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SOME GENERAL THEOREMS FOR LOCAL GRADIENT THEORY OF
ELECTROTHERMOELASTIC DIELECTRICS

OLHA HRYTSYNA AND HALYNA MOROZ

Using the basic equations of local gradient theory of electrothermoelastic nonferromagnetic polarized
solids, which accounts for the local mass displacement and its effect on mechanical, thermal and electro-
magnetic fields, the governing set of equations is obtained for a linear approximation. On this basis, the
coupled initial-boundary-value problems corresponding to this gradient-type theory are formulated. The
reciprocity and uniqueness theorems for non-stationary problems of the local gradient electrothermoe-
lasticity are proved.

1. Introduction

As a result of the rapid development of nanotechnologies, the past several decades have been marked
by significant scientific attention to the construction of nonlocal theories of the deformation of solids.
At a continuous level, such theories account for the long-range effects and the impact of a material’s
microstructure on its macro-properties. Nonlocal theories have allowed for the description of a range
of experimentally-observed phenomena [Liu et al. 2006; Nam et al. 2006; Nysten et al. 2005; Kumikov
and Khokonov 1983] that cannot be duly explained by the classical (local) theories. Within the scope
of a continuous description, gradient-type theories of dielectrics are constructed by introducing into the
space of constitutive parameters of internal variables, or gradients of the strain, polarization, electric
field [Hadjigeorgiou et al. 1999; Nowacki 1983; Kafadar 1971; Kalpakidis et al. 1995; Kalpakidis and
Agiasofitou 2002; Maugin 1979; 1988; Mindlin 1972; Sahin and Dost 1988; Yang 2006; Yan and Jiang
2007].

In 1987, Burak proposed a new continuum-thermodynamic approach to the construction of a non-
local theory of the deformation of thermoelastic solids, which consisted in accounting for local mass
displacement and its impact on the mechanical and heat fields in the model description [Burak 1987].
In doing so, he linked the local mass displacement to changes in the material structure of a fixed small
element of the body. By employing this approach, articles [Burak et al. 2007; 2008] present the founda-
tions of a gradient-type theory of the deformation of electrothermo-elastic nonferromagnetic polarized
solids. The mentioned theory is grounded on accounting for the local mass displacement and its effect
to mechanical, heat, and electromagnetic fields [Burak et al. 2007; 2008; Kondrat and Hrytsyna 2008;
2012]. The developed theory was called a local gradient theory of dielectrics. This theory enabled us to
explain theoretically some observed phenomena, namely, the near-surface and size phenomena [Burak
et al. 2007; 2008], high-frequency dispersion of longitudinal elastic waves [Kondrat and Hrytsyna 2010],
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Mead’s anomaly [Chapla et al. 2009], piezoelectric effect in high symmetry crystalline dielectrics [Hryt-
syna 2012], the existence of anti-plane shear surface SH waves in homogeneous isotropic half-space
[Hrytsyna 2017] etc. Note that the above phenomena are not accounted for in the classical theory of
dielectrics.

The objective of the proposed paper is to state the boundary value problems of the local gradient theory
of dielectrics and to prove the Reciprocity Theorem and the Uniqueness Theorem for the coupled linear
problems of this theory. To this end, Section 2 presents a nonlinear complete set of relations of the said
theory. Basing on these relations, Section 3 obtains a linearized governing set of equations and shows the
possibility of its division into two subsystems of differential equations that can be solved consecutively.
Boundary conditions for local gradient theory of dielectrics are presented in Section 4. Section 5 and
Section 6 present and prove the Uniqueness and Reciprocity Theorems for linear local gradient theory
of electrothermoelastic nonferromagnetic dielectrics.

2. Basic preliminaries

In this Section, we briefly present the basic ideas and equations that describe the coupled fields in the
framework of a local gradient theory of electrothermoelastic nonferromagnetic dielectrics, according to
Burak et al. [Burak et al. 2007; 2008; Kondrat and Hrytsyna 2008].

We consider a thermoelastic polarized solid body occupying a finite domain (V ) bounded by a smooth
boundary (6). The body is subjected to an action of external forces, thermal and electromagnetic loads.
As a result the mechanical, heat, and electromagnetic processes are occurring within a body, potentially
followed by changes in the material structure of a fixed small element of the body. Such changes in
structure can be observed, for instance, in the near-surface regions of newly-created surfaces. They
are caused by a violation of the atom force balance in these regions. In a local gradient theory of
electrothermoelastic nonferromagnetic dielectrics, the said changes in material structure are described by
mass fluxes Jms of a non-diffusive and non-convective nature [Burak et al. 2007; 2008]. The mentioned
changes in material structure are further related to the process of the local mass displacement.

Burak and co-workers [Burak et al. 2007; 2008] use the Cauchy stress tensor σ̂ and strain tensor ê
to describe the mechanical fields, as well as the density of the heat flux Jq , the absolute temperature T ,
and the entropy S to describe the process of heat conductivity. They characterize the electromagnetic
field by the vectors of electric D and magnetic B inductions, electric E and magnetic H fields, and
the polarization vector 5e. They introduce the vector of local mass displacement 5m , the density of
the induced mass ρmπ = −∇ ·5m , as well as the potential µπ to describe the process of local mass
displacement [Burak et al. 2008]. Here ∇ is the Hamilton operator; the dot denotes the scalar product.
Note that the potential µπ is defined as an energy measure of the effect of the local mass displacement
on internal energy [Burak et al. 2008].

The result of accounting in the model description for the local mass displacement and its coupling to
the mechanical, heat, and electromagnetic fields is a modification of the Gibbs equation. Along with the
generally-accepted in classic electrothermoelasticity pairs of conjugate parameters of state (stress and
strain tensors, temperature and entropy, polarization and electric field), the generalized Gibbs equation
contains two additional pairs of parameters. The modified chemical potential µ′π = µπ −µ and specific
density of induced mass comprise one pair of the parameters of state, while the specific vector of local



GENERAL THEOREMS FOR LOCAL GRADIENT THEORY OF ELECTROTHERMOELASTIC DIELECTRICS 27

mass displacement πm =5m/ρ and the gradient of the modified chemical potential ∇µ′π comprise the
other. Here, µ is chemical potential. Thus, within the scope of the developed theory, the Gibbs equation
takes the following form [Burak et al. 2008]:

d f = 1
ρ
σ̂ ∗ : d ê− sdT −π e · d E∗+µ′πdρm +πm · d∇µ′π . (1)

Here, ρ is the mass density, s = S/ρ, π e =5e/ρ, f is the free energy, E∗ = E+v× B, v is the velocity
vector, and the symbol “×” denotes the vector product.

The consequence of accounting for the processes of polarization and the local mass displacement is
the modification of the stress tensor, which is now defined by the formula σ̂ ∗ = σ̂ −ρ[π e · E∗+ρmµ

′
π −

πm ·∇µ
′
π ] Î , where Î is the unit tensor.

Using the differential 1-forms (1) for the generalized theory of dielectrics, we obtain the following
constitutive equations:

σ̂ ∗ = ρ
∂ f
∂ ê
, s =−

∂ f
∂T
, π e =−

∂ f
∂E∗

, µ′π =
∂ f
∂ρm

, πm =
∂ f

∂(∇µ′π )
. (2)

The set of relations of local gradient electrothermomechanics of dielectrics includes the nonlocal
constitutive equations (2), as well as the balance equations of mass, induced mass, and induced electric
charge

∂ρ

∂t
+∇ · (ρv)= 0, (3)

∂ρmπ

∂t
+∇ · Jms = 0, (4)

∂ρeπ

∂t
+∇ · Jes = 0, (5)

the momentum equation and the entropy balance equation

ρ
dv
dt
=∇ · σ̂ ∗+ Fe+ ρ(F+ F′

∗
), (6)

T ∂S
∂t
=−∇ · Jq +

1
T

Jq ·∇T − T ∇ · (Sv)+ Tσs + ρR, (7)

the Maxwell equations and the conservation law of induced electric charges

∇ × E =−∂B
∂t
, ∇× H = Je+ ε0

∂E
∂t
+
∂5e

∂t
, ∇ · B = 0, ∇ · D = ρe, (8)

∂ρe

∂t
+∇ · Je = 0, (9)

the constitutive relations

B = µ0 H, D = ε0 E+5e, (10)

Jq = Jq

(
−

∇T
T 2 ,

E∗
T

)
, Je∗ = Je∗

(
−

∇T
T 2 ,

E∗
T

)
, (11)
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the geometric relations

v =
du
dt
, ê= 1

2 [∇⊗ u+ (∇⊗ u)T ], (12)

the relations for additional mass force F′
∗

and ponderomotive force Fe

F′
∗
= ρm∇µ′π − (∇⊗∇µ′π ) ·πm, (13)

Fe = ρe E∗+
[

Je∗ +
∂(ρπ e)

∂t

]
× B+ ρ(∇⊗ E∗) ·π e, (14)

the expression for the entropy production

σs =−Jq ·
∇T
T 2 + Je∗ ·

E∗
T
, (15)

the formulae

Jms =
∂5m

∂t
, Jes =

∂5e

∂t
, (16)

and a corresponding series for the free energy f = f (ê, T, E∗, ρm,∇µ
′
π ).

Here t denotes the time variable, u is the displacement vector, F is the mass force, σs is the entropy
production per unit of volume and time, R denotes the distributed thermal sources, Jms is the density
of non-convective and non-diffusive mass flux, ρe denotes the density of free electric charges, ρeπ =

−∇ ·5e is the density of induced electric charge, Je is the density of the electric current (convection
and conduction currents), Jes is the polarization current, ε0 and µ0 are electric and magnetic constants,
Je∗ = Je− ρev, ⊗ is the dyadic product, an upper index T denotes a transposed tensor, and (d. . ./dt)=
(∂. . ./∂t)+ v ·∇. . . .

In comparison to the classical theory of elasticity, Burak [1987] introduced into the space of con-
stitutive parameters one additional pair of conjugate constitutive parameters, namely, the vector of the
local mass displacement 5m and the gradient of the chemical potential ∇µ. Note that according to
the generalized Gibbs equations (1), the set of conjugate variables for the thermoelastic dielectrics is
complemented by two additional pairs of variables (µ′π , ρm) and (πm,∇µ

′
π ), related to the local mass

displacement. The equation of motion (6) takes into account the additional stresses

σ̂
′

∗
=−ρ(ρmµ

′

π −πm · ∇µ
′

π ) Î

and nonlinear mass force F′ (see formula (13)), induced within the body by the local mass displacement.
In general, the set of equations (2)–(16) is nonlinear. The number of equations in this set can be

reduced by substituting the geometric (12) and physical relations (2), (10), and (11), as well as the
expression for the entropy production (15) into the Maxwell equations (8) and the balance equations
(3)–(7), and (9).

Below we present a governing set of equations for a linear approximation. To this end, we should write
the constitutive equations (2) and the kinetic equations (11) in the explicit form. For isotropic materials,
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we obtain [Burak et al. 2008]:

σ̂ ∗ = 2G ê+
[(

K − 2
3

G
)

e− K (αT θ +αρρm)
]

Î (17a)

s = so+
GV

To
θ +

KαT

ρo
e+βTρ ρm, (17b)

µ′π = µ
′

πo+ dρ ρm −βTρ θ −
Kαρ
ρo

e, (17c)

π e = χE E−χEm∇µ′π , (17d)

πm =−χm∇µ′π +χEm E, (17e)

Jq =−λ∇θ +πt Je, Je = σe E− η∇θ, (18)

where, K , G, αT , αρ , CV , βTρ , dρ , χE , χm , χEm , λ, σe, πt , and η are the material characteristics, e= ê : Î ,
θ = T − To, To, so, and µ′πo are the temperature, entropy and modified chemical potential µ′π in the
reference state. Here, the reference state is considered to be an infinite medium without any disturbances
of fields, that is, ê= 0, σ̂ ∗= 0, E∗= 0, π e = 0, πm = 0, ∇µ′π = 0, T = To, s = so, ρm = 0, and µ′π =µ

′
πo.

3. Governing equations

Note that within the framework of a linear approximation, we have the following formula for the specific
density of induced mass

ρm =−∇ ·πm . (19)

Substituting the formulas (10), (12), (16)–(19) into the balance equations (4), (6), (7) and the Maxwell
equations (8), we obtain the following governing set of linearized equations to determine the functions
u, θ , µ̃′π = µ

′
π −µ

′
µo, E, and B:

ρo
∂2u
∂t2 =

(
K̄ + 1

3
G
)
∇(∇ · u)+G1u− K ᾱT ∇θ − K

αρ

dρ
∇µ̃′π + ρo F, (20)

ρoCV
∂θ

∂t
+ K ToᾱT

∂(∇ · u)
∂t

+ ρoTo
βTρ

dρ

∂µ̃′π

∂t
= (λ+πtη)1θ − σe πt∇ · E+ ρoR, (21)

1µ̃′µ− λ
2
µµ̃
′

π = λ
2
µ

(
K
αρ

ρo
∇ · u+βTρθ

)
+
χEm

χm
∇ · E, (22)

∇× E =−∂B
∂t
, ∇× B = µ0σe E−µ0η∇θ + εµ0

∂

∂t
(E− κE∇µ̃′π ), (23)

∇ · B = 0, ∇ · E− κE1µ̃
′

π =
ρe

ε
. (24)

Here, 1 is the Laplacian, and coefficients K , ᾱT , CV , ε, and κE are defined by the formulae

K = K −
K 2α2

ρ

ρodρ
, ᾱT = αT +βTρ

αρ

dρ
, CV = CV + To

β2
Tρ

dρ
,

λµ =
∣∣√dρχm

∣∣−1
, ε = ε0+ ρoχE , κE = ρoχEm/ε.

(25)
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The parameter l∗ = 1/λµ is a material constant, with the dimension of length, and is a characteristic
length for near-surface phenomena [Burak et al. 2008]. The appearance of such a constant is related to
the consideration in the material model of the local mass displacement. Such a parameter is absent in
the classical theory, based on local constitutive relations. The characteristic length l∗ may be determined
by experiment methods (for example, the electron diffraction measurements), by methods of discrete
analysis or the theory of crystal lattice dynamics, etc. Using the methods of lattice dynamics, Mindlin
[1972] and Maugin [1988] showed that the characteristic length is the magnitude of the order of distance
between the nearest atoms (for example, for Sodium chloride l∗ = 0.73 · 10−10 m and for Potassium
chloride l∗ = 0.93 · 10−10 m [Mindlin 1972]).

Note that the ponderomotive force is absent in the momentum equation (20), as is Joule heat in the
heat conduction equation (21). This is because in the chosen reference state the ponderomotive force
and Joule heat are nonlinear functions of the perturbation of fields. We can see that compared to the
classical theory of electrothermoelastic dielectrics, as a result of accounting for the process of the local
mass displacement, an additional equation (22) appears in the governing set of equations. Another
consequence of accounting for local mass displacement is a modification of the equation of motion (20),
heat conduction (21), and electrodynamics (23)–(24), which now also contain addends related to the local
mass displacement. The consideration of the impact of the gradient of modified chemical potential in
the motion equation (20) may be quantitatively interpreted as the emergence of an additional mass force
within the body, proportional to ∇µ̃′π , while in the equation of heat conduction it may be interpreted as
the emergence of a source of heat in the body of the power −ρoTo(βTρ/dρ)(∂µ̃

′
π/∂t).

Note that the governing set of equations (20)–(24) can be easily divided into two unrelated subsys-
tems, eliminating the electric field from the second and third equations of this set. Indeed, using the
relations (24), equations (21) and (22) can be presented as follows:

ρoCV
∂θ

∂t
+ K ToᾱT

∂(∇ · u)
∂t

+ ρoTo
βTρ

dρ

∂µ̃′π

∂t
= (λ+πtη)1θ − σeπtκE

(
1µ̃′π +

ρe

ρoχEm

)
+ ρoR, (26)

1µ̃′π − λ
2
µE µ̃

′

π = λ
2
µE

(
K
αρ

ρo
∇ · u+βTρθ

)
+ λ2

µEχEm dρ
ρe

ε
. (27)

Here, λ2
µE = λ

2
µ(1− κE χEm/χm)

−1.
Now the formulated problem can be solved consecutively. To determine the functions u, θ , and µ̃′π ,

we use the related set of equations (20), (26), and (27). The vectors of the electromagnetic field are
derived from the equations (23) and (24), where the functions u, θ , and µ̃′π are known.

For ideal dielectrics, the governing set of equations above is simplified and looks as follows:

ρo
∂2u
∂t2 =

(
K + 1

3
G
)
∇(∇ · u)+G1u− K ᾱT ∇θ − K

αρ

dρ
∇µ̃′π + ρo F, (28)

ρoCV
∂θ

∂t
+ To K ᾱT

∂(∇ · u)
∂t

+ ρoTo
βTρ

dρ

∂µ̃′π

∂t
= λ1θ + ρoR, (29)

1µ̃′π − λ
2
µE µ̃

′

π = λ
2
µE

(
K
αρ

ρo
∇ · u+βTρθ

)
, (30)

∇× E =−∂B
∂t
, ∇ · B = εµ0−

∂

∂t
(E− κE∇µ̃′π ), (31)



GENERAL THEOREMS FOR LOCAL GRADIENT THEORY OF ELECTROTHERMOELASTIC DIELECTRICS 31

∇ · B = 0, ∇ · E− κE1µ̃
′

π = 0. (32)

4. Boundary conditions

To complete the problems of the local gradient electrothermoelasticity, the boundary (or jump) conditions
and initial conditions must be adjoined to the derived set of differential equations. These conditions
ensure the uniqueness of the solution of the formulated problem. We proceed to specifying them below.

We assume the polarized solid is subjected to the following boundary conditions:

• mechanical conditions (displacement or traction (force per unit area) are prescribed):

u = ua or σ̂ ∗ · n= σa, (33)

• thermal boundary conditions (temperature, normal heat flux or condition of convective heat ex-
change are prescribed):

T = Ta or Jq · n= Jqa, or Jq · n− H∗(T − Tc)= 0, (34)

• condition for local mass displacement:

µ′π = µ
′

πa, (35)

• electromagnetic boundary conditions are written as a prescribing of a tangential components of
vectors of electric and magnetic fields:

E× n= Ea, H × n= Ha. (36)

In the relations (33)–(36): n is the outward unit normal to the smooth boundary (6); ua , σ a , Ea , Ha , Jqa ,
Ta , and µ′πa are given on the surface (6) values of the displacement vector, of traction, of the electric
and magnetic fields, of the normal component of heat flux, of temperature, and of the modified chemical
potential µ′π ; H∗ is a heat transfer coefficient from the surface and is the surrounding environment
temperature.

In some cases, certain conditions for the body surface can be formulated as boundary, while others —
as jump conditions. Indeed, let the body be in contact with a vacuum or an environment with similar
properties. In this case, mechanical conditions may be formulated as displacement (kinematic) boundary
conditions (if displacements are known on the body surface) or traction boundary conditions (corre-
sponding to a traction-free surface). Thermal boundary conditions should correspond to the prescription
of the surface temperature (if we can control it) or the flux from the surface. Now, the equality between
the potential µ′π and zero is a condition for the local mass displacement. Since the perturbation of the
electrothermomechanical processes within the body will cause the radiation of the electromagnetic field
into the vacuum, the electromagnetic conditions on the body surface should be formulated as contact con-
ditions. Therefore, the Maxwell equations in a vacuum (domain (Vv)) need to be added to the governing
set of equations:

∇× Ev =−
∂Bv
∂t

, ∇× Hv =
∂Dv

∂t
, ∇ · Bv = 0, ∇ · Dv = 0, (37)

Dv = ε0 Ev, Bv = µ0 Hv, (38)
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where Ev, Hv, Dv, and Bv are the electric and magnetic fields, and inductions in vacuum.
The jump conditions take the following form

(E− Ev)× n= 0, (H − Hv)× n= is + ρesvs, (39)

(D− Dv) · n=−ρes, (B− Bv) · n= 0. (40)

Here, ρes and is are the surface densities of electric charges and current; vs is a tangent component of
velocity to the body surface.

To solve non-stationary problems, it is necessary to write the corresponding initial conditions. We
write them as follows

u = u0,
∂u
∂t
= v0, θ = 0, µ̃′π = 0, E = E0, B = B0, at t = 0. (41)

Note that in conditions (41) it is assumed that the initial time corresponds to the reference equilibrium
state of the thermodynamic system.

The coupled initial-boundary-value problem is to determine the displacement vector u(r, t), tempera-
ture change θ(r, t), modified chemical potential µ̃′π (r, t), electric field E(r, t) and magnetic induction
B(r, t) of C (2) in the medium, governed by the equations (28)–(32) and subject to the boundary con-
ditions (33)–(35), jump conditions (39), (40), and initial conditions (41). We define the electric field
Eν(r, t) and magnetic induction Bν(r, t) in a vacuum using the equations (37) and (38).

5. Uniqueness theorem

As shown above, the set of differential equations for local gradient electrothermoelasticity can be divided
into two uncoupled subsystems. In view of this, we study the conditions of uniqueness of the solution
to the corresponding problems in mathematical physics in two stages: separately for the equations of
motion (20), heat conduction (26) and modified chemical potential (27), and separately for the equations
of electrodynamics (31) and (32).

Theorem 1. For a domain (V ) bounded by a smooth surface (6), and positive G, K− 2
3 G−K 2α2

ρ/(ρodρ),
CV , dρ , χm , and H∗ there is no more than one set of functions u(r, t), θ(r, t), and µ̃′π (r, t) that

• ∀r ∈ (V )∪ (6) : (u, θ, µ̃′π ) ∈ C (2);

• ∀r ∈ (V ) satisfies the set of differential equations (28)–(30);

• ∀r ∈ (V ) ∪ (6) satisfies the strain-displacement relation (12)2, the constitutive equations (17)
and (18)1;

• satisfies the boundary and initial conditions:

σ̂ ∗ · n= σ a, Jq · n− H∗(θ − θc)= 0, µ̃′π = µ
′

πa, ∀r ∈ (6),

u = u0,
∂u
∂t
= v0, θ = 0, µ̃′π = 0, at t = 0.

Proof. For the linear problems, the material time derivative is equal to Eulerian time derivative. Then,
using the Gibbs equation (1) and the Legendre transformation u = f + T s+ E∗ ·π e−∇µ′π ·πm , for the
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specific internal energy u, we can write

ρo
∂u
∂t
= ρoTo

∂s
∂t
+ ρoµ

′

πo
∂ρm

∂t
+ σ̂ ∗ :

∂ ê
∂t
+ ρoθ

∂s
∂t
+ ρoµ̃

′

π

∂ρm

∂t
− ρo∇µ̃

′

π ·
∂πm

∂t
. (42)

We substitute the constitutive equations (17) into nonlinear summands of the relation (42). After some
transformations, we obtain:

ρo
∂u
∂t
= ρoTo

∂s
∂t
+ρoµ

′

π0
∂ρm

∂t

+
1
2
∂

∂t

[(
K− 2

3
G
)

I 2
1 +2G I2+ρo

CV

To
θ2
+
ρo

dρ
(µ̃′π )

2
+ρoχm∇µ̃′π ·∇µ̃

′

π+2ρo
βTρ

dρ
θµ̃′π

]
. (43)

The proof of the theorem will be based on the energy balance equation, which for the model of the
thermoelastic solid has the form [Kondrat and Hrytsyna 2009]

∂

∂t

∫
(V )
ρo

(
u+ 1

2
v2
)

dV =
∫
(V )
ρo(F · v+R) dV −

∮
(6)

(
Jq − σ̂ ∗ · v+µ

′

π

∂5m

∂t

)
· n d6.

Hence, making use of the expression (43), formula (19), kinetic equation (18)1, entropy balance equa-
tion (7) and divergence theorem, we can write

∂E∗

∂t
=

∫
(V )

(
ρo F·v+ρoR

θ

T
−Toσs

)
dV+

∮
(6)

[
σ n ·v−

H∗
T
θ2
+
θ

T

(
λ
∂θ

∂n
+H∗θ

)
−ρoµ̃

′

π

∂πmn

∂t

]
d6. (44)

Here, (∂θ/∂n)=∇θ · n, πmn = πm · n, and

E∗ =
1
2

∫
(V )

[
ρov

2
+

(
K − 2

3
G
)

I 2
1 + 2G I2+ ρo

CV

To
θ2
+ ρoχm(∇µ̃

′

π )
2
+
ρo

dρ
(µ̃′π +βTρθ)

2
]

dV . (45)

The energy balance (44) makes it possible to prove the uniqueness of the solution.
We assume that two distinct solutions u1(r, t), θ1(r, t), µ̃′π1(r, t) and u2(r, t), θ2(r, t), µ̃′π2(r, t)

satisfy the equations (28)–(30) and the appropriate boundary and initial conditions. Their difference
u = u1− u2, θ = θ1− θ2, and µ̃′π = µ̃

′

π1− µ̃
′

π2 therefore satisfies the homogeneous equations (28)–(30)
and the homogeneous boundary and initial conditions:

∀r ∈ (6) : σ̂ ∗ · n= 0, λ
∂θ

∂n
+ H∗θ = 0, µ̃′π = 0, (46)

u = 0, ∂u
∂t
= 0, θ = 0, µ̃′π = 0, at t = 0. (47)

In view of the homogeneity of the equations and boundary conditions (46), from the equation of energy
balance (44) we obtain

∂E∗

∂t
=−

∫
(V )

Toσs dV −
∮
(6)

H∗
T
θ2 d6.

Because σs ≥ 0 and (H∗/T )≥ 0, the following inequality should hold

∂E∗

∂t
≤ 0. (48)
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The difference of solutions satisfies the zero initial conditions, and, therefore E∗ equals zero at the initial
moment of time. Thus, from inequality (48) it follows that the function E∗ is either negative or zero:
E∗≤0. On the other hand, according to (45) we have that E∗>0 since G, K−(2/3)G−(K 2α2

ρ/ρodρ), CV ,
dρ , and χm are positive-definite. The above two inequalities can be fulfilled only if E∗ = 0. Consequently,
taking into account the formula (45), we can write∫

(V )

[
ρov

2
+

(
K − 2

3
G
)

I 2
1 + 2G I2+ ρo

CV

To
θ2
+ ρoχm(∇µ̃

′

π )
2
+
ρo

dρ
(µ̃′π +βTρθ)

2
]

dV = 0.

Since K − (2/3)G− (K 2α2
ρ/ρodρ) > 0, G > 0, CV > 0, dρ > 0, and χm > 0 and the relation in brackets

is positive-definite, from last formula we get: v = 0, ê = 0, θ = 0, µ̃′π = 0, and ∇µ̃′π = 0. Using the
constitutive equation (17), we also obtain that ρm = 0 and πm = 0. So: u1 = u2, θ1 = θ2, and µ̃′π1 = µ̃

′

π2.
Therefore the coupled initial-boundary-value problem of local gradient thermoelasticity has only one
solution, which is what we set out to demonstrate. �

Theorem 2. If ε0, µ0, χE , σe are positive and the functions u(r, t), θ(r, t), and µ̃′π (r, t) are known, then
for the body domain (V ) and vacuum (Vν), separated by a smooth surface (6), there is not more than
one set of functions (E, H, Eν, Hν), such that

• ∀r ∈ (V )∪ (6) and ∀rν ∈ (Vν)∪ (6) : (E, H, Eν, Hν) ∈ C (2);

• ∀r ∈ (V ) satisfy the differential equations (8) and ∀rν ∈ (Vν) satisfy the equation (37), respectively;

• ∀r ∈ (V ) ∪ (6) satisfy the constitutive relations (10), (17d) and the kinetic equation (18)2, and
∀rν ∈ (Vν)∪ (6) satisfy the constitutive relations (38), respectively;

• ∀r, rν ∈ (6) fulfils the jump conditions (39) and the initial conditions

E = E0, H = H0, Eν = E0
ν , Hν = H0

ν , at t = 0.

Proof. Suppose that the two sets of fields (E1, H1, Eν1, Hν1) and (E2, H2, Eν2, Hν2) solve the above
problem. The difference fields E = E1 − E2, H = H1 − H2, Eν = Eν1 − Eν2, and Hν = H1ν − H2ν

satisfy the relations (8), (37), the trivial initial conditions, the constitutive relations (10), (38), as well as

5e = ρoχE E, (49)

and the kinetic equation

Je = σe E. (50)

These functions satisfy the following energy balance equations for the electromagnetic field [Burak et al.
2008]:

∂Ue

∂t
+∇ · Se+

(
Je+

∂5e

∂t

)
· E = 0, (51)

∂Ueν

∂t
+∇ · Seν = 0, (52)
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where

Ue =
1
2
(ε0 E2

+µ0 H2), Se = E× H, (53)

Ueν =
1
2
(ε0 E2

ν +µ0 H2
ν ), Seν = Eν × Hν . (54)

Substituting the formulae (53), (49), and (50) into (51), after some manipulations we obtain

1
2
∂

∂t
(εE2

+µ0 H2)+∇ · (E× H)+ σe E · E = 0.

Here, ε is defined by the formula (25)1. By integrating the obtained expression over the region (V ), and
using the divergence theorem, we obtain

1
2

∫
(V )

∂

∂t
(εE2

+µ0 H2) dV =−
∫
(6)

(E× H) · n d6− σe

∫
(V )

E2 dV . (55)

Substituting the formula (54) into the equation (52) and integrating the obtained result over the do-
main (Vν), we obtain

1
2

∫
(Vν)

∂

∂t
(ε0 E2

ν +µ0 H2
ν ) dV =

∫
(6)

(Eν × Hν) · n d6. (56)

Combining the expressions (55) and (56), we find that

∂U t
e

∂t
=−

∫
(6)

[(E× H)− (Eν × Hν)] · n d6− σe

∫
(V )

E2 dV, (57)

where

U t
e =

1
2

[∫
(V )
(εE2

+µ0 H2) dV +
∫
(Vν)
(ε0 E2

ν +µ0 H2
ν ) dV

]
≥ 0. (58)

In view of the jump conditions (39), we can write the expression (57) as follows

∂U t
e

∂t
=−

∫
(6)

Es · is d6− σe

∫
(V )

E2 dV .

Since is = σe Es , where Es is the tangential component of vector of the electric field, we have

∂U t
e

∂t
=−σe

∫
(6)

E2
s d6− σe

∫
(V )

E2 dV . (59)

From the formula (59) it follows that (∂U t
e/∂t)≤ 0, since σe is positive. Thus, U t

e is either a decreasing
function, or a constant. Since at the initial time t = 0 the functions E, H , Eν , Hν satisfy the trivial initial
conditions, then the function U t

e is equal to zero at the initial moment in time. Hence U t
e ≤ 0. At the

same time, as follows from (58), the function U t
e is positive definite or equal to zero: U t

e ≥ 0. The last
two inequalities hold only if U t

e = 0. Thus

U t
e =

1
2

[∫
(V )
(εE2

+µ0 H2) dV +
∫
(Vν)
(ε0 E2

ν +µ0 H2
ν ) dV

]
= 0.
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Since ε0 > 0, µ0 > 0, ε = ε0 + ρoχE > 0, from above equation we obtain that E = E1 − E2 = 0,
H = H1−H2= 0, Eν = Eν1− Eν2= 0, and Hν = H1ν−H2ν = 0. Thus E1= E2, H1= H2, Eν1= Eν2,
and H1ν = H2ν , which is what had to be proved. This completes the proof. �

6. Reciprocal theorem

We consider two different stress-strain states of dielectric solid, caused by two sets of external loading,
namely, the mass force F∗ and F′

∗
; the thermal sources R and R′; the surface loadings σ ∗ and σ ′

∗
on

the surface (6σ ); the displacements u and u′ on the surface (6u); the surface electric charges 5e · n
and 5′e · n on the surface (6p); the electric potentials ϕe and ϕ′e on the surface (6ϕ); the disturbance
of the temperature θ and θ ′ on the surface (6θ ); the heat fluxes Jq and J ′q on the surface (6J ); the
vectors of local mass displacement πm and π ′m on the surface (6π ) and the potentials µ̃′π and (µ̃′π )

′ on
the surface (6µ). Here, (6σ )∪ (6u) = (6), (6σ )∩ (6u) = ∅, (6θ )∪ (6J ) = (6), (6θ )∩ (6J ) = ∅,
(6ϕ) ∪ (6p) = (6), (6ϕ) ∩ (6p) = ∅, (6π ) ∪ (6µ) = (6), (6π ) ∩ (6µ) = ∅. The consequence of
such an external action is the two states of the body, which we can be described by the stress tensors σ̂ ∗,
σ̂
′

∗
and strain tensors ê, ê′, by disturbances of temperature θ , and θ ′ specific entropies s, s ′, by specific

densities of induced mass ρm , ρ ′m and modified potentials µ̃′π , (µ̃′π )
′, by the specific vectors of local

mass displacement πm , π ′m and gradients of potentials ∇µ̃′π , (∇µ̃′π )
′, as well as by the specific vectors

of polarization π e, π ′e and the electric fields E, E′ correspondingly.
We apply a one-sided Laplace transform

L[ f (r, t)] = f L(r, ζ )=
∫
∞

0
f (r, t) e−ζ t dt,

to the equations of the local gradient theory of dielectrics that are provided in Section 2. Here, f (r, t)=
{σ̂ ∗, ê, F∗, u, B, E, D, H,π e,πm, θ, µ

′
π , ρm,R}, and ζ is a parameter of the Laplace transform.

Assume that all initial conditions for the perturbation of functions are equal to zero. For the considered
two systems of external loads, applying a Laplace transform to the linearized momentum equation (6),
we obtain

∇ · σ̂
L
∗
+ ρo FL

∗
= ρoζ

2uL , (60)

∇ · σ̂
′L
∗
+ ρo F′L

∗
= ρoζ

2u′L . (61)

Multiplying the equations (60) and (61) by the displacement vectors u′L and uL , respectively, taking a
difference between the obtained relations and integrating the result over the body volume (V ), we obtain
the following formula:∫

(V )

[
(∇ · σ̂

L
∗
) · u′L + ρo FL

∗
· u′L − (∇ · σ̂ ′L

∗
) · uL

− ρo F′L
∗
· uL] dV = 0. (62)

Making use of the relations

(∇ · σ̂
L
∗
) · u′L =∇ · (σ̂

L
∗
· u′L)− σ̂ L

∗
:∇u′L , (∇ · σ̂

′L
∗
) · uL

=∇ · (σ̂
′L
∗
· uL)− σ̂

′L
∗
:∇uL ,
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the formula (12)2 and the divergence theorem, from the integral equation (62), we arrive at∫
(6)

(
σ L
∗
· u′L − σ ′L

∗
· uL) d6+

∫
(V )
ρo
(
FL
∗
· u′L − F′L

∗
· uL) dV =

∫
(V )

(
σ̂

L
∗
: ê′L − σ̂ ′L

∗
: êL) dV .

Here σ L
∗
= σ̂

L
∗
· n, and σ ′L

∗
= σ̂

′L
∗
· n.

Substituting the constitutive equation (17a) into the right-hand side of the obtained equation leads to
the following result:∫

(6)

(
σ L
∗
· u′L − σ ′L

∗
· uL) d6+

∫
(V )
ρo
(
FL
∗
· u′L − F′L

∗
· uL) dV

= KαT

∫
(V )
(θ ′LeL

− θ Le′L) dV − Kαρ

∫
(V )

(
ρL

me′L − ρ ′Lm eL) dV . (63)

Let us return to the equation of entropy balance (7). Making use of constitutive equations (17b)
and (18)1, from this equation in linear approximation we obtain the following heat equation for ideal
dielectrics

ρoCV
∂θ

∂t
= λ1θ − To KαT

∂e
∂t
− ρoToβTρ

∂ρm

∂t
+ ρoR. (64)

Applying a Laplace transform to the equation (64), for two systems of external loads, we can write

ρoCV ζθ
L
= λ1θ L

− To KαT ζeL
− ρoToβTρζρ

L
m + ρoR

L , (65)

ρoCV ζθ
′L
= λ1θ ′L − To KαT ζe′L − ρoToβTρζρ

′L
m + ρoR

′L . (66)

Multiplying the equations (65) and (66) by the functions θ ′L and θ L , respectively, taking a difference
between the obtained expressions and integrating the result over the region (V ), eventually we find that

λ

∫
(V )
(θ ′L1θ L

− θ L1θ ′L) dV − To KαT ζ

∫
(V )
(θ ′LeL

− θ Le′L) dV

−ρoToβTρζ

∫
(V )

(
θ ′LρL

m − θ
Lρ ′Lm

)
dV + ρo

∫
(V )
(θ ′LRL

− θ LR′L) dV = 0.

In the first integral of the formula obtained above, we take into account the following expressions:
θ ′L1θ L

− θ L1θ ′L =∇ · (θ ′L∇θ L
− θ L∇θ ′L). Making use the divergence theorem, we can rewrite this

relation as follows

λ

ζTo

∫
(6)

(θ ′L∇θ L
− θ L

∇θ ′L) · n d6− KαT

∫
(V )
(θ ′LeL

− θ Le′L) dV

− ρoβTρ

∫
(V )

(
θ ′LρL

m − θ
Lρ ′Lm

)
dV +

ρo

ζTo

∫
(V )
(θ ′LRL

− θ LR′L) dV = 0. (67)

We restrict ourselves to considering a quasi-static electric field and assume that: E =−∇ϕe. In view
of constitutive equation (10)2, applying a Laplace transform to the equation (8)4, we obtain

−ε0∇
2ϕL

e +∇ ·5L
e = 0, −ε0∇

2ϕ′Le +∇ ·5′Le = 0. (68)
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We multiply these equations by the functions ϕ′Le and ϕL
e . Proceeding in a similar manner, we obtain

−ε0

∫
(V )

[
∇ · (∇ϕL

e ) ϕ
′L
e −∇ · (∇ϕ′Le ) ϕ

L
e
]

dV =
∫
(V )

[
(∇ ·5L

e ) ϕ
′L
e − (∇ ·5

′L
e ) ϕ

L
e
]

dV . (69)

Further, we take into account the following expressions

∇ · (∇ϕL
e ) ϕ

′L
e −∇ · (∇ϕ′Le ) ϕ

L
e =∇ ·

[
(∇ϕL

e ) ϕ
′L
e
]
−∇ ·

[
(∇ϕ′Le ) ϕ

L
e
]
,

(∇ ·5L
e ) ϕ

′L
e − (∇ ·5

′L
e ) ϕ

L
e =∇ · (5L

e ϕ
′L
e )−∇ · (5′Le ϕ

L
e )+5

′L
e · (∇ϕ

L
e )−5

L
e · (∇ϕ

′L
e ).

(70)

In view of the relations (70) and the divergence theorem, the equation (69) may be written as follows:∫
(6)

(ϕ′Le DL
−ϕL

e D′L) · n d6 =
∫
(V )
(5L

e ·∇ϕ
′L
e −5

′L
e ·∇ϕ

L
e ) dV . (71)

Combining the equations (63), (67), and (71) yields∫
(6)

[
σ L
∗
· u′L − σ ′L

∗
· uL
+ (ϕ′Le DL

−ϕL
e D′L) · n

]
d6

−
λ

ζTo

∫
(6)

(θ ′L∇θ L
− θ L

∇θ ′L) · n d6

+ ρo

∫
(V )
(FL
∗
· u′L − F′L

∗
· uL) dV −

ρo

ζTo

∫
(V )
(θ ′LRL

− θ LR′L) dV

=

∫
(V )
[5L

e ·∇ϕ
′L
−5′Le ·∇ϕ

L
] dV

−

∫
(V )

[
Kαρ(ρL

me′L − ρ ′Lm eL)+ ρoβTρ (θ
′LρL

m − θ
Lρ ′Lm )

]
dV . (72)

We simplify the integrand in the right-hand side of the equation (72). First, we transform the integrand
in the last line of this equation. Using the constitutive relation (17c) we obtain the following formulae

KαρeL
=−ρoµ̃

′L
π + ρodρρL

m − ρoβTρθ
L , Kαρe′L =−ρo(µ̃

′

π )
′L
+ ρodρρ ′Lm − ρoβTρθ

′L . (73)

Substituting the expressions (73) into the integrand, we can write

Kαρ
(
ρL

me′L − ρ ′Lm eL)
+ ρoβTρ

(
θ ′LρL

m − θ
Lρ ′Lm

)
= ρo

[
ρ ′Lm µ̃

′L
π − ρ

L
m(µ̃

′

π )
′L]. (74)

In view of the constitutive relations (17), it can be shown that the following expression are true for a
quasi-static electric field

5L
e ·∇ϕ

′L
e −5

′L
e ·∇ϕ

L
e = ρo

[
(∇µ̃′π )

L
·π ′Lm − (∇µ̃

′

π )
′L
·π L

m
]
. (75)

Using the constitutive relations (74) and (75), as well as the formula (19), we transform the right-hand
side of the equation (72) to obtain∫

(V )

[
5L

e ·∇ϕ
′L
e −5

′L
e ·∇ϕ

L
e − Kαρ

(
ρL

me′L − ρ ′Lm eL)
+ ρoβTρ

(
θ ′LρL

m − θ
Lρ ′Lm

)]
dV

=−ρo

∫
(V )

∇ ·
[
π L

m(µ̃
′

π )
′L
−π ′Lm µ̃

′L
π

]
dV . (76)
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Finally, substituting the expression (76) into (72) and taking into account the divergence theorem, we
obtain the generalized reciprocity theorem in the transformed domain:

ζTo

{∫
(6)

[
σ L
∗
· u′L − σ ′L

∗
· uL
+ (ϕ′Le DL

−ϕL
e D′L) · n

+ ρo
(
π L

m(µ̃
′

π )
′L
−π ′Lm µ̃

′L
π

)
· n
]

d6+ ρo

∫
(V )
(FL
∗
· u′L − F′L

∗
· uL) dV

}
+ λ

∫
(6)

(θ L
∇θ ′L − θ ′L∇θ L) · n d6+ ρo

∫
(V )
(θ LR′L − θ ′LRL) dV = 0.

Inverting the Laplace transform yields the reciprocity theorem in the desired form

To

{∫
(6)

[
σ ∗� u′− σ ′

∗
� u+ϕ′e© (D · n)−ϕe© (D′ · n)

+ ρo(πm · n)© (µ̃′π )
′
− ρo(π

′

m · n)© µ̃′π
]

d6+ ρo

∫
(V )
(F∗� u′− F′

∗
� u) dV

}
+ λ

∫
(6)

[
θ ∗ (∇θ ′ · n)− θ ′ ∗ (∇θ · n)

]
d6+ ρo

∫
(V )
(θ ∗R′− θ ′ ∗R) dV = 0. (77)

Here we use the following notation to indicate the time convolutions:

f � g =
∫ t

0
f (r, t − τ) ·

∂ g(r, t)
∂τ

dτ,

f © g =
∫ t

0
f (r, t − τ)

∂g(r, τ )
∂τ

dτ,

f ∗ g =
∫ t

0
f (r, t − τ) g(r, τ ) dτ.

The equation (77) corresponds to the reciprocity theorem generalized to non-stationary problems of
the linear theory of local gradient electrothermoelasticity. It is worth noting that the occurrence of
convolutions ρo(πm · n)� (µ̃′π )′ and ρo(π

′
m · n)� µ̃′π in (77) is caused by the accounting for local

mass displacement. In the absence of the local mass displacement effects, the equation (77) reduces to
the reciprocity relation of the classical thermopiezoelectricity obtained by Nowacki [1965; 1983].

For stationary processes, the equations (77) simplifies to the following form∫
(6)

{
σ ∗ · u′− σ ′∗ · u+ (ϕ

′

e D−ϕe D′) · n+ ρo
[
(µ̃′π )

′πm − µ̃
′

ππ
′

m
]
· n
}

d6

+ ρo

∫
(V )

[
F∗ · n′− F′

∗
· u+βTρ (ρ

′

mθ − ρmθ
′)+

KαT

ρo
(e′θ − eθ ′)

]
dV = 0. (78)

7. Conclusion

The paper presents a complete set of equations of a continuum-type local gradient model of electrothermo-
elastic nonferromagnetic solid dielectrics that accounts for the processes of deformation, heat conduction,
polarization, and local mass displacement. A governing set of equations and the corresponding boundary
conditions are obtained at a linear approximation. It is shown that this set of equations can be divided
into two subsets that can be solved consecutively. This allows us to investigate the uniqueness of the
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solution to the stated linear boundary problems in mathematical physics in two stages: (i) by proving the
uniqueness of solution to the problem for a thermoelastic continuum, which accounts for the relationship
between thermomechanic processes and the local mass displacement, and (ii) by proving the uniqueness
of solution to Maxwell equations with the corresponding jump conditions. Using Laplace transforms,
the reciprocity theorem is extended to the linear boundary-value problems of local gradient theory of
electrothermoelastic dielectrics. This theorem may be used in the development of analytical methods of
computation of the stress-strain state of nonferromagnetic polarized bodies, accounting for the process
of local mass displacement.
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