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FERNANDO MAGDALENA LAYOS AND ANTONIO AZNAR LÓPEZ

Masonry arches crack inexorably after decentering. This phenomenon is well known to any master
builder. For small deformations these cracks do not affect the safety of the arch. Indeed, the arch with
time may show different patterns of cracking, which lead to different sets of internal forces. Within the
frame of modern limit analysis, developed for masonry structures, mainly by Professor Heyman since
the 1960s, we know that cracking is irrelevant to safety: indeed, it is the capacity of forming cracks
which gives “plasticity” to masonry. Small deformations do not distort the overall form of the arch. A
direct corollary of the safe theorem states that if it is possible to draw a line of thrust within the arch, the
arch will not collapse, and it is safe. This is independent of the “actual” state of the arch, manifested
by a certain pattern of cracks. This pattern will change with very small (unpredictable) variations in the
boundary conditions; a tiny spreading of the abutments will produce a complete change.

However, when the deformations are large, the geometry of the arch is severely distorted and we
cannot study the stability with the original geometry: it is necessary to proceed step by step, considering
the deformed geometry. This phenomenon has been rarely studied. However, even these studies consider,
as a simplification, that the crack patterns do not vary and the movement is studied under this assumption.
That this is not the case can be seen with tests with small models of arches: the position of cracks can
be altered, and this may influence the validity of the study. The present contribution proposes a method
of analysis which permits us to study the history of cracking until collapse. This has not only theoretical
interest; it may be used in the analysis of some critical cases which occur in practice.

1. Maximum and minimum thrust of a masonry arch: linear analysis

This work is based on three hypotheses (see [Heyman 1966; 1995; 2007]) that are assumed as valid. The
discussion, as well as the validation, of them is out of the scope of the present article. These assumptions
are

(1) the elements can be considered as solid rigid voussoirs because the stresses of the elements are low,
despite the contact between the elements being located in a single point,

(2) sliding failure cannot occur, and

(3) masonry has no tensile strength.

The second assumption is based on the idea that arches are formed by a line sequence of voussoirs. Recent
studies of systems that have a geometry with more complex topology are considered in [Fortunato et al.
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2018; Portioli and Cascini 2017] and with a more theoretical approach in [Fortunato et al. 2016]. The
last study focuses on a single arch, while the present work has no such limitation.

The stress in the joints of the arch (contact between voussoirs) has been described as proposed by
Livesley [1978]: a shear force and two axial forces are considered at each joint.

Already Méry [1840] showed the relationship between thrust lines (equilibrium solutions) and patterns
of cracking, crucially identifying the typical cracks giving the maximum and minimum thrust.

With all these premises, the calculation of the minimum horizontal thrust (h) is determined by either
of the two dual problems of linear programming (LP):

min h = ct
· s such that [HN HV ] ·

[
sN

sV

]
= f , sN ≤ 0, (sV );

max Wext = f t
· u such that (u), H t

N · u ≥ cN , H t
V · u = cV .

(1-1)

Here, as is usual, f represents the system forces vector, H is the equilibrium matrix, and s is the internal
forces vector. In the dual kinematic formulation, H t is the compatibility matrix and u is the movement
vector. The unrestricted variables are shown in brackets for the sole purpose of underlining the symmetry
between the primary static problem and the dual kinematics. Indices N and V refer to the axial and
shear forces, respectively. The internal force vector s has been reordered as st

= [sN sV ] to clarify the
constraints placed on each variable. The equilibrium matrix H and the c vector were reordered in the
same way. Although it is unnecessary for the purposes of this paper, a more detailed version of the
problem restrictions may be consulted in [Magdalena Layos 2013; Fishwick 1996]. An analysis of the
effect of settlements in general plane masonry structures can be found in [Iannuzzo et al. 2018].

When the dummy variables are incorporated into e = H t
· u, one can write[

H t
N

H t
V

]
u =

[
eN

eV

]
; eN ≥ cN , eV = cV . (1-2)

In order to obtain the minimum (maximum) horizontal force of the arch, the objective function of the
problem is

h =±(Ni + N j ) cosα± Vi, j sinα. (1-3)

Here the subscripts i , j refer to the vertices defining the first and last contact points of the joint of
the arch, α corresponds to the angle between the plane of the joint and the horizontal line, the sign
± depends on the support — left or right — of the arch and on the criterion of the sign that has been
adopted. The constraint of the kinematic equations cN ,i ≥ cosα; cN , j ≥ cosα; cV,i j = sinα has a clear
physical interpretation: the movement (horizontal) of the support of the arch has a parallel component
uV = cos(α) and a perpendicular one uN = sin(α), both of them referenced to the local axis of the joint.
If sliding failure cannot occur, the first component corresponds to the deformation eV and the second one
must be lower or equal to each strain eN . Note that moreover the virtual mechanism is normalized in
the kinematic formulation so that horizontal arch end movement is 1. To this end, it is supposed that the
movements are sufficiently small to make this approximation possible (rigorously, the initial velocities
instead of the movements should be considered, thus several references show the notation u̇).



CRACKING OF MASONRY ARCHES WITH GREAT DEFORMATIONS: A NEW EQUILIBRIUM APPROACH 649

For the recommended normalization of the vector u and using the virtual work principle (VWP), it is
clear that the objective function of the kinematic problem Wext = f t

· u coincides with minimum thrust,
as the work of the internal forces will be reduced to Wint = 1 · h.

It is also clear that if vector c is multiplied by a factor γu , the uγ = γu u vector is the solution to the
new kinematic problem and the value of the target function will be Wext,γ = γu Wext. Using the VWP
again the conclusion is that

Wint,γ =Wext,γ → γu(1 · h)= γu Wext→ h =Wext, (1-4)

i.e., that the thrust value of the arch does not vary.
Regarding the static problem scale, it is only necessary to modify the objective function hγ = γu ct

· s.
If s is the solution of the first problem, the solution of the scaled problem corresponds to this same
solution multiplied by the γu factor.

2. Maximum and minimum thrust of a masonry arch: nonlinear analysis

Restricting to small displacements, in the limit infinitesimal, the angle of aperture of the joints θ is small
too. When two voussoirs open, a hinge is formed. Therefore we can approximate the value of sin θ to θ
and cos θ to 1. In this way, the previous formulation reduces to the linear formulation:

(linear) max Wext = f t
· u such that H t

N · u ≥ cN , H t
V · u = cV

(nonlinear) max Wext = f t
· u such that H(u)tN ≥ cN , H(u)tV = cV .

(2-1)

If the study is focused on noninfinitesimal movements, the change of variable s = sin θ , c = cos θ can
be applied and the function H(u) remains a linear function of c and s. However, the quadratic constraints
c2
+ s2
= 1 must be added as a condition to (2-1), introducing the first nonlinearity into the problem.

On the other hand, the progression of the initial small movement may produce the opening and closing
of different joints of the arch. Due to this effect, the objective function experiences abrupt and instanta-
neous jumps. These jumps of the objective functions are due to the fact that both surfaces of each joint
may continue to be in contact or not, as well as whether stress can be transmitted or not. This mechanical
behavior can be characterized as a disjunctive (nonsmooth) behavior, and can be mathematically formu-
lated through complementary constraints using bilinear functions or other equations having an equivalent
complexity [Hu et al. 2012].

When both types of constrains are applied, the problem becomes NP-hard, with high computational
complexity. Problems of this type may have multiple solutions, and this hinders their resolution by deter-
ministic methods. In this case, the multiple possible solutions correspond to the different combinations of
positions of the open joints that fulfill the restrictions. This occurs even if the simplification concerning
the elimination of the dynamic stress is incorporated.

3. Incremental algorithm

In spite of the difficulties due to the nonlinearity of the problem, there exist different options for a possible
solution (see [Gilbert and Melbourne 1994; Huerta and López 1997; Portioli and Cascini 2017]). The
problem can be incrementally solved by superimposing a sequence of linear problems. At each step, when
the initial problem is solved, the geometry of the arch is modified according to the solution obtained and
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the process is repeated again. If γu , that is, the step amplitude of the displacement, is small enough
then the accumulated errors remain small too. These errors, due to the linear approximation at each step,
accumulate, and produce a aberration of the elements of the arch, elements that were initially considered
as rigid blocks. The amplitude of such an aberration depends obviously on the value of γu that is used
during the iteration.

These algorithms have two important disadvantages:

(1) They give only a single solution among all the possible solutions.

(2) Small variations of the initial geometry of the arch at each step can lead to important variations in
the final solution.

These effects are a direct consequence of the circumstances described at the end of the Section 2, and
they can be observed in some of the results shown below.

When the linear approximation is used it is assumed that e = H t u, and in the cases in which the
movements are not small, eN L = H t(u) should be used instead. To solve the nonlinear problem is
a rather difficult task, but when a specific u is obtained (for example, by solving the linear problem)
calculating eL N is simple: By introducing e(t−1)

r = e(t−1)
N L − e(t−1)

L , where the subscript r is defined as
a “residue”, then e(t)N L ≈ e(t)L + e(t−1)

r . If the subscripts are omitted, one can write e ≈ eL + e(t−1)
r ;

e≈ H t u+ e(t−1)
r .

With this correction of the e vector, the linear problem at each step is solved:

max Wext = f t
· u such that eN ≥ cN , eV = cv,

[
eN

eV

]
=

[
H t

N

H t
V

]
u+

[
e(t−1)

r,N

e(t−1)
r,V

]
, (3-1)

or the other option

max Wext = f t
· u such that H t

N · u ≥ cN − e(t−1)
r,N , H t

V · u = cV − e(t−1)
r,V . (3-2)

Note that if e(t)r = e(t−1)
r at the iteration t , then e(t)N L = e(t)L + e(t−1)

r and the constraint of the kinematic
problem can be written as[

H t
N (u)

H t
V (u)

]
=

[
eN L ,N

eN L ,V

]
; eN L ,N ≥ cN , eN L ,V = cv. (3-3)

In this way, the nonlinear equations H(u)t = eN L are verified, as are the restriction constraints of the
arch support.

When the iteration has been corrected, and always before calculating the next step, the equilibrium
of the new geometry is checked. For that reason, a linear “kinematic” problem is solved by minimizing
f t u using the new geometry with the constraint that the joints that have been opened cannot be closed.
If the new geometry is equilibrated, then f t u must vanish. If it does not happen, it must be because the
system becomes a mechanism, and a new equilibrated position could be found if any joint closes. In
these cases, often another joint opens, and it is in this way that the positions of the hinges of the arch
change.

The linear problem solved in this step is similar to (1-1): it is needed only to modify cN . The nonzero
components correspond to the deformation of the hinges. Then, a simple interpretation of the static dual
problem can be extracted: The function of the static problem is a linear combination of the axial forces
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applied to the vertices of the opened joints. If the equilibrium of the arch remains with hinges, the sum
of these axial forces must be null. In another case, some of these axial forces must not be zero in order
to enable the equilibrium. This same “incremental” process is applied to solve the new problem.

4. Results

Figure 1 shows the study of the effect of a given displacement of the left support of a semicircular arch
composed of twelve voussoirs. The ratio between the interior and exterior radius is 5 : 8. The external
load applied to this model is zero, and only the weight of the arch has been considered.

Section 1 shows the classic problem of analyzing the effect of horizontal creep of an arch support
and its dual problem (maximum/minimum thrust). It is obvious that to formulate the problem of the
descent/ascent of one of the supports of the same arch (and its dual minimum/maximum vertical reaction),
it is enough to substitute α (the angle between the plane of the joint and the horizontal line) by its
complementary value in the target function definition (1-3).

In Figure 1 the abscissa represents the normalized displacements of the support of the arch, vz/D
(D being the interior diameter of the arch) and vz has been defined as vz = 10vz/D. In Figure 1,

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 vz/D

1

2

fz/ fz0

vz=0.5

vz=0.6

vz=3.1

vz=3.6

vz=3.7

vz=8.8

vz=8.8

vz=8.9

Figure 1. Variation of the vertical reaction in the left support fz/ fz0 depending on the
relative displacement vz/D of the arch (vz = 10vz/D).
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the ordinate axis represents the normalized value of the vertical reaction force fz/ fz,0, where fz,0 is the
minimum vertical reaction force calculated at the support of the arch in the initial geometry (nondeformed
arch). The continuous line represented in Figure 1 has been built by applying a progressive increment in
the vertical movement of the left support of the arch, and the resultant curve is similar to the curves found
in [Ochsendorf 2006], in which the horizontal force of the arch is related to the horizontal displacement.
In both cases, the reaction force increases when the movement advances. In this way, this movement
would not stop due to the steps of Figure 1 as they have been obtained using the minimum reaction
force from which the movement begins. In real masonry structures, movements like these should be due
to a settlement of the foundation. In these cases, the soil would behave more or less elastic and this
behavior would stop the movement of the arch unless the foundation collapses. This last consideration
is difficult to justify when the horizontal movement is due to other external effects, for example, when
the consequence is due to the effect of a wall, when the arch is built against a massive buttresses, etc.,
[Ochsendorf 2006].

The graph of Figure 1 is discontinuous, unlike the results that can be found in [Ochsendorf 2006].
This discontinuity appears at vz ≈ 3.7 and vz ≈ 0.5. In this last case it is more difficult to appreciate it
due to the scale of the graph. Both these discontinuities correspond to steps at which the position of the
hinges changes. Thus, when vz = 3.6 the sixth joint opens (between the fifth and sixth voussoirs) while
when vz = 3.7 the hinge is located between the sixth and seventh voussoirs. These results are coherent
with Section 2, where the nonlinearity of the problem is exposed.

In Figure 1, the geometry of the arch has been represented. In this way, the deformation at different
steps of the process can be clearly observed. As can be observed, the steps corresponding to vz = 0.5,
0.6, 3.6, 3.7, 8.8 have been colored and the thrust lines have been incorporated. It can be observed that
the equilibrium of the step with vz = 3.6 is tight, because the thrust line is almost tangent to the external
surface of the arch near the sixth voussoir. From this step, when the position of the hinge changes, when
vz = 3.7, it can be observed that the equilibrium of the arch improves.

Between the steps in which vz = 0.5 and vz = 0.6 the position of the hinge changes from the fourth-
fifth voussoirs to the fifth-sixth ones. The position of the hinge when vz ≤ 0.5 corresponds to the results
using classic linear analysis.

From vz = 3.7 to the last step, in which the solution is located at vz = 9.2, the position of the hinges
does not vary. One deformed arch in this family of results has been drawn (vz = 8.8, colored arch). If
this state is compared to vz = 3.7, it can be seen that when the vertical displacement in the left support
increases, the thrust lines tend to approach the right of the arch. It is easy to find the step in which
collapse occurs: when the thrust line is located on the far right of the right support it is not possible to
find equilibrated positions.

Additionally, the graph in Figure 1 shows the results when the direction of the movement of the right
support changes from vz = 3.7 (the dashed line between vz = 3.6 and vz = 2.5). If a new analysis is
performed from vz = 3.7 in order to calculate the state with lower vertical displacement of the support
(vz = 3.6, vz = 3.5, etc.), a new solution is obtained that is different from the previous one (when the
displacement of the support was gradually increasing). It is important to note that the position of the
joints in these new solutions do not vary from the position of the state vz = 3.7. As expected in Section 2,
this problem has no unique solution. One of these new solutions is represented (vz = 3.1, without color
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arch). When vz < 2.5, the joint located between the sixth and seventh voussoirs returns to its original
position.

Due to the similarity between both solutions (2.5, 3.6) it can be assumed that the first or second
solution may be obtained indistinctly. Any small imperfection or minor perturbation could cause the
change from one step to another.

In Figure 1 another second family of solutions has been shown using a dashed line. From step vz = 6.4
to vz = 8.8, solutions appear once again in which the hinges are located between the fifth and sixth
voussoirs. This location continues during the entire interval (although vz may increase or decrease the
position of the hinges).

This occurs until the value decreases to vz = 6.4. It is in this step when the arch geometry is modified
and the location of the hinge varies by closing the seventh joint and opening the sixth. In the following
steps, the solution obtained matches the original ones (represented by the continuous line), independently
of the increase or decrease in vz . From this point, it is necessary to add a new perturbation into the
algorithm in order to obtain the same results again. An example of such a perturbation could be to
include the prevention of the aperture in the seventh joint so that the joint can not be opened. One of the
deformed arches in this family of results has been drawn, vz = 8.8 (without color). It can be observed
that this step corresponds to the last one, because the thrust line reaches the right of the right support.
This step is similar to the one previously described (when vz = 8.8 and the arch is colored). However, in
this new point the arch has not yet collapsed. The vertical displacement can increase to vz = 8.8, further
opening the right hinge and slightly closing the left one (vz = 8.9, without color arch).

These results cannot be generalized, nor can it be confirmed that the position of the hinges changes
when vertical displacement increases.

Figure 2 shows the analysis of the same arch when the number of voussoirs varies. The left graph
corresponds to an arch with ten voussoirs, and it can be seen that the position of the hinges does not
vary until movements approach arch collapse. In this case, the location of the hinges does not depend
on vz . During the last steps, when the location of the hinge varies, vz = 8.1, the left hinge closes while
on contrary the right hinge opens. This effect was previously observed in analysis of the twelve voussoir
arch. In this graph, different steps of the deformed arch have been represented (vz = 0.1, 0.5, 8.0, 8.1)
and the main solution of Figure 1 has been included with a dashed line. The step when vz = 8.1 has been
shown over the immediately previous step (without color). In this way the sharp variation between both
steps can be observed.

Figure 2 (right) shows the results of analysis of the arch composed of thirteen voussoirs. The solution
obtained is similar to the one shown previously in Figure 1. It can be observed that in this case, when
the deformation of the left support of the arch increases, the hinge changes twice: when vz = 2.1 and
when vz = 5.4. From this step, if the direction of the displacement is inverted, two different families of
solutions are obtained. Both solutions are similar to the one previously obtained in the first arch when
2.5< vz < 3.6. Similar solutions to the steps where vz > 6.4 in the twelve voussoir arch have not been
obtained. However, it is not possible to state that they do not exist. It must be noted that in spite of
incorporating the same perturbations in the algorithm, a different solution was obtained. Again, the main
solution of Figure 1 has been included with a dashed line so that both results can be compared.

Figure 3 shows the results of the same analysis in the arch with seven (left) and twenty (right) voussoirs.
When the number of voussoirs increases — Figure 3 (right) — the discontinuities of the function fz =
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Figure 2. Variation of the vertical reaction in the left support fz/ fz0 depending on the
relative displacement vz/D of the arch composed of 10 voussoirs (left) and 13 (right)
(vz = 10vz/D).
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fz/ fz0

vz=0.1

vz=6.0

vz=6.1

vz=9.7

0.3 0.6 0.9 vz/D

vz=8.0

vz=2.5

vz=0.5

vz=0.6

vz=2.6

Figure 3. Variation of the vertical reaction in the left support fz/ fz0 depending on the
relative displacement vz/D of the arch composed of seven voussoirs (left) and twenty
voussoirs (right) (vz = 10vz/D).

fz(vz) are attenuated. On the other hand, when the number of voussoirs decreases, the effect of the
discontinuities increases; see Figure 3 (left). It can be concluded that the decrease of the number of
voussoirs increasingly differs from the effect described in [Ochsendorf 2006].

It can be seen that the arch composed of seven voussoirs has a wide range in which two different states
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can occur with the same vz value. The second hinge can be located between the third and fourth or fourth
and fifth voussoirs. Unlike the results obtained in the twelve voussoir arch, Figure 3 (left) shows that
unless a significant perturbation occurs it is not viable to transition from the two states (3.8< vz < 6.0).

Although this work presents the results of an arch with a 5 : 8 ratio between its internal and external
radii, a previous parametric study carried out in arches showed this ratio varied from 5 : 6 to 5 : 10. The
geometry of the arch studied here corresponds to the proportion which shows the highest hinge variability.
For example, in a slender arch with a ratio of 5 : 6, these effects are insignificant. Only in models with a
high number of voussoirs may some of the hinges vary. It has been shown that in these cases the effect
of the variation in the position of the hinges is reduced; see Figure 3 (right). In this slender arch case the
solution obtained is unique. Even when a perturbation was included in the algorithm, no variation in the
solution arose.

This previous study also explains why this work focuses on the vertical displacement of one of the
arch supports. This study shows that the effect of horizontal displacement variation has a minimum
influence on the variation of the position of the hinges. When horizontal displacements were applied,
only in exceptional cases does an abrupt change in the position of the hinges occur. This effect does
not imply that the solution must be unique. In these cases it is simple to obtain alternative solutions.
For example, when an arch with an odd number of voussoirs is studied, two different solutions can be
obtained depending on whether the hinge is located on one side or the other of the central voussoirs.
Although every solution becomes stable (within a certain margin) it is necessary to include perturbations
in the algorithm to move from one state to other.

5. Conclusions

The results obtained in this work show the possibility that the position of the opened joints changes along
the arch, when the displacement imposed at the support of the arch is modified.

This change of the position of the opened joints spontaneously occurs when the movement of one
support gradually increases or decreases. However, when the direction of the movement changes, the
abrupt deformation of the arch does not occur at the same point.

Unlike [Ochsendorf 2006], the case studies presented in the present article exhibit multiple solutions.
The change from one solution to another can occur when the movement of one support of the arch
increases or decreases, but also can occur due to an external perturbation. This phenomenon is shown in
the arch of twelve voussoirs studied in Section 4.

The results obtained in this work are specific to the shape (semicircular arch) and slenderness ratio
(5 : 8) chosen, and can be hardly generalized. The study of the effect of form and slenderness ratio on the
outcome of the progressive settlements deserve further study. The results here presented show a great
diversity of qualitative responses that make difficult the possibility of a simple classification.

Currently, also with the aim of seeing if this classification can be done, the present method of calcu-
lation offers the possibility to analyze different particular cases of form and slenderness.

Finally, the nonlinear effects observed in the cases studied in this work occur when the movements
resultant are definitely large compared to the overall dimensions of the structure. Thus, the solutions
obtained with linear formulations, the classic formulation for small movements, is accurate enough for
small displacements.
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