect of the first and second derivatives of the strain tensor on the strain energy
density. Lam et al. [2003] introduced three higher-order material constants in the constitutive equations of
the modified strain gradient theory. In several modern theories, the response at a certain scale is influence
by a characteristic length at the lowest level [Benvenuti and Simone 2013]. This is very evident in the
case of lattice system potential energy that depends on the inter-atomic distance [Kiang et al. 1998]. In

Keywords: Strain gradient elasticity, film-substrate structure, mode III crack, crack tip field, fracture mechanics.
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order to cater for the underlying microstructure into the continuum theory, higher order strain gradient
theories were presented by Mindlin and Eshel [1968].

On the other hand, strain gradient effects become important near a crack tip because of the strain
singularity, particularly when the size of fracture process zone is on the order of the intrinsic material
length. Over the years, a few studies related to a crack in an infinite medium were conducted based
on gradient elasticity theories. The pioneering works are gradient elasticity with mode III cracking
investigated by Vardoulakis et al. [1996], Exadaktylos et al. [1996], and subsequently by Exadaktylos
[1998] for the mode I fracture and Exadaktylos and Vardoulakis [2001] for the scale related fracture
in rock mechanics. In a series of excellent studies, Fannjiang et al. [2002], Paulino et al. [2003], and
Chan et al. [2008] applied gradient elasticity theory to mode III crack problems in functionally graded
materials for cracks perpendicular and parallel to the material gradation direction, respectively. Some
interesting information related to dislocation based-gradient elastic fracture mechanics for the anti-plane
crack problem is discussed by Mousavi and Aifantis [2005]. Karimipour and Fotuhi [2017] carried out a
comprehensive study for an anti-plane infinite plane with multiple cracks. In a series of studies, Wu and
his colleagues have explored the thermally induced fracture of interface crack in bi-material structures
[Wu et al. 2016a], crack tip field and crack extension in functionally graded materials [Shi et al. 2014],
and film/substrate structures with ferroelectric effect [Qiu et al. 2018; Wu et al. 2016b].

Furthermore, investigations of cracking of a surface layer on a substrate of different materials have
its root application for ensuring the reliability of coating/substrate structures [Grosskreutz and Mcneilt
1969; Kim and Nairn 2000]. Fracture mechanics analysis of such problem has attracted interests from
numerous researchers including world-class scientist in the field (e.g., Hutchinson et al. 1987; Schulze
and Erdogan 1998). So far, fracture mechanics of strain gradient materials have been limited to an infinite
medium so that the only length parameter is the crack size. Strain gradient fracture of layered composite
materials, however, is very rare. Therefore, this paper investigates the problem of an anti-plane (mode III)
crack in an elastic layer on a substrate. The crack opening displacements, the stress at the crack tip front
and the stress intensity factors are shown graphically. Many observations different from those of the
conventional linear elastic fracture mechanics are observed.

2. Anti-plane deformation with strain gradient effects

This paper considers a cracked strain gradient layer on a substrate of different material as shown in
Figure 1. The crack has length 2a and is at the interface of two strain gradient layers of heights h1

and h2, respectively. We consider the anti-plane problem such that the only non-vanishing displacement
component is along the z axis and is denoted as w.

The constitutive equations and theoretical formulations for the anti-plane deformation of strain gradi-
ent materials are similar to those adopted by Vardoulakis et al. [1996] and Exadaktylos [1998]. There are
two material length parameters that are responsible for material volumetric and surface strain gradient
terms. These material constants are denoted as l and l ′, respectively. This theory has been successfully
employed to study the size effects in bending of micro-cantilever beams [Aifantis 2016], twisting of
micro-wires [Aifantis 2011], and fracture [Giannakopoulos and Stamoulis 2007]. According to gradient
elasticity theory, the stresses and double stresses derived from the constitutive equations of gradient
elasticity with surface energy are given by the following equations (see [Chan et al. 2008; Paulino et al.
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Figure 1. A crack in a strain gradient layer on a substrate: the strain gradient layer (1, 2)
and the substrate (3).

2003; Vardoulakis et al. 1996], for example):

τx = G
[
∂w

∂x
− l2
∇

2 ∂w

∂x

]
, τy = G

[
∂w

∂y
− l2
∇

2 ∂w

∂y

]
, (1a)

µxx = Gl2 ∂
2w

∂x2 , µxy = Gl2 ∂
2w

∂x ∂y
, (1b)

µyx = G
[
−l ′

∂w

∂x
+ l2 ∂

2w

∂x ∂y

]
, µyy = G

[
−l ′

∂w

∂y
+ l2 ∂

2w

∂y2

]
. (1c)

Here ∇2
= ∂2/∂x2

+ ∂2/∂y2, l and l2 are the volumetric and surface material characteristic lengths,
respectively, G is the shear modulus, τ is the stress tensor, and µ is the double stress tensor, l and l2

are characteristic material lengths related to volume and surface energy, respectively, restricted (in order
for the strain energy density to be positive definite) such that −1 < l ′/ l < 1 [Exadaktylos et al. 1996;
Vardoulakis et al. 1996]. This means that the surface length l ′ cannot exist alone (i.e. l ′ 6= 0 and l = 0 is
not acceptable). When the surface energy l ′ is omitted, the closed form solution for an infinite medium
with a crack has been obtained by Zhang et al. [1998].

The constitutive equations (1a) and (1b) show that the high order strains are considered however the
high order stresses are ignored. The equilibrium equation remains the same as the classical one and is
∂τx/∂x + ∂τy/∂y = 0. This can be expressed in terms of the displacement component w with the help
of (1a) as [

∂2w

∂x2 +
∂2w

∂y2

]
− l2

[
∂4w

∂x4 + 2
∂4w

∂x2∂y2 +
∂4wz

∂y4

]
= 0. (2)

The general solution of the fourth order differential Equation (2) may be represented as w(x, y) =
wc(x, y)+wg(x, y), where wc is the general solution of the harmonic equation ∂2w/∂x2

+∂2w/∂y2
= 0

and wg is a particular solution of (2). The application of Fourier transform gives the solution of harmonic
equation as

wc(x, y)= 1
2π

∫
∞

−∞

[A(s) e−|s|y +C(s) e|s|y] e−isx ds. (3a)
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A particular solution of (2) can be given as

wg(x, y)= 1
2π

∫
∞

−∞

[B(s) e−|s1|y + D(s) e|s1|y] e−isx ds, (3b)

where |s1| =
√

s2+ (1/ l2). Combining (3a) and (3b) gives the general solution of (2):

w(x, y)= 1
2π

∫
∞

−∞

[A(s) e−|s|y + B(s) e−|s1|y +C(s) e|s|y + D(s) e|s1|y] e−isx ds. (4)

The constants A(s), B(s), C(s), and D(s) are to be determined from the boundary conditions of the
problem. For the purpose of the following analysis, the shear stress τy(x, y) obtained from (1b) and (4)
is written as

τy(x, y)=−
G
2π

∫
∞

−∞

|s| [A(s) e−|s|y −C(s) e|s|y] e−isx ds, (5)

and the double stress µyy(x, y) obtained from (1c) and (4) is written as

µyy =
Gl ′

2π

∫
∞

−∞

[
|s|A(s) e−|s|y + |s1|B(s) e−|s1|y

−|s|C(s) e|s|y − |s1|D(s) e|s1|y

]
e−isx ds

+
Gl2

2π

∫
∞

−∞

[
A(s) e−|s|y s2

+ B(s) e−|s1|y s2
1

C(s) e|s|y s2
+ D(s) e|s1|y s2

1

]
e−isx ds. (6)

In the following analysis, we will use the subscripts 1, 2 and 3 to distinguish the regions 0≤ y ≤ h1,
−h2 ≤ y ≤ 0, and y ≤−h2, respectively (see Figure 1). The crack is at the y = 0 plane and the interface
of the structure is at the y =−h2 plane. The displacement, stress and double stress of the substrate layer
are, respectively

w3(x, y)= 1
2π

∫
∞

−∞

[C3(s) e|s|y + D3(s) e|s3|y] e−isx ds, (7)

τy(x, y)=
Gs

2π

∫
∞

−∞

|s|C3(s) e|s|ye−isx ds, (8)

and

µ3yy =
Gsl ′s
2π

∫
∞

−∞

[−|s|C3(s) e|s|y − |s3|D3(s) e|s3|y] e−isx ds

+
Gsl2

2π

∫
∞

−∞

[C3(s) e|s|ys2
+ D3(s) e|s3|ys2

3 ] e
−isx ds, (9)

where |s3| =

√
s2+ (1/ l2

3), and where l3 is the strain gradient parameter of the substrate layer.

3. The crack problem and its solution

The stress free conditions on the top surface requires that τ1y(x, h1) = 0 and µ1yy(x, h1) = 0. The
transmission conditions for ideal interface imply continuity of the stress, double stress, displacements and
rotations [Piccolroaz et al. 2012]. Thus τ1y(x, 0)= τ2y(x, 0), µ1yy(x, 0)= µ2yy(x, 0), ∂w1(x, 0)/∂y =
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∂w2(x, 0)/∂y, τ2y(x,−h2) = τ3y(x,−h2), µ2yy(x,−h2) = µ3yy(x,−h2), w2(x,−h2) = w3(x,−h2).
These represent the continuity conditions of the displacement and stress at the bonded region of the
interfaces. As usually in the fracture mechanics analysis, the crack surfaces are assumed to be subjected
to an applied anti-plane shear stress p(x) such that the following mixed boundary conditions on the y = 0
plane hold (these boundary conditions were obtained from the variational principle and have been used
by Paulino et al. [2003] and Chan et al. [2008])

τy(x, 0)=−p(x), |x |< a, (10a)

w1(x, 0)−w2(x, 0)= 0, |x | ≤ a. (10b)

In order to determine the full-field solution of the problem, we also introduce a discontinuity func-
tion g(x) along the cracked plane according to

g(x)=
∂[w1(x, 0)−w2(x, 0)]

∂x
. (11)

By this definition, the continuity condition for the displacement on the y = 0 plane requires that g(x)= 0
for |x | ≥ a and

∫ a
−a g(x) dx = 0, which is the single-value condition.

Substituting (4) into (11) and with Fourier inversion, a relationship between A(s), B(s), C(s), and
D(s) can be obtained:

[A1(s)+ B1(s)+C1(s)+ D1(s)] − [A2(s)+ B2(s)+C2(s)+ D2(s)] =
i

2s

∫ a

−a
g(r) eisr dr. (12)

As a result, Ai (s), Bi (s), Ci (s) and Di (s) (i = 1, 2, 3) can be expressed in terms of the single unknown
function g(x). Suppose the expressions for A1(s) and C1(s) are, respectively,

A1(s)= A(s) i
2s

∫ a

−a
g(r) eisr dr, (13a)

and

C1(s)= C(s) i
2s

∫ a

−a
g(r) eisr dr. (13b)

Then the shear stress on the cracked obtained with the submission of (13a) and (13b) into (5) is

τy(x, 0)= G1

∫ a

−a
R(x, r) g(r) dr, (14)

where the integral kernel R(x, r) is

R(x, r)= lim
y→+0

i
2π

∫
∞

−∞

1
2
|s|
s
(−A(s) e−|s|y +C(s) e|s|y) eis(r−x) ds, (15)

or

R(x, r)= lim
y→+0

1
2π

∫
∞

0
(A(s) e−|s|y −C(s) e|s|y) sin[s(r − x)] ds. (16)

In order to identify the asymptotic behaviour of A(s)− C(s) for s at infinity, one can consider a
crack of length 2a at the infinite medium of the same material of the layer. This is, one considers h
to be equal to infinity. After examining, it is found that for large values of s, C(s), and D(s) become
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vanishing and A(s) approaches to 1+ l2s2. This function is denoted as 30(s) in the following analysis.
The asymptotic analysis allowing splitting of the integral kernel R(x, r) into two parts so that the stress
of (14) can be re-written as

τy(x, 0)= G
∫ a

−a
�(x, r) g(r) dr +G

∫ a

−a
R∞(x, r) g(r) dr, (17)

where the regular kernel is

�(x, r)= 1
2π

∫
∞

0

(
A(s)−C(s)−30(s)

)
sin[s(r − x)] ds, (18)

and the singular kernel is

R∞(x, r)=
1

2π

∫
∞

0
[1+ l2s2

] sin[s(r − x)] ds. (19)

The regular kernel, Equation (18) can be evaluated by standard numerical integral technique. The singular
kernel, Equation (19) can be evaluated by hypersingular integral equation technique of Paulino et al.
[2003] and Chan et al. [2008]. As a result of such procedure, we get

τy(x, 0)=−
Gl2

π

∫ a

−a

g(r)
(r − x)3

dr +
G
2π

∫ a

−a

g(r)
r − x

dr +G
∫ a

−a
�(x, r) g(r) dr. (20)

Equation (20) provides the expression for τy(x, 0) outside as well as inside the crack. In the case of
inside the crack, the crack face stress boundary condition gives

−
(l/a)2

π

∫ 1

−1

g(r)
(r̄ − x̄)3

dr̄ + 1
2π

∫ a

−a

g(r)
r̄ − x̄

dr̄ + a
∫ 1

−1
�(x, r) g(r) dr̄ =−

P
G
. (21)

Here and in the following, the notations x̄ = x/a and r̄ = r/a will be used. Equation (21) is a hypersingular
integral equation. According to Paulino et al. [2003] and Chan et al. [2008], the solution of g(r) can be
expressed in the following form:

g(r̄)=
∞∑

m=1

CmUm(r̄)
√

1− r̄2, (22)

in which Um is the Chebyshev polynomial of the second kind Um(x̄)= sin[(m+ 1) arcos(x̄)]/
√

1− x̄2,
and Cm are unknowns to be evaluated. It is observed that the single-value condition of g(x) is identically
satisfied by (22). After substituting (22), truncated with the first M terms, into (21), and following the
same procedure of Paulino et al. [2003] and Chan et al. [2008], and through expansions and integrals of
Chebyshev polynomials given in Appendix, it can be seen that

−
(l/a)2

4(1− x̄2)

∞∑
m=1

Cm[m(m+ 1)Um+1(x̄)− (m2
+ 3m+ 2)Um−1(x̄)]

−
1
2

∞∑
m=1

Cm Tm+1(x̄)+ a
∞∑

m=1

Cm Vm(x̄)=−
p
G
, (23)
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where Tm is the Chebyshev polynomial of the first kind Tm(x̄)= cos[m arcos(x̄)], and Vm is

Vm(x̄)=
∫ 1

−1
�(x, r)Um(r̄)

√
1− r̄2 dr̄ . (24)

For the case of infinite layer thickness, the regular integral kernel �(x, r) vanishes and (23) becomes

−
(l/a)2

4(1− x̄2)

∞∑
m=1

Cm[m(m+1)Um+1(x̄)− (2m2
+3m+2)Um−1(x̄)]−

1
2

∞∑
m=1

Cm Tm+1(x̄)=−
p
G
. (25)

The simplest method for solving the functional (23) is using an appropriate collocation in x . After
evaluating Cm from (23), the displacement field can be calculated from (4) since A(s), B(s), C(s),
and D(s) have been expressed in terms of g(x). The associated stress can be obtained from the consti-
tutive equations of (1a)–(1c). Thus, the full field solution is obtained.

Of particular interest are the crack opening displacement and the crack tip stress state. The displace-
ment jump across the crack can be evaluated from 1w(x, 0)=

∫ x
−a g(r) dr . With the substitution of (27),

we get

1w(x, 0)= a
M∑

m=1

Cm

(
sin[(m+ 2) arcos(x/a)]

2(m+ 2)
−

sin[m arcos(x/a)]
2m

)
, |x |< a. (26)

Due to symmetry, the displacement on the upper surface of the crack w(x, 0) is half of 1w(x, 0). The
maximum cack face displacement appears at x = 0 on the upper surface of the crack and is

w(0, 0)=
1w(0, 0)

2
=−a

M∑
m=1

Cm
sin(m π/2)

4

(
1

m+ 2
+

1
m

)
.

For gradient elasticity theory, τy have a strong singularity, which can not be described by conventional
linear elasticity fracture mechanics. Note that the expression for τy(x, 0) is valid for |x |< a as well as
|x |> a. Equation (20) provides the expression for τy(x, 0) outside as well as inside the crack. With the
substitution of the density function (22) and again through expansions of Chebyshev polynomials [Chan
et al. 2003], the stress near the crack tip is found to be (neglect the secondary terms)

τy(x, 0)=−
G
2

∞∑
m=1

Cm

(
x̄ −
|x |
x

√
x̄2− 1

)m+1

+
G(l/a)2

2

∞∑
m=1

Cm(m+ 1)
(

x̄ −
|x |
x

√
x̄2− 1

)m−1

×

[
m
(

1−
|x̄ |

√
x̄2− 1

)2

+
x̄ − |x |x

√
x̄2− 1

(
√

x̄2− 1)3

]
. (27)

The highest singularity is (x̄ − 1)3/2. This is totally different from the conventional linear elasticity
fracture mechanics result, which gives (x̄ − 1)1/2 singularity.

The above formulation is general enough for consideration of a crack at any position in the film with or
without substrate. For example, if we let Gs = 0, the problem will become a crack in a single layer. On the
other hand, if we let Gs =∞, the problem will correspond to a crack in a film on a rigid substrate. It can
be seen that the value of l ′ does not appear in (21). Thus, the solution of the discontinuity function g(x)
has no dependence on the material gradient parameter l ′ which is related to the surface energy. One can
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also see that the shear stress τy on the cracked plane also does not depend on l ′. However, it is expected
that the other stress components such as τx should have a dependence on l ′. The stress component τy

away from the cracked plane should also have relationship with l ′. Karimipour and Fotuhi [2017] have
also observed that the effect of the volumetric characteristic length l on the solution is more significant
than that of the surface characteristic length l ′ and suggested that it is quite adequate if only the effect
of l is studied.

4. Results and discussion

All results are given for the z direction displacement on the upper surface of the crack and the stress
ahead of the crack tip on the cracked plane for a constant surface shear load τy(x, 0)=−p0 on the crack
faces. It is noticed from the calculations that the value of M required for a convergent result depends on
the relative value of strain gradient l to the crack length parameter a. All calculations confirm that the
results converge as the number of allocation points (the value of M) increase.

In order to examine the influence of crack location, we consider a film on a subscrate of the same
material. This structure configuration can also be understood as a semi-infinite medium containing a
crack at any location. Therefore, the effect of h2 is dropped out from the result. Some numerical results
of crack surface displacement profiles for various values of h1 are shown in Figure 2 for l = 0.2a. The
crack is considerably softened as it approaches the surface of the film. This fact can also be seen from
Figure 3 which shows the influence of crack location on the stress ahead of the crack tip. As expected,
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Figure 2. Crack surface displacement profiles for a film on the substrate of the same
material with choice of l = 0.2a.
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Figure 3. Normalized stress τy(x, 0)/p0 near the right crack tip for a film on the sub-
strate of the same material with with choice of l = 0.2a.

the stress is significantly enhanced when h1 is smaller. Results for the value of h1 larger than 1.5a are
almost identical to those for a crack in an infinite medium. Basically, the effect of strain gradient on the
crack in the finite layer is more significant than in the infinite layer. Generally, finite layer border tends
to enhance the stress level near the crack tip.

Some numerical results for a crack at h1 = 0.2a in a film on a substrate of the same material is plotted
in Figure 4 to show the effect of the gradient parameter l. It can be seen that the displacement decreases
considerably with the gradient parameter. Therefore, in comparison to the classical elasticity fracture
mechanics, strain gradient effect will considerably stiffens the crack. As observed, when the gradient
parameter become very small (in current case, l/a ≤ 0.005), the result is almost identical to the that
obtained from the conventional linear elastic fracture mechanics analysis.

In order to further explore the strain gradient effect, it is necessary to know the stress near the crack
tips and to evaluate the influence of the gradient parameter l. Therefore, in Figure 5, the normalized
stresses near the right crack tip for a crack at h1 = 0.2a in a film on the substrate of the same material are
plotted for different values of l. The stresses at the left crack tip are same but with an opposite sign. It
is obvious from Figure 5 that the magnitudes of the stress increase as l/a increases and vice versa. This
suggests that the stresses in strain gradient fracture are significantly larger than those in the classical
field. This trend observation is the same as that made by Zhang et al. [1998] based on the closed-
form analysis of an infinite medium with an anti-plane crack. Another fact observed from Figure 5
is that for sufficiently small gradient parameter, the strain gradient solution can be reduced to that of
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Figure 4. Crack (upper) surface displacement profiles for a crack at h1 = 0.2a, in a film
on the substrate of the same material for different values of l.
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Figure 5. Normalized stress τy(x, 0)/p0 near the right crack tip for a crack at h1= 0.2a,
in a film on the substrate of the same material for different values of l.
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Figure 6. Crack surface displacement profiles in a film on a substrate of different stiff-
ness and gradient parameter for h1 = h2 = 0.2a and l = 0.2a.

the conventional linear elastic fracture mechanics solution. However, the natures of the strain gradient
solution and the conventional linear elastic fracture mechanics solution are totally different: the gradient
solutions are always negative and with a higher magnitude of the stress level but the conventional linear
elastic fracture mechanics solution is always positive and with a lower magnitude of the stress level.

Figure 6 displays variation of the crack surface displacement with the stiffness of the substrate for
a crack at the center of the film with h1 = h2 = 0.2a and for l = 0.2a. As expected, the structure
becomes stiffer and the crack surface displacement reduces when the shear modulus of the substrate
layer increases. The zero substrate stiffness is related to a single layer with a crack. On the other hand,
the infinite layer thickness corresponds to a single layer on a rigid substrate. From Figure 6 we can
observe the influence of the gradient parameter of the substrate on the crack displacement. Generally,
the gradient of the substrate reduces the crack face displacement. However, this effect is very small.
Figure 7 shows variations of the stress at the right crack tip for h1 = h2 = 0.2a, l = 0.2a and ls = 2l.
Apparently, the substrate provides a constraint to the film so that the crack tip stresses are reduced. The
higher the value of the shear modulus of the substrate, the lower the crack tip stress. Since the influence
of the gradient parameter of the substrate can not be observed when it is plotted in the figure, the results
for other values of the substrate gradient parameters are not given in Figure 7.

Because the stresses are singular at the crack tips, it is necessary to study the intensity of the stress
concentration near the crack front. For this, it is important to recognize that the stress at the crack tip
has (x2

− a)−3/2 singularity when x→ a+ or x→−a−. Paulino et al. [2003] defined the generalized
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Figure 7. Normalized stress τy(x, 0)/p0 near the right crack tip in a in a film on a
substrate of different stiffness for h1 = h2 = 0.2a, l = 0.2a, and ls = 2l.

stress intensity factor KIII according to

l KIII(a)= lim
x→a+

2
√

2π(x − a) (x − a) τy(x, 0), (28a)

l KIII(−a)= lim
x→−a−

2
√

2π(x + a) (x + a) τy(x, 0), (28b)

and obtained the expressions as follows:

KIII(a)=
√
πa 1

2
l
a

G
∞∑

m=1

(m+ 1)Am, (29a)

KIII(−a)=
√
πa 1

2
l
a

G
∞∑

m=1

(−1)m(m+ 1)Am . (29b)

The results of generalized stress intensity factor at the right crack tip, normalized with K0 = p0
√
πa, as

functions of gradient parameters are plotted in Figure 8 for various values of the substrate stiffness. The
gradient parameters for the strain gradient layer and the substrate layer are same. It is observed that the
magnitude of the normalized stress intensity factor reduces with the stiffness of the substrate material.
Also observed is that the magnitude of the normalized stress intensity factor decreases with the gradient
parameter. The same tendency has been observed by Paulino et al. [2003] and Karimipour and Fotuhi
[2017].
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Figure 8. Normalized generalized stress intensity factor at the right crack tip for h1 =

h2 = 0.2a and ls = l where K0 = p0
√
πa. Duo to symmetry, KIII at the left crack tip is

opposite to these at the right crack tip.

5. Conclusion

A crack in a strain gradient layer on a substrate under anti-plane deformation has been studied. Both
volumetric and surface strain gradient material constants are taken into consideration. The crack is
parallel to the layer surface but is at any location in the strain gradient layer. The problem is governed
by the solution of a hypersingular integral equation. It is found that when the gradient parameters are
very small, results from the current strain gradient analysis reduce to the corresponding solutions of
conventional linear fracture mechanics. Influences of strain gradient parameters, layer thickness and
substrate stiffness have been conducted and are found to be very different from those of the conventional
linear elastic fracture mechanics solutions.
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Appendix

The following formulas [Paulino et al. 2003; Chan et al. 2008] have been used in deriving the hypersin-
gular integral equations:

1
π

∫ 1

−1

Um(r)
√

1− r2

(r − x)
dr =

{
−Tm+1(x), m ≥ 0, |x |< 1

−[x − |x |x
√

x2− 1]m+1, m ≥ 0, |x |> 1

}
, (A1)

1
π

∫ 1

−1

Um(r)
√

1− r2

(r − x)3
dr

=

{ 1
[4(1−x2)]

[(m2
+m)Um+1(x)− (m2

+ 3m+ 2)Um−1(x)], m ≥ 1, |x |< 1

−
1
2(m+ 1)[x − |x |x

√
x2− 1]m−1

[
m
(
1− |x |

√
x2−1

)2
+
[x− |x |x

√
x2−1]

(x2−1)3/2

]
, m ≥ 0, |x |> 1

}
. (A2)
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GROWTH-INDUCED INSTABILITIES OF AN ELASTIC FILM ON A
VISCOELASTIC SUBSTRATE: ANALYTICAL SOLUTION AND
COMPUTATIONAL APPROACH VIA EIGENVALUE ANALYSIS

IMAN VALIZADEH, PAUL STEINMANN AND ALI JAVILI

The objective of this contribution is to study for the first time the growth-induced instabilities of an
elastic film on a viscoelastic substrate using an analytical approach as well as computational simulations
via eigenvalue analysis. The growth-induced instabilities of a thin film on a substrate is of particular
interest in modeling living tissues such as skin, brain, and airways. The analytical solution is based on
Airy’s stress function adopted to viscoelastic constitutive behavior. The computational simulations, on
the other hand, are carried out using the finite deformation continuum theory accounting for growth via
the multiplicative decomposition of the deformation gradient into elastic and growth parts. To capture
the critical growth of elastic films and the associated folding pattern, eigenvalue analysis is utilized, in
contrast to the commonly used perturbation strategy. The eigenvalue analysis provides accurate, reliable,
and reproducible solutions as contrasted to the perturbation approach. The numerical results obtained
from the finite element method show an excellent agreement between the computational simulations and
the proposed analytical solution.

1. Introduction

Instabilities of bilayered structures consisting of a thin stiff film adhered to an infinite substrate are
increasingly important due to their applications in biological tissues. Such structural instabilities in
the form of wrinkles [Cao and Hutchinson 2012b; Budday et al. 2014], folds [Sun et al. 2012; Sultan
and Boudaoud 2008], or creases [Cao and Hutchinson 2012a; Hong et al. 2009; Jin et al. 2015] have
been studied recently. In many living systems, the formation of structural instabilities is critical to
appropriate biological function of the system [Wyczalkowski et al. 2012]. Typical examples are wrinkling
of skin [Tepole et al. 2011], villi formation in the intestine [Balbi and Ciarletta 2013], and folding of
the developing brain [Xu et al. 2010; Budday et al. 2014; Budday and Steinmann 2018]. However, in
some biological systems, the formation of structural instabilities can be an indication of a disease, e.g.,
the folding of the mucous membrane in asthmatic airways [Wiggs et al. 1997].

It is thus not surprising that the mathematical modeling of folding in tubular organs [Ciarletta and
Ben Amar 2012], in particular the modeling of the folding mucous membrane [Moulton and Goriely
2011; Li et al. 2011; Xie et al. 2014], has attracted increasing scientific attention in the past decade. This
problem (and variants thereof) has been widely studied lately [Budday et al. 2015; Cao and Hutchinson
2012b; Huang et al. 2005; Hutchinson 2013; Jin et al. 2011; Sun et al. 2012; Xu et al. 2014].

The concept of growth commonly has been modeled by continuum approaches via the multiplicative
decomposition of the deformation gradient into an elastic and a growth part [Rodriguez et al. 1994] which

Keywords: growth-induced instabilities, viscoelasticity, wrinkling, finite element method.
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pairs the growth to the kinematic level [Taber 1995]. This concept requires the introduction of an artificial
intermediate configuration [Garikipati et al. 2004]. Additional details on the continuum theory of growth
and its implications are discussed in [Ciarletta and Maugin 2011; Ciarletta et al. 2013; Dervaux and
Ben Amar 2011; Dunlop et al. 2010; Epstein and Maugin 2000; Garikipati et al. 2004; Goriely et al. 2008;
Kuhl et al. 2003; Li et al. 2011; Yavari 2010; Ben Amar and Goriely 2005; Javili et al. 2014], amongst
others. Growth is commonly formulated within the framework of open-system thermodynamics [Kuhl
and Steinmann 2003; Kuhl 2014] where the body is allowed to constantly exchange mass, momentum,
and entropy with its environment through corresponding fluxes across its boundary; see also [Cowin and
Hegedus 1976; Epstein and Maugin 2000; Javili et al. 2013].

Most of the contributions on the subject assume the compliant substrate to be elastic. This contribution
for the first time studies the growth-induced instabilities of an elastic film on a viscoelastic substrate from
both analytical and computational perspectives using eigenvalue analysis and, in particular, elaborates
on the role of the relaxation time on the instability pattern as well as the critical growth; see also [Huang
and Suo 2002; Huang 2005; Budday et al. 2014]. Key features of this contribution are:

(1) to study the growth-induced instabilities of an elastic film on a viscoelastic substrate from both
analytical and numerical perspectives,

(2) to employ the eigenvalue analysis proposed in [Javili et al. 2015] for the numerical solution and not
the common perturbation strategy, and

(3) to illustrate an excellent agreement between the numerical and analytical solutions.

This manuscript is organized as follows. Section 2 deals with the computational approach to study
growth-induced instabilities of a thin film on a compliant viscoelastic substrate. Next, the analytical
solution of the problem is derived in Section 3 and its simplification to various classes of viscoelastic
models are discussed. The results from the computational approach using the finite element method are
compared against the analytical solution through a series of numerical examples in Section 4 and it is
found that the two strategies are in excellent agreement. Finally, Section 5 concludes this work and
provides further outlook.

2. Computational approach

The numerical solution of the problem is achieved by using the finite deformation theory in continuum
mechanics to account for growth, whereby the deformation gradient is decomposed multiplicatively into
an elastic and a growth part.

Let the continuum body B0 occupy the material configuration at time t = 0, as shown in Figure 1. The
motion ϕ maps the body B0 to the spatial configuration Bt at time t . The deformation gradient F maps
the line element dx from B0 to dx in Bt and is defined as F := Gradϕ. The governing balance equations
of finite deformation continuum mechanics consist of the balance of linear and angular momentum. The
balance of linear momentum in material configuration, for body B0 at time t = 0 and a quasistatic process,
reads

Div P + b0 = 0 in B0 subject to t = t0 on ∂B0 with t = P · N, (1)



GROWTH-INDUCED INSTABILITIES OF AN ELASTIC FILM ON A VISCOELASTIC SUBSTRATE 573

'

F

N n

dx

Bt

B0

dX

Figure 1: kinematics

Figure 1. The material and spatial configurations of a continuum body with associated
nonlinear deformation map ϕ and the linear tangent map F := Gradϕ.

where P is Piola stress1 and b0 is the body force density in the material configuration. The balance of
angular momentum leads to the symmetry of the Cauchy stress tensor σ = σ t related to the Piola stress
via P = σ ·Cof F.

2.1. Growing elastic film. To model volumetric growth one can use the multiplicative decomposition of
the deformation gradient F into a growth part Fg and an elastic part Fe as

F = Fe · Fg⇒ Fe = F · F−1
g and J = Je Jg, Je = det Fe, Jg = det Fg, (2)

where J is the Jacobian determinant of F and indicates the volume change due to the deformation as J =
dv/dV . In modeling growth, the growth part Fg maps the body B0 from the material configuration to an
intermediate stress-free “configuration”, which may be incompatible. The elastic part of the deformation
gradient Fe maps the intermediate “configuration” to the compatible spatial configuration as shown in
Figure 2. Here, growth is assumed to be morphogenetic and thus independent of the deformation itself.
We consider anisotropic growth along the film such that it prevents growth in the lateral directions.
Hence, the growth tensor can be described as Fg = I + g Iani, where Iani = I − N ⊗ N with N being
the unit normal vector to the film. Note that in the absence of growth, the growth tensor Fg = I and the
deformation gradient F is equal to the elastic part. The growth parameter g represents growth if g > 0
and shrinkage or atrophy if g < 0.

The constitutive behavior of the film is identified via its free energy ψ depending on the growth part
of the deformation gradient Fg and F, respectively. Therefore, the free energy ψ(F, Fg) renders the
same value as the elastic free energy ψe(Fe) as

ψ = ψ(F, Fg)= ψe(Fe). (3)

1The term Piola stress is adopted instead of the more commonly used first Piola–Kirchhoff stress. Nonetheless, it seems
that the term Piola stress is more appropriate for this stress measure. Recall, P is essentially the Piola transform of the Cauchy
stress and ties perfectly to the Piola identity. Also historically, Kirchhoff (1824–1877) employed this stress measure after Piola
(1794–1850); see also the discussion in [Podio-Guidugli 2000].
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B0 Bt

Bg

elastic regiongrowth region

F

Fg Fe

stress-free material
configuration

stressed spatial
configuration

Figure 1: kinematics

Figure 2. Kinematics of growth with multiplicative decomposition of the deformation
gradient into elastic Fe and growth Fg parts. The intermediate configuration Bg is, in
general, incompatible.

before wrinkling after wrinkling
growing

elastic film

nongrowing
viscoelastic substrate

Figure 3. Geometry of elastic growing film on a viscoelastic substrate.

Due to the second law of thermodynamics and using the Coleman–Noll procedure, the Piola stress for a
hyperelastic material reads

P :=
∂ψ

∂F
=
∂ψe

∂Fe
:
∂Fe

∂F
=
∂ψe

∂Fe
: [I ⊗ F−t

g ] = Pe · F−t
g with Pe :=

∂ψe

∂Fe
, (4)

where the operator⊗ denotes a nonstandard dyadic product with the index notation property [A⊗ B]i jkl =

[A]ik[B] jl for two second-order tensors A and B.

2.2. Viscoelastic substrate. As the film grows, the stress in the film increases until the growth parameter
reaches a critical value gc at which point geometrical instabilities may occur in the form of wrinkles.
Obviously, the corresponding deformed state is strongly dependent on the substrate beneath the film and
thus the material behavior of the substrate plays an important role. In the problem of interest here, we
consider an elastic growing film on a viscoelastic substrate as illustrated in Figure 3. The two sides
are constrained in the horizontal direction and the bottom of the substrate is constrained in the vertical
direction. The interface between the film and substrate is perfect and no debonding nor separation occurs
throughout the process. This generalization shall be investigated in a future contribution.

The viscoelastic behavior of the substrate can be captured by introducing internal variables. For
simplification, we consider the process to be isothermal and therefore neglect any temperature effects.
Hence, the thermodynamic state of the body can be expressed merely by the deformation gradient and
the internal variables. The free energy representing the viscoelastic material behavior of the substrate is
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based on an additive decomposition of the energy into its volumetric and isochoric parts together with a
dissipative contribution ψdis incorporating internal variables α as

ψ(J,C)= ψvol(J )+ψ iso(C)+ψdis(α,C) with C = J−2/3C, C = Ft
· F . (5)

The Piola–Kirchhoff stress S can be determined as

S= Svol
+ Siso

+ Q with Svol
= 2

∂ψvol

∂C
, Siso

= 2
∂ψ iso

∂C
, and Q = 2

∂ψdis(α,C)
∂C

, (6)

from which the Piola stress is readily obtained by P = F · S. The evolution equation for Q is assumed
as

Q̇+ 1
τ

Q = 1
τ

Ṡiso, (7)

where τ denotes the relaxation time with the definition

τ =
η

E
, (8)

in which η and E are the viscosity and the elastic modulus of the material, respectively. For Q the
convolution representation, as proposed in [Holzapfel 2000; Simo and Hughes 1998], reads

Q = exp
(
−

T
τ

)
Q+

∫ t=T

t=0

1
τ

exp
(
−

T−t
τ

)
Ṡiso dt. (9)

3. Analytical approach

Since we are only interested in the onset of instabilities, unlike the computational approach to this
problem, the analytical solution is derived based on small strains instead of finite deformations. In the
computational approach, it would be impossible to capture instabilities if geometrical nonlinearities were
precluded. Nonetheless, the geometrical instabilities in the analytical approach are implicitly accounted
for via a buckling analysis of the film. To study the viscoelastic behavior of the substrate at small strains,
we choose a rheological model demonstrated in Figure 4 representing the (general) standard solid model
to recover a wide range of material behaviors; see [Holzapfel 2000; Simo and Hughes 1998] for further
details. As it will be clarified, the (general) standard solid model captures both the Maxwell model and
the Kelvin model. The rheological model in Figure 4 consists of two spring elements with constants E
and E∞, which represent the elastic response of the solid. The spring with constant E is connected in
series with a dashpot with viscosity η. From a physical point of view, the constants E∞, E , and η must
be positive. The strains in both elements A and B are identical due to their parallel arrangement. The
total stress σ prescribed in Figure 4 can be recovered as addition of the stress in A and B as

σ = σ∞+ σ ν with σ∞ = E∞ε, (10)

where σ∞ is applied to the element B representing the stress of the rheological model as t →∞ in a
relaxation test and σ ν represents the viscous stress acting on the dashpot. From a mechanical point of
view, the strain in the viscous element B is the addition of the elastic strain in the spring with constant
E and the inelastic strain-like internal variable α in the dashpot and thus

σ ν = E[ε−α] = ηα̇. (11)
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E∞

E η

ε

α

B

A

σ

Figure 4. Illustration of the kinematics of the viscoelastic material with (general) stan-
dard solid element model. The rheological model is composed of two elements A and B.
The subscript∞ denotes the elastic response of the solid for t→∞ corresponding to
the behavior of solid in a relaxation test after infinite time.

By considering the initial modulus E0 at t = 0 with no strain in the dashpot, the rheological model in
Figure 4 resembles a solid with two spring elements with constants E and E∞ as instantaneous modulus
E0 = E∞+ E and hence, (10) leads to

σ = E0ε− Eα, (12)

where the inelastic strain α satisfies the evolution equation

α̇+
1
τ
α =

1
τ
ε with the condition lim

t→−∞
α(t)= 0. (13)

Additionally, there exists an alternative formulation by introducing a stress-like variable q = E[ε−α]
acting on the dashpot, so that (12) transforms to σ = E∞ε+ q and thus the evolution equation (13) can
be rewritten as

q̇+ 1
τ

q = 1
τ

Eε with the condition lim
t→−∞

q(t)= 0. (14)

To determine the critical growth of an elastic film on a viscoelastic substrate, we compute the critical
growth by analyzing the buckling of the film on the substrate, Figure 5. In doing so, first we assume the
substrate to be elastic and then we replace the elastic behavior of the substrate by its equivalent viscoelas-
tic one. The whole analysis here is two-dimensional and corresponding to a plane-strain scenario. Let
w denote the deflection of the film. The governing differential equation of a film adhered to an infinite
half-space reads

1
12 E f h3 d4w

dx4 + hσ
d2w

dx2 = fs, (15)

where σ is the stress in the film, E f is the film elastic modulus and h is the film thickness. The transverse
force on the film from the substrate fs reads [Allen 1969]

fs =−
2Es

[3− νs][1+ νs]
nw, (16)
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w(x) w0

P P

x

λ

h

Figure 5. Analytical model of growing elastic film on a viscoelastic substrate. The film
thickness is denoted h and λ is the wavelength. The amplitude of the sinusoidal wave
on the substrate is denoted w0. The lateral force P relates to the stress in the film via
P = σhb with b being the width of the domain in the direction normal to the plane.

where νs is the Poisson’s ratio of the substrate, with sinusoid w with the wavenumber n on its surface.
By substituting fs in (15) and solving for σ , we have

σ = 1
12 E f h2n2

+
2Es

[3− νs][1+ νs]hn
, (17)

from which the critical wavenumber can be computed by minimizing with respect to σ as

nc =
3

√
12Es

E f [3− νs][1+ νs]h3 , (18)

from which the critical wavelength can be readily calculated. Inserting the critical wavenumber nc into
the stress equation (17) results in the critical stress σc and eventually the critical growth gc is obtained
as gc ≈ εc = σc/E f for sufficiently small values of εc. A more accurate approximation for the critical
growth reads gc = εc/[1− εc]. Nonetheless, the validity of this linear approach is questionable for larger
εc corresponding to film-to-substrate stiffness ratios less than 10; see [Cao and Hutchinson 2012b].

Now, we generalize the elastic model to a viscoelastic one to study the effect of the viscoelastic
material properties of the substrate on the critical growth of the film. To do so, by regarding Es and νs

as the material constants of the substrate, the viscoelastic substrate model can be expressed solely by
modifying the material constants of an elastic substrate model. First, by solving the internal variable in
(14) in the linear viscoelastic regime, we have for the elastic modulus of the viscoelastic substrate

Es = E∞+ E exp
(
−
1t
τ

)
. (19)

It can be observed that for a large relaxation time τ compared to the growth time 1t , the substrate elastic
modulus results in Es = E∞+ E , where the substrate can be viewed as an elastic substrate. On the other
hand, for relatively slowly growing film or alternatively small relaxation time, the exponential term tends
to 0 resulting in the effective elastic modulus in substrate Es = E∞. To formulate this in the governing
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Kelvin model elastic model Maxwell model general model

Figure 6. Illustration of four models for the substrate behavior. The standard solid
model can recover Maxwell, Kelvin, and elastic models as three special cases.

equations of a growing film on a viscoelastic substrate, we introduce the effective substrate stiffness

Eeff
s = E∞+ [Es − E∞] exp

(
−
1t
τ

)
, (20)

and then by substituting (20) in (16) we obtain the viscoelastic substrate transverse force as

fs =−
2

[3−νs][1+νs]

[
E∞+ [Es − E∞] exp

(
−
1t
τ

)]
nw(x), (21)

and after substituting in (15) and solving for σ we have

σ = 1
12 E f h2n2

+
2

[3−νs][1+νs]hn

[
E∞+ [Es − E∞] exp

(
−
1t
τ

)]
, (22)

and consequently, the minimization with respect to σ yields the critical wavenumber

nc =
3

√
12[E∞+ [Es − E∞] exp(−1t/τ)]

E f h3[3− νs][1+ νs]
, (23)

from which the critical stress σc and eventually the critical growth gc can be calculated, as before.
Obviously, the standard solid model in viscoelastic material modeling can simplify to the Maxwell,

Kelvin, and elastic models, as schematically illustrated in Figure 6. For instance, from Figure 6 it is
obvious that a standard solid model reduces to the Maxwell model if E∞→ 0, and thus the effective
stiffness of the substrate in this case reads

Es = E exp
(
−
1t
τ

)
, (24)

and consequently

fs =−
2

[3−νs][1+νs]
[Es exp

(
−
1t
τ

)
]nw(x). (25)

4. Numerical examples

The purpose of this section is to illustrate the growth-induced instabilities in a bilayer system composed
of a thin growing film on top of a viscoelastic substrate as shown in Figure 7. In particular, we study the
influence of a viscoelastic substrate on the critical wavelength due to growth-induced buckling patterns
as well as the critical growth. More importantly, the numerical results obtained from the computational
simulations using the finite element method are compared against the proposed analytical solution.

For all examples, to omit further complexities in interpreting the results, it is assumed that the critical
growth is reached at the same 1t independent of the stiffness ratio. Therefore, the relaxation time τ
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Figure 7. Geometry and dimensions of an elastic growing film on a viscoelastic substrate.

remains as the only independent parameter to study its effect instead of the ratio 1t/τ . In order to
extend the observations to a more general case with varying 1t , the dimensionless parameter κ =1t/τ
is defined, thereby κ is essentially the ratio of the time for the film to reach the critical growth over the
substrate relaxation time. For the problem of interest here, the neo-Hookean potential

ψe =
1
2µ[Fe : Fe− 2− 2 ln Je] +

1
2λ
[1

2 [J
2
e − 1] − ln Je

]
with Je = det Fe (26)

is used for the elastic response of the film and the substrate where µ and λ are Lamé parameters. Fur-
thermore, it is assumed that the film grows only along its length but not in the vertical direction. The
film over substrate stiffness ratio is defined as µ f /µs and the Poisson’s ratio for both media is assumed
as ν f = νs = 0.45. Thus the larger the stiffness ratio, the more compliant is the substrate compared to
the film. For the numerical simulations, the domain is discretized using biquadratic finite elements to
achieve a better accuracy [Javili et al. 2015]. To compute critical growth of the film and folding pattern,
the numerical approach based on the large deformation must be calculated. To this aim, first we weigh
the strong form of the balance equations (1) with the test function δϕ ∈H1

0(B0) with the definition δϕ = 0
on δB0

ϕ and integrate over B0, yielding the following global weak form:

rϕ(ϕ(x, t))=
∫
B0

Grad Xδϕ : P dV −
∫
B0

δϕ · b0 dV −
∫
∂B0

δϕ · t0 dA = 0. (27)

In the frame of finite element analysis, the goal is to solve (27) by vanishing the residual rϕ(ϕ(x, t)). To
obtain this, and find ϕ such that the residuum vanishes, the Newton–Raphson scheme can be used:

r(ϕm+1)= r(ϕm)+
∂r
∂ϕ
·1ϕ, (28)

where index m denotes the iteration number. The derivative of the residual with respect to ϕ can be
described as the stiffness matrix K = ∂ r∂ϕ: the eigenvalue representation for diagonalizable matrices
[Javili et al. 2015] of a stiffness matrix for a system with n degrees of freedom is

Kn×n = K1λ1⊗λ1+ K2λ2⊗λ2+ · · ·+ Kiλi ⊗λi + · · ·+ Knλn ⊗λn =

n∑
i=1

Kiλi ⊗λi , (29)
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(a) (b) (c)

(d) relaxation
time κ exp(−1t/t)

Figure 8. Instability study of growing elastic film with thickness 1 on a viscoelastic
substrate by using various relaxation times to examine the viscous substrate effects on
the critical growth of the elastic film. The standard solid model is chosen to capture
viscoelastic effects. The relation of growth time to relaxation time is κ = 1t/τ . The
stiffness ratio is µ f /µs and the Poisson’s ratio for both the film and substrate is ν f =

νs = 0.45. The variation of relaxation times occurs by changing the viscosity η of
the material. This effect could have identical results by holding viscosity constant and
changing growth time. The right growing time line shows this parallel impact.

in which Ki represents the eigenvalue and λi the associated unit eigenvector for i = 1, . . . , n. In the
sense of studying growth instability, the negative eigenvalue of stiffness matrices represents the growth
instability and the associated unit eigenvector represents the folding pattern. To obtain the critical value
of growth, the growth is increased until one of the eigenvalues becomes negative. Then, the associated
growth is the critical growth of the system. More computational details are explained in the Appendix.

Figure 8 gathers the analytical results and numerical simulations using eigenvalue analysis. The critical
growth gc in Figure 8, b and c, and corresponding folding pattern in Figure 8a are illustrated for different
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λc = 17.1 λc = 15.0 λc = 13.3

κ = 1.38× 101

exp(−1t/t)= 0.000001
κ = 1.61× 100

exp(−1t/t)= 0.2
κ = 1.11× 10−16

exp(−1t/t)= 1.0

Figure 9. Folding of growing film with thickness 1 on a viscoelastic substrate for some
κ = 1t/τ with stiffness ratio µ f /µs = 40. The Poisson’s ratio for both the film and
substrate is ν f = νs = 0.45. The critical wavelength is denoted λc = 2π/nc, where the
critical wavenumber nc can be calculated from (23).

stiffness ratios µ f /µs for various κ in Figure 8d to study the effect of relaxation time on the critical
growth gc and wavelength. First, we see that for a given τ in Figure 8b, the critical growth decreases by
increasing the stiffness ratio. Second, it is observed that the critical growth gc increases by decreasing
κ or alternatively increasing the relaxation time τ . This can be justified by the first observation. That
is, for a given µ f /µs , a larger relaxation time τ leads to an increased effective stiffness of the substrate
and hence resembles an overall smaller film-to-substrate stiffness ratio which in turn results in a larger
critical growth. Third, there is excellent agreement between the numerical results in Figure 8c using
the finite element method via eigenvalue analysis and the proposed analytical solution. So much so that
the points corresponding to the numerical results are shown on separate graphs for a better visualization.
The numerical results from the finite element method consistently overestimate the analytical solution
only and provide an overall stiffer response, as expected. Furthermore, for a given relaxation time, e.g.,
τ = 0.0724, the deformation is illustrated for various stiffness ratios on the left. Increasing the stiffness
ratio results in a larger wavelength and thus less waves for a given length of the domain according to (23).
Finally, the folding patterns for a given stiffness ratio of µ f /µs = 40 but for varying relaxation time τ
are illustrated in Figure 9 and it is obvious that increasing the relaxation time decreases the wavelength.
This can again be justified by the fact that increasing the relaxation time is effectively decreasing the
stiffness ratio and hence the wavelength.

5. Conclusion

Biological growth in living systems can lead to geometric instabilities in the form of folding and wrin-
kling, thus understanding these phenomenon is of crucial importance. Growth-induced instabilities are
often studied in bilayer systems where both the thin film and the underlying compliant substrate behave
elastically. Nonetheless, due to its relevance for living tissues, the substrate in this contribution is con-
sidered to be viscoelastic. This problem is carefully analyzed using both an analytical approach as well
as computational simulations using the finite element method whereby eigenvalue analysis is utilized
to capture the instabilities. The results obtained from both methods are compared for a wide range of
parameters and show an excellent agreement between the computational simulations and the proposed
analytical solution. It is observed that the viscoelastic influence of the substrate can be interpreted and
eventually replaced by an “effective” elastic model. Our next immediate extension of this contribution
is to replace the perfect bonding between the substrate and the film by a general interface model [Javili
et al. 2017; Javili 2018] and study its implications.
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read data: geometrical data, material parameters, and boundary conditions
initialization: set degrees of freedom, quadrature points, and shape functions
while eigenvalues> 0 do

calculate Neumann, Dirichlet, and loads for this time step
while Newton loop do

initialize global tangent stiffness matrix, residuum, volume, surface, and internal forces
for element loop do

determine DOFs, displacement, and coordinates belonging to the current element
for integration loop do

evaluate shape function and its gradient at the current quadrature point
calculate deformation gradient F
if film element then

elasticity material box(F, state variables)
else

viscoelasticity material box(F, state variables)
end
for node loop do

assemble element stiffness matrix K
end

end
assemble global stiffness matrix, volume, surface, and internal forces

end
calculate residual rϕ(ϕ(X, t))

end
eigenvalue analysis
if eigenvalue < 0 then

g = gcr

calculate eigenvector
break while loop

else
growth increment gnew = gold+1g

end
end

Algorithm 1. The incremental nonlinear finite element method with eigenvalue analysis
to capture geometrical instabilities.

Appendix: Computational aspects

The geometry in Figure 7 consists of a rectangular domain which is meshed with 560 quadratic quadrilat-
eral elements with 3578 DOFs. Computations are carried out using our in-house nonlinear finite element
code; to have a proper numerical solution we use the finite element method algorithm 1, which explains
the finite element structure using eigenvalue analysis. Algorithm 2 is an elastic material box used to model
growth of elastic film and Algorithm 3 is a viscoelastic material box to model the substrate behavior.
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Input: deformation gradient (F), state variables
Update configurations Jn+1 := det[Fn+1], Cn+1 = Ft

n+1 Fn+1

Decompose F to Fe and Fg

Calculate growth part Fg

Compute P , C

Output: Piola stress and algorithmic tangent moduli

Algorithm 2. Elastic material box to calculate growth in living materials.

Input: deformation gradient (F), state variables
Update configurations Jn+1 := det[Fn+1], Cn+1 = Ft

n+1 Fn+1, Fn+1 = J−1/3
n+1 Fn+1, Cn+1 = J−2/3

n+1 Cn+1

calculate the second Piola–Kirchhoff stress Sn+1 and internal variable Qn+1

Compute P , C

Output: Piola stress, algorithmic tangent moduli

Algorithm 3. Viscoelasticity material box to calculate viscoelastic effects of substrate.
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APPLICATION OF THE HYBRID COMPLEX VARIABLE METHOD TO
THE ANALYSIS OF A CRACK AT A PIEZOELECTRIC-METAL INTERFACE

VOLODYMYR GOVORUKHA AND MARC KAMLAH

A plane strain problem for an electrically conducting interface crack between linear transversely isotropic
piezoelectric and isotropic elastic conductor materials under remote mechanical loading is considered.
The attention is focused on a hybrid complex variable method which combines the Stroh formalism
for piezoelectric materials with the Muskhelishvili formalism for conducting isotropic elastic materials.
This method is illustrated in detail for the open crack model and the contact zone crack model. Using
special presentations of mechanical quantities via sectionally analytic functions, a combined Dirichlet–
Riemann and Hilbert boundary value problem is formulated and solved analytically. Stress intensity
factors as well as the crack tip energy release rate are found in a clear analytical form. Furthermore,
transcendental equations for the determination of the realistic contact zone length and the location of the
first interpenetration point have been obtained. A significant influence of the external mechanical loading
on the crack opening and the stresses as well as the contact zone and interpenetration region lengths is
observed. The dependencies of the mentioned values on the intensities of the mechanical loading are
presented in tables and associated diagrams.

1. Introduction

With the rapid development of modern industry, piezoelectric-metal composites have been widely used
in various electromechanical devices. Due to excellent piezoelectric effects as well as good mechanical
properties, these composites have become attractive candidates for use in transducers and actuators for
vibration control and biomedical imaging applications [Pritchard et al. 2001]. What is even more com-
mon, piezoelectric-metal bimaterials have an apparent application in any kind of piezoelectric sensors and
transducers, where metal electrodes are always placed on piezoelectric material surfaces to introduce high
applied electric fields. However, various defects may occur on the interface of the metal and piezoelectric
phases due to flaws during manufacturing, impact, cooling or other unexpected reasons. These defects
cause geometric, electric and mechanical discontinuities and thus induce strong stress and electric field
concentrations, which may induce crack initiation and crack growth, eventually causing fracture and
failure. Therefore, it is important to understand and be able to analyze the fracture characteristics of
piezoelectric-metal structures so that reliable service life predictions of the pertinent devices can be
conducted.

The earliest research on this topic appears to have been done by Kudriavtsev et al. [1975a; 1975b],
who modeled an interface crack between a piezoelectric ceramic and an elastic isotropic conductor as
rectilinear and axisymmetric, respectively. Liu and Hsia [2003] provided a result for a double edged
crack in such a bimaterial under in-plane electric loading. Based on the integral transformation technique,

Keywords: Piezoelectric-metal joint, complex variable method, electrically conducting interface crack, contact zone.
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Parton [1976] and Bakirov [2004] studied the plane problem of a crack on a piezoelectric-metal interface,
in which the axis of axisymmetry of the transversely isotropic piezoelectric materials is normal to the
interface and a normal homogeneous tensile loading is applied at infinity. As presented by Bakirov and
Kim [2009], the plane strain problem of a crack on an interface between an isotropic elastic conductor
and a transversely isotropic piezoelectric material was reduced to the boundary equations on the interface,
which make it possible to calculate the crack tip energy release rate with respect to the distribution of the
loading applied to the crack surfaces. A more detailed review of the interface crack problem investigation
in piezoelectric-metal composites was presented in the review paper by Govorukha et al. [2016].

Since piezoelectric ceramics and metals are two different kinds of solids, especially concerning elec-
tronic transport, it is quite difficult to combine their constitutive equations in an interface crack analysis.
For convenience, Ou and Chen [2004] and Li and Chen [2007; 2009] assumed that the metal phase
could be considered as a special piezoelectric material with extremely large permittivity and extremely
small piezoelectricity and in this way used the extended Stroh formalism to treat this interface crack
problem. Although a nonpiezoelectric isotropic elastic material can be treated as a special case of piezo-
electric materials with vanishing piezoelectric constants, the well-known Stroh formalism, on which
almost all of the existing works on interface cracks in piezoelectric media have been based, breaks down
or becomes complicated in the degenerate case of isotropic elastic materials due to the appearance of
multiple eigenvalues [Ting and Chou 1981]. In order to eliminate this discrepancy, a hybrid complex
variable method was proposed by Ru [2008], in which the isotropic elastic material was handled with the
convenient and powerful Muskhelishvili formalism while the piezoelectric material was analyzed with
the Stroh formalism. This method was illustrated for an insulating interface crack between a piezoelectric
half-plane and an isotropic elastic half-plane.

It should be noted that most of the above-mentioned solutions for interface cracks in piezoelectric-
metal composites have oscillatory singularities, as in the case of elasticity [Williams 1959], which causes
the overlapping of crack faces, a physically unreasonable phenomenon. To correct this shortcoming,
Comninou [1977] developed a contact zone model for a crack between two nonpiezoelectric materials.
On the basis of this model, a numerical analysis of an interface crack between a piezoelectric ceramic
and an elastic isotropic conductor has been performed by Govorukha and Loboda [2000]. However an
analytical investigation of an interface crack with contact zones in a piezoelectric-metal bimaterial is
unknown, at least to the authors of this paper.

In the present paper a closed-form solution for a conducting interface crack between a piezoelectric
half-plane and a conducting isotropic elastic half-plane is obtained with the use of hybrid complex
variable method. The open crack model and the contact zone crack model are utilized. A significant
influence of the external mechanical loading on the crack opening, stresses as well as the contact zone
and interpenetration region lengths is demonstrated.

2. Basic equations

The constitutive and equilibrium equations for a linear piezoelectric material in the absence of body
forces and free charges can be represented in the form [Pak 1992]∏

m J

= EmJKl VK ,l, (1)
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m J,m

= 0, (2)

where

VK =

{
uk, K = 1, 2, 3,
ϕ, K = 4,

∏
m J

=

{
σmj , m, J = 1, 2, 3,
Dm, m = 1, 2, 3; J = 4,

EmJKl =


cmjkl, m, J, K , l = 1, 2, 3,
elm j , m, J, l = 1, 2, 3; K = 4,
emkl, m, K , l = 1, 2, 3; J = 4,
−εml, m, l = 1, 2, 3; J, K = 4.

Here, uk , ϕ, σmj , and Dm are the elastic displacements, electric potential, stresses, and electric displace-
ments, while cmjkl , emjk , and εmj are the elastic, piezoelectric, and dielectric constants, respectively.
Lower case subscripts range from 1 to 3, upper case subscripts range from 1 to 4, and summation
over repeated subscripts is implied. The subscript comma denotes partial derivative with respect to
the Cartesian coordinates. In addition, the electric field Em is related to the electric potential ϕ by

Em =−ϕ,m .

For a two-dimensional problems in which uk and ϕ depend on x1 and x3 only, a general solution of
(1), (2) according to the method originally proposed by Eshelby et al. [1953] and used by Stroh [1958]
can be written as

V = A f (z)+ A f (z), (3)

t = B f ′(z)+ B f ′(z), (4)

where V =[u1, u2, u3, ϕ]
T , t=[σ13, σ23, σ33, D3]

T , and f (z) consists of four arbitrary analytic functions
of the respective variables zα = x1+ pαx3 (α = 1, 2, 3, 4) as

f (z)=
[

f1(z), f2(z2), f3(z3), f4(z4)
]T
.

Matrices A and B are defined by the material constants, and pα are four distinct complex roots with
positive imaginary parts of the characteristic equation described by Suo et al. [1992]. Here and afterwards,
the superscript T denotes transposition and the overbar stands for the complex conjugate.

In this paper, we consider transversely isotropic piezoelectric materials poled in the x3-direction. In
this case, the displacement u2 decouples in the (x1, x3)-plane from (u1, u3, ϕ). Because of the simplicity
of the u2-determination our attention will be devoted to the in-plane problem which is characterized by
the displacements u1, u3 and the electric potential ϕ. Thus, the second row and the second column will
be deleted from all matrices in (3) and (4).

In the case of the plane problems for the isotropic elastic materials, the stresses and associated elastic
displacements can be expressed in terms of the Muskhelishvili complex potentials [1953] φ(z) and ψ(z):

2µ(u1− iu3)= κφ(z)− z̄φ′(z)−ψ(z),

σ33+ iσ13 = φ
′(z)+φ′(z)+ z̄φ′′(z)+ψ ′(z),
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where κ = 3− 4ν for plane strain and κ = (3− ν)/(1+ ν) for plane stress, and µ and ν are the shear
modulus and Poisson’s ratio, respectively.

Introducing new analytic functions by the formulas

9(z)= z̄φ′′(z)+ψ ′(z), 8(z)= φ′(z),

one can write,

2µ(u′1− iu′3)= κ8(z)−8(z)−9(z), (5)

σ33+ iσ13 =8(z)+8(z)+9(z). (6)

The attention is focused in the following on a hybrid complex variable method which combines the
Stroh formalism of the piezoelectric materials with the Muskhelishvili formalism of the conducting
isotropic elastic materials (such as metal).

3. Complex function representation for the stresses and displacement jumps at the interface

In this section, we develop as a major novelty expressions by which the solution of various mixed bound-
ary conditions at the interface, i.e., different models for cracks between a piezoelectric and a metal, can
be obtained. Consider a bimaterial composition, where the piezoelectric phase occupies the upper half-
plane (x3 ≥ 0) and the metal phase occupies the lower half-plane (x3 ≤ 0). We assume, that the stresses
and the tangential component of the electric field are continuous across the whole bimaterial interface.
The part of the interface which is mechanically bounded is denoted by L . Then, the boundary conditions
at the interface x3 = 0 are

E±1 (x1, 0)= 0 for x1 ∈ (−∞,∞), (7)

σ+33(x1, 0)+ iσ+13(x1, 0)= σ−33(x1, 0)+ iσ−13(x1, 0) for x1 ∈ (−∞,∞), (8)

u+1 (x1, 0)− iu+3 (x1, 0)= u−1 (x1, 0)− iu−3 (x1, 0) for x1 ∈ L , (9)

where the superscripts “+” and “−” indicate the limit values takes from the upper and the lower half-
planes, respectively.

It should be noted that, due to the compatibility conditions at the bonded interface, the respective
uniform remote loadings given in the two half-planes must be compatible, in order to give rise to uniform
stress and electric fields in the absence of the interface crack. In particular, the component E∞1 of remote
uniform electric field parallel to the interface in the upper half-plane must be zero, because it must be
compatible with the vanishing tangential electric field of the lower half-plane along the bonded interface.

The electro-elastic field in the upper half-plane is described by the Stroh formalism and given in
terms of the three functions fk(zk) of the respective variables zk (k = 1, 3, 4), while the elastic field in
the lower half-plane is described by the Muskhelishvili formalism and given in terms of the two functions
8(z) and 9(z) of the single complex variable z. Thus, the problem is to determine the three analytic
functions fk(zk) in the upper half-plane and two analytic functions 8(z) and 9(z) in the lower half-plane.

Let us define three analytic functions of the single complex variable z in the upper half-plane, in terms
of the functions fk(zk) as

g(z)= A f ′(z), (10)
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where g(z)= [g1(z), g3(z), g4(z)]T .
Using relation (10), the expressions (3) and (4) can be represented in the form

V ′ = g(z)+ g(z), (11)

t = Dg(z)+ D g(z), (12)

where D = iY−1, Y = i AB−1.
In this paper, as defined before, we consider transversely isotropic piezoelectric materials of the sym-

metry class 6 mm poled in the x3-direction which have an essential practical significance. For this case,
the matrix D has the form

D =

id11 d13 d14

d31 id33 id34

d41 id43 id44

 ,
where all dij are real and d31 =−d13, d41 =−d14, d43 = d34 hold true.

Further, the boundary condition (7) along the whole bimaterial interface and the condition E∞1 = 0 at
infinity give

g4(z)≡ 0, x3 ≥ 0.

In view of the interface conditions (8) and the relations (6) and (12), the continuity of mechanical
tractions along the whole real axis gives

q11 g+1 (x1)+ q12 g+1 (x1)+ iq21 g+3 (x1)+ iq22 g+3 (x1)=8
−(x1)+8−(x1)+9

−(x1),

which can be rewritten as

q11g+1 (x1)+iq21g+3 (x1)−8
+(x1)=8

−(x1)+9
−(x1)−q12ḡ−1 (x1)−iq22ḡ−3 (x1), x1∈(−∞,∞), (13)

where q11 = d31− d11, q12 = d31+ d11, q21 = d13+ d33, q22 = d13− d33.
The left-hand side of (13) is the boundary value of a function analytic in the upper half-plane, and the

right-hand side is the boundary value of another function analytic in the lower half-plane. Hence, both
functions are equal to a function defined as

M(z)=
{

q11g1(z)+ iq21g3(z)−8(z) for x3 > 0,
8(z)+9(z)− q12ḡ1(z)− iq22ḡ3(z) for x3 < 0,

(14)

which is analytic in the whole plane.
Taking into account that the stresses are bounded at infinity, it follows that M(z)|z→∞ = M (0)

= const.
But according to Liouville’s theorem, this means that M(z)=M (0) holds true in the whole plane. Because
g1(z), g3(z), 8(z), and 9(z) are arbitrary functions, without loss of generality, one can choose M (0)

= 0.
Thus, Equation (14) leads to

q11g1(z)+ iq21g3(z)−8(z)= 0, x3 > 0,

8(z)+9(z)− q12ḡ1(z)− iq22ḡ3(z)= 0, x3 < 0,
and then

iq21g3(z)=−q11g1(z)+8(z), x3 > 0,

q219(z)= (q12q21+ q11q22)ḡ1(z)− (q21+ q22)8(z), x3 < 0.
(15)
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Hence, the problem is reduced to the determination of the two functions: g1(z) in the upper half-plane
and 8(z) in the lower half-plane.

Now taking the derivatives of both sides in the interface condition (9) and using the relations (5)
and (11) we obtain

g+1 (x1)− ig+3 (x1)−
κ

2µ
8+(x1)=−ḡ−1 (x1)+ i ḡ−3 (x1)−

1
2µ
8−(x1)−

1
2µ
9−(x1), x1 ∈ L . (16)

Continuity of the displacement across the bonded interface, as inferred from (16), implies that a function
defined as

�(z)=
{

g1(z)− ig3(z)− (κ/2µ)8(z) for x3 > 0,
−ḡ1(z)+ i ḡ3(z)− (1/2µ)8(z)− (1/2µ)9(z) for x3 < 0,

is analytic in the whole plane with a cut along (−∞,∞) \ L and tends to a constant as |z| →∞.
Thus, g1(z) and 8(z) can be expressed via �(z) as

g1(z)= p11�(z)+ p128(z), x3 > 0, 8(z)= p21�(z)+ p228(z), x3 < 0, (17)

where

p11 =
2µ
1
(q22− 2µ), p12 =

2µ
1
(2µ+ κq21), p21 =

4µ2

1
(q11+ q21),

p22 =
2µ
1
[2µ(q21− q11)+ q12q21+ q11q22], 1= (2µ− κq11)(q22− 2µ)− (2µ+ κq21)(q12+ 2µ).

Substituting (15) and (17) into (6), we may express the stresses on the whole interface in terms of the
single function 8(z):

σ33(x1, 0)+ iσ13(x1, 0)= s11�
+(x1)+ s128

+(x1)+ s21�
−(x1)+ s228

−(x1),

σ33(x1, 0)− iσ13(x1, 0)= s118
−(x1)+ s12�

−(x1)+ s218
+(x1)+ s22�

+(x1),
(18)

where s11 = p22, s12 = p21, s21 = p12q12+ q22(p12q11− p21)/q21, s22 = p21. It should be noted that the
same expressions of the stresses can be found from relation (12).

Similarly, using (5) and (11), we may evaluate the derivatives of the displacement jumps and find

〈u′1(x1)〉− i〈u′3(x1)〉 =�
+(x1)−�

−(x1),

〈u′1(x)〉+ i〈u′3(x1)〉 =8
−(x1)−8

+(x1).
(19)

Here and afterwards the brackets 〈 · · · 〉 denote the jump of the corresponding function over bimaterial
interface.

Introducing the new functions

Fj (z)=
s11+αj s22

s11− s12+αj (s22− s21)

{
�(z)+

s12+αj s21

s11+αj s22
8(z)

}
, (20)

having the same properties as 8(z), and combining the first and second equation of (18) one can write

σ33(x1, 0)+ im jσ13(x1, 0)= tj [F+j (x1)+ γj F−j (x1)], (21)
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where α j are the roots of the quadratic equation

s12+αs21

s11+αs22
=

s22+αs11

s21+αs12
,

and

m j =
1−αj

1+αj
, γj =

s21+αj s12

s11+αj s22
, tj =

s11− s12+αj (s22− s21)

1+αj
, j = 1, 2.

On the other hand, (19) and (20) lead to the expression for the derivatives of the displacement jumps

〈u′1(x1)〉+ isj 〈u′3(x1)〉 = F+j (x1)− F−j (x1), (22)

where s1,2 = −m1,2. Numerical analysis shows that the constants αj , m j , γj , tj are real, and besides
γ2 = 1/γ1 holds true.

The expressions (21) and (22) play an important role in the following analysis because by means
of these expressions the problems of linear relationship for various mixed boundary conditions at the
interface can be formulated.

4. Open crack model

Consider now the same bimaterial as in the previous chapter and assume that an electrically conducting
interface crack is situated in the region −b ≤ x1 ≤ b, x3 = 0 (Figure 1). Taking into account that the
stress intensity factors and the energy release rate for an electrically conducting interface crack depend
on the material properties and the applied mechanical loads, but not on the applied electric loads [Zhang
and Gao 2004], we pay our attention to the influence of the external mechanical loading only. Therefore,
it is assumed that the half-planes are loaded at infinity with uniform stresses σ ( j)

33 = σ
∞

33 , σ ( j)
13 = σ

∞

13 ,
and σ ( j)

11 = (σ
∞

11 )j which satisfy the continuity conditions at the interface ( j = 1 stands for the upper
half-plane and j = 2 for the lower one). Because the load does not depend on the coordinate x2, the
plane strain problem in the (x1, x3)-plane can be considered. The open crack model based upon the
initial assumption that the crack is completely open is employed in the following analysis.

For a traction- and charge-free electrically conducting crack, the continuity and boundary conditions
at the interface x3 = 0 are

〈σ13(x1)〉 = 0, 〈σ33(x1)〉 = 0, E±1 (x1, 0)= 0 for x1 ∈ (−∞,∞), (23)

〈u1(x1)〉 = 0, 〈u3(x1)〉 = 0 for x1 /∈ (−b, b), (24)

σ±13(x1, 0)= 0, σ±33(x1, 0)= 0 for x1 ∈ (−b, b). (25)

The stress components and the derivatives of the displacement jumps at the bimaterial interface can
be represented by means of the expressions (21) and (22), respectively. Due to the method of construc-
tion of these expressions, they automatically satisfy the boundary conditions (23) and (24). To satisfy
additionally the boundary conditions (25), the homogeneous Hilbert problem

F+j (x1)+ γj F−j (x1)= 0, x1 ∈ (−b, b), (26)

by using expression (21) arises [Muskhelishvili 1953]. Taking into account that for x1 /∈ (−b, b) the
relation F+j (x1) = F−j (x1) is valid, by use of (21) and the prescribed remote mechanical loads the
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Figure 1. An open interface crack subject to remote uniform mechanical loading.

conditions at infinity for the functions Fj (z) can be written as

Fj (z)|z→∞ =
σ∞33 + im jσ

∞

13

tj (1+ γj )
. (27)

By applying the relation γ2 = 1/γ1, the solution of this problem for j = 2 can be obtained from the
associated solution for j = 1. Therefore, in the following our attention will be focused only to the case
j = 1. According to the results by Muskhelishvili [1953] the most general solution of the homogeneous
Hilbert problem (26), analytic at infinity, has the form

F1(z)= (z+ b)−1/2+iε1(z− b)−1/2−iε1 P(z),

where ε1 = (ln γ1)/2π , P(z)= C1z+C0, and C0, C1 are arbitrary constants.
Further, by means of the condition at infinity (27) and the condition of the single-valuedness of the

displacements, which due to (22) can be written as∫ b

−b
{F+1 (x1)− F−1 (x1)} dx1 = 0,

the expressions

C0 =
−ilε1(σ

∞

33 + im1σ
∞

13 )

t1(1+ γ1)
, C1 =

σ∞33 + im1σ
∞

13

t1(1+ γ1)

for the unknown coefficients of the polynomial P(z) are found and the function F1(z) can be represented
in the form

F1(z)=
σ∞33 + im1σ

∞

13

t1(1+ γ1)
(z+ b)−1/2+iε1(z− b)−1/2−iε1(z− ilε1), (28)

where l = 2b is the crack length.
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Substituting (28) into (21), we get the expressions

σ33(x1, 0)+ im1σ13(x1, 0)=
σ∞33 + im1σ

∞

13
√
(x1+ b)(x1− b)

(x1− ilε1)

[
x1+ b
x1− b

]iε1

(29)

for the stresses at the bonded part x1 > b of the bimaterial interface. Substituting (28) into (22), the
expressions for the derivatives of the crack face’s displacement jumps can be written as

〈u′1(x1)〉+ is1〈u′3(x1)〉 =
σ∞33 + im1σ

∞

13

i t1
√
γ1(x1+ b)(b− x1)

(x1− ilε1)

[
x1+ b
b− x1

]iε1

. (30)

Integrating the last expression, one obtains

〈u1(x1)〉+ is1〈u3(x1)〉 =
i(σ∞33 + im1σ

∞

13 )

t1
√
γ1

√
(x1+ b)(b− x1)

[
x1+ b
b− x1

]iε1

. (31)

Introducing similarly to Rice [1988] the complex stress intensity factor (SIF) is

K1+ im1K2 = lim
x1→b+0

√
2π(x1− b) [σ33(x1, 0)+ im1σ13(x1, 0)](x1− b)iε1l−iε1

at the right crack tip, associated to the crack length and using (29) one arrives at the expression for the
conjugating SIF:

K1− im1K2 =
√

1
2πl(1+ 2iε1)(σ

∞

33 − im1σ
∞

13 ). (32)

The crack-tip field of an interface crack is uniquely determined by the complex SIF (32) or by its
real and imaginary parts, respectively. Employing a polar coordinate system (ρ, θ) with the origin at the
right crack tip, the near-tip tractions along the bonded interface part (θ = 0) are expressed as

σ33(ρ, 0)− im1σ13(ρ, 0)=
K1− im1K2
√

2πρ
(ρ/ l)iε1 for ρ→ 0. (33)

The corresponding near-tip expression for the discontinuity in displacement across the crack (θ = π) is

〈u3(ρ)〉+
i
s1
〈u1(ρ)〉 =

2
s1t1
√
γ1

K1− im1K2

1+ 2iε1

√
ρ

2π
(ρ/ l)iε1 for ρ→ 0. (34)

Using
(ρ/ l)iε1 = cos[ε1 ln(ρ/ l)] + i sin[ε1 ln(ρ/ l)],

it can be seen that the asymptotic fields (33) and (34) change their sign an infinite number of times in a
small neighboring area of the crack tip. This means that for the open crack model the well-known oscillat-
ing singularity is observed [Williams 1959]. It is characterized by physically unrealistic interpenetration
of the two materials along the crack faces. The degree of oscillation is determined by parameter ε1, which
depends on the ratio of the stiffness characteristics of the two materials. With the definitions employed
for γ1 and ε1, γ1 > 1 implies ε1 > 0. For identical materials it holds that γ1 = 1 and ε1 = 0. It should
also be noticed that transposition of the half-planes yields a change in the sign of ε1.

Defining the phase angle of the complex SIF as ψK = arg(K1− im1K2) and taking into account that

K1− im1K2 = |K1− im1K2| eiψK , 1+ 2iε1 =
√

1+ 4ε2
1 ei arctan(2ε1),
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hold true and separating real and imaginary parts of the expression (34), we have

〈u3(ρ)〉 =
2

s1t1
√
γ1

|K1− im1K2|
√

1+ 4ε2
1

√
ρ

2π
cos[ψu(ρ)] for ρ→ 0, (35)

with

ψu(ρ)= ψK + ε1 ln(ρ/ l)− arctan(2ε1). (36)

As the opening of the crack, 〈u3(ρ)〉, oscillates, an infinite number of interpenetration zones exists, in
which 〈u3(ρ)〉< 0. By means of the expression (35), we can estimate the length of the interpenetration
region at the crack tip. For this purpose, we identify the location of the first interpenetration point ρI

where the crack opening 〈u3(ρ)〉 due to the oscillation becomes zero for the first time. As pointed out
by Hills and Barber [1993], imposing 〈u3(ρ)〉 < 0 in (35), interpenetration zones are defined by the
condition cos[ψu(ρ)]< 0, which results in the intervals(

2n− 3
2

)
π < ψu(ρ) <

(
2n− 1

2

)
π,

with n being any integer. Therefore, in view of (36), the interpenetration zones are characterized by the
intervals

ρL < ρ < ρR, (37)

where

ρL = l exp
{ 1
ε1

[(
2n− 3

2

)
π −ψK + arctan(2ε1)

]}
, ρR = l exp

{ 1
ε1

[(
2n− 1

2

)
π −ψK + arctan(2ε1)

]}
.

Equation (37) defines an infinite sequence of interpenetration zones as n takes all integer values,
positive and negative. Hills and Barber [1993] concluded that the location of the first interpenetration
point ρI can be obtained as the largest value of ρR which is lower than the crack length, i.e.,

ρI = l exp
{ 1
ε1

[(
2n− 1

2

)
π −ψK + arctan(2ε1)

]}
. (38)

It is worth reminding that the relation (38) is valid for ε1 > 0 only. In the case ε1 < 0, the inequali-
ties (37) must be reversed, and therefore the location of the first interpenetration point is defined by the
largest value of ρL which is lower than the crack length [Graciani et al. 2007].

For the open crack model, the energy release rate (ERR) at the right crack tip is defined as [Parton
and Kudryavtsev 1988]

G = lim
1l→0

1
21l

∫ b+1l

b
σ33(τ, 0)〈u3(τ −1l)〉+ σ13(τ, 0)〈u1(τ −1l)〉 dτ. (39)

The electrical component of the energy release rate is missing since the drop of electric potential for an
electrically conducting crack is zero along the entire material interface.

Substituting expressions (33) and (34) into (39), we get

G =−
K 2

1 +m2
1K 2

2

2m1t1(1+ γ1)
. (40)
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In deriving (40), the identity∫ 1l

0

(
1l−τ
τ

)(1/2)+iε1
dτ = 1

2π1l(1+ 2iε1) sech(πε1),

has been used with ε1 > 0 and 1l > 0.

5. Contact zone model

Considering the same type of loadings at infinity, following Comninou [1977], we introduce a frictionless
contact zone a < x1 < b at the right crack tip to avoid an oscillating singularity, where the position of
the point a is chosen arbitrarily for the time being (Figure 2). For a such an arbitrary position of point a,
we have an artificial contact zone model, which is not physically justified, but from this model the
specific value of a for the realistic contact zone length in the sense of Comninou will be found. Taking
into consideration only the right contact zone is justified by the fact that the left contact zone under
considered loading is extremely short and its influence upon the longer right contact zone is negligibly
small [Dundurs and Gautesen 1988].

The boundary conditions at the crack faces for the considered model can be written as

σ±13(x1, 0)= 0, σ±33(x1, 0)= 0 for x1 ∈ (−b, a), (41)

σ±13(x1, 0)= 0, 〈u3(x1)〉 = 0 for x1 ∈ (a, b). (42)

Satisfying conditions (41), (42) by means of the expressions (21), (22) leads to the homogeneous
combined Dirichlet–Riemann boundary value problem

F+1 (x1)+ γ1 F−1 (x1)= 0, x1 ∈ (−b, a), Im F±1 (x1)= 0, x1 ∈ (a, b). (43)

The behavior of the function F1(z) at infinity is determined by (27).
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Figure 2. An interface crack with one contact zone subject to remote uniform mechan-
ical loading.
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Following Nakhmein and Nuller [1986] and Herrmann and Loboda [2000], the general solution of the
problem (43) can be represented in the form

F1(z)= P(z)X1(z)+ Q(z)X2(z), (44)

where

X1(z)=
ieiθ(z)

√
(z+ b)(z− b)

, X2(z)=
eiθ(z)

√
(z+ b)(z− a)

, θ(z)= 2ε1 ln
√
(b− a)(z+ b)

√
l(z− a)+

√
(a+ b)(z− b)

,

and P(z)= C1z+C0, Q(z)= D1z+ D0 are polynomials with arbitrary real coefficients. Constants C0,
C1, D0, D1 can be found from the condition (27) at infinity in the form

C0 =−β1 D1, D0 = β1C1−
a−b

2
D1,

C1 =
m1σ

∞

13 cosβ − σ∞33 sinβ
t1(1+ γ1)

, D1 =
σ∞33 cosβ +m1σ

∞

13 sinβ
t1(1+ γ1)

,

where

β = ε1 ln
λ

2(1+
√

1− λ)− λ
, β1 = ε1

√
l(a+ b) .

The parameter λ= (b− a)/ l defines the relative length of the contact zone of the crack faces and will
be found later.

Substituting the formula (44) into (21), (22) and taking into account that F+1 (x1)= F−1 (x1) for x1 > b
and F−1 (x1)=−F+1 (x1)/γ1 for x1 ∈ (−b, a), the following expressions are obtained for the stresses and
the derivatives of the displacement jumps at the material interface for x1 > b :

σ33(x1, 0)+ im1σ13(x1, 0)=
t1(1+ γ1) eiθ(x1)

√
x1+ b

[
Q(x1)
√

x1− a
+ i

P(x1)
√

x1− b

]
, (45)

for x1 ∈ (−b, a),

〈u′1(x1)〉+ is1〈u′3(x1)〉 =
(1+ γ1) eiθ∗(x1)

√
γ (x1+ b)

[
P(x1)
√

b− x1
− i

Q(x1)
√

a− x1

]
; (46)

for x1 ∈ (a, b),

σ33(x1, 0)=
t1(1+ γ1)P(x1)
√
(x1+ b)(b− x1)

[
sinh θ̃ (x1)+

1− γ1

1+ γ1
cosh θ̃ (x1)

]
+

t1(1+ γ1)Q(x1)
√
(x1+ b)(x1− a)

[
cosh θ̃ (x1)+

1− γ1

1+ γ1
sinh θ̃ (x1)

]
, (47)

〈u′1(x1)〉 =
2

√
x1+b

[
P(x1)
√

b− x1
cosh θ̃ (x1)+

Q(x1)
√

x1− a
sinh θ̃ (x1)

]
, (48)

where

θ∗(x1)= 2ε1 ln
√
(b− a)(x1+ b)

√
l(a− x1)+

√
(a+ b)(b− x1)

, θ̃ (x1)= 2ε1 arctan

√
(a+ b)(b− x1)

l(x1− a)
.
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As it follows from the analysis of the formulas (45) and (47) the normal stress is limited for x1→ b+0.
On the other hand, the shear stress is singular for x1→ b+ 0 as well as the normal stress for x1→ a+ 0.
The stress intensity factors are introduced to characterize these singularities:

k1 = lim
x1→a+0

√
2π(x1− a) σ33(x1, 0), k2 = lim

x1→b+0

√
2π(x1− b) σ13(x1, 0).

Using relations (45) and (47) leads to the expressions

k1 =

√
2πlγ1

1+ γ1

[√
1− γ (σ∞33 cosβ +m1σ

∞

13 sinβ)− 2ε1(σ
∞

33 sinβ −m1σ
∞

13 cosβ)
]
,

k2 =−
1

m1

√
1
2πl

[
σ∞33 sinβ −m1σ

∞

13 cosβ + 2ε1
√

1− λ (σ∞33 cosβ +m1σ
∞

13 sinβ)
]
.

(49)

We define the energy release rate near the right crack tip as [Parton and Kudryavtsev 1988]

G = lim
1l→0

1
21l

{∫ a+1l

a
σ33(x1, 0)〈u3(x1−1l)〉 dx1+

∫ b+1l

b
σ13(x1, 0)〈u1(x1−1l)〉 dx1

}
. (50)

Substituting the asymptotic formulas for the stresses and the displacement jumps in the vicinity of the
points a and b into (50) and calculating the corresponding integrals, we get

G = 1
2t1

(
1+ γ1

4s1γ1
k2

1 −
m1

1+ γ1
k2

2

)
. (51)

The obtained solution is mathematically correct for any position of the point a, and the associated
interface crack model was called an artificial contact zone model [Herrmann and Loboda 2000]. However,
it is physically justified if the inequalities

σ33(x1, 0)≤ 0, x1 ∈ (a, b), 〈u3(x1)〉 ≥ 0, x1 ∈ (−b, a), (52)

are valid. The first inequality ensures that the crack faces are closing on (a, b), and the second one
excludes their interpenetration on (−b, a) (it violates only in a very small area near the left crack tip
because of oscillation, but it does not significantly influence in the vicinity of the right crack tip, as
mentioned before). In this case a realistic contact zone in the sense of Comninou [1977] is present at the
crack tip.

The inequalities in (52) are satisfied simultaneously in the case of a smooth closing of the crack at the
point a, i.e., when k1 = 0 [Loboda 1993]. The latter condition is a necessary one for the satisfaction of
the inequalities in (52) and, from (49), it leads to the transcendental equation

tanβ =

√
1− λ σ∞33 + 2ε1m1σ

∞

13

2ε1σ
∞

33 −
√

1− λm1σ
∞

13

, (53)

with respect to the parameter λ. Usually (53) is solved numerically and the maximum root λ= λ0 from
interval (0, 1) should be selected. For small values of λ, assuming

√
1− λ≈ 1, we get the asymptotic

formula

λ0 = 4 exp
{
−

1
ε1

[
arctan(2ε1)− arctan

(
m1σ

∞

13

σ∞33

)
−π(n− 0, 5)

]}
, (54)

where the integer n is chosen to provide λ0 as the maximum root of (54) in the interval (0, 1).
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Figure 3. The variation of the normalized crack opening along the crack region for
σ∞33 = 1 MPa and σ∞13 /σ

∞
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∞
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∞

33 = −50
(line 3).

6. Numerical results and discussion

We pay our attention to the influence of the external mechanical loading on the crack opening and the
stresses as well as the contact zone and interpenetration region lengths. The bimaterial consisting of
piezoceramic PZT-4 [Pak 1992] (the upper material) and steel (Young’s modulus E = 21.0× 1010 N/m2

and Poisson’s ratio ν = 0.3) (the lower one) is chosen for the numerical calculations. In the SI system
of units, matrix D for the piezoceramic PZT-4 has the form4.69302 · 1010 i 5.80012 · 109 11.5642

−5.80012 · 109 4.39991 · 1010 i 12.3926 i
−11.5642 12.3926 i −5.81112 · 10−9i

 .
At the beginning, the variation of the normalized normal crack displacement jump (crack opening)

along the crack region for the open crack model is shown in Figure 3. The graphs are presented for
different shear loads σ∞13 = −1 MPa (line 1), σ∞13 = −20 MPa (line 2), and σ∞13 = −50 MPa (line 3)
with fixed σ∞33 = 1 MPa. The obtained results confirm the essential influence of normal-shear loading
coefficient on the crack opening.

Figure 4 shows the graph of the normalized displacement jump at the right crack tip for the open crack
model. Curves 1, 2, and 3 in this figure correspond to the values σ∞13 /σ

∞

33 =−50, σ∞13 /σ
∞

33 =−80, and
σ∞13 /σ

∞

33 =−100, respectively. It follows from the analysis of these graphs that crack opening is negative
in some areas, i.e., a physically impossible overlapping of the crack faces is observed there. If σ∞13 /σ

∞

33 =

−50 this overlapping is invisibly small although it takes place, but for σ∞13 /σ
∞

33 =−80 it is quite noticeable
and for σ∞13 /σ

∞

33 = −100 the overlapping covers one tenth of the crack length. It is clear that in such
cases the open crack model is not adequate to reality and the contact zone model should be used.

The distribution of the normalized normal stress σ33(x1, 0)/σ∞33 in the contact zone x1 ∈ (a, b) for
σ∞33 = 1 MPa, σ∞13 /σ

∞

33 = −70 and different values of the relative contact zone length λ is shown in
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for σ∞33 = 1 MPa and σ∞13 /σ

∞

33 =−50 (line 1), σ∞13 /σ
∞

33 =−80 (line 2), σ∞13 /σ
∞

33 =−100
(line 3).

1

2

3

1

0

−  1

−  2

−  3

0.4 0.8

( x  ,0)1σ33

σ ∞
33

x  − a1
b  − a2

Figure 5. Variation of the normalized normal stress σ33(x1, 0)/σ∞33 in the contact zone
(a, b) for σ∞33 = 1 MPa, σ∞13 /σ
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λ= 0.001 (line 3).

Figure 5. Curve 1 corresponds to λ = 0.03 (λ > λ0), curve 2 to λ = λ0 ≈ 0.01238, and curve 3 to
λ= 0.01 (λ < λ0). It is seen that for λ > λ0, normal stress is tensile in most parts of the interval (a, b)
and is compressive only near the point b. A decrease of λ leads to an increase of the compressive stress
field zone. For λ≤ λ0, the normal stress becomes negative throughout the interval (a, b). Only for λ= λ0

the stress σ33(x1, 0) at the point a becomes equal to zero. This means that for λ = λ0, the crack faces
are compressed against each other in the entire interval (a, b) and their closure in point a is smooth.

Figure 6 shows the normalized crack opening 〈u3(x1)〉/ l in the left neighboring area of the point a
for the same materials and loads, as in Figure 5. Curve 1 corresponds to λ= 0.03 (λ > λ0), curve 2 to
λ= λ0≈ 0.01238, and curve 3 to λ= 0.001 (λ< λ0). It follows from the analysis of the above results that
for λ≥ λ0 the second inequality in (52) is satisfied for all x1 ∈ (−b, a), except limx1→a−0〈u′3(x1)〉 → 0,
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model at the crack continuation for σ∞33 = 1 MPa and σ∞13 /σ
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∞
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and equality 〈u′3(a)〉 = 0 holds true only for λ= λ0. On the other hand, if λ < λ0, physically incorrect
overlapping of the crack faces is observed, which increases with λ decreasing. Thus, the results presented
in Figure 5 and Figure 6 numerically confirm the fact that the inequalities in (52) are satisfied only for
λ= λ0.

The results of the calculations of the normalized normal stress σ33(x1, 0)/σ∞33 at the crack continua-
tions are shown in Figure 7. Curves 1, 2, and 3 in this figure correspond to the values σ∞13 /σ

∞

33 =−40,
σ∞13 /σ

∞

33 =−50, and σ∞13 /σ
∞

33 =−80, respectively. These results demonstrate that, although the normal
stress σ33(x1, 0) is not singular in the right neighborhood of the point b, its value remains very high in
this region and can contribute crack propagation.
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σ∞13 /σ
∞

33 ρI / l λ0 G/(lσ∞33 )

−10 4.08058 · 10−12 2.20907 · 10−12 1.20334 · 10−3

−20 1.95214 · 10−6 1.05682 · 10−6 4.77593 · 10−3

−30 1.55536 · 10−4 8.41908 · 10−5 1.07303 · 10−2

−40 1.39120 · 10−3 7.52293 · 10−4 1.90663 · 10−2

−50 5.18241 · 10−3 2.79381 · 10−3 2.97841 · 10−2

−60 1.24555 · 10−2 6.67549 · 10−3 4.28836 · 10−2

−70 2.33029 · 10−2 1.23814 · 10−2 5.83648 · 10−2

−80 3.72787 · 10−2 1.95898 · 10−2 7.62278 · 10−2

Table 1. The variation of the relative interpenetration region length ρI / l, the relative
contact zone length λ0, and the normalized energy release rate G/(lσ∞33 ) with respect to
different shear loads σ∞13 /σ

∞

33 for σ∞33 = 1 MPa.

In Table 1, the magnitudes of the relative interpenetration region length ρI / l, the relative contact zone
length λ0 and the energy release rate G for different values of the shear loads are presented. It can be seen
that all these values increase with the increase of magnitude of the applied shear load. In the absence of
shear stress, the contact zone and interpenetration region lengths for piezoelectric-metal structures are
several orders less than the characteristic size of the crack. However, for an essential shear field they
become longer and even comparable with the crack length.

Comparing the results shown in Table 1, we can note that under the same loads the relative length
of the material interpenetration region is always longer than the relative length of the realistic contact
zone. This finding can be useful for the prediction of the first approximation for the realistic contact zone
length, which can be refined later by an iterative procedure.

Carrying out a similar analysis for σ13(x1, 0) for x1→ b+0, one can see that the size of the area in the
vicinity of the crack tip, where the stress changes its sign an infinite number of times, is approximately
equal to ρI .

7. Conclusion

An interface crack between a piezoelectric material and a conducting isotropic elastic material under
the action of a mechanical loading has been considered. By using a hybrid complex variable method
which combines the Stroh formalism of piezoelectric materials with the Muskhelishvili formalism of
isotropic elastic materials, the stresses and the derivatives of the displacement jumps via sectionally
holomorphic functions have been presented. On the base of these representations, the exact analytical
solutions for two interface crack models — the open crack one and the contact zone one — have been
found. Furthermore, the explicit expressions of the crack tip ERR and the crack tip SIF have been
obtained when the piezoelectric-metal bimaterial is subjected to the mechanical loading at infinity.

The present investigation shows that the structure of the singular fields near the conducting interface
crack tip within the framework of the open crack model consists of an oscillating singularity, which is
similar to that in the linear elastic dissimilar anisotropic materials but quite different from that under
the impermeable crack assumption. It can be concluded that the electric boundary condition along
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an interface crack in piezoelectric-metal bimaterials exerts significant influence on the structure of the
singularity of the near-tip fields. An oscillating singularity is characterized by physically unrealistic
interpenetration of the two materials along the crack faces. The degree of oscillation is determined by
parameter ε1, which depends on the ratio of the stiffness characteristics of the two materials. The zone of
crack face interpenetrations at the crack tip has been investigated and, in particular, the distance between
the point of first interpenetration and the crack tip in the open crack model solution has been estimated.

The contact zone model in Comninou’s sense has been derived as a particular case of the obtained
solution within the framework of the artificial contact zone model. A simple transcendental equation
and corresponding asymptotic formulas have been found for the determination of the realistic contact
zone length. It is shown that at the same loads the relative length of the material interpenetration region
is always longer than the relative length of the realistic contact area. This finding can be useful for the
prediction of the first approximation for the realistic contact zone length, which can be refined later by
an iterative procedure.
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