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ORTHOTROPIC PLANE BODIES WITH BOUNDED TENSILE
AND COMPRESSIVE STRENGTH

MASSIMILIANO LUCCHESI, BARBARA PINTUCCHI AND NICOLA ZANI

The constitutive equation of the nonlinear elastic material with limited tensile and compressive strength
has been generalized to account for an orthotropic elasticity tensor. The main difference between this
case and the simpler isotropic one is the loss of the coaxiality between the strain and the stress tensor,
which leads the principal directions of the stress to become an unknown of the problem. The proposed
constitutive equation has been implemented in the finite element code Mady and applied to the study of
a masonry panel.

1. Introduction

The mechanical behavior of many elastic materials which are unable to withstand certain types of stress
is generally described by the constitutive equation of the so-called normal elastic material [Del Piero
1989]. For these materials the stress T must belong to the stress range, a closed and convex subset K of
all symmetric second-order tensors. Consequently, T does not coincide with the image of the strain E
via the elasticity tensor C, but with the projection on K of CE with respect to a suitable scalar product. It
is useful to represent the deformation as decomposed additively in an “elastic part” of which the stress is
the image through C and in an “inelastic part” that belongs to the normal cone to K at T [Lucchesi et al.
2008; Šilhavý 2014; Angelillo 2014]. If the elasticity tensor is (symmetric and) positive definite, for each
assigned strain, the solution of the constitutive equation exists and is unique in virtue of the minimum
norm theorem. Moreover, this solution can be obtained quite easily when C is isotropic, as in this case the
coaxiality of the stress and strain tensors allows to solve the problem in their common characteristic space.

To date, materials with limited resistance to tensile, compressive, and shear stress have been success-
fully modeled via this approach [Lucchesi et al. 2018a; 2018b] and many different types of structures such
as arches, towers, and churches studied. Indeed, this approach may still be effective for studying certain
monumental constructions, where the texture and the properties of masonry are not easily evaluable.
Nevertheless, for several applications, a model that accounts for different properties of the material in
various directions is undoubtedly more realistic [Lourenço et al. 1998; Berto et al. 2002; Pelà et al. 2011;
Lishak et al. 2012].

Since the constraints on the stress are expressed in terms of its invariants, the tensors belonging to the
boundary of K and the elements of the corresponding normal cone are coaxial, even if C is not isotropic.
Of course, in this case there is no coaxiality between the stress and the strain tensor, and the characteristic
space of the stress is part of the unknowns of the problem.

As in the isotropic case, there exists a natural partition of Sym, the space of all symmetric second-order
tensors, to which corresponds a partition of K. The belonging of CE to one of the regions of the partition
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Figure 1. The elastic range.

of Sym implies that its projection (i.e., the associated stress) belongs to the corresponding region of the
partition of K. When the material is orthotropic, however, the assignment of CE to one of these regions
is not immediate and requires a more complex procedure with respect to the isotropic case.

The proposed constitutive model, implemented in the finite element Mady code [Lucchesi et al. 2017],
has been applied to the study of a panel subjected firstly to its own weight and to a uniformly distributed
vertical load, and then to a progressively increased horizontal displacement imposed at its top.

2. Materials with bounded tensile and compressive strength

Let σt and σc be two nonnegative constants and I the identity tensor. Consider a plane stress state for a
material whose stress tensor T must belong to the closed and convex set

K = {T ∈ Sym : T − σt I ∈ Sym−, T + σc I ∈ Sym+},

where Sym− and Sym+ are the cones of the seminegative and semipositive definite elements of Sym,
respectively. The following regions make up a partition of the boundary ∂K of K (Figure 1):

R1
= {σt I}, R2

= {T ∈ Sym : tr T =−σc+ σt , det T =−σcσt }, R3
= {−σc I},

R12
= {T ∈ Sym : −σc+ σt < tr T < 2σt , γ

12(T )=− det(T − σt I)= 0},

and
R23
= {T ∈ Sym : −2σc < tr T < σt − σc, γ

23(T )=− det(T + σc I)= 0}.

Then, if T ∈R12, σt is principal stress, while if T ∈R23, −σc is principal stress. Moreover, if σ denotes
the other principal value of T , in both cases it holds that

−σc < σ < σt .

By noting that, in view of the Hamilton–Cayley theorem, this results in

γ 12(T )=−σ 2
t + σt tr T − 1

2((tr T )2−‖T‖2)
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and
γ 23(T )=−σ 2

c − σc tr T − 1
2((tr T )2−‖T‖2)

and, moreover,
Dγ 12(T )= T + (σt − tr T )I, Dγ 23(T )= T − (σc+ tr T )I

and
‖T + (σt − tr T )I‖ = 2σt − tr T , ‖T − (σc+ tr T )I‖ = 2σc+ tr T ,

the outward unit normal vectors to K at R12 and R23 are

N12
=

T+(σt−tr T )I
2σt−tr T and N23

=
T−(σc+tr T )I

2σc+tr T

respectively. It is worth observing that N12 and N23 commute with the corresponding stress, so that they
have the same characteristic space.

Moreover, it is easy to verify that the normal cones to K at R1, R2, and R3 are respectively

N 1
= Sym+, N 2

= {N ∈ Sym : N = αN 12
−ωN 23, α ≥ 0, ω ≥ 0}, N 3

= Sym− .

Let C be the elasticity tensor, which is hypothesized to be symmetric and positive definite and E the
assigned strain tensor. Moreover, let ‖•‖E be the energy norm, defined in Sym by ‖S‖2E = S ·C−1 S. In
order to determine T ∈ K having the minimum distance from CE with respect to ‖•‖E , let us denote
Ee
= C−1T and Ea

= E− Ee so that
T = C[E− Ea

].

If CE ∈ K then the response of the material is linear elastic, i.e.,

Ea
= 0 and T = CE.

Otherwise, it is necessary to consider the partition of Sym\K in the five regions specified below, as the
stress depends on which region contains CE.

(i) CE ∈ T 1 if E− σt C
−1 I ∈N 1, i.e., det(E− σt C

−1 I)≥ 0 and tr(E− σt C
−1 I)≥ 0, then

Ea
= E− σt C

−1 I and T = σt I; (2-1)

(ii) CE ∈ T 12 if there exists α > 0 such that C[E−αN12
] ∈R12, then

Ea
= αN12 and T = C[E−αN12

]; (2-2)

(iii) CE ∈ T 2 if there exist α > 0 and ω > 0 such that tr C[E−αN12
−ωN23

] = σt −σc and det C[E−
αN12

−ωN23
] = −σtσc, then

Ea
= αN12

−ωN23 and T = C[E−αN12
+ωN23

]; (2-3)

(iv) CE ∈ T 23 if there exists ω > 0 such that C[E−ωN23
] ∈R23, then

Ea
= ωN23 and T = C[E−ωN23

]; (2-4)

(v) CE ∈ T 3 if E+ σcC−1 I ∈N 3, i.e., det(E+ σcC−1 I)≥ 0 and tr(E+ σcC−1 I)≤ 0, then

Ea
= E+ σcC−1 I and T =−σc I . (2-5)
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3. Orthotropic materials

Let the orthonormal vectors e1 and e2 define the symmetry directions of a plane orthotropic body [Mallick
1988], with E11, E22 and ν12, ν21 the corresponding Young and Poisson moduli, respectively. Then the
elasticity tensor is

C=

C1111 C1122 0
C1112 C2222 0

0 0 C2323


with

C1111 =
E11

1− ν12ν21
, C1122 =

ν12 E22

1− ν12ν21
=

ν21 E11

1− ν12ν21
, C2222 =

E22

1− ν12ν21
, C2323 = 2G.

By denoting

E22 = βE11, ν21 = βν12, 2G =
φE11

1−βν2
12
,

and writing E for E11 and ν for ν12, we obtain

C1111 =
E

1−βν2 , C1122 =
βνE

1−βν2 , C2222 =
βE

1−βν2 , C2323 =
φE

1−βν2 ,

that is,

C=
E

1−βν2

 1 βν 0
βν β 0
0 0 φ

 (3-1)

and

C−1
=

1
E

 1 −ν 0
−ν 1/β 0
0 0 (1−βν2)/φ

 . (3-2)

In the particular case when β = 1 and φ = 1− ν, the material is isotropic. In order to guarantee that C

is positive definite, it is assumed that

E > 0, φ > 0, ν ∈
(
0, 1

2

)
and β ∈ (0, 1].

Let
E = ε11e1⊗ e1+ ε22e2⊗ e2+ ε12(e1⊗ e2+ e2⊗ e1)

be the assigned strain tensor. Then

CE =
E

1−βν2

(
(ε11+βνε22)e1⊗ e1+β(ε22+ νε11)e2⊗ e2+φε12(e1⊗ e2+ e2⊗ e1)

)
, (3-3)

so that

tr CE =
(

E
1−βν2

)
((ε11+βνε22)+β(ε22+ νε11)),

det CE =
(

E
1−βν2

)2

(β(ε11+βνε22)(ε22+ νε11)−φ
2ε2

12).
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Figure 2. Reference systems.

Moreover, as
C−1 I = 1

E

(
(1− ν)e1⊗ e1+

1−βν
β

e2⊗ e2

)
,

it holds

tr(σt C
−1 I)=

σt(1− 2βν+β)
βE

, det(σt C
−1 I)=

σ 2
t

βE2 (1− ν)(1−βν).

and similar expressions are obtained for −σcC−1 I .

4. Determination of the stress

At any point of ∂K, the stress T and the elements of the corresponding normal cone can be expressed with
respect to an orthonormal basis of their characteristic space, that will be denoted by f1, f2 (Figure 2).

Then, T ∈R12 implies

T = σ f1⊗ f1+ σt f2⊗ f2, N12
= f2⊗ f2 (4-1)

and T ∈R23 implies
T =−σc f1⊗ f1+ σ f2⊗ f2, N23

=− f1⊗ f1 (4-2)

Let θ ∈
[
−
π
2 ,

π
2

]
be the angle between the vectors e1 and f1, with e1∧ e2 = e1∧ f1/ |e1 ∧ f1|, so that

f1 · e1 = f2 · e2 = cos θ, f1 · e2 =− f2 · e1 = sin θ
from which

f1⊗ f1 =
1

1+ t2 (e1⊗ e1+ t (e1⊗ e2+ e2⊗ e1)+ t2e2⊗ e2) (4-3)

and
f2⊗ f2 =

1
1+ t2 (t

2e1⊗ e1− t (e1⊗ e2+ e2⊗ e1)+ e2⊗ e2), (4-4)

with t = tan θ . The expressions of T , N12, N23, CN12, and CN23 with respect to the basis e1, e2 can
now be deduced by (4-1)–(4-4), and (3-1). If T ∈R12, then

T =
1

1+ t2

(
(σ + σt t2)e1⊗ e1+ t (σ − σt)(e1⊗ e2+ e2⊗ e1)+ (σ t2

+ σt)e2⊗ e2
)
,

N12
=

1
1+ t2 (t

2 e1⊗ e1− t (e1⊗ e2+ e2⊗ e1)+ e2⊗ e2), (4-5)
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and, with the help of (3-3), the components of the stress can be deduced from the equation T = CE−
αCN12, as functions of α, σ and t :

T11 =
σ + σt t2

1+ t2 =
E

1−βν2

(
ε11+βνε22−α

t2
+βν

1+ t2

)
, (4-6)

T22 =
σ t2
+ σt

1+ t2 =
E

1−βν2

(
β(ε22+ νε11)−α

β(1+ νt2)

1+ t2

)
, (4-7)

T12 =
(σ − σt)t

1+ t2 =
φE

1−βν2

(
ε12+

αt
1+ t2

)
. (4-8)

If T ∈R23, then

T =
1

1+ t2

(
(σ t2
− σc)e1⊗ e1− t (σc+ σ)(e1⊗ e2+ e2⊗ e1)+ (σ − σct2)e2⊗ e2

)
,

N23
=−

1
1+ t2 (e1⊗ e1+ t (e1⊗ e2+ e2⊗ e1)+ t2e2⊗ e2) (4-9)

and the components of the stress, deduced from T = CE−ωCN23, are

T11 =
σ t2
− σc

1+ t2 =
E

1−βν2

(
ε11+βνε22+ω

1+βνt2

1+ t2

)
, (4-10)

T22 =
σ − σct2

1+ t2 =
E

1−βν2

(
β(ε22+ νε11)+ω

β(t2
+ ν)

1+ t2

)
, (4-11)

T12 =−
(σ + σc)t

1+ t2 =
φE

1−βν2

(
ε12+

ωt
1+ t2

)
. (4-12)

It is worth noting that, by taking into account that α > 0, ω > 0 and σ − σt < 0, −(σ + σc) < 0, from
(4-8) and (4-12), it follows that ε12 = 0 if and only if t/(1+ t2)= 0, i.e., θ = 0 or θ = π

2 . Otherwise, t
and ε12 must have opposite sign.

From (4-6) and (4-7), α and σ can be determined easily, as functions of t :

α =
(1+ t2)[t2(βνε22+ ε11−β(νε11+ ε22))+ σ̄t(1− t2)(1−βν2)]

t4−β
, (4-13)

σ = E
β(1+ t2)(t2ε22− ε11)+ σ̄t [βνt4

− t2(1−β)−βν]
t4−β

, (4-14)

where σ̄t = σt/E . Substituting these expressions in (4-8) gives the algebraic equation

t4
+
β2ν2(ε22+ νσ σ̄ t)+β[−ε22(1− νφ)− νσ σ̄ t(1+ ν(1−φ))] +φε11+ σ σ̄ t(1−φ)

φε12
t3

−
βν2(ε11− σ σ̄ t(1− ν))+β[−ε11(1− νφ)+φε22+ σ σ̄ t(1− ν+φν2)] − σ σ̄ tφ

φε12
t −β = 0. (4-15)

Similarly, (4-10) and (4-11) give

ω =
(1+ t2)[t2β(νε11+ ε22)−βνε22− ε11− σ σ̄c(1− t2)(1−βν2)]

1−βt4 , (4-16)
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and

σ = E
β(1+ t2)(t2ε11− ε22)− σ σ̄ c[βνt4

+ t2(1−β)−βν]
1−βt4 , (4-17)

with σ̄c = σc/E , from which

t4
+
β2ν2(ε11+σ̄ c(1−ν)+β[−ε11(1−νφ)+φε22−σ σ̄ c(1−ν+φν2)+σ̄ cφ]

βφε12
t3

−
β(ν2ε22−σ σ̄ cν

3)+β[−ε22(1−νφ)−νσ σ̄ c(−1+ν(φ−1))]+φε11+σ σ̄ c(1−φ)
βφε12

t− 1
β
= 0 (4-18)

is obtained.

4A. Assignment of CE to its region. Once the strain E (with CE /∈ K) has been assigned, in order to
determine the stress it is necessary to establish which region of the partition of Sym \K CE belongs to.
For the regions T 1 and T 3 the check is trivial; then, if successful, the inelastic strain and the stress can
be obtained by (2-1) and (2-5), respectively.

Otherwise, one can proceed by trial, until the region containing CE is found. In order to verify whether
CE belongs to region T 12, once that t , α, and σ have been determined from (4-13)–(4-15), the relations
α > 0 and −σc < σ < σt must be satisfied. In the same way, to verify whether CE belongs to T 23,
equations (4-16)–(4-18) can be used. If the check is satisfied, the inelastic strain and the stress are given
by (2-2) in the first case and by (2-4) in the second.

In regards to T 2, it is observed that

T =−σc f1⊗ f1+ σt f2⊗ f2

and a generic element belonging to the normal cone to ∂K at T 2 is of the form

A=−ω f1⊗ f1+α f2⊗ f2

with

α > 0 and ω > 0. (4-19)

Then, with the help of (3-2), (4-3), and (4-4), from the equation E−C−1T = Ea the system

ε11−
σt t2
− σc− ν(σt − σct2)

E(1+ t2)
=
−ω+αt2

1+ t2 ,

ε22−
βν(σc− σt t2)+ σt − σct2

βE(1+ t2)
=
α−ωt2

1+ t2 ,

ε12+
(1−βν2)(σc+ σt)t

φE(1+ t2)
=
−(ω+α)t
(1+ t2)

is obtained, whose solution allows us to calculate α, ω, and t , and to verify if the condition (4-19) is
satisfied. If so, the inelastic strain and the stress are given by (2-3), with N12 and N23 given by (4-5)
and (4-9), respectively.
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Figure 3. The analyzed masonry panel.

4B. Calculation of the stress derivatives. For the numerical solution of the equilibrium problem with
the Newton–Raphson method, it is necessary to know the derivative of the stress with respect to the strain.
To this aim, let Di jlm be the derivative of the stress components Ti j with respect to the strain components
εlm . It is hypothesized the existence of a differentiable function t̂ : R3

→ R, such that t = t̂(ε11, ε12, ε22),
although one does not know its explicit expression. Then

Di jlm =
∂Ti j

∂εlm
+
∂Ti j

∂t
∂ t̂
∂εlm

.

The derivatives ∂Ti j/∂εlm and ∂Ti j/∂t can be calculated directly from (4-6)–(4-8) or from (4-10)–
(4-12), while in order to calculate ∂ t̂/∂εlm it is necessary to use the implicit function theorem. For this
purpose let G(ε11, ε12, ε22, t) be the left member of (4-15) or (4-18), with ∂G/∂t 6= 0, so that

∂ t̂
∂εlm
=−

∂G/∂εlm

∂G/∂t
.

5. Example

The proposed model has been implemented into Mady [Lucchesi et al. 2017], a FEM code developed by
the authors. The analysis presented in the following has been conducted by using plane stress four-node
isoparametric elements.

Let us consider a masonry wall 2 m height, 1 m wide and 0.1 m thick, which is subjected to a permanent
load, consisting of its own weight and a uniform vertical load q, and to a horizontal displacement d
incrementally imposed at the top (Figure 3). The mechanical properties assumed for the material are
ν = 0.1, ρ = 1800 kg/m3, σt = 0, σc = 5 MPa, 8= 1− ν. For the vertical load, the values q1 = 0.5 MPa
and q2 = 1 MPa have been assumed. For each load case, two further cases have been considered for the
Young moduli. In the former, Ex has been assumed equal to 5 GPa while Ey has been varied as shown in
Figures 4 and 6; in the second case, Ex has been varied as shown in Figures 5 and 7, whereas Ey = 5 GPa
has been kept constant.
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Figure 4. Shear force vs. displacement for q = 0.5 MPa, Ex = 1 GPa and several values of Ey .
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Figure 5. Shear force vs. displacement for q = 0.5 MPa, Ey = 1 GPa and several values of Ex .
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Figure 8. Shear force vs. displacement for q = 1 MPa, Ey = 1 GPa and several values of Ex .

Figures 4, 5 and Figures 7, 8 show the graphs of the horizontal reaction at the base of the panel as a
function of the imposed displacement, for the four cases considered. Their trends confirm a well-known
result, i.e., for this load condition, the value of the Young’s modulus in the vertical direction affects
the stiffness of the panel much more than that in the horizontal direction [Smilovic et al. 2019]. In
order to highlight the difference between isotropic and orthotropic behavior, Figure 6 shows the principal
compressive stress for q1= 0.5 MPa and d = 5 mm by comparing the case of Ex = Ey = 5 MPa (isotropic)
and Ex = 5 MPa, Ey = 1 MPa.

6. Conclusions

The main outcome of the paper is the development of a constitutive model that considers masonry as
a nonlinear orthotropic elastic material with bounded tensile and compressive stresses. This approach
allows us to describe in a more realistic way the behavior of masonry buildings (which are generally
made of a nonisotropic material) and to develop useful nonisotropic damage laws. This latter issue, as
well as a more general constitutive equation for orthotropic materials (e.g., those unable to withstand
high shear stress) will be the object of a forthcoming paper.
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