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MATHIAS FANTIN, THIERRY CIBLAC AND MAURIZIO BROCATO

We study the structural performance of flat vaults, depending on the patterns of voussoirs. For this
purpose, we propose three archetypes, derived from the 18th–19th century literature on stereotomy, with
fit simplifications.

The ultimate structural answer of these models are evaluated, searching numerically for statically
admissible loading conditions by means of an enhanced version of the thrust network analysis, assuming
failure occurring by joints’ opening, crushing or sliding, while voussoirs remain rigid.

The considered enhancements allow one to better capture the contact forces acting on the joints and
to define consistently the safety factor of the structure. They are based on the introduction of additional
partial branches in the thrust network that represent actions internal to the voussoirs and are essential to
describe, at least in some cases, their rotational equilibrium, which is neglected by the standard analyses.

The three examples are compared by superposing their domains of statically admissible loadings,
represented in terms of vertical uniformly distributed load vs. thrust. Our findings support but partly
some of the conjectures presented in the 18th century and later literature, especially because of a plate
effect that can be observed at the corners of these structures. They also allow us to classify flat vaults
according to the local shape of the force network, as elliptical, parabolic or hyperbolic, thus opening to
a new interpretation of their nature.

1. Introduction

A flat vault is a structural system, spanning horizontally with a reduced thickness, that withstands mainly
vertical loads, normally its own weight plus additional dead and living loads, discharging them at its
boundary by means of a vault effect, i.e., with a horizontal thrust. Flatness of the intrados is what
characterises these structures with respect to standard (curved) vaults.

The vault effect we refer to is related to the fragmentation of the vault into voussoirs, with the joints
having milder mechanical properties than the stones. Stereotomy is thus a paramount feature of these
systems and our purpose here is to understand its role. Systems reaching supports in one piece, as
monolithes, or stone-coffered ceilings whose span is covered by stone slabs, are not studied here.

Three bondings of flat vaults will be considered here, derived from historical examples presented in
Section 2, with parameters set in Section 3, and their statically admissible ultimate structural perfor-
mances compared by means of an enhanced version of the thrust network analysis.

The thrust network analysis [O’Dwyer 1999; Block and Ochsendorf 2007] has been applied to produce
form finding tools [van Swinderen and Coenders 2009; Rippmann et al. 2012], and several advances and
extensions have been published concerning the optimisation procedures [Vouga et al. 2012; Block and
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Lachauer 2014b] and the related variational formulations [Fraternali 2010; de Goes et al. 2013] that can
be set up to define the parameters left otherwise undefined by the equilibrium equations. It has also been
applied to some historical structures on gothic fan vaults [Block and Ochsendorf 2008], rose-windows,
and thin-shelled spiral staircases [Block 2009; Block and Lachauer 2014a].

Flat vaults, as flat arches, are not distinguishable from each other by their form. Per se their strength
depends on the pattern in which voussoirs are cut and laid. Hence the need arises for an analytical tool
capable of gaining an insight into the vault’s masonry bonding.

With this need in mind, the method proposed in Section 4 is based on a more-detailed-than-usual
translation of the information on the structure into the arena where forces and strengths contend. While
in the standard thrust network analysis voussoirs are related to mass-points (being the nodes of a network
whose branches represent, but roughly, the connections between first neighbours), a refinement of this
network is made here, subdividing voussoirs in such a way that the branches of the network are a more
accurate representation of the forces exchanged across joints. This refinement has been already presented
in [Ciblac and Fantin 2015; Fantin and Ciblac 2016; Fantin 2017] and is applied here to the cases at issue.

The numerical implementation of the method is briefly presented in Section 5 and the results are given
in Section 6. It appears that the proposed refinement allows us to define more statically admissible states
than the standard thrust network analysis does. Thanks to this result, the differences among the limit
static interactions in the three studied cases can be displayed and discussed.

2. A historical survey on the stereotomy of flat vaults

Many options were available in the past for the stereotomy of flat vaults and technology opens even more
today, but a taxonomy is needed for our purposes. A grouping proposed by Rondelet [1804] is handy,
where cutting patterns are named with respect to their analogous in curved vaults, namely (see Figure 1,
from left to right):

(1) barrel vaults (voûte en berceau in [Rondelet 1804]);

(2) pavillon vault (voûte en arc de cloître);

(3) spherical vault (coupole);

(4) groin vault (voûte d’arêtes).

Various examples of such flat vaults were built in France during the 16th, 17th, and 18th centuries
[Pérouse de Montclos 1982], and many exist in other countries and from different ages (see [López Mozo
2003]).

The cases covered by this nomenclature share a common trait: loads decrease “monotonically” toward
the boundary. The adverb can be qualitatively explained as follows: observing any voussoir, the sheaf of
vertical planes cutting it through its centre contains one element across which shear forces are exchanged
whose absolute value is minimal, the plane orthogonal to it in the same sheaf bearing the maximum
absolute shear. When the minimal-valued shear is null, it is possible to sever all voussoirs along the then
unique nonsheared plane, without changing the load descent.

If the pattern drawn by the intersection of the planes of maximum absolute shear with the plane
of the vault is made of parallel lines, then the flat vault can be called unidirectional or parabolic (i.e.,
inheriting the properties of a barrel vault), as it is the case of item (1). Loading is discharged in one
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Figure 1. Flat vaults cutting pattern from [Rondelet 1804, Pl.XXXI; 1828, Pl.XXX].

Figure 2. Patterns drawn by the maximum shear planes on the vaults of Figure 1: par-
allel lines correspond to a unidirectional or parabolic flat vault, concentric lines to a
bidirectional or elliptical one.

direction (orthogonal to those lines) from one support to the other on two opposite sides of the vault,
which necessarily covers a quadrilateral (possibly rectangular) surface, with nothing supporting the vault
along the two other sides.

Otherwise, as concentric figures are found, one faces case (2) (concentric squares), (3) (circles), or (4)
(cross-shaped figures). The vault can then be called bidirectional or elliptical (see Figure 2).

A third case can be considered, not in that list, with vaults that can be called hyperbolic: the above
mentioned nonsheared plane is not unique, as two orthogonal planes partake of the same property at each
voussoir. This dyad defines four quarters; two crossed by planes bearing positive shear forces, among
which a plane of maximum shear exists, and two crossed by negative sheared planes, with one carrying
a minimal shear.

These statements, presently calling upon intuition, will be made precise thanks to some of the develop-
ments presented herein. Three examples will be studied, representing the families of parabolic, elliptical,
and hyperbolic flat vaults:
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(1) a “barrel” flat vault, akin to the first example on the left of Figure 1;

(2) a “pavillon” flat vault, akin to the second example from the left in the same figure;

(3) an “Abeille” flat vault.

Abeille’s flat vaults are so named today after their inventor, Joseph Abeille, who lived in 18th century
France. Though we have a first hint of their invention in [de Bélidor 1729]1, we owe the earliest evidence
of their geometry to Gallon [1735].

The vaults patented by Abeille in 1699 were, unlike any other existing example, made of one single
type of voussoir: a trapezohedron, cut in such a way that the lower face is a rectangle, the upper a square,
and the two central sections obtained through planes normal to the sides of the square are isosceles
trapezia, one upside down with respect to the other. Thanks to this design, when voussoirs are properly
assembled, the intrados form a continuous ceiling and the extrados form a floor with pyramidal gaps.

What makes Abeille’s vaults the paradigm of a whole family of new structures is their interlocking
stereotomy. In the assembly, each voussoir has four first neighbours: two of them, at opposite sides
in one direction, prevent it from moving downward, the other two from moving upward. Hence, when
loaded, each sustains two neighbours and is sustained by the other two. It has then been noticed that these
are, at the same time, “catenary” structures (or based on the principle of the inverted chain) and “levery”
structures (or based on the principle of the lever [Brocato 2011; Brocato and Mondardini 2012]), as
they partake of the nature of curved vaults and of nexorades [Baverel 2000; Baverel et al. 2000; Baverel
and Nooshin 2007], possibly due to the influence on their author of a particular type of timber frame —
later called Serlio’s floors [Émy 1837; Yeomans 1997] — existing much earlier as pictures by Villard De
Honnecourt, Leonardo da Vinci, and Sebastiano Serlio indicate, and studied by his contemporary John
Wallis (see Figure 3, where two such frames are depicted, with reference to [Heyman 1995; Khandelwal
et al. 2015]).

Already during his time, it was recognised that Abeille’s interlocking bond results in the possibility of
building the system the other way around, with squares on top and pyramidal gaps above. Furthermore,
alternative were proposed in the same session of the French Academy, without gaps, but using more
complex cuts, by Sebastien Truchet (see Figure 3). Finally, and most importantly for our scope here, it
was understood that these vaults ought to discharge loads equally on the four sides2.

Even though the information on Abeille’s idea was not lost after it came out (19th century drawings
of the assembly are conserved at the Arts and Métiers museum in Paris), only two flat vaults were built
following it, in 18th and 19th century Spain (Lugo’s cathedral in 1769 and Casa de Mina de Limpia at
Ponton de la Oliva in 1853 [Rabasa Díaz 1998; de Nichilo 2003; Uva 2003]). Nevertheless, a renewed
attention has been devoted to this subject in the last decade and some stone structures built copying

1“Mr Abeille Ingenieur du Canal de Picardie, a imaginé une construction de plate-Bande fort ingenieuse, la coupe des
Clavaux en est singuliere & contribue beaucoup à diminuer la poussée que les piés-droits auroient à soutenir, j’en aurois
volontiers fait la description si elle étoit venue à ma connoissance avant que les planches de ce second Livre fussent gravées.” —
de Bélidor [1729, Livre II, p. 61].

2“Puisque les coupes des claveaux des Voutes plates [d’Abeille] sont tournées de quatre côtez alternativement, il est clair
que ces voutes poussent aussi de quatre côtez, à la difference des Platebandes, qui ne poussent que de deux côtez; d’où il suit
qu’elles font la moitié moins d’effort que les platebandes pour renverser leurs piedroits, & par consequent demandent moitié
moins d’épaisseur de mur, ce qui est un avantage.” — Frézier [1738, Volume 2, p. 77].
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Figure 3. Alternative cuts proposed by Sebastien Truchet [Frézier 1738, Volume 2, Pl. 31].

or adapting Abeille’s interlocking principle [Etlin et al. 2008; Fallacara 2006; 2009; Sakarovitch 2006;
Fleury 2009; 2010; Brocato and Mondardini 2010; 2012; 2015; Brocato et al. 2014; Mondardini 2015].

At Ponton de la Oliva, the dimensions are 3.10 m × 3.80 m × 0.21 m [Rabasa Díaz and López Mozo
2012]. Between 2003 and 2006, three vaults were built and loaded until failure at the Grands Ateliers de
l’Isle d’Abeau (France), spanning square surfaces of side 2.52 m or 1.26 m, with thickness 1

14 the span
and joints inclined at 30◦ and 45◦ with respect to the vertical [Sakarovitch 2006; Fleury 2009; 2010].

At the same time, a vast literature has been produced on the subject of what has been — perhaps
imprecisely — called “topologically interlocking materials” [Dyskin et al. 2001; 2003a; 2003b; Estrin
et al. 2004; 2011; Khandelwal et al. 2012; 2015; Weizmann et al. 2016; Brocato 2018]. Abeille’s
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Figure 4. An example of how an Abeille’s voussoir can be obtained from a tetrahedron.

Figure 5. Vertical cut on the typical flat arch bonded according to the 1
3 rule.

vaults appear then as a particular case, with interlocking blocks obtained by cutting a, possibly regular,
tetrahedron with two parallel planes, one at half distance between any two nonconcurrent edges (see
Figure 4).

3. Model settings

Our purpose is to perform a comparative limit analysis of the aforementioned three types of flat vaults:
parabolic (or unidirectional), elliptical (or plainly bidirectional), and hyperbolic (or interlocking bidirec-
tional). The geometries that we will define for this purpose are derived from some historical examples,
but simplified to avoid unnecessary complexities.

The archetypal parabolic vault we consider here is an array of flat arches, closely disposed next to
each other so that their lateral and vertical faces are in contact, but not otherwise bonded. Voussoirs are
irregular polyhedra, whose upper and lower faces are squares, shifted in the direction of the span, so that
two opposite faces rest vertically and the two others are suitably inclined. Their slope is defined following
the so-called “1 on 3” rule of the French masons (see [Fantin 2017] for a thorough discussion on this and
alternative rules in 18th and 19th century France), which means that it variates linearly between springers,
where it takes the maximum absolute value of 1

3 , or an inclination on the vertical ϕ = arctan
(1

3

)
= 18.4◦

(see Figure 5).
It must be noticed that this disposition is not consistent with any known existing structure, because

of the shift of courses that obviously appears there (see the rightmost drawing of Figure 1). As already
mentioned in the previous paragraph, voussoirs can be ideally severed with planes containing the load
descent path without changing this path; hence the geometry we use is statically consistent with what
observable in practice (see Figure 6).
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Figure 6. Archetype of a parabolic flat vault.

Figure 7. Archetype of an elliptical flat vault.

Figure 8. Simplification of the pattern of the elliptical flat vault adopted for numerical computations.

The model of elliptical flat vaults that we take into account is similar to the previous one, but now the
square sides of the polyhedral voussoirs are shifted in a particular radial direction, so that all the other
four faces are inclined. The inclination respects, again, the 1

3 rule, but the progression is bidirectional, so
that, if an array of flat arches is still observable in one direction, each arch leans on the next, proceeding
from the centre to the springers, so that the same type of array can be observed in the orthogonal direction
(see Figure 7).

As for parabolic vaults, in this case the model does not replicate the geometry of known examples,
but remains statically representative of them because of the same principle concerning the severing of
voussoirs along appropriate planes. Considering, for instance, the corner stones of the second structure
from the left of Figure 1, they are modelled here as any other piece of the assembly through the steps
presented in Figure 8, assuming that this simplification does not significantly affect results.



664 MATHIAS FANTIN, THIERRY CIBLAC AND MAURIZIO BROCATO

Figure 9. Archetype of a hyperbolic flat vault.

The hyperbolic flat vault archetype is made of voussoirs that can be described, in fair generality, by
four parameters (see [Brocato and Mondardini 2015]), but, as the lower face of Abeille’s voussoirs is
meant to be a square, three suffice in the present case (when the lower face is not a square, then the gaps
cross the vault through its whole thickness, or the cutting of the lateral sides is more complex than in
Abeille’s). The question is thus reduced to the same kind of information as in the previous cases, taking
as independent parameters the side of the square, the thickness of the vault, and the angle of the joints
with respect to the vertical. Differently than previously, here the angle is the same everywhere (as all
voussoirs are equal) and we take the maximum angle defined by the 1

3 rule, i.e., ϕ = 18.4◦. Notice that
this choice is consistent with Gallon’s written prescription [1735], which, as the author underlines, does
not give the proportions that appear in his enclosed drawing.

As already mentioned, we are going to compare numerical results obtained for three models, the
bonding of which has been presented above. Their overall geometry is the same: a square of 2.80 m,
measured at mid-distance between the intrados and the extrados, with a thickness of 0.20 m (hence a
ratio thickness on span of 1

14 ). All structures are composed of 9× 9 = 81 voussoirs. The considered
mechanical properties are

• density (1658 kg/m3),

• compression strength (10 MPa), and

• friction coefficient (0.7).

The loading applied for the analyses are a vertical force, uniformly distributed on the horizontal surface
of the vault, and a set of forces acting independently on each of the springers of the vault. The latter have
a vertical component, equilibrating the distributed force, but otherwise freely set, and a free horizontal
component, or thrust, which is assumed to be orthogonal to the perimeter of the vault.

The purpose of the limit analysis is to determine a domain where the loading respects at the same
time the equilibrium conditions and all safety criteria related, at the joints, to the limited compression
strength, the null tension strength, and the Coulomb’s friction.

The variables used to describe such domains of statically admissible loads in two dimensions are the
intensity of the resultant of the vertical forces W and the intensity of the resultant of the horizontal thrusts
at one side of the perimeter of the vault, say, in the x direction,

∑
Hx .

Notice that while the parabolic vault springs from two sides only, the elliptical vault has a diagonal
symmetry and thus acts equally on all sides, and the hyperbolic vault is chiral, so that it can be assumed
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that the sums of the normal components of its actions along two consecutive sides of the perimeter are
equal.

To handle dimensionless variables, the above mentioned forces are considered per unit weight of the
vaults, so that the domains will be plotted in the W/W0 vs.

∑
Hx/W0 plane, with W0 being the total

weight of the structure. Due to the gaps left by the bonding, Abeille’s vault is lighter than the two others
and we have

• parabolic and elliptical vault: W0 = 26.00 kN;

• hyperbolic vault: W0 = 23.19 kN.

4. Computational method

The planned comparisons will be carried on in the framework of limit analysis. The reason is two-
fold: first, this analysis gives a hint on the ultimate structural performance requiring the least possible
nongeometrical information; second, it addresses mechanical concepts (related to the onset of failure)
that are, as much as possible, close to those that were used in the 18th and 19th centuries, when the
debate on flat vaults flourished.

Within the broad field of limit analysis, an offspring of the force network method as first published
by O’Dwyer [1999] is used here. This method generalises to three dimensions the funicular polygons
constructed in two dimensional graphic statics. In short, it consists in finding the shape given by gravity
to a net loaded by known weights at its nodes and respecting appropriate conditions at its boundaries,
assuming the horizontal projection of the net is fixed, so that only the vertical position of the nodes at
equilibrium is unknown. The solution of this problem defines both the shape of the net and the internal
forces in the fabric depending on as many parameters as the assumption that the former does not depend
on the intensity of the forces implies. If directly applicable to inextensible tensile nets (which generalise
catenaries), the problem can be also translated to masonry vaults, where it helps define a network that
generalised the concept of the inverted catenary (or the inverted funicular of a dead load). This method
was extended by [Block and Ochsendorf 2007], with the use of reciprocal figures, under the name of
thrust network analysis.

Consider a mass network, i.e., the network built on a given vault, with nodes corresponding to the
centres of gravity of the voussoirs and branches corresponding to the interfaces between them; the thrust
network analysis workflow is as follows:

(1) Vertical forces are assigned at the nodes, corresponding to the weights of the voussoirs.

(2) A cost function is defined, depending on the vertical coordinates of the nodes.

(3) The geometry of the network projected on the horizontal plane is assigned.

(4) The vertical positions of the boundary nodes are assigned (fit for the cost function); they are chosen
among the parameters that will be left undetermined by the equilibrium problem and become the
degrees of freedom of the optimisation problem.

(5) A given number of force parameters is assigned, depending on the static indeterminacy of the system
(usually corresponding to the thrusts along the branches of the network); they join the previous ones
in the list of the degrees of freedom of the optimisation problem.
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(6) The set of internal forces verifying the self equilibrium of the network when projected in the hori-
zontal plane is determined on the basis of the information provided in steps (3)–(5) (notice that, as
only vertical loads will be applied, they are not considered at this step).

(7) The vertical coordinates of the nodes and the internal forces in the branches are determined respect-
ing the vertical equilibrium of the system under the load given at step (1) and the finding of step (6).

(8) The value of the cost function of step (2) is computed.

(9) Coming iteratively back to step (4), an optimisation procedure is run to define the best set of degrees
of freedom based on the cost function defined at step (2).

When used as a limit analysis tool, this method is generally used to find, among all networks generated
by the parameters, those whose nodes fall within the limits of the masonry structure. Notwithstanding
the recurrence of the idea that this result can be directly related to safety (see [O’Dwyer 1999; Block
and Ochsendorf 2008; Block 2009; Block and Lachauer 2014a; 2014b]), a digression is needed here.

In a vault made of voussoirs, failure may occur by opening joints. The relevant information is then the
set of centres of pressure, i.e., the points where the resultant of the contact stresses intersects the plane of
the joint. The safe theorem expressed by Heyman [1995] helps conclude that the vault is stable — under
the hypotheses that the joints offer no tensile strength and infinite compressive strength, and suffer no
sliding — if all centres of pressure fall within the convex hull of the corresponding contact surface (and
fall strictly within it in a sufficient number of fit sequences to avoid potential failure).

Any stability condition expressed in terms of positions of the nodes is then to be understood as an
approximation of the one deduced from the safe theorem, which concerns the positions of centres of
pressure, even though the two sets are correlated. Clearly, in the limit of infinitesimal voussoirs, i.e., when
both the distance between subsequent joints and the thickness of the vault tend to zero, the network of
nodes coincides with that of centres of pressure, but if any of the two characteristic lengths quoted above
are finite, the two pieces of information are distinct. This difference can be deemed negligible when the
method is applied to form finding for design purposes, as then the voussoir’s geometry is defined after
the thrust network. On the contrary, it is not so in at least one of the cases at issue, namely in hyperbolic
flat vaults.

To tackle problems where the limit of infinitesimal voussoirs can’t be accepted and enhance the thrust
network method as a tool to study existing masonry structures, the first two authors have analysed some
historical methods for vault calculation and proposed the introduction of new equilibrium states among
those available for the net by considering additional partial branches as described below [Ciblac and
Fantin 2015; Fantin and Ciblac 2016].

The thrust network analysis is based on the hypothesis that all forces applied to one voussoir converge
into one point, taken as a node of the thrust network. This is a sufficient but not a necessary condition to
ensure moment equilibrium of the voussoir. Considering a single block subject to four forces and its own
weight, four different equilibrium cases can be given, as shown in Figure 10. Only the case (a) respects
the intersection hypothesis, and can thus be produced by a thrust network analysis, as in cases (b), (c),
and (d), although force and moment equilibrium are fulfilled, forces intersect in two points, or do not
intersect at all.

Notice that in case (b), the intersections of the forces take place in two distinct nodes, instead of one,
but the horizontal projections of these nodes are identical. This configuration can be obtained using the
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Figure 10. Equilibrium cases: (a) concurrent forces and (b-d) nonconcurrent forces.

particular mass network refinement proposed by Fantin and Ciblac [2016]. For this purpose, instead of
relating each voussoir to one and only one node in the mass network, let us divide it into two smaller units
and create correspondingly two nodes in the network, with their respective masses. The two nodes are
joined by a new branch, which we call the “additional partial branch”, that is related to the internal force
across the surface splitting the voussoir. The other branches of the network, which normally connect any
two adjacent nodes and can be called “standard thrusting branches”, are not necessarily doubled in this
process, as they are defined in such a way that each carries a relevant piece of information on a joint
between voussoirs (e.g., one branch per joint).

Let us focus on the case when all additional partial branches are vertical (i.e., voussoirs are ideally split
by one horizontal cut; notice that it is possible, though not needed here, to remove this assumption [Fantin
and Ciblac 2016]). Then, the horizontal equilibrium of step (6) in the workflow above, not taking into
account the forces in the additional partial branches, leaves them undetermined. Consequently, neither
can the vertical equilibrium of step (7) be used to compute them. Hence, these forces must be included
in the list of the degrees of freedom in the optimisation problem. Figure 11 illustrates the case when
the mass refinement splits one node into two, belonging to the same vertical line, which allows one to
consider an equilibrium similar to case (b) of Figure 10, but not cases (c) and (d).

When it comes to the optimisation procedure, the method of [Ciblac and Fantin 2015; Fantin and
Ciblac 2016] introduces another variant to the thrust network analysis: the cost function is not built
uniquely on the vertical coordinates of the nodes, as it takes into account the intersections of each of the
standard thrusting branches with the surface of the corresponding joint. This is an important advantage,
as the processed information is now consistent with the safety criteria of vaults for joint opening or
sliding, even if, to obtain it, a much larger problem than the standard must have been posed by including
the forces along the additional partial branches among the degrees of freedom of the system.

In particular, it is handy using as the cost function the global coefficient of safety of the structure,
defined as the Euclidean distance between the quoted intersection and the boundary of the joint, which
requires some additional computational stratagem to be quickly evaluated.
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Figure 11. Front view (top) and horizontal projection (bottom) of a four-valent node
before (left) and after (right) mass network refinement.

5. Numerical implementation

A numerical application of the described extension of the thrust network analysis, named Manacoh, was
implemented in a Microsoft Excel worksheet with Visual Basic developments. Manacoh and its tutorials
are freely available in a dedicated web site (http://bestrema.fr/manacoh/). It builds the geometry for
parametric preset examples (specific geometries can also be loaded), solves the equilibrium equations,
and offers the possibility to explore various equilibrium solutions through optimisation strategies derived
from historical examples and including the techniques presented in this paper.

Because the computing capacity of Manacoh is relatively limited by the use of a general public en-
vironment, some numerical stratagems have been used to reduce the duration of computations. The
various types of degrees of freedom (the horizontal forces in the standard thrusting branches, the vertical
position of the boundary nodes, and the vertical forces in the additional partial branches) usually exhibit
some regularity when at the optimum solution, provided that the structure studied has a regular geometry.
This potential regularity is exploited by Manacoh, calling upon Lagrange polynomials to interpolate the
degrees of freedom and thus lessen the number of free parameters in the optimisation process.

A second numerical scheme to make computations faster is the smoothing of the cost function by the
following type of approximation: given any real function d(x),

x :min
x
‖d(x)‖ ≈ x :min

x
(d(x)−p)−1/p for p ≥ p0 > 0;

p0 being large enough for the approximation to be acceptable.
The type and number of degrees of freedom in the parabolic case, not introducing additional partial

branches with respect to the standard thrust network analysis, are

(A) 9 horizontal thrusts, becoming 1 by translational invariance;

(B) 18 vertical coordinates of the boundary nodes, becoming 1 by translational invariance and symmetry;

when including partial branches, this case requires the additional

http://bestrema.fr/manacoh/
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(C) 81 internal forces in the vertical partial branches, becoming 5 by translational invariance and sym-
metry.

In the elliptical cases, not introducing additional partial branches,

(A) 18 horizontal thrusts, becoming 5 by symmetry;

(B) 36 vertical coordinates of the boundary nodes, becoming 5 by symmetry;

when including partial branches, add

(C) 81 internal forces in the vertical partial branches, becoming 10 by symmetry;

thus rising the size of the problem to a minimal number of 20 degrees of freedom.
To lighten the optimisation problem in the second case, the (A) and (B) parameters were separately

interpolated by a Lagrange polynomial of degree k = 0, 2, or 9 (k = 0 means that a uniform thrust and
an equal vertical position of the boundary nodes are considered, k = 9 means no interpolation).

The Abeille vault possesses less symmetries than the previous ones and it is not possible to analyse it
by the standard method without partial branches. The total number of degrees of freedom is in this case
45, divided as follows:

(A) 18 horizontal thrusts, becoming 10 by symmetry;

(B) 36 vertical coordinates of the boundary nodes, becoming 10 by symmetry;

(C) 81 internal forces in the vertical partial branches, becoming 25 by symmetry.

Performing calculations with a smaller Abeille vault (5×5 voussoirs) it has been observed that the
forces in the partial branches of the optimum solution depend approximately linearly on the distance
from the centre of the vault. Hence, in addition to the interpolation by Lagrange polynomials of degree k
of the (A) and (B) parameters, an approximation of the (C) parameters with polynomials of degree r = 2
in the quoted distance has been implemented to reduce the optimisation problem.

In any case, the domains of statically admissible loads were computed taking into account the inter-
sections of the standard thrusting branches with the joints, not the positions of the nodes of the network.
Processing this information it is also possible to take friction into account, by checking that the slope of
the branch on the surface of the joint is below the limit of Coulomb’s friction coefficient.

6. Results on the statically admissible loadings

Results obtained for the parabolic and elliptical vault are plotted in Figure 12. From the point of view of
the method used for the analysis, they show that the introduction of partial branches improves the result,
as it helps find a larger domain of statically admissible loadings (orange plots), especially if the forces
in all partial branches are taken into account (Fv 6= 0, light orange case in the plot).

If the forces in all partial branches are taken as null (Fv = 0, dark orange case in the plot), the thrusting
branches along the x and the y axis are totally independent from each other. This type of solution cannot
be attained with a standard thrust network analysis without partial branches. The computed domain is, as
expected, very close to an affine transformation of the domain of the parabolic vault doubling the vertical
extent (compare the dark orange and grey plots in Figure 12). This result is a better approximation than
the best obtained without partial branches (light blue plot) at least in the range of mid to high thrusts and
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Figure 12. Domains of the statically admissible loadings in the a-dimensional thrust
vs. weight plane, for parabolic and elliptical flat vaults. The results obtained by the
refined method, including partial branches, displayed in orange, give a better approxi-
mation of the real domain.

it has been obtained with only two parameters, instead of the ten required by the competing unrefined
network.

From the point of view of the numerical tools, even if the interpolation with Lagrange polynomials
reduces — more than expected — the size of the domain, it is useful for finding a good starting point,
which is crucial for optimisation. To test this advantage, we have started an optimisation with k = 0,
then use the found optimal solution to start a new optimisation process with k = 2 and finally go from
this result to the one with k = 9. This process was found to be much more time efficient than optimising
directly without interpolation.

Finally, from the point of view of the structural comparison, we observe that the domain of statically
admissible loading of the elliptical flat vault is notably larger than the domain of the parabolic one, with
the elliptical vault performing better than the sum of two (orthogonal) parabolic ones (see the difference
between the grey and light orange plots in Figure 12; in the same figure, the boundary of the domain
obtained doubling the height of the grey plot is a line marked by +).

Examples of the shape of the related thrust networks are given in Figures 13 and 14. It can be observed
that the addition of partial branches allows the lines of thrust to gain more inclination where the release
of a larger shear is needed, while the orthogonal lines may come closer to the shape of an ideal catenary.
This effect is particularly important in the vicinity of the boundary, where an equivalent plate would
experience negative bending moments and withstand Kirchhoff shear forces pointing downward at the
corners.

Results concerning the hyperbolic, or Abeille’s, vault are shown in Figure 15, superposed to the largest
domains obtained for the other cases.
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axonometric view, low thrust side view, low thrust

axonometric view, high thrust side view, high thrust

Figure 13. Axonometric view (left) and side view (right) of thrust networks without
additional branches for the elliptical flat vault, computed for k = 9, under low thrust
(above) and high thrust (below).

axonometric view, low thrust side view, low thrust

axonometric view, high thrust side view, high thrust

Figure 14. Axonometric view (left) and side view (right) of thrust networks with addi-
tional partial branches for the elliptical flat vault, computed for k = 9 and Fv 6= 0, under
low thrust (above) and high thrust (below).
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Figure 15. Domains of the statically admissible positive loadings for Abeille’s vault,
compared to those of the parabolic and elliptical vault. Notice that Abeille’s vault admits
negative loadings.

Notice that the boundaries of the domains displayed for the parabolic and the elliptical vault do not
include parts depending on the selected value of the friction coefficient: failure of these vaults occurs
always by opening of the joints. This is not the case of Abeille’s vault, where the friction criterion controls
the minimum thrust (an infinite resistance to friction entailing the possibility of supporting vertical loads
with no thrust) and thus the domains of statically admissible loadings are limited from the side of small
thrusts by a straight line corresponding to the limit of failure by sliding.

Still from the point of view of the structural comparison of the three systems, it can be observed that
the domain of the hyperbolic one is smaller than that of the two others for high thrust, due to the smaller
size of the joints in the former. The hyperbolic vault performs otherwise better than the parabolic one
and is quite close to the elliptical vault only for middle thrusts, being less resistant than the latter in the
range of low thrusts.

Finally, it must be observed that only the part of the domain of Abeille’s vault including positive loads
is displayed in Figure 15; this vault can actually withstand forces in the opposite direction within the
same or very close limits, which is not possible for the two others.

Observing Figure 14, the adjective elliptical designating this type of vault can be explained, at least
within the accuracy limits of the thrust network image of the internal actions. Let us call z(x)i j and z(y)i j
the vertical coordinates of the two nodes of the network representing one voussoir (i.e., joined by a
vertical, additional partial branch), assume i counting nodes having the same y coordinate and j having
the same x and the exponent in z(x)i j and z(y)i j denote the direction along which the node is connected to
its neighbours by a standard thrusting branch.

Let us define, at any point i j ,

κ
(x)
i j = z(x)i−1 j − 2z(x)i j + z(x)i+1 j ; κ

(y)
i j = z(y)i j−1− 2z(y)i j + z(y)i j+1.
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axonometric view, low thrust side view, low thrust

axonometric view, high thrust side view, high thrust

Figure 16. Axonometric view (left) and side view (right) of thrust networks with addi-
tional partial branches for the hyperbolic flat vault, computed for k = 9 and r = 2, under
low thrust (above) and high thrust (below).

Any two nodes of the network representing one voussoir are in equilibrium under the weight of the
voussoir and the four forces acting along the standard thrusting branches. With the exception of some of
the boundary nodes, these four internal forces point upward; it is

κ
(x)
i j κ

(y)
i j > 0. (6-1)

If we denote by vi j/hj the vertical component of the force carried by the branch joining the i j node with
the hj node and vi j/ ik that joining the i j with ik, the equality of the signs of the thrusts in the x and y
direction entail

sgn((vi j/ i−1 j − vi j/ i+1 j )(vi j/ i j−1− vi j/ i j+1))= sgn(κ(x)i j κ
(y)
i j );

which means that the net contributions of the branches converging on the i j node in the two directions
point upward when (6-1) is true (both opposed to the external force).

Observing Figure 16, on the contrary, we find

κ
(x)
i j κ

(y)
i j < 0, (6-2)

with two branches pushing upward and two downward. Finally, even if not graphically presented here,
the case of parabolic vaults is evidently one where

κ
(x)
i j κ

(y)
i j = 0, (6-3)

and one of the two couples of branches is inactive.
Let us imagine the surface that has, locally at i j , κ(x)i j and κ(y)i j as curvatures and x and y as principal

directions of curvature. This surface has there a Dupin’s indicatrix that is an ellipse if κ(x)i j κ
(y)
i j > 0,
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a parabola if κ(x)i j κ
(y)
i j = 0 and a hyperbola if κ(x)i j κ

(y)
i j < 0; correspondingly, i j is currently named an

elliptical, parabolic, or hyperbolic point of the surface.
By analogy with this nomenclature, we named elliptical the flat vault having a thrust network whose

“analogous” surfaces have (almost everywhere) elliptical points, parabolic the vault whose limit surfaces
have a.e. parabolic points, and hyperbolic those whose limit surfaces have a.e. hyperbolic points. Equa-
tions (6-1), (6-2), and (6-3) disambiguate the attribution.

Statically, this characteristic entails that some branches push upward, some downward (as explained
before), hence the image presented in Section 2 of a “monotonic” load descent in parabolic and elliptical
vaults, with the maximally sheared plane corresponding to the maximum force acting along a standard
thrusting branch and a minimally sheared plane corresponding to the minimal force along such a branch
(clearly, the case where max and min coincide being possible).

In the case of hyperbolic flat vaults, the max and min shear have opposite sign, hence the image of a
local division of the voussoir in quarters, with alternating shears.

7. Conclusion

Three model flat vaults, derived from historical examples, have been compared on the basis of their
statically admissible loadings, using an enhanced version of the thrust network analysis:

(1) a unidirectional vault, designed following the pattern of a “barrel” vault and named here parabolic;

(2) a plainly bidirectional vault, having the pattern of a “pavillon” vault and named here elliptical;

(3) an interlocking bidirectional vault, made according to Abeille’s system, which we named hyperbolic.

The work presented here lead to the conclusion that an enhancement of the thrust network analysis,
taking more precisely into account the rotational equilibrium of voussoirs, is necessary to capture a wider
domain of statically admissible loadings and, in one case, to be able to describe the system at all.

Computations were performed on a Microsoft Excel-based application, named Manacoh, developed
by the first and second authors and publicly accessible on the internet. Some numerical expedients,
called here to circumvent limitations arising from the use of a general public environment, can prove
useful to handle large systems within more powerful numerical implementations. In particular, Lagrange
polynomials can reduce the computational effort when used to interpolate iteratively the degrees of
freedom of the optimisation procedure inherent in the thrust network analysis.

The comparison of the three archetypes shows that the bonding of voussoirs plays — as expected — a
fundamental role in their stability, with system (1) having the best performances under vertical descending
loadings and system (2), the resistance of which is quite close to that of the former, being also capable
of withstanding ascending loadings.

Observing the thrust networks obtained in the different cases at the onset of failure, it is possible to
gain an insight on the mechanical behaviour of flat vaults (at least if the shift from the limit is allowed).
If parabolic flat vaults are plainly catenary structures (with parallel discharge arches bridging across
supports), the elliptical ones are not exactly so and hyperbolic even less.

Elliptical vaults mimic the behaviour of continuous plates and thus the rotational equilibrium of their
voussoirs plays an important role when close to the corners. In these areas the enhanced thrust network
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displays the superposition of two inverted catenary structures, but not the existence of a single inverted
“catenary net”, which can be observed elsewhere in the structure.

Hyperbolic flat vaults do not show at all the formation of such a single net, so that they can barely
be considered catenary structures. Their thrust networks are wavy, not as a single net could do, but as
a weaving fabric. Each voussoir, bearing shear forces of alternating sign at quarters of the horizontal
projection, works both as a lever and as the link of an inverted chain, which confirms the idea that these
are partly catenary and partly “levery” structures, if the neologism is accepted.
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