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A large class of analysis methods has been developed during the last century for the study of masonry
structures. Among them, the so-called unilateral no-tension model plays a fundamental role. Starting
from the pioneer papers by Heyman in the second half of sixties, a new definition of the safety factor
based on the equilibrium of the masonry structure as a no-tension body has been considered. The safety
of the structure is mainly determined by its geometry rather than its material strength. The funicular
analysis largely used in the 19th century has been improved in light of Heyman’s approach to obtain
computational methods based on lower-bound solutions. Heyman’s hypotheses are the basis of the
rigid no-tension continuous approach presented and applied to a barrel vault with lunette in the San
Barbaziano church in Bologna. The masonry vault is modelled as a membrane (thrust surface) subjected
to compressive stresses only, contained within extrados and intrados surfaces, and carrying uniform
applied loads. The geometry of the unilateral membrane, described as an unknown smooth surface,
and the associated admissible stress field are determined via a concave stress function necessary for
equilibrium and unilateral constraints fulfillment. Special attention has been devoted to the singular
stress field arising in the curves at the intersection of the vaults.

1. Introduction

Appropriate and effective analysis methods for the assessment of masonry buildings are a necessary step
in the preservation of what is generally defined as “cultural heritage” [Bergamasco et al. 2018]. A suitable
calibration of interventions is in fact possible with reliable tools [Sacco et al. 2018]. They should take
into account the specificity of the examined buildings, which, in general, presents peculiar aspects due
to the presence of various particular geometries like vaults, arches, and isolated columns. Observation
of several collapsed stone-block masonry structures, such as the temples at Selinunte and Agrigento, has
shown that the major cause of global failure is loss of equilibrium rather than material failure [Como
1992], since in many cases the collapsed blocks are in perfect condition and restoration can be done by
rebuilding [Heyman 1970]. This observation applies to masonry arches, vaults, and any other masonry
structure that they may be a part of [Moseley 1833; 1860].

The use of arches can be traced back to 3000 BC and the earliest civilizations, in the marshlands of
lower Egypt and Mesopotamia. Roman engineers used arches in aqueducts, theaters, amphitheaters, and
temples, but perhaps the best structural use of arches is in bridges: the Pons Fabricius and Pons Cestius
in Rome (Italy), the Alcantara and Abelterio bridges in Portugal, and the Pons Flavius in Saint Chamas
(France) are only a few examples of the Roman solution to the problem of bridging a gap [Hendry 1995].
The same considerations can be applied to the masterpieces of Roman engineering: the masonry vaults.
Several of these masonry structures remain in service, despite having been subjected for centuries to a
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heavy regime of environmental conditions and loadings [Gesualdo and Monaco 2010; Buonocore et al.
2014].

Very few masonry arches and vaults have been built in modern times, and knowledge of the related
design methods is no longer part of a civil engineer’s training [Huerta 2001]. Despite a growing need for
rehabilitation and conservation of these structures, understanding of their behaviour has declined during
the last century, and the available professional tools for assessing them are in some cases of questionable
reliability [Gesualdo et al. 2010; Bartoli et al. 2017].

The equilibrium approach dates back to a small note of Robert Hooke [1676] under the mask of a
cipher:

“The true Mathematical and Mechanichal form of all manner of Arches for Building, with the
true butment necessary to each of them. A Problem which no Architectonick Writer hath ever
yet attempted, much less performed”.

The cipher deciphered gives “Ut pendet continuum flexile sic stabit contiguum rigidum inversum”. Ever
since Hooke’s statement, the equilibrium approach has been used to state that if a catenary shape can be
included in the thickness of the arch, then the arch is in equilibrium.

Analytical and graphical methods have been applied since then for the analysis of masonry arch struc-
tures, although the methods of graphical statics have been the strongest tools used to solve the equilibrium
problems of arches and vaults for centuries (for a thorough discussion on this aspect, see [Huerta 2008]).
The seminal papers by Heyman [1966; 1977; 1982] gave a new definition of the equilibrium approach,
including the analysis of vaulted structures in the general framework of limit analysis, and in particular
in that of the safe theorem [Kurrer 2008]. The observation of the very low stress level in the masonry has
induced Heyman’s three basic hypotheses: infinite compressive strength, null tensile strength, and no slid-
ing among voussoirs. If the masonry arch fulfills these requirements, and the structure is stable, there ex-
ists at least one thrust line contained in its cross section. The safety factor can be recognized as the ratio be-
tween the actual thickness of the structure and the minimum thickness necessary to contain a line of thrust.

Heyman’s hypotheses are the basis of several classes of methods based on the safe theorem [Lucchesi
et al. 2012]. Among them, the thrust network analysis (TNA), a methodology initiated by O’Dwyer
[1999] and developed mainly by Block [Block 2009; Block and Lachauer 2014], should be mentioned,
and it recently has been extended and applied to particular vaulted structures [Fraternali 2010; Marmo and
Rosati 2017]. The equilibrium of vaulted structures is examined with reference to a network of thrusts in
equilibrium with the applied loads. The same discrete approach has been developed in [Fraternali 2010;
2011], in which a sort of truss structure represents the continuous masonry vault. The stress field is
approximated through a network of lumped stresses defined on the truss structure and the corresponding
energy is defined at the truss nodes [Fraternali et al. 2014].

The second class of methods makes reference to the definition of a funicular membrane included in the
masonry vault. It starts with the Pucher papers [1934; 1937], developed for reinforced concrete shells,
and successively extended to masonry structures considered as rigid no-tension materials by Angelillo
et al. [2013]. The modelling of masonry as a unilateral material dates back to Heyman’s papers, but only
recently, thanks to the development of computing efficiency, has it been successfully applied to complex
masonry structures [Lucchesi et al. 2007; 2008; Angelillo et al. 2010]. A further list of references is
given in [Angelillo et al. 2016; Iannuzzo et al. 2018]. Successive applications have been proposed to
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model helical stairs [Angelillo 2015; Gesualdo et al. 2017; Marmo et al. 2018] and combined masonry
vaults [Bergamasco et al. 2017].

This paper presents a continuum equilibrium approach for a system of combined vaults. The aim is
to determine a compressive thrust surface contained between extrados and intrados of the vault. The
constitutive behaviour of the material is assumed as rigid no-tension. A statically admissible stress
field (in equilibrium with the applied selfweight, i.e., the only load applied on the vault system) is
determined. As a case study the barrel vault with lunette in the San Barbaziano church in Bologna is
considered. Particular attention is given to the singular stress field in the form of line Dirac deltas along
the intersection curves.

2. Statement of the problem

A masonry vault is a complex structure that can be analytically represented by a spatial domain whose
boundaries are the intrados’s and extrados’s surfaces. The model here schematically illustrated (more
details can be found in [Angelillo et al. 2013]) considers the vault as a membrane structure S contained
in the domain whose thickness t coincides with the vault’s. The problem takes into account two un-
knowns: the membrane shape S and the stress function F ; the latter is determined by solving an Airy
stress problem, as shown in the following. The geometry of the membrane S is given in the Monge
form x3 = f (x1, x2). The function f (x1, x2) is continuous on the two-dimensional connected definition
domain �. The material point x on the membrane S has coordinates defined in the Cartesian reference
system coherent with base B = {e1, e2, e3} as

x = {x1, x2, f (x1, x2)}, {x1, x2} ∈�,

where � is the definition domain whose boundary ∂� is composed of a finite number of closed curves,
with unit outer normal n; {x1, x2} are the coordinate components on the projection plane � of S; and
f (x1, x2)= x3 is the rise of the membrane with f ∈ C◦(�).

Figure 1 shows the surface with a detailed description of a differential element of the membrane. The
loading system is represented by the external forces pressure q = {q1, q2, q3}.
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 Figure 1. Left: membrane structure. Right: membrane stresses T αβ and Pucher stresses Si j .



706 MICHELA MONACO, IMMACOLATA BERGAMASCO AND MICHELE BETTI

The membrane stress tensor T = {T 11, T 22, T 12
} is defined in the covariant vector basis A tangent to

S. Both the covariant A and the contravariant A1 vector bases [Pucher 1934] are reported below:

A= {a1, a2, a3} =

 1 0 − f,1
0 1 − f,2

f,1/J f,2/J −1/J

 , A1
= {a1, a2, a3} =

1
J 2

 1+ f 2
,2 − f,1 f,2 − f,1

− f,1 f,2 1+ f 2
,1 − f,2

J f,1 J f,2 −J

 . (1)

Here the comma in the subscripts indicates partial differentiation with respect to the variable xi and
J =
√

1+ f 2
,1+ f 2

,2 is the Jacobian determinant, i.e., the ratio between the differential surface area on S
and its projection on the plane f (x1, x2)= 0.

A surface stress tensor T is determined for the generalised membrane stress on S and it is defined per
unit length of horizontal line element in the covariant base A as

T = T αβaα⊗ aβ,

where T αβ are the contravariant components of T with Einstein summation convention. The problem of
equilibrium per unit area gives

∂

∂xγ
(T αβaα⊗ aβ) aγ + q = 0. (2)

Introducing the projected stress components Sαβ = J T αβ (Pucher stresses), after some manipulation,
the system of equations (2) in the reference system {e1, e2,m = a3} becomes [Pucher 1934; 1937]

S11,1+ S12,2+ p1 = 0, S21,1+ S22,2+ p2 = 0, Sαβ f,αβ − pγ f,γ + p3 = 0, (3)

where p= J q is the pressure on the projected area. The plane stress problem can be recognized in the
first two equations of the system (3), so that the solution can be obtained in terms of a single unknown
function, i.e., an Airy stress function F(x1, x2) so that

S11 = F,22, S22 = F,11, S12 = S21 =−F,12. (4)

The transverse equilibrium in terms of F(x1, x2) is expressed by

L(F)= F,22 f,11+ F,11 f,22− 2F,12 f,12 = p, (5)

where the vertical force defined per unit horizontal area p = {0, 0,−p} and L(F) has been called the
Pucher operator [Flügge and Geyling 1957]. Stress restrictions due to the assumption of masonry material
as a rigid no-tension one in the Heyman sense [1966] are assumed. In other words, the generalised
stress T is negative semidefinite and does null work for the corresponding positive semidefinite strain E:

T ∈ Sym−, E ∈ Sym+, T · E = 0. (6)

In terms of the stress function F , the unilateral constraints reduce to the relations

F,11+ F,22 ≤ 0, F,11 F,22− F2
,12 ≥ 0. (7)

These correspond to the condition on F(x1, x2) to be concave. The only requirement of continuity for F
gives as a result the possibility of a folded surface, with discontinuous Pucher stresses defined as a Dirac
delta line whose definition domain is the projection 0 of the fold. The Hessian H of F has a uniaxial
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Figure 2. The San Barbaziano church: external view (left) and ground level plan (right).

singular part parallel to the unit vector h normal to 0, i.e., it is singular transversely to 0. Hence the
directional derivative of the Airy stress function along h, namely Fh , has a discontinuity and

Hs = δ(0)Fh h⊗ h, Ss = δ(0)Fh k⊗ k, (8)

where Hs is the singular part of H , Ss is that of the Pucher stress, k is the unit vector tangent to 0,
and δ(0) is the unit line Dirac delta on 0. The fold is concave due to the concavity of Fh . A detailed
analysis of the model, together with a thorough discussion on the singular stress functions, is presented
in [Angelillo et al. 2013].

3. The case study

The case study is the barrel vault with lunette covering the transept of the San Barbaziano, a brick
masonry building at the corner of Via Barberia and Via Cesare Battisti in Bologna. It was built between
1608 and 1612 by Pietro Fiorini and designed to include the remains of a late Middle Age monastery
church which did not conform to the canons of the Trent council.

The church is formed by a late Mannerist single nave with eight side chapels belonging to the original
church, separated by masonry piers and incorporated in the new building at the ground level.

The higher part of the church consists only of the central nave (45 m in length, 11.60 m in width), with
external masonry buttresses corresponding to the separation walls of the lower chapels (Figure 2).

The walls are very slender, considering that the façade, apsis walls, and lateral walls of the ground
level chapels are 85 cm thick. The longitudinal walls are 40 cm thick at both levels. The three-bay nave
is longitudinally counterpointed by two barrel vaults with lunettes and a central bay with a cross vault
(Figure 3). A second cross vault covers the apsis [Colla and Pascale 2015]. Attention has been focussed
on the thin brick masonry barrel vaults with lunettes (Figure 4).

The membrane behaviour models with good accuracy the thin masonry vaults (thickness 12.5 cm),
whose intrados and extrados are approximated by the graphs of the functions derived by the general
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Figure 3. Longitudinal (left) and transversal section (right) of the San Barbaziano church.

Figure 4. Intrados of the barrel vault with lunette in the San Barbaziano church.

surface coefficients

main vault intrados a =−0.18 m = 5.60
main vault extrados a =−0.14 m = 5.73

main vault membrane a = 1.22 · 10−4 d = 3.82 · 10−3 g =−0.15 m = 5.66
lunette intrados d =−0.35 m = 2.80
lunette extrados d =−0.26 m = 2.92

lunette membrane a = 5.04 · 10−4 d = 0.29 g = 3.95 · 10−3 m = 2.92

Table 1. Non-null coefficients of the relation (9) for the surfaces’ representation.

expression

fi (x1, x2)= ai x2
1 x2

2 + bi x2
1 x2+ ci x1x2

2 + di x2
1 + ei x1x2+ gi x2

2 + hi x1+ li x2+mi . (9)

The choice of the complete biquadratic function has been made in order to implement in the developed
numerical procedure a general Monge form of a quadric surface. The numerical coefficients (Table 1)
have been chosen in order to represent the surfaces of the main vault and of the lunette membrane,
respectively highlighted in brown and cyan in Figure 5 (left), together with the cylindrical extrados and
intrados surfaces.
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Figure 5. Main vault (brown) and lunette (cyan): surfaces (left), region domains (mid-
dle), and combined membrane (right).

The concave stress function F(x1, x2) for the uniform vertical pressure p = 1800 N ·m−2 is given by
the solution of the equilibrium equation (5). For the main vault (F M ) and lunette (F L ) vault membrane
they are, respectively,

F M(x1, x2)=−1.84·106 log(35.49−x1)+5.19·104x1 log(35.49−x1)−1.84·106 log(35.49+x1)

−5.19·104x1 log(35.49+x1)−1.84·106 log(5.6−x2)+3.29·105x2 log(5.6−x2)

−1.84·106 log(5.6+x2)−3.29·105x2 log(5.6+x2), (10)

and

F L(x1, x2)=−4.46·105 log(2.80−x)+1.59·105x log(2.80−x)−4.46·105 log(2.80+x)

−1.59·105x log(2.80+x)−4.46·105 log(24.25−y)+1.84·104 y log(24.25−y)

−4.46·105 log(24.25+y)−1.84·104 y log(24.25+y). (11)

The two Airy stress functions are definite respectively on the two region domains reported in Figure 5
(middle) whose boundaries on the planform are given by the expressions

x2(x1)=±
29.63

√

−9569+ 1025x2
1

√

460208+ 1175x2
1

. (12)

Considering the rectangular planform, the vertical equilibrium for the combined vaults (9) gives the
Pucher stresses obtained by the relation (4). The minimum and maximum Pucher stress maps are reported
in Figure 6, while the minimum and maximum physical stresses are reported in Figure 7.

As can be noted, the stress intensity derived from the presented equilibrium solution is very low
compared to the possible strength of the masonry, which can be considered ranging between four to six
times the calculated values [Faella et al. 2012]. In Figure 7, right, the stress intensity is near the null
value, and so the variable distribution is actually due to the numerical approximation of the routine.

A comparison of the obtained equilibrated and admissible stress field with a finite element solution
is also reported in order to highlight the effectiveness of the method in describing the vault’s behaviour.
Analyses based on two-dimensional and three-dimensional finite elements with the linear elastic consti-
tutive model have been performed. The resulting stress maps, with reference to the middle plane of the
vault, are reported in Figure 8.

The linear analysis has been considered sufficient to show the reliability of the proposed approach.
Note that in order to obtain an equilibrate strain and stress field, the finite element solution needs to
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Figure 6. Minimum (left) and maximum (right) Pucher stress maps (values are in N · cm−2).
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Figure 7. Minimum (left) and maximum (right) physical stress maps (values are in N · cm−2).

account for the bending stiffness of both the main vault and lunette. Despite the general coherence
between the finite element and continuous equilibrium solutions, this is an indirect demonstration of the
efficiency and robustness of the proposed method, which is based on the safe theorem of limit analysis.

A very low stress level can be detected in the barrels while the maximum stress concentration has
been found at the springing of the vaults and at the intersection of the two vaults (Figure 9).

4. Singular stress fields

The main aspect to be considered in the analysis of combined vaults concerns the singular stress fields
arising at the intersection 0 of the two vaults (Figure 10, left), i.e., a line Dirac delta with support on the
above defined region boundaries (Figure 10, middle).

In particular, the stress tensor has a singular part along the mentioned intersection of the vaults, whose
locally normal vector h and tangent vector k are represented in Figure 10 (right), where the domain of
the intersection curve on the planfold (dashed red line) is reported together with the intersection curve
(continuous line).
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Figure 8. Finite element analysis: minimum (left) and maximum (right) stress maps
(values are in N ·mm−2).

Figure 9. Stress vector maps of the finite element analysis.
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Figure 10. Position of the line Dirac delta at the vaults intersection (left), line plane
domain (middle), and plot of the line 0 (right).

As a result, there is an increase in the normal stress along the intersection curve (in red in Figure 10,
left and right), compared to the same loading condition in an arch with unitary depth and the same
geometry of the lunette, i.e., the directrix curve of the cylindrical vault (in blue in Figure 10).
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Figure 11. Compressive stress in the intersection curve (red) compared to that in a
similar barrel vault (blue).

The compressive stresses in the two cases are shown in Figure 11. Although the ancient builders of
combined vaults lacked the appropriate scientific tools to determine this increase, they realized techno-
logical details such as the carved stone ribs that counterbalance the stresses maintain the appeal of their
constructions.

5. Conclusion

An application of the safe theorem of limit analysis has been presented to model the behaviour of a
combined vault system, considered as a continuous material with rigid no-tension constitutive behaviour.
The model, based on the definition of a membrane shape function contained in the vault’s volume and
a stress function formulation, allows the representation of the stress maps relative to an equilibrium
solution compatible with the unilateral material assumption. The case study of the barrel vault with
lunette in the San Barbaziano church has been examined to show a possible application of the proposed
modelling. Special attention has been devoted to the singular stress field arising in the intersection curves
for the equilibrium fulfillment. The solutions provided by the proposed method are compared with those
obtained by a finite element analysis to assess the efficiency and robustness of the formulation and the
ductility of the application in the case of combined vaults, where singular stresses are involved. The
proposed procedure allows not only the evaluation of the areas susceptible to damage due to fracture
but also the curves where singular stresses are localized, to address the crack pattern of real combined
vaulted structures.
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