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THE ROLE OF RHEOLOGY IN MODELLING ELASTIC WAVES WITH
GAS BUBBLES IN GRANULAR FLUID-SATURATED MEDIA

ADHAM A. ALI AND DMITRY V. STRUNIN

Elastic waves in fluid-saturated granular media depend on the rheology which includes elements rep-
resenting the fluid and, if necessary, gas bubbles. We investigated the effect of different rheological
schemes, including and excluding the bubbles, on the linear Frenkel–Biot waves of P1 type. For the
wave with the bubbles the scheme consists of three segments representing the solid continuum, fluid
continuum, and a bubble surrounded by the fluid. We derived the Nikolaevskiy-type equations describing
the velocity of the solid matrix in the moving reference system. The equations are linearized to yield the
decay rate λ as a function of the wave number k. We compared the λ(k)-dependence for the cases with
and without the bubbles, using typical values of the input mechanical parameters. For the both cases,
the λ(k)-curve lies entirely below zero, which is in line with the notion of the elastic wave being an
essentially passive system. We found that the increase of the radius of the bubbles leads to faster decay,
while the increase in the number of the bubbles leads to slower decay of the elastic wave.

A list of symbols can be found on page 16.

1. Introduction

The problem of wave propagation in porous media is of interest in various fields of science and engineer-
ing. Over the recent years, researchers studied diverse phenomena of this type in large-scale earthquakes,
soil mechanics, acoustics, earthquake engineering, and many other disciplines. The fundamentals of the
theory of the wave propagation in porous elastic solids can be found in [Biot 1956a; 1956b] or in a more
recent review [Frenkel 2005]. Biot [1956a; 1956b] generalized the first principles of linear elasticity and
today, most studies in acoustics, geophysical, and geological mechanics rely on his theory. Biot [1962a;
1962b] also deduced the dynamical equations for the wave propagation in poroelastic media. According
to Frenkel–Biot’s theory, there are two types of longitudinal waves propagating in a saturated porous
medium. The wave of the first type is fast and weakly damped (P1-wave), whereas the wave of the
second type is slow and strongly damped (P2-wave). Yang et al. [2014] showed that the dispersion of
velocity and attenuation of the P1-wave are greatly affected by the viscoelasticity of the medium.

Liu et al. [1976] demonstrated that rheology based on the scheme often referred to as Generalized
Standard Linear Solid (GSLS) helps to better describe measured characteristics of seismic waves in earth
continua. The importance of complex multicomponent GSLS was acknowledged by Bohlen [2002] who
employed the rheology with many Maxwell bodies connected in parallel. Nikolaevskiy [1989] used
complex stress-strain relations in a fluid-saturated grain, where the solid matrix and fluid are in contact.

Keywords: Frenkel–Biot’s waves, bubbles, rheology, porous media.
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This resulted, in the final analysis, in the nonlinear higher-order partial differential equation of the form

∂v

∂t
+ v

∂v

∂x
=

5∑
p=1

ε p−1 Ap+1
∂ p+1v

∂x p+1 , (1)

where v is the particle velocity of the solid matrix, ε is the small parameter reflecting slow evolution
of the wave (this is discussed below), and Ap+1 are the coefficients linked to mechanical parameters of
the system. From the standpoint of wave dynamics, the even derivatives in (1) are responsible for the
dissipation and odd derivatives for the dispersion effects. Equation (1) assumes the form of the Korteweg–
de Vries–Burgers equation if the index p goes from just 1 and 2. But with the range of p going further
as shown, the equation manifests an extension of this classical equation to include high-order spatial
derivatives. As explained below, this extension results from the complex rheology of the system.

Experimental evidence indicates that the presence of gas bubbles changes the characteristics of the
wave [Dunin and Nikolaevskiy 2005; Van Wijngaarden 1968; Anderson 1980]. Typically, in rocks satu-
rated with fluids, the P1-wave is the only observable wave [Nikolaevskiy 2008]. However, the presence
of gas, even in small proportion, can affect the wave type [Nikolaevskiy and Strunin 2012], so that the
P2-wave may also be visible. Dunin et al. [2006] studied the effect of gas bubbles on linear P1- and P2-
waves, and derived the dispersion relation connecting the frequency and wave number. Of special interest
was the transformation of the wave type due to the bubbles. They found that the transformation was due
to the change in the motion of the liquid in the porous space. Instead of the overflow between the pores
incurring large Darcy friction, which is characteristic of the P2-waves, the liquid may be displaced into
the volume released when a bubble is compressed. In this case the oscillations of the porous matrix and
of the bubbles occur in phase and, as a result, the decay of the P2-wave diminishes due to the reduction
in the Darcy friction. As far as the rheology is concerned, Dunin et al. [2006] used a rather simple stress-
strain relation, σ = Ee, in standard notations. Various aspects of the wave propagation in multifluid and
bubbly flows were studied in [Papageorgiou and Chapman 2015; Tisato et al. 2015; Brunner and Spetzler
2001; Collier et al. 2006]. For example, Collier et al. [2006] explored the influence of the gas bubbles
on attenuation in volcanic magma, where the bubbles grow not only due to gas expansion, but also due
to the exsolution of volatiles, such as water, from the melt into the bubbles. In our present study we do
not consider such kind of thermodynamic disequilibrium conditions.

The rheological scheme used in [Nikolaevskiy 1989], despite containing several Maxwell bodies, did
not include an element representing gas bubble. Nikolaevskiy and Strunin [2012] pointed out the place
in this scheme which the bubble element should occupy; see Figure 1. In the present work we aim to
include the bubble element into the rheological scheme and then derive and analyze the equation of the
type (1), where the coefficients Ap too depend on the bubble-related parameters. The resulting equation
will describe the decay (or attenuation) of the freely propagating seismic wave. We will investigate the
influence of the bubble-related parameters, including their radius and concentration, on the decay rate.

During its propagation the seismic wave decays due to the viscous friction both within individual
phases, e.g., fluid, and between the phases. The decay may be described in terms of the decay rate in
time as in [Nikolaevskiy 1989], or decay rate in space via the attenuation factor as in [Dunin et al. 2006].
These descriptions are closely connected and just correspond to different realizations of the wave. To
illustrate this, let us represent Fourier modes of the linear wave as exp(iξ1), where ξ1 = wt + kx , w is
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Figure 1. Rheological scheme with the branch $ corresponding to a bubble [Niko-
laevskiy and Strunin 2012].

the frequency, and k the wave number connected with each other via the dispersion relation. Writing this
relation in the form w=w(k) with k being real-valued, we can find the corresponding complex-valued w.
Its imaginary part determines how fast the wave decays in time. Physically this situation corresponds to
the wave in an unbounded medium, which decays as time goes. Alternatively, one may write down the
dispersion relation as k = k(w) and consider the real-valued frequency w as the argument, whereas the
wave number k becomes complex-valued. Imaginary part of k governs the decay of the wave in space.
From physical standpoint this realization can be associated with the wave which propagates, say, from
the surface into underground. The decay of such a wave against the distance is characterized by the
attenuation factor.

Importantly, the dynamics of the fluid in porous media may exhibit boundary layers. They form when
the frequency of the seismic wave is relatively high. This contrasts the low-frequency waves where the
viscous forces dominate throughout the fluid volume so that inertial effects may be neglected. However,
at high frequencies the inertial effects dominate in the bulk of the fluid, while the viscous friction con-
centrates within narrow boundary layers near solid walls due to the no-slip conditions. Allowing for the
boundary layers in the analysis significantly affects the frequency dependence of the attenuation of the
wave. Namely the low- and high-frequency branches of the attenuation curve become asymmetric. Mas-
son et al. [2006] confirmed this effect by numerical computations of the governing mechanics equations.
The model that we use in our present paper is one-dimensional; therefore, it disregards the boundary
layers.

In our study of the wave decay we choose to analyze the decay in time, that is, the w=w(k) form of the
dispersion relation. We will execute a procedure similar to [Nikolaevskiy 2008], where one-dimensional
(x-dependent) dynamics are considered, and all the functions of interest are decomposed into series in
small parameter ε characterizing slow evolution of the wave in space and time. Let us denote the phase ve-
locity of the wave by c. Introducing the running variable ξ and using ε to scale the distance x and time t as

ξ = ε(x − ct), τ =
( 1

2ε
2)t, (2)

we seek the velocity of the solid matrix in the form

v = εv1+ ε
2v2+ · · ·
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We will show, in line with Nikolaevskiy [2008], that the complex rheology generates higher-order time
derivatives [Nikolaevskiy 1989]. They, in turn, translate into high-order derivatives in ξ in the resulting
equation (1) because, using (2),

∂

∂t
=
( 1

2ε
2) ∂
∂τ
− εc ∂

∂ξ
≈−εc ∂

∂ξ
,

where the quadratic term in the small parameter ε is neglected in comparison with the linear term. Once
derived, (1) gives the dispersion relation, which is the main point of interest in this paper. Our focus is
on the dissipation controlled by the even x-derivatives. Therefore, we will study a truncated form of (1):

∂v

∂t
+ v

∂v

∂ξ
= A2

∂2v

∂ξ 2 + ε
2 A4

∂4v

∂ξ 4 + ε
4 A6

∂6v

∂ξ 6 . (3)

Equation (3) can be complemented by spatially periodic boundary conditions, leading to a spatially
periodic solution. Substituting the Fourier modes of the solution, v ∼ exp(λt + ikx), into (3) gives

λ=−A2k2
+ ε2 A4k4

− ε4 A6k6, (4)

with k being the wave number associated with the scaled length ξ . When analyzing (4) we remember
that k is not allowed to be too large, otherwise the assumption of the slow variation of the wave in space
will be violated. As we noted, the slowness is facilitated by the smallness of ε. Therefore, in (4) the term
ε2 A4k4 should be treated just as a correction to the leading term A2k2, and the following term ε4 A6k6

as a correction to the term ε2 A4k4. Thus, the value of λ remains negative at all plausible values of the
mechanical parameters of the system (such as elastic moduli and viscosities). This reflects the essentially
dissipative nature of the seismic wave, or, in other words, the impossibility of self-excitation of motion.
In view of the crucial presence of the small parameter ε in (3) and (4) we revise our earlier attempt
[Strunin 2014] to guarantee this important property of the freely propagating seismic wave in the model.
In [Strunin 2014] a popular form of (3) was considered where the small parameter ε was omitted. It was
reasoned that the mechanical parameters, of which A4 and A6 are composed, should therefore assume
special limited values, in order to guarantee that λ < 0. However, negativity of λ is simply ensured by
the smallness of ε, which is the essential part of (3) as explicitly shown.

2. Basic equations of one-dimensional dynamics

2.1. Conservation of mass and momentum. For a one-dimensional case the momentum and mass bal-
ance equations are [Nikolaevskiy 1990]

∂

∂t
(1−m)ρ(s)v+ ∂

∂x
(1−m)ρ(s)vv = ∂

∂x
σ (e f )
− (1−m)∂p

∂x
− I,

∂

∂t
mρ( f )u+ ∂

∂x
mρ( f )uu =−m ∂p

∂x
+ I,

∂

∂t
(1−m)ρ(s)+ ∂

∂x
(1−m)ρ(s)v = 0,

∂

∂t
mρ( f )

+
∂

∂x
mρ( f )u = 0,

(5)
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where the subscripts s and f label the solid and gas-liquid mixture respectively, ρ, v, and u are the
corresponding densities and mass velocities, m is the porosity, σ (e f ) is the effective Terzaghi stress, p is
the pore pressure, and I is the interfacial viscous force approximated by

I = δm(v− u), δ =
µ( f )m
`

,

where µ( f ) is the gas-liquid mixture viscosity and ` is the intrinsic permeability.

2.2. Dynamics of bubbles. The equation of the dynamics of a bubble [Dunin et al. 2006] has the form

R ∂2

∂t2 R+ 3
2

(
∂

∂t
R
)2
+

4µ
ρ(L)

( 1
R
+

m
4`

R
)
∂

∂t
R = (pg − p)/ρ(L), (6)

where R is the bubble radius, p is the pressure in the liquid, pg = p0(R0/R)χ is the gas pressure inside
the bubble (here χ = 3ζ , and ζ is the adiabatic exponent), ρ(L) is the density of the liquid without the
bubbles, and µ is the viscosity of the liquid without the bubbles. The density equations for the solid and
liquid without gas are

ρ(s) = ρ
(s)
0 (1−β(s)σ)= ρ(s)0

[
1+β(s) p− β

(s)σ (e f )

1−m

]
≈ ρ

(s)
0 [1+β

(s) p−β(s)σ (e f )
], (7)

ρ(L) = ρ
(L)
0 (1+β(L) p). (8)

The mean density of the gas-liquid mixture is

ρ( f )
= (1−φ)ρ(L)+φρ(g), (9)

where
φ = 4π

3 R3n0.

Here σ is the true stress, φ is the volume gas content and n0 is the number density of the bubbles per
unit volume. In (9) we can neglect the density of the gas ρ(g) due to the low gas content. The change in
φ is due to the change in the bubble radius R. Then (9) becomes

ρ( f )
= ρ

(L)
0 (1+β(L) p)

(
1− 4π

3 R3
0n0

)
. (10)

Similarly to [Dunin et al. 2006] we also assume that the pore pressure p is equal to the pressure in the
liquid far from the bubble.

2.3. Stress-strain relation. In this section we derive the stress-strain relation for the viscoelastic medium
based on the rheological Maxwell–Voigt model, which includes the gas bubble. The model includes two
friction elements with viscosities µ1 and µ2, three elastic springs with the elastic moduli E1, E2, and
E3, and three oscillating masses M1, M2, and M3. The total stress in denoted σ . We also denote the
displacements of the elements of the model by e with respective subscripts as shown in Figure 2. Now
we write the second Newton’s law for the elements and the kinematic relations:

M1
d2e1

dt2 +M2
d2e2

dt2 = σ − E1e1− E2e2, e = e2 = e1+ e3+ e4+ e5,

M3
d2e3

dt2 = E1e1− E3e3, E3e3 = µ2
de4

dt
= µ1

de5

dt
.

(11)
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Figure 2. Rheological scheme including a gas bubble.

Equations (11) generate the following relation between the stress and strain:[
E1 E3

( 1
µ1
+

1
µ2

)]
σ + (E3+ E1)

dσ
dt
+M3

d3σ

dt3

=

[
E1 E2 E3

( 1
µ1
+

1
µ2

)]
e+ [(E2+ E1)E3+ E1 E2]

de
dt
+

[
E1 E3 M2

( 1
µ1
+

1
µ2

)]d2e
dt2

+ [((E2+ E1)M3+ (E3+ E1)M2)+ E3 M1]
d3e
dt3 + [(M2+M1)M3]

d5e
dt5 . (12)

Generalizing (12) using a similar approach to [Nikolaevskiy 2008], we get

σ (e f )
+ η

∑
q=1,3

bq
Dqσ (e f )

Dtq = E2e+β(s)kb p+ η
∑

q=1,2,3,5

aq
Dqe
Dtq , (13)

where σ (e f ) is the effective stress, η = [E1 E3(1/µ1 + 1/µ2)]
−1, kb is the bulk elastic module of the

porous matrix, and the coefficients aq and bq are expressed as

a1 = [(E2+ E1)E3+ E1 E2], a2 = M2, a3 = [(E2+ E1)M3+ (E3+ E1)M2+ E3 M1],

a5 = [(M2+M1)M3], b1 = (E3+ E1), b3 = M3.

Finally, we add the closing relation between the deformation e and the velocity v of the solid:

De
Dt
≡
∂e
∂t
+ v

∂e
∂x
=
∂v

∂x
. (14)

3. Elastic waves in saturated media including gas bubbles

Following the approach of Nikolaevskiy [2008], we consider the P1-wave in a porous media under the
full saturation. Accordingly we assume that the mass velocities v and u have the same sign:

v = u+ O(εv), (15)
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where ε is the small parameter. The Darcy force has the order as shown:

I = εγ δm(v− u)= εγ δmv, δ = mµ/k = O(1). (16)

Describing a weakly nonlinear wave we use the running coordinate system with simultaneous scale
change:

ξ = ε(x − ct), τ = 1
2ε

2t, ∂

∂x
= ε

∂

∂ξ
,

∂

∂t
= ε

(
1
2ε
∂

∂τ
− c ∂

∂ξ

)
. (17)

Thus, the constitutive law (13) transforms into the form

σ (e f )
+ η

∑
q=1,3

bqε
q
(

1
2ε
∂

∂τ
+ (v− c) ∂

∂ξ

)q
σ (e f )

= E2e+β(s)kb p+ η
∑

q=1,2,3,5

aqε
q
(

1
2ε
∂

∂τ
+ (v− c) ∂

∂ξ

)q
e. (18)

Now, we seek the unknown functions as power series:

v = εv1+ ε
2v2+ · · · , u = εu1+ ε

2u2+ · · · ,

σ e f
= σ

(e f )
0 + εσ

(e f )
1 + ε2σ

(e f )
2 + · · · , p = p0+ εp1+ ε

2 p2+ · · · ,

m = m0+ εm1+ ε
2m2+ · · · , e = e0+ εe1+ ε

2e2+ · · · ,

φ = φ0+ εφ1+ ε
2φ2+ · · · , R = R0(1+ εR1+ ε

2 R2+ · · · ).

(19)

3.1. The first approximation. Using series (19) in the mass and momentum equations (5), (6), and the
stress-strain relation (13) and collecting linear terms ∼ ε, we eventually arrive at the system

(1−β(s)E2)v1+ (B− kbβ
(s)β(s))p0χR1c = 0, (20)

(E2− ρ0c2)v1− (A− kbβ
(s))p0χR1c = 0. (21)

We address the reader to Appendix A for details of derivation of (20) and (21).
Equations (20) and (21) must coincide, therefore,∣∣∣∣(1−β(s)E2) (B− kbβ

sβs)p0χ

(E2− ρ0c2) −(A− kbβ
(s))p0χ

∣∣∣∣= 0. (22)

Equation (22) gives the velocity of the wave,

c2
=
(A− kbβ

(s))Z1+ E2

ρ0
, (23)

where

Z1 =
1−β(s)E2

B− kbβ(s)β(s)
.
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Thus, all the variables are expressed through any one selected variable; for example, the velocity v1:

e1 =−
v1

c
, σ

(e f )
1 =−(E2− kbβ

(s)Z1)
v1

c
, p1 = Z1

v1

c
, R1 =−

Z1

p0χ

v1

c
,

m1 = [((1−m0)− kbβ
(s))β(s)Z1+β

(s)E2− (1−m0)]
v1

c
,

ρ
( f )
1 = ρ

(L)
0 Z1

(
β(L)κ1+

κ24πn0 R3
0

p0χ

)
v1

c
,

ρ
(s)
1 = ρ

(s)
0 β(s)[Z1(1− kbβ

(s))+ E2]
v1

c
.

3.2. The second approximation. In the second approximation, we collect quadratic terms ∼ ε2 in the
mass and momentum equations (5), (6), and stress-strain relation (13) and come to the following system:

∂

∂ξ
[(E2− ρ0c2)v2− (1−β(s)kb)p0χR2c] = E2 F − c6+ c∂T

∂ξ
− c(1−β(s)kb)

∂0

∂ξ
, (24)

∂

∂ξ

[
(1− E2β

(s))v2−

(
ω1 p0χ −

4πm0n0 R3
0

κ1

)
R2c

]
=3−β(s)E2 F − cβ(s) ∂T

∂ξ
− cω1

∂0

∂ξ
+ cω2

∂R2
1

∂ξ
. (25)

The details of the derivation of (24) and (25) are provided in Appendix B. The determinant of the left-
hand side of the system of equations (24) and (25) coincides with the determinant of (22), which equals
zero. A nonzero solution for v2 exists only if the following compatibility condition takes place:∣∣∣∣∣∣∣∣

(E2− ρ0c2)
∂

∂ξ

(
E2 F − c6+ c∂T

∂ξ
− (1−β(s)kb)c

∂0

∂ξ

)
(1− E2β

(s))
∂

∂ξ

[
3−β(s)E2 F − cβ(s) ∂T

∂ξ
− cω1

∂0

∂ξ
+ cω2

∂R2
1

∂ξ

]
∣∣∣∣∣∣∣∣= 0 (26)

(see Appendix C). This is the evolution equation with respect to v ∼= v1:

cM ∂0

∂ξ
− cN ∂T

∂ξ
+ cω2ψ

∂R2
1

∂ξ
+3ψ + c6(1− E2β

(s))− E2 F N = 0, (27)

where

ψ = (E2− ρ0c2), M = (1−β(s)kb)(1− E2β
(s))−ω1ψ, N = (1−β(s)ρ0c2).

Now, we rewrite (27) in terms of v and regroup:

1
2

[
Y1+ψ

(
(1− κ1κ2)m̄1− E2β

(s)
−

(
Y2+

4πn0 R3
0

p0χ

)
Z1

)]
∂v

∂τ

−

[
Nηc2(a1− b1(E2− kbβ

(s)Z1))+
M Z1µc2

p0χ

(
4+

m0 R2
0

`

)]
∂2v

∂ξ 2 + εNηc3a2
∂3v

∂ξ 3

− ε2 Nηc4
[a3− b3(E2− kbβ

(s)Z1)]
∂4v

∂ξ 4 − ε
4 Nηa5c6 ∂

6v

∂ξ 6 − [ζ1+ ζ2]
∂vv

∂ξ
= 0, (28)
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where

m̄1 = ((1−m0)−kbβ
(s))β(s)Z1+β

(s)E2−(1−m0),

Y1 = (E2 N+c2ρ0(1−E2β
(s))), Y2 = m0(κ1β

(L)
−β(s))+β(s)(1−β(s)kb),

ζ1 = ψ

(
m̄1−(1−m0)β

(s)Z1+β
(s)(E2−kbβ

(s)Z1)(1−m̄1)−β
(s)Z1m̄1

+κ1β
(L)Z1m̄1−κ1κ2+4πn0κ2 R3

0
Z1

p0χ
(m̄1−m0)−m0κ1β

(L)Z1+ω2
Z2

1

(p0χ)2

)
,

ζ2 = c2(1−E2β
(s))

(
ρ0−ρ0κ1βZ1−ρ

(s)
0 β(s)(E2−kbβ

(s)Z1)−m0κ2ρ
(L) Z1

p0χ
+m̄1(ρ

(s)
−κ1κ2ρ

(L))

)
+

M(χ+1)
2p0χ

Z2
1+E2 N .

In short, the evolution equation (28) can be written as

C1
∂v

∂τ
−C2

∂2v

∂ξ 2 + εC3
∂3v

∂ξ 3 − ε
2C4

∂4v

∂ξ 4 − ε
4C6

∂6v

∂ξ 6 − ζ
∂vv

∂ξ
= 0, (29)

where

C1 =
1
2

[
Y1+ψ

(
(1− κ1κ2)m̄1− E2β

(s)
−

(
Y2+

4πn0 R3
0

p0χ

)
Z1

)]
,

C2 =

[
Nηc2(a1− b1(E2− kbβ

(s)Z1))+
M Z1µc2

p0χ

(
4+

m0 R2
0

`

)]
, C3 = Nηc3a2,

C4 = Nηc4(a3− b3(E2− kbβ
(s)Z1)), C6 = Nηa5c6, ζ = ζ1+ ζ2.

4. Elastic waves in saturated media without gas bubbles

Our goal is to study the effect of inclusion of gas bubbles into the rheological scheme on the elastic wave
decay. For this purpose we will remove the bubble-representing segment from Figure 2 and rederive the
wave equation (note that our rheological scheme consists of only two branches: one for the solid and the
other for the bubble-fluid mixture). This differs from the original Nikolaevskiy scheme, which includes
three parallel branches [Nikolaevskiy 1989; 2008].

4.1. Stress-strain relation. By removing the bubble segment from the rheological scheme, we get Figure 3.
The second Newton’s law for the scheme and the kinematic relation are

M1
d2e1

dt2 +M2
d2e
dt2 = σ − E1e1− E2e, e = e1+ e3, E1e1 = µ1

de3

dt
. (30)

Equations (30) lead to the well-known stress-strain relation [Nikolaevskiy 1985]

σ + θ
dσ
dt
= E2e+ (E1+ E2)θ

de
dt
+M2

d2e
dt2 + (M1+M2)θ

d3e
dt3 , (31)
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E1

e1

e2

e3

E2

M1

M2

µ1

σ1

σσ

σ2

Figure 3. Rheological scheme without gas bubble.

where θ = µ1/E1. Hence, the constitutive law (31) will be written as

σ (e f )
+ b1ε

(
1
2ε
∂

∂τ
+ (v− c) ∂

∂ξ

)
σ (e f )

= E2e+β(s)kb p+
3∑

q=1

aqε
q
(

1
2ε
∂

∂τ
+ (v− c) ∂

∂ξ

)q
e, (32)

where
a1 = (E1+ E2)θ, a2 = M2, a3 = (M1+M2)θ, b1 = θ.

4.2. First approximation of the system without gas bubbles. Following the approach of Section 3.1, in
the first approximation for the system without bubbles we arrive at the system

(1−β(s)E2)v1 = (β −β
(s)β(s)kb)cp1, (33)

(ρ0c2
− E2)v1 = (1−β(s)kb)cp1. (34)

Appendix D provides the derivation details of these equations. The determinant of the system of equations
(33) and (34) gives the wave velocity c:∣∣∣∣(1−β(s)E2) −(β −β

(s)β(s)kb)

(ρ0c2
− E2) −(1−β(s)kb)

∣∣∣∣= 0. (35)

Thus,

c2
=

E2+ Z2(1−β(s)kb)

ρ0
, (36)

where

Z2 =
(1−β(s)E2)

(β −β(s)β(s)kb)
.

Again we can express all the variables through the velocity v1:

e1 =−
v1

c
, p1 = Z2

v1

c
, ρ

(s)
1 = ρ

(s)β(s)[Z2(1−β(s)kb)+ E2]
v1

c
,

ρ
(L)
1 = ρ

(L)β(L)Z2
v1

c
, m1 = [(1−m0)β

(s)Z2+β
(s)(E2−β

(s)kb Z2)− (1−m0)]
v1

c
,

σ
(e f )
1 =−(E2−β

(s)kb Z2)
v1

c
.
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4.3. Second approximation for the system without gas bubbles. Following the approach of Section 3.2,
in the second approximation we arrive at the system

∂

∂ξ
[(E2− ρ0c2)v2+ (1−β(s)kb)cp2] = E2 F − c6+ c∂T

∂ξ
, (37)

∂

∂ξ
[(1− E2β

(s))v2− (β −β
(s)β(s))cp2] =3−β

(s)E2 F − cβ(s) ∂T
∂ξ
. (38)

See Appendix E for the derivation details. In analogy to (26), the compatibility condition for the system
of equations (37), (38) has the form∣∣∣∣∣∣∣

(E2− ρ0c2)
∂

∂ξ

(
E2 F − c6+ c∂T

∂ξ

)
(1− E2β

(s))
∂

∂ξ

(
3−β(s)E2 F − cβ(s) ∂T

∂ξ

)
∣∣∣∣∣∣∣= 0. (39)

Then the evolution equation for v ∼= v1 is

3ψ − cN ∂T
∂ξ
+ c6(1− E2β

(s))− E2 F N = 0. (40)

Rearranging, we arrive at

c2ρ0(1− E2β
(s))

∂v

∂τ
− Nc2(a1− b1(E2−β

(s)kb Z2))
∂2v

∂ξ 2

+ εNa2c3 ∂
3v

∂ξ 3 − ε
2 Na3c4 ∂

4v

∂ξ 4 + [G1+G2]
∂vv

∂ξ
= 0, (41)

where

m̂1 = (1−m0)β
(s)Z2+β

(s)(E2−β
(s)kb Z2)− (1−m0),

G1 = ψ

(
−((1−m0)+ m̂1)β

(s)Z2−β
(s)(E2−β

(s)kb Z2)

(
1+

m̂1

(1−m0)

)
+β(L)Z2m̂1−m0β

(L)Z2

)
,

G2 = c2(1− E2β
(s))(ρ0− ρ0βZ2− ρ

(s)β(s)(E2−β
(s)kb Z2)+ m̂1(ρ

(s)
− ρ(L)))+ E2(1−β(s)ρ0c2).

Finally, we rewrite the evolution equation (41) as

D1
∂v

∂τ
− D2

∂2v

∂ξ 2 + εD3
∂3v

∂ξ 3 − ε
2 D4

∂4v

∂ξ 4 +G ∂vv
∂ξ
= 0, (42)

where

D1 = c2ρ0(1− E2β
(s)), D2 = Nc2(a1− b1(E2−β

(s)kb Z2)),

D3 = Na2c3, D4 = Na3c4, G = G1+G2.

We remark that for the wave propagating to the left, that is, with ξ = ε(x + ct), one obtains (as we
checked) the same equation (42).

5. Linearized model

In this section we investigate the linearized versions of the model with and without the bubbles, that is,
(29) and (42). Our particular interest is in its dissipative part responsible for decay of the wave.
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5.1. Evaluation of the parameters and the wave velocity. From [Dunin et al. 2006; Nikolaevskiy 1985;
2016; Sutton and Biblarz 2016; Carcione 1998; Mikhailov 2010; Smeulders 2005], the values of the
parameters are: the density ρ(L)0 = 1000 kg/m3 for water, ρ(g) = 2 kg/m3 for gas, ρ(s)0 = 2500 kg/m3 for
solid; porosity m0 = 0.25; bulk modulus kb = 1.7× 109 Pa for the matrix, kb = 30× 109 Pa for the solid;
compressibility β(L) = 2× 10−9 Pa−1 for water, β(L) = 2.4× 10−6 Pa−1 for gas, β(s) = 2× 10−10 Pa−1

for solid; steady pressure p0 = 105 Pa; bubble radius R0 = 5 × 10−5 m; volume gas content φ0 =

10−3; viscosity µ1 = 10−3 Pa·s for water, µ2 = 2× 10−5 Pa·s for gas; adiabatic exponent ζ = 1.4, and
permeability ` = 2× 10−11 m2. Using the data from [Nikolaevskiy and Strunin 2012; Nikolaevskiy
1985; 2016; Nikolaevskiy and Stepanova 2005], the values of the parameters of the rheological scheme
in Figure 2 are

M1 = ρ
(L)L2

s = 10−2 kg/m, M2 = ρ
(s)L2

s = 0.02 kg/m, M3 = ρ
(g)L2

s = 2× 10−6 kg/m,

and

(a) E1 = 1/β(L) = 4× 105 Pa, E2 = c2ρ0 = 2× 107 Pa, E3 = 3χp0 = 4× 107 Pa,

where we used, just for the purpose of evaluating of Ei and Mi , the typical velocity c ∼ 100 m/s and
the linear size of the oscillator Ls = 0.3 cm from [Nikolaevskiy 1985; Vilchinska et al. 1985]. Note that
the above values of Ei are known only approximately. With this in mind, in the present study we also
explore other the values of Ei that are considerably different from variant (a):

(b) E1 = 5× 105 Pa, E2 = 5× 108 Pa, E3 = 5× 104 Pa,

(c) E1 = 6× 105 Pa, E2 = 2× 109 Pa, E3 = 5× 103 Pa.

The reason for this choice is that the two different rheological schemes that we use (for the wave with
and without the bubbles) give close values of λ when we put R0 = 0 and n0 = 0.

Now we apply the formulas for the wave velocity (23) and (36) to show that they give reasonable
orders of magnitude. For variant (a) formula (23) for the wave with the bubbles gives c ≈ 577 m/s, and
formula (36) for the wave without the bubbles gives c ≈ 2100 m/s. For variant (b) the wave with the
bubbles has the velocity c ≈ 726 m/s and the wave without the bubbles the velocity c ≈ 2000 m/s. For
variant (c) the wave with the bubbles has c ≈ 1100 m/s, and the wave without the bubbles c ≈ 1800 m/s.
This illustrates, in line with the previous studies, that the bubbles may result in a considerable change of
the wave velocity. However, our main interest in this study is the dissipation rate of the wave, which we
explore in the next section.

5.2. Dispersion (dissipation) relation. Analyzing the linearized model, we are interested in the influence
of the bubbles on the wave dissipation. This effect is controlled by the even derivatives, so we truncate
the linearized equations (29) to the form

∂v

∂τ
=

C2

C1

∂2v

∂ξ 2 + ε
2 C4

C1

∂4v

∂ξ 4 + ε
4 C6

C1

∂6v

∂ξ 6 . (43)

For the Fourier modes v ∼ exp(λt + ikx), we get the dispersion (or dissipation) relation

λ(k)=−
C2

C1
k2
+ ε2 C4

C1
k4
− ε4 C6

C1
k6, (44)
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Figure 4. The decay rate by formula (44) for variant (a), k∗ = 0.25 m−1.
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Figure 5. The decay rate by formulas (44) and (46) for variant (a). Left: n0 varies,
R0 = 5× 10−5. Right: R0 varies, n0 = 4× 108.

where λ is the decay rate and k is the wave number. For the model without the bubbles, the linearized
form of (42) is

∂v

∂τ
=

D2

D1

∂2v

∂ξ 2 + ε
2 D4

D1

∂4v

∂ξ 4 (45)

(we again consider only even derivatives). Accordingly, the dispersion relation is

λ(k)=−
D2

D1
k2
+ ε2 D4

D1
k4. (46)

Figure 4 shows the decay rate by formula (44) at fixed k∗ = 0.25 m−1 [Nikolaevskiy 1989] against
R0 and n0. See that the increase in R0 significantly affects the decay rate and makes its absolute value
larger due to the bubbles increasing their role through the pressure p1 =−p0χR1. As for n0, one should
disregard the region of small n0 in Figure 4 since the equations of continuum mechanics in the form
adopted in the model become invalid when there are too few bubbles. This is because one can no longer
assume that every fluid particle contains its own bubble (as suggested by (6)) because this would imply
that the fluid particles are no longer small and, hence, the continuum mechanics description fails.
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Figure 6. The decay rate by formula (44) for variant (b), k∗ = 0.25 m−1.
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Figure 7. The decay rate by formulas (44) and (46) for variant (b). Left: n0 varies,
R0 = 5× 10−5. Right: R0 varies, n0 = 4× 108.

Figure 5 compares the dispersion curves of the wave with the bubbles and the wave without the bubbles.
The dashed line describes the case without the bubbles and the solid lines correspond to the wave with
the bubbles. The figure on the left is for varying n0 and fixed R0; the figure on the right is for varying R0

and fixed n0. The decay rate depends on the number and radius of the bubbles. We note that this result
agrees with the conception discussed in [Strunin 2014; Strunin and Ali 2016] about the passive nature
of the freely propagating elastic wave. Similar results are obtained for variants (b) and (c) as shown in
Figures 6–9.

For a different k∗ = 0.52 m−1 [Beresnev and Nikolaevskiy 1993], the results are similar; see Figures
10 and 11.

6. Conclusions

We studied the effect of rheology with and without gas bubbles and of the bubble dynamics on the
dissipation of elastic waves in porous solids. The Frenkel–Biot waves of P1 type are analyzed in the
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Figure 8. The decay rate by formula (44) for variant (c), k∗ = 0.25 m−1.
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Figure 11. The decay rate by formulas (44) and (46) for variant (a). Left: n0 varies,
R0 = 5× 10−5. Right: R0 varies, n0 = 4× 108.

fluid-saturated environment. Using the three-segment rheological scheme (with the bubbles) and two-
segment scheme (without the bubbles), we derived the Nikolaevskiy-type equations for the velocity of
the solid matrix. The linearized versions of the equations are compared in terms of the decay rate λ(k)
of the Fourier modes. For the both cases — with and without the bubbles — the λ(k)-curve lies entirely
below the zero. We found out that |λ(k)| increases with the increase of the radius of the bubbles but
decreases with the increase of the number of the bubbles.

List of symbols

β(s) : compressibility of solid (Pa−1) Mi : masses (kg/m)
β(L) : compressibility of water and gas (Pa−1) kb : bulk modulus (Pa)
ρ
(s)
0 : density of solid (kg/m3) p : pressure (Pa)

ρ
(L)
0 : density of water (kg/m3) σ (e f ) : effective stress (Pa)
ρ
(g)
0 : density of gas (kg/m3) φ : volume gas content
R0 : bubble radius (m) m : porosity
ε : small parameter ζ : adiabatic exponent

n0 : number of bubbles (m−3) k : wave number (m−1)
µ : viscosity (Pa·s) c : wave velocity (m/s)
` : permeability (m2) v : particle velocity (m/s)

Ei : elastic moduli (Pa) λ : decay rate (s−1)

Appendix A

Using equations (19), we collect the linear terms ∼ ε in system (5):

−(1−m0)ρ
(s)
0 c

∂v1

∂ξ
=
∂σ

(e f )
1

∂ξ
− (1−m0)

∂p1

∂ξ
,

−m0ρ
( f )
0 c

∂u1

∂ξ
=−m0

∂p1

∂ξ
,
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ρ
(s)
0 c

∂m1

∂ξ
− (1−m0)c

∂ρ
(s)
1

∂ξ
+ (1−m0)ρ

(s)
0
∂v1

∂ξ
=−

1
2(1−m0)

∂ρ
(s)
0

∂τ
,

−m0c
∂ρ

( f )
1

∂ξ
− ρ

( f )
0 c

∂m1

∂ξ
+m0ρ

( f )
0
∂u1

∂ξ
=−

1
2 m0

∂ρ
( f )
0

∂τ
. (47)

The system (47) gives the integrals

(1−m0)ρ
(s)
0 cv1 =−σ

(e f )
1 + (1−m0)p1, m0ρ

( f )
0 cu1 = m0 p1,

(1−m0)ρ
(s)
0 v1 = ((1−m0)ρ

(s)
1 − ρ

(s)
0 m1)c, m0ρ

( f )
0 u1 = (ρ

( f )
0 m1+m0ρ

( f )
1 )c. (48)

According to (7) and (10) the terms ∼ ε in the density series are

ρ
(s)
1 = ρ

(s)
0

(
β(s) p1−

β(s)σ
(e f )
1

(1−m0)

)
, ρ

( f )
1 = ρ

(L)
0 (β(L)κ1 p1− 4πn0κ2 R3

0 R1), (49)

and also

ρ
( f )
0 = κ1κ2ρ

(L)
0 , (50)

where

κ1 = 1− 4π
3 R3

0n0, κ2 = 1+β(L) p.

Inserting (49) and (50) into the last two equations in (48) (mass equations), we get

(1−m0)v1 = [(1−m0)β
(s) p1−β

(s)σ
(e f )
1 −m1]c, (51)

m0u1 =

[
m1+

m0β
(L) p1

κ2
−

4πn0m0 R3
0 R1

κ1

]
c. (52)

The combination of (51) and (52) gives

(1−m0)v1+m0u1 =

[
(β + (1−m0)β

(s)β(L) p0)p1

κ2
−β(s)σ

(e f )
1 −

4πn0m0 R3
0 R1

κ1

]
c, (53)

where β = (1−m0)β
(s)
+m0β

(L).
The condition (15) means v1 = u1, therefore (53) becomes

v1 =

[
(β + (1−m0)β

(s)β(L) p0)p1

κ2
−β(s)σ

(e f )
1 −

4πn0m0 R3
0 R1

κ1

]
c. (54)

Due to the conditions v1 = u1, ρ0 = (1−m0)ρ
(s)
0 +m0ρ

(L)
0 and using (50), the first two of the momentum

equations (48) give

ρ0cv1 =−σ
(e f )
1 + Ap1, (55)

where

A = (1−m0)+
m0

κ1κ2
.
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Now, the linear terms ∼ ε in relations (14) and (18) give

1
2
∂e0

∂τ
− c

∂e1

∂ξ
+ v1

∂e0

∂ξ
=
∂v1

∂ξ
, (56)

σ
(e f )
1 − E2e1−β

(s)kb p1 = T, (57)

where

T ≡ η
[ ∑

q=1,2,3,5

aq(−c)qεq−1 ∂
qe0

∂ξq +
∑

q=1,3

bqcqεq−1 ∂
qσ

(e f )
0

∂ξq

]
.

The linear terms ∼ ε in the bubble (6) give

−
µc

ρ
(L)
0 κ2

[
4
R0
+

m0 R0

`

]
∂R0

∂ξ
=−

1

ρ
(L)
0 κ2

(p0χR1+ p1). (58)

Equations (56), (57), and (58) lead to the integrals

e1 =−
v1

c
, σ

(e f )
1 = E2e1+β

(s)kb p1, p1 =−p0χR1. (59)

The effective stress σ (e f )
1 in (59) can be rewritten as

σ
(e f )
1 =−

[
E2v1

c
+ p0χβ

(s)kb R1

]
. (60)

Substituting (60) and the value of p1 from (59) into (54) leads to

(1−β(s)E2)v1+ (B− kbβ
(s)β(s))p0χR1c = 0, (61)

where

B =
(β + (1−m0)β

(s)β(L) p0)

κ2
+

4πn0m0 R3
0

κ1 p0χ
.

Now, from (55) and using the value of p1 from (59), we obtain the effective stress as

σ
(e f )
1 =−(ρ0cv1+ A)p0χR1. (62)

The combination of (60) and (62) results in

(E2− ρ0c2)v1− (A− kbβ
(s))p0χR1c = 0. (63)

Appendix B

Collecting the quadratic terms ∼ ε2 in (18), we get

σ
(e f )
2 − E2e2−β

(s)kb p2 = T, (64)

where

T ≡ η
[ ∑

q=1,2,3,5

aq(−c)qεq−1 ∂
qe1

∂ξq +
∑

q=1,3

bqcqεq−1 ∂
qσ

(e f )
1

∂ξq

]
.
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Note that here we keep (as Nikolaevskiy [2008] did) the higher powers of ε to represent small corrections
to the leading terms. These corrections will eventually translate into small corrections in the derived
Nikolaevskiy equation further in this paper; they will be the object of our study. Thus,

∂σ
(e f )
2

∂ξ
− E2

∂e2

∂ξ
−β(s)kb

∂p2

∂ξ
=
∂T
∂ξ
. (65)

From (14) in the order ∼ ε2, we get

∂

∂ξ
(ce2+ v2)= F, F =−1

c

(
1
2
∂v1

∂τ
+
∂v1v1

∂ξ

)
. (66)

Therefore,
∂e2

∂ξ
=

F
c
−

1
c
∂v2

∂ξ
. (67)

Substituting (67) into (65) we obtain

∂

∂ξ
(cσ (e f )

2 + E2v2− cβ(s)kb p2)= E2 F + c∂T
∂ξ
. (68)

From the momentum equations (5) for the solid and liquid, we get

(1−m0)ρ
(s)
0 c

∂v2

∂ξ
+
∂σ

(e f )
2

∂ξ
− (1−m0)

∂p2

∂ξ
=61, (69)

where

61 = (1−m0)ρ
(s)
0

(
1
2
∂v1

∂τ
+
∂v1v1

∂ξ

)
− (1−m0)ρ

(s)
1 c

∂v1

∂ξ
+m1ρ

(s)
0 c

∂v1

∂ξ
−m1

∂p1

∂ξ
+ εγ−1δm0v1

and
m0ρ

( f )
0 c

∂u2

∂ξ
−m0

∂p2

∂ξ
=62, (70)

where

62 = m0ρ
( f )
0

(
1
2
∂u1

∂τ
+
∂u1u1

∂ξ

)
−m0ρ

( f )
1 c

∂u1

∂ξ
−m1ρ

( f )
0 c

∂u1

∂ξ
+m1

∂p1

∂ξ
− εγ−1δm0u1.

Due to the condition (15), the combination of (69) with (70) gives

ρ0c
∂v2

∂ξ
+
∂σ

(e f )
2

∂ξ
−
∂p2

∂ξ
=6, (71)

where 6 =61+62, so that

6 = ρ0

(
1
2
∂v1

∂τ
+
∂v1v1

∂ξ

)
− c((1−m0)ρ

(s)
0 β(s)+m0ρ

(L)
0 β(L)κ1)

∂p1v1

∂ξ

+ cρ(s)0 β(s)
∂σ

(e f )
1 v1

∂ξ
+ cρ(L)0 4πn0m0κ2 R3

0
∂R1v1

∂ξ
+ c(ρ(s)0 − κ1κ2ρ

(L)
0 )

∂m1v1

∂ξ
.

Equations (68) and (71) result in

∂

∂ξ
[(E2− ρ0c2)v2+ (1−β(s)kb)cp2] = E2 F − c6+ c∂T

∂ξ
. (72)
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From the bubble equation (6), in the order ∼ ε2,

−µc

ρ
(L)
0 κ2

(
4+

m0 R2
0

`

)
∂R1

∂ξ
=

1

ρ
(L)
0 κ2

[
β(L) p0χ

κ2
p1 R1+

β(L)

κ2
p2

1 +
p0χ(χ + 1)

2
R2

1 − p0χR2− p2

]
. (73)

We rewrite (73) as
p2 = 0− p0χR2, (74)

where

0 = µc
(

4+
m0 R2

0

`

)
∂R1

∂ξ
+
β(L) p1

κ2
(p0χR1+ p1)+

1
2 p0χ(χ + 1)R2

1 .

Now we substitute the value of p2 from (74) into (72) to get

∂

∂ξ
[(E2− ρ0c2)v2− (1−β(s)kb)p0χR2c] = E2 F − c6+ c∂T

∂ξ
− c(1−β(s)kb)

∂0

∂ξ
. (75)

In the second order, the mass balances (5) for the solid and liquid-gas mixture have the form

∂

∂ξ
((1−m0)v2− [(1−m0)β

(s) p2−β
(s)σ

(e f )
2 −m2]c)=3(s)/ρ

(s)
0 , (76)

∂

∂ξ

(
m0u2−

[
m2+

m0β
(L) p2

κ2
−

4πm0n0 R3
0(R2+ R2

1)

κ1
+

4πm0n0 R3
0 p0χβ

(L)R2
1

κ1κ2

]
c
)
=
3(L)

ρ
(L)
0

, (77)

where

3(s) = ρ
(s)
0

1
2
∂

∂τ
[(m1− (1−m0)β

(s) p1+β
(s)σ

(e f )
1 )]

+ ρ
(s)
0
∂

∂ξ

[
m1v1− ((1−m0)p1+ σ

(e f )
1 )β(s)v1− cβ(s)m1

(
p1−

σ
(e f )
1

(1−m0)

)]
, (78)

3(L) =−ρ
(L)
0

1
2
∂

∂τ
[κ1(m1κ2+m0β

(L) p1)− 4πn0κ2 R3
0 R1]

+ ρ
(L)
0

∂

∂ξ
[(β(L)κ1 p1− 4πn0κ2 R3

0 R1)(cm1−m0u1)] − κ1κ2ρ
(L)
0
∂m1u1

∂ξ
. (79)

The combination of (76) and (77) gives

∂

∂ξ

[
v2−

(
(β + (1−m0)β

(s)β(L) p0)p2

κ2
−β(s)σ

(e f )
2

−
4πm0n0 R3

0(R2+ R2
1)

κ1
+

4πm0n0 R3
0 p0χβ

(L)R2
1

κ1κ2

)
c
]
=3, (80)

where
3≡3(s)/ρ

(s)
0 +3

(L)/ρ
(L)
0 .

From (68) we have

∂σ
(e f )
2

∂ξ
=
∂

∂ξ

(
T + kbβ

(s)0− kbβ
(s) p0χR2−

E2

c
v2

)
+

1
c

E2 F. (81)
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Now we insert (81) and the value of p2 represented by (74) into (80),

∂

∂ξ

[
(1− E2β

(s))v2−

(
ω1 p0χ −

4πm0n0 R3
0

κ1

)
R2c

]
=3−β(s)E2 F − cβ(s) ∂T

∂ξ
− cω1

∂0

∂ξ
+ cω2

∂R2
1

∂ξ
, (82)

where

ω1 = kbβ
(s)β(s)+

β + (1−m0)β
(s)β(L) p0

κ2
, ω2 =

4πm0n0 R3
0β

(L) p0χ

κ1κ2
−

4πm0n0 R3
0

κ1
.

Appendix C

Equation (26) can be illustrated by the following simple example

v1+ cR1 = 0, 2v1+ 4R1 = 0.

A nonzero solution of the system exists only if c= 2 (the eigenvalue of the problem). Here v1 and R1 are
analogous to the first approximation from our main text. The second approximation, v2 and R2, satisfies
the system

v2+ cR2 = f [v1], 2v2+ 4R2 = g[v1],

which is solvable only if the right-hand sides satisfy the condition g[v1] = 2 f [v1]. This solvability
condition is the analogy to the Nikolaevskiy-type equation that we aim to derive.

Appendix D

The first approximations for the momentum and mass-balance equations without gas bubbles are the
same as for the system (5). As for the density equations, the solid density remains unchanged but for
gas-liquid mixture we neglect the volume gas content φ in (9):

ρ( f )
= ρ(L) = ρ

(L)
0 (1+β(L) p). (83)

The first approximation of (83) is
ρ
(L)
1 = ρ

(L)
0 β(L) p1. (84)

Inserting this into the mass equation for the fluid (48), we get

m0u1 = [m1+m0β
(L) p1]c. (85)

Now, the combination of (51) and (85) yields

(1−m0)v1+ n0u1 = [(1−m0)β
(s) p1−β

(s)σ
(e f )
1 +m0β

(L) p1]c. (86)

Due to the condition (15), Equation (86) becomes

v1 = [(1−m0)β
(s) p1−β

(s)σ
(e f )
1 +m0β

(L) p1]c. (87)
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After we apply the conditions

v1 = u1, ρ0 = (1−m0)ρ
(s)
0 +m0ρ

(L)
0 ,

the first two equations in (48) give
ρ0cv1 =−σ

(e f )
1 + p1. (88)

The first approximation of relation (32) is

σ
(e f )
1 − E2e1−β

(s)kb p1 =

3∑
q=1

aq(−c)qεq−1 ∂
qe0

∂ξq + b1c
∂σ

(e f )
0

∂ξ
. (89)

Equations (89) and (56) result in the integral

σ
e f
1 =−

E2v1

c
+β(s)kb p1. (90)

Substituting (90) into (87), we get

(1−β(s)E2)v1 = c(1−m0)β
(s) p1+ cm0β

(L) p1−β
(s)β(s)kbcp1. (91)

As β = (1−m0)β
(s)
+m0β

(L), (91) becomes

(1−β(s)E2)v1 = (β −β
(s)β(s)kb)cp1. (92)

From (88) we obtain
σ
(e f )
1 = p1− ρ0cv1. (93)

Therefore, the combination of (93) with (90) yields

(ρ0c2
− E2)v1 = (1−β(s)kb)cp1. (94)

Appendix E

In the second approximation for the system without the bubbles we again arrive at an equation of the
form (72), except the formulas for 6 and T are changed:

∂

∂ξ
[(E2− ρ0c2)v2+ (1−β(s)kb)cp2] = E2 F − c6+ c∂T

∂ξ
, (95)

where

6 = ρ0

(
1
2
∂v1

∂τ
+
∂v1v1

∂ξ

)
− cρ0β

∂p1v1

∂ξ
+ cρ(s)0 β(s)

∂σ
(e f )
1 v1

∂ξ
+ c(ρ(s)0 − ρ

(L)
0 )

∂m1v1

∂ξ
,

T =
3∑

q=1

aq(−c)qεq−1 ∂
qe1

∂ξq + b1c
∂σ

(e f )
1

∂ξ
.

The second approximation of the mass balance for the solid is the same as (76), while for the fluid it
takes the form

∂

∂ξ
[m0u2− (m2+m0β

(L) p2)c] =3(L)/ρ
(L)
0 , (96)
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where

3(L) =− 1
2ρ

(L)
0

∂

∂τ
[m1+m0β

(L) p1] + ρ
(L)
0

∂

∂ξ
[cm1β

(L) p1−m0β
(L) p1u1−m1u1].

The combination of (76) and (96) results in

∂

∂ξ
[v2− (βp2−β

(s)σ
(e f )
2 )c] =3, (97)

where
3= (3(s)/ρ

(s)
0 )+ (3(L)/ρ

(L)
0 ).

From (68) we find
∂σ

(e f )
2

∂ξ
=
∂

∂ξ

(
T + kbβ

(s) p2−
E2

c
v2

)
+

1
c

E2 F. (98)

Substituting (98) into (97) we get

∂

∂ξ
[(1− E2β

(s))v2− (β −β
(s)β(s))cp2] =3−β

(s)E2 F − cβ(s) ∂T
∂ξ
. (99)
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