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EFFECT OF SURFACE ELASTICITY
ON STRESS INTENSITY FACTORS

NEAR MODE-III CRACK TIPS

XIAN-FANG LI

This paper studies a nanoscale mode-III crack in a homogeneous isotropic material. Classical elasticity,
incorporating surface elasticity, is applied to solve a mixed boundary value problem. An emphasis is
placed on the influence of surface elasticity on the stress intensity factors. Using the Fourier trans-
form, the problem is reduced to a hypersingular integro-differential equation, then to a singular integro-
differential equation with Cauchy kernel or a weakly singular integral equation with logarithmic kernel
of the second kind. Using the Galerkin method, a solution of the resulting singular integro-differential
equation is determined through expanding the out-of-plane displacement jump across crack faces as a
series of Chebyshev polynomials. The influences of surface material properties on the stress intensity
factor are examined and displayed graphically. For most materials, the surface effect decreases the stress
intensity factors and enhances the effective fracture toughness of most nanoscale materials with a crack.

1. Introduction

With the development of nano/micro-techniques in recent years, the mechanical behavior of small scale
materials and structures is quite significant for better understanding structural integrity, reliability, and
stability. In particular, some defects such as dislocations, grain boundaries, cracks, holes, etc., inevitably
appear in these structures because of fabrication techniques. It is well recognized that for nano/micro-
scale materials and structures, in addition to macro bulk materials, small scale parameters play a crucial
role in affecting mechanical properties. For example, as a key elastic property, Young’s modulus of
carbon nanotubes and graphene are measured to reach 1 TPa or more [Wong et al. 1997; Lee et al. 2008],
much larger than that for conventional materials. Fracture of graphene has been analyzed and commented
[Zhang et al. 2014; 2015]. A prevailing point of view is that taking into account large specific surface
area for a nano/micro-material, surface effects including surface elasticity and surface residual tension
should be included in assessing the overall material properties [Sharma and Ganti 2004; Duan et al.
2005], although they are negligible as compared to those for macro bulk materials. In this field, Gurtin
and Murdoch (GM) [Gurtin and Murdoch 1975; Gurtin et al. 1998] first introduced surface/interface
elasticity along with surface residual stress to extend the classical theory of elasticity. Based on surface
elasticity theory, Ru [2010] put forward a simple geometrical explanation of the GM surface elasticity
theory and gave several simplified surface constitutive relations. Consideration of surface properties
strongly affects static and dynamic response of nanoscale materials and structures [Wu et al. 2017; Chen
et al. 2017; Xiao and Li 2018].
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Based on the GM model, Dingreville et al. [2005] exploited the surface free energy to describe its effect
on the elastic behavior of nanomaterials and derived an overall prediction of the material properties for
an elastic bulk material with nanosized particles, wires, and films. By means of the complex potential
method, based on the GM model, Mogilevskaya et al. [2008] studied the interaction of elastic fields
of multiple circular nanoinhomogeneities or/and nanopores in a two-dimensional elastic medium. Wu
[1999] solved the effect of surface stresses on deformation of an elliptical hole and found the surface
stress to change stress intensity factors. Wang et al. [2008] examined the surface effects on the crack-tip
stresses for both mode-I and mode-III cracks and found that when the curvature radius of a blunt crack
front decreases to nanometers, surface energy strongly affects the stress intensities near the crack tip.
For a mode-II nanoscale crack, Fu et al. [2008] gave a similar analysis. Using a double cantilever beam
model, Wang et al. [2013] addressed the influence of surface residual tension on stress intensity factors
at the crack tips. Nan and Wang [2012] analyzed that effect of crack face residual stress on the fracture
of nanoscale materials. Yang et al. [2018] established a thin plate model with surface effect to simulate
the growth of a nanoscale penny-shaped crack and derived an accurate expression for calculating size-
dependent energy release rates. In a review paper, Duan et al. [2009] commented some progress of the
classical theory of elasticity incorporating the GM model of surface elasticity. On the other hand, the fun-
damental solution of a concentrated force at the surface of a half-plane or half-space with consideration
of surface stresses as well as surface elasticity has been obtained [Wang and Feng 2007; Gao et al. 2013;
2014], and this solution can be used to treat a class of contact problems related to surface elasticity.
Hu et al. [Hu et al. 2018; Hu and Li 2018] solved mode-I and II crack and rigid inclusion problems
for a thin-film with surface effect and derived a closed-form solution of surface properties-dependent
stress intensity factors or stress singularity coefficients. Utilizing the complex potential method, Kim
et al. [2009; 2011a; 2011b; 2011c] investigated the effects of surface elasticity for a classical mode-III
crack embedded in a linearly elastic material or bimaterial and further extended their results to mode-I
and mode-II (interface) cracks for plane deformation. They found that surface elasticity leads to the
disappearance of singular stresses near the crack tip. On the contrary, Walton [Walton 2012; Kim et al.
2013] also examined the tip-field singularity of a crack and found a logarithmic singularity of stresses
near the crack tip when surface elasticity of the crack faces is considered. The influence of the surface
effect on the stress intensity factors for a nanoscale crack has been analyzed for a bridged crack and
an arc-shaped crack by Wang and Schiavone [2016] and Wang [2015], who found a weak logarithmic
singularity outside the crack and a strong square root singularity on the crack faces.

In this paper, we analyze the stress field near the crack tip for a nanoscale crack embedded in an elastic
medium with surface elasticity. First, a routine approach via the Fourier integral transform technique is
employed to reduce the problem to a singular integro-differential equation. By use of the Galerkin
method, we construct an approximate solution. Obtained results show that surface properties affect the
stress intensity factors. Numerical results illustrate the strong influence of surface material parameters
on stress intensity factors for nano/microscale cracks. Finally, some conclusions are drawn.

2. Statement of the problem

For a homogeneous isotropic linear bulk material, the stress-strain relations are governed by [Lurie and
Belyaev 2005]

σi j = λεllδi j + 2µεi j , (1)
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Figure 1. Schematic of a cracked medium with surface effect under remote antiplane
shear loading.

where λ and µ are the Lamé constants, σi j is the Cauchy stress tensor, and εi j is the strain tensor. For
a homogeneous isotropic surface material, the surface stress-strain relations read as follows [Gurtin and
Murdoch 1975]:

σ s
αβ = σ0δαβ + (λ

s
+ σ0)ε

s
γ γ δαβ + 2(µs

− σ0)ε
s
αβ + σ0us

α,β, (2)

σ s
α3 = σ0us

3,α, (3)

where λs and µs are the surface Lamé constants independent of the surface residual stress, σ0 is the
surface residual stress under unconstrained conditions, σ s

α j are the Piola–Kirchhoff surface stresses, εs
αβ

are the surface strains, and uα are the elastic displacement components. In the above, δi j or δαβ is the
Kronecker delta, Latin subscripts i, j, l take values from 1 to 3, and Greek subscripts α, β, γ range from
1 to 2, a comma in the subscript denotes differentiation with respect to the spatial variable following the
comma, and the Einstein convention of summation over repeated lower-case indices has been used.

In this paper a cracked material subjected to antiplane shear loading is studied, as shown in Figure 1
For convenience, a tunnel crack of length 2a is assumed to be located at the x-axis, i.e., |x |< a. In other
words, in the present study we consider a nanoscale mode-III crack in plane strain state. Since antiplane
shear loading is applied, there is only a unique out-of-plane displacement component, denoted as w and
other displacement components along the x- and y-axes vanish. With w, the constitutive equation (1) for
bulk material becomes

σxz = µ
∂w

∂x
, σyz = µ

∂w

∂y
, (4)
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where µ denotes shear modulus of the material. Inserting the above constitutive equations for bulk
material into the equilibrium equation

∂σxz

∂x
+
∂σyz

∂y
= 0 (5)

yields the following governing equation:

∂2w

∂x2 +
∂2w

∂y2 = 0. (6)

For a nanoscale mode-III crack embedded in a material, due to the presence of the crack, surface
elasticity at the crack faces affects the mechanical behavior of a cracked material. To model a nanoscale
crack, we adopt the surface elasticity formulated originally by Gurtin and Murdoch [1975]. Namely, the
surface stresses of the crack faces satisfy the surface constitutive equations (2) and (3). They along with
the bulk stresses satisfy the following equilibrium equations at the crack faces:

[[σi j n j ei ]] + σ
s
αβ,βeα = 0, (7)

[[σi j ni n j ]] = καβσ
s
αβ, (8)

where α, β = 1, 3, καβ denotes the curvature tensor of surface, ei is the unit vector component along the
xi direction, and [[∗]] = (∗)+− (∗)− stands for the jump of a quantity across the surface film. For the
present problem under consideration, the above equilibrium equations (7) and (8) reduce to

∂σ s
xx

∂x
+
∂σ s

zx

∂z
+ [[σyx ]] = 0, (9)

∂σ s
xz

∂x
+
∂σ s

zz

∂z
+ [[σyz]] = 0, (10)

[[σyy]] = −σ0

(
∂2v

∂x2 +
∂2v

∂z2

)
, (11)

where v is the elastic displacement component along the y-axis. Only the out-of-plane displacement
exists for an antiplane shear problem, and other displacement components are nil. Thus, using the
surface stress-strain relation (2) with α = 1, β = 3 or

σ s
xz = (µ

s
− σ0)

∂w

∂x
, (12)

where µs is the surface shear modulus, σ0 is the surface residual stress, and the surface displacement is
assumed to be identical to that for the bulk displacement at a local position. From (9)–(11) we obtain

(µs
− σ0)

∂2w

∂x2 + [[σyz]] = 0. (13)

Finally, when applied loading at the crack faces is given, (13) can be rewritten as

σ±yz(x, 0)= q(x)∓ (µs
− σ0)

∂2w(x, 0)
∂x2 , |x |< a, (14)

where q(x) is the prescribed loading at the crack faces. It represents the negative of applied antiplane
shear loading without crack. Two typical cases are respectively analyzed in what follows. Case A
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corresponds to an even loading qe(x) such as constant loading −τ0, which is equivalent to the application
of a remote constant loading, and Case B corresponds to an odd loading qo(x) such as −τ0x/a, which
is equivalent to the application of a torque around the y-axis.

3. Derivation of singular integro-differential equation

This section is devoted to the derivation of singular integro-differential equation for the problem in
question. To this end, we employ the Fourier transform technique to achieve our purpose. In addition to
the boundary condition at the crack faces, we need to provide the boundary condition at the crack-free
portion in the x-axis, i.e.,

w(x, 0)= 0, |x |> a. (15)

3.1. Case A. First the case of an even function loading qe(x) with respect to x is studied. Using the
Fourier transform, we find that the out-of-plane displacement in the upper half-plane can be chosen as

w(x, y)= 2
π

∫
∞

0
A(ξ) exp(−ξ y) cos(ξ x) dξ, y ≥ 0, (16)

where A(ξ) is an unknown function in ξ to be determined from the boundary conditions. Due to the
symmetry of the problem, it is sufficient to determine the elastic field in the upper half-plane, and that
in the lower half-plane can be directly written by symmetry. Plugging the expression (16) for the out-
of-plane displacement into the constitutive relations (4) leads to an integral representation for the bulk
stress components:

σxz(x, y)=−2µ
π

∫
∞

0
ξ A(ξ) exp(−ξ y) sin(ξ x) dξ, (17)

σyz(x, y)=−2µ
π

∫
∞

0
ξ A(ξ) exp(−ξ y) cos(ξ x) dξ. (18)

In order to derive a singular integro-differential equation, we define the so-called continuous screw
dislocation pile-up or out-of-plane displacement jump across the crack faces as 2g(x), i.e.,

g(x)= w(x, 0). (19)

Obviously, making use of the condition (15), one performs the Fourier cosine transform to (16) as y = 0.
Thus we can express A(ξ) in terms of g(x) through the following integral:

A(ξ)=
∫ a

0
g(s) cos(ξs) ds. (20)

Next, inserting (20) into (18) for y = 0 leads to

σyz(x, 0)=−2µ
π

∫ a

0
g(s) ds

∫
∞

0
ξ cos(ξs) cos(ξ x) dξ. (21)

Recalling the well-known integral identity∫
∞

0
ξ cos(ξ x) cos(ξs) dξ =−1

2

[
1

(s+ x)2
+

1
(s− x)2

]
, (22)
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we have

σyz(x, 0)= µ
π

∫ a

0
g(s)

[
1

(s+ x)2
+

1
(s− x)2

]
ds. (23)

Considering that g(x) is an even function, we immediately obtain∫ a

0

g(s)
(s+ x)2

ds =
∫ 0

−a

g(s)
(s− x)2

ds, (24)

and the stress (23) at the upper crack face is then rewritten as

σyz(x, 0)= µ
π

∫ a

−a

g(s)
(s− x)2

ds. (25)

Now we substitute (25) into the remaining boundary condition (14) at the upper crack face and get
the following hypersingular integro-differential equation:

µ

π

∫ a

−a

g(s)
(s− x)2

ds+ (µs
− σ0)g′′(x)= qe(x), |x |< a, (26)

where the double prime denotes second-order derivative with respect to x , and qe(x) is a prescribed even
function. Due to the kernel 1/(s − x)2 having singularity of order 2, such a strongly singular integral
equation with another differential term is called hypersingular integro-differential equation. Here, hyper-
singular integral is understood in the sense of Hadamard finite-part integral [Kaya and Erdogan 1987].
In fact, hypersingular integral equations have been widely used to tackle the classical crack problems
[Ioakimidis 1982; Chan et al. 2003; Li 2003; Li et al. 2013]. In the above, besides the hypersingular
integral term, the last term of the left-hand side of (26) is related to surface elasticity and it reflects the
contribution of surface effect. Evidently, if neglecting the term related to g′′(x), the hypersingular integral
equation for the classical mode-III crack is recovered. It is mentioned that if denoting g′(x)= η(x), owing
to g(±a)= 0 we perform integration by parts and get∫ a

−a

g(s)
(s− x)2

ds =
∫ a

−a

η(s)
s− x

ds. (27)

Thus the above equation (26) is equivalent to the following singular integro-differential equation:

(µs
− σ0)η

′(x)+ µ
π

∫ a

−a

η(s)
s− x

ds = qe(x), (28)

identical to that obtained by Kim et al. [2009], who employed the complex variable method to derive
the singular integro-differential equation (28) for a mode-III crack in an infinite elastic medium with
surface elasticity. It is readily found that the unknown function η(x) corresponds to the strain component
physically. Strictly speaking, the behavior of η(±a) is not obvious. In fact, it is the condition η(±a)= 0
that gives rise to no singularity occurring near the crack tips [Walton 2012; Kim et al. 2013]. Instead,
for the unknown function g(x) that stands for the displacement jump, the requirement of g(±a) = 0
is evident, which implies the single-value condition at the crack tips. As a consequence, although the
singular integro-differential equation (28) is identical in form to that derived in [Kim et al. 2009], the
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physical meaning of the unknown functions involved is completely different. A further simplification to
(26) is achieved by integrating both sides of (26):

µ

π

∫ a

−a

g(s)
s−x

ds+ (µs
− σ0)g′(x)=

∫ x

0
qe(s) ds, |x |< a, (29)

where a vanishing integration constant has been used since g′(x) and
∫ a
−a g(s)/(s− x) ds are both odd

functions with respect to x . Thus we have derived a singular integro-differential equation (29) for the
out-of-plane displacement at the upper crack face g(x), rather than its derivative η(x).

3.2. Case B. In this subsection, we turn our attention to the case of antisymmetric odd loading qo(x).
To treat this case, it is convenient to replace the out-of-plane displacement (16) by the following Fourier
integral

w(x, y)= 2
π

∫
∞

0
B(ξ) exp(−ξ y) sin(ξ x) dξ, y ≥ 0, (30)

where B(ξ) is an unknown function in ξ to be determined from the boundary conditions. In a similar
manner, using the constitutive relations, we have the bulk stress components

σxz(x, y)= 2µ
π

∫
∞

0
ξ B(ξ) exp(−ξ y) cos(ξ x) dξ, (31)

σyz(x, y)=−2µ
π

∫
∞

0
ξ B(ξ) exp(−ξ y) sin(ξ x) dξ. (32)

Under the same notation g(x)=w(x, 0), B(ξ) can be expressed in terms of g(x) through the following
integral:

B(ξ)=
∫ a

0
g(s) sin(ξs) ds, (33)

which is inserted back into (32) for y = 0, giving

σyz(x, y)=−2µ
π

∫ a

0
g(s) ds

∫
∞

0
ξ sin(ξs) sin(ξ x) dξ. (34)

With the aid of the well-known integral identity∫
∞

0
ξ sin(ξs) sin(ξ x) dξ = 1

2

[
1

(s+ x)2
−

1
(s− x)2

]
, (35)

we have

σyz(x, 0)=−µ
π

∫ a

0
g(s)

[
1

(s+ x)2
−

1
(s− x)2

]
ds. (36)

Considering the fact that g(x) is an odd function, we immediately obtain∫ a

0

g(s)
(s+ x)2

ds =−
∫ 0

−a

g(s)
(s− x)2

ds, (37)

and the stress (36) at the upper crack face is then rewritten as

σyz(x, 0)= µ
π

∫ a

−a

g(s)
(s− x)2

ds. (38)
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Note that the above result is the same as (25). So applying the boundary condition at the upper crack
face, the following hypersingular integro-differential equation can be derived:

µ

π

∫ a

−a

g(s)
(s− x)2

ds+ (µs
− σ0)g′′(x)= qo(x), |x |< a. (39)

After integrating both sides of the above equation, one gets

µ

π

∫ a

−a

g(s)
s−x

ds+ (µs
− σ0)g′(x)=

∫ x

0
qo(s) ds+C, |x |< a, (40)

where C denotes an integration constant. Differing from the previous result in the foregoing subsection,
C does not vanish, but must be determined through the following supplementary condition, i.e.,

C = µ
π

∫ a

−a

g(s)
s

ds+ (µs
− σ0)g′(0). (41)

As a result, we have also derived a singular integro-differential equation (40) but with an unknown
constant C , which satisfies the condition (41).

4. Solution to the singular integro-differential equation

In order to derive the solution of the resulting integro-differential equation, we introduce the following
dimensionless quantities:

ḡ(x̄)= g(x)
a
, θ =

µs
−σ0

aµ
, (42)

q(x)= τ0q̄(x̄),
∫ x

0
q(s) ds = τ0ζ(x̄)−C, (43)

x̄ = x
a
, s̄ = s

a
, (44)

where ζ(x̄) is a prescribed function, which may contain an undetermined constant to ensure that the
right-hand side vanishes as x̄ = 0. That is, we require ζ(0) 6= 0 and it satisfies (41) for an even function
ζ(x̄) corresponding to the case of an odd loading. The resulting equations for Cases A and B can be
written as a unified form

θg′′(x̄)+ 1
π

∫ 1

−1

ḡ(s̄)
(s̄− x̄)2

ds̄ =
τ0

µ
q̄(x̄), |x̄ |< 1, (45)

or

θ ḡ′(x̄)+ 1
π

∫ 1

−1

ḡ(s̄)
s̄− x̄

ds̄ =
τ0

µ
ζ(x̄), |x̄ |< 1. (46)

The former is a hypersingular integro-differential equation, and the latter is a singular integro-differential
equation.

Since the out-of-plane displacement at the upper crack face vanishes at both crack tips, i.e.,

ḡ(±1)= 0, (47)
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we still give an alternative weakly singular integral equation with logarithmic kernel as follows:

θ ḡ′(x̄)− 1
π

∫ 1

−1
ḡ′(s̄) ln|s̄− x̄ | ds̄ =

τ0

µ
ζ(x̄), |x̄ |< 1. (48)

The asymptotic behavior of the unknown function ḡ(x̄) near the crack tips is, however, still unknown.
As a consequence, a key task is to seek a solution to (46) subject to (47). Prior to the presentation
of an appropriate solution, let us have a glance at the behavior of the solution to (46) subject to (47).
If the parameter θ is sufficiently large, implying that the second term on the left-hand side of (46) is
negligible as compared to the first term, after removing the second term one integrates both sides of (46)
with respect to x̄ and finds that ḡ(x̄) has a behavior like (1− x̄2) near x̄ = ±1 in view of ζ(0) 6= 0.
Conversely, if the parameter θ is sufficiently small, implying that the first term on the left-hand side of
(46) is negligible as compared to the second term, after removing the first term (46) reduces to a standard
singular integral equation with Cauchy kernel of the first kind, the solution of which under the condition
(47) has a square-root behavior like

√
1− x̄2 near x̄ =±1 [Muskhelishvili 1977]. In fact, this conclusion

may be seen from what follows. By rewriting (46) as

1
π

∫ 1

−1

ḡ(s̄)
s̄− x̄

ds̄ =
τ0

µ
ζ(x̄)− θ ḡ′(x̄), (49)

with the well-known solution of a singular integral equation with the Cauchy kernel of the first kind
[Muskhelishvili 1977, p. 155], by virtue of (47) we arrive at that the solution ḡ(x̄) should satisfy the
following relations:

ḡ(x̄)=−
√

1− x̄2

µπ

∫ 1

−1

τ0ζ(s̄)−µθ ḡ′(s̄)

(s̄− x̄)
√

1− s̄2
ds̄ (50)

and ∫ 1

−1

τ0ζ(s̄)−µθ ḡ′(s̄)
√

1− s̄2
ds̄ = 0. (51)

Based on the above analysis, we reasonably approximate the out-of-plane displacement ḡ(x̄) by the
following finite-term sum of the Chebyshev polynomials of the second kind [Frankel 1995; Bhattacharya
and Mandal 2008]:

ḡN (x̄)=
τ0

µ

√
1− x̄2

N∑
n=0

bnUn(x̄), (52)

where the coefficients bn are unknown coefficients, and N is a positive integer. Due to the completeness
of Un(x̄), N is often chosen so large that the sum of the first finite terms converges the desired one, i.e.,
ḡN (x̄)→ ḡ(x̄) as N →∞. Hereafter we still denote ḡN (x̄) as ḡ(x̄), if no confusion is caused. Notice
that if ḡN (x̄) is even, only even terms U2n(x̄) are maintained in (52), whereas if ḡN (x̄) is odd, only odd
terms U2n+1(x̄) remain. In the above, the Chebyshev polynomial of the second kind Un(x̄) is defined as

Un(x̄)=
sin[(n+ 1) cos−1 x̄]

sin(cos−1 x̄)
, n ≥ 0. (53)

We stress that the assumption of the expression (52) is completely different from those used in [Kim
et al. 2009; Wang 2015]. A solution in the form (52) is based on the out-of-plane displacement at the
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upper crack face, not its derivative. Besides, different from most derivations, we use the Chebyshev
polynomials of the second kind, not the first kind, and such a choice greatly simplifies the derivation.
It is mentioned that an analogous expression of using the Chebyshev polynomial of the second kind
has been applied in [Paulino et al. 2003]. Of course, it is also feasible to choose an expansion of the
Chebyshev polynomials of the first kind such as ḡ′N (x̄)=µ

−1τ0
∑N

n=0 bnTn(x̄)/
√

1− x̄2 in place of (52),
and we don’t go on along this approach.

The remaining task is to determine the unknown coefficients bn . We substitute the expansion (52) into
(46), yielding

N∑
n=0

bn

{
θ

d
dx̄
[

√
1− x̄2Un(x̄)] +

1
π

∫ 1

−1

√
1− s̄2Un(s̄)

s̄− x̄
ds̄
}
= ζ(x̄), |x̄ |< 1. (54)

Taking account of the following properties of derivatives and integrals involving the Chebyshev polyno-
mials:

d
dx̄
[Un(x̄)

√
1− x̄2] = −

(n+ 1)Tn+1(x̄)
√

1− x̄2
, |x̄ |< 1, (55)

1
π

∫ 1

−1

Un(s̄)
√

1− s̄2

s̄− x̄
ds̄ =−Tn+1(x̄), |x̄ |< 1, (56)

where Tn(x̄) is the Chebyshev polynomial of the first kind, defined by

Tn(x̄)= cos(n cos−1 x̄), n ≥ 0, (57)

one finds that (54) reduces to

N∑
n=0

bn

[
(n+ 1)θ
√

1− x̄2
+ 1

]
Tn+1(x̄)=−ζ(x̄), |x̄ |< 1. (58)

After multiplying both sides of (58) by Tm+1(x̄), we then integrate both sides with respect to x̄ from
−1 to 1. Applying the orthogonality of the Chebyshev polynomials:

∫ 1

−1

Tm(x̄)Tn(x̄)
√

1− x̄2
dx̄ =


0, m 6= n,

π, m = n = 0,
1
2π, m = n, m 6= 0,

(59)

and the closed-form integral formula∫ 1

−1
Tm(x̄)Tn(x̄) dx̄ = 1+(−1)m−n

2

[
1

1− (m− n)2
+

1
1− (m+ n)2

]
, (60)

we obtain linear algebraic equations for the unknown constants bn (n = 0, 1, . . . , N ):

N∑
n=0

[
(n+ 1)θπ

2
δmn + amn

]
bn = fm, m = 0, 1, 2, . . . , N , (61)
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where δmn denotes the Kronecker delta symbol, and

amn =
1+ (−1)m−n

2

[
1

1− (m− n)2
+

1
1− (m+ n+ 2)2

]
, (62)

fm =−

∫ 1

−1
ζ(x̄)Tm+1(x̄) dx̄ . (63)

For the case of an even loading, (61) forms a system of (N+1) linear algebraic equations with (N+1)
unknowns. Solving the above system through a standard method, one gets the desired solution. For the
case of an odd loading, an additional unknown constant C appears in (40), which can be determined by
another supplementary condition (41). In other words, besides the above N + 1 equations (61) we must
add another equation, i.e.,

N∑
n=0

bn[(n+ 1)θ + 1] cos (1+n)π
2

=−ζ(0). (64)

Therefore, (61) together with (64) form a system of (N + 2) linear algebraic equations with (N + 2)
unknowns including bn(0, 1, 2, . . . , N ) and ζ(0). Thus the resulting system is uniquely solvable.

Once the unknown coefficients bn are determined, the stress singularity near the crack tips is readily
derived. To this end, substituting (52) into (25) we get the stress along the crack line through the following
integral:

σyz(x, 0)=
τ0

π

N∑
n=0

bn

∫ 1

−1

Un(s̄)
√

1− s̄2

(s̄− x̄)2
ds̄. (65)

Remembering the following properties of the Chebyshev polynomials [Paulino et al. 2003]:

1
π

∫ 1

−1

Un(s̄)
√

1− s̄2

(s̄− x̄)2
ds̄ =

{
−(n+ 1)Un(x̄), |x̄ |< 1,
(n+ 1)(|x̄ |/

√
x̄2− 1− 1)(x̄ − x̄/|x̄ |

√
x̄2− 1)n, |x̄ |> 1,

(66)

for n ≥ 0, we have

σyz(x, 0)= τ0

N∑
n=0

bn(n+ 1)
(
|x̄ |

√
x̄2− 1

− 1
)(

x̄ −
x̄
|x̄ |

√
x̄2− 1

)n

, |x̄ |> 1. (67)

From the above stress field, we find that the stress field exhibits the usual inverse square-root singularity
near the crack tips. If defining the stress intensity factor by

K+III = lim
x→a+

√
2π(x − a)σyz(x, 0), K−III = lim

x→−a−

√
−2π(a+ x)σyz(x, 0), (68)

we can give the explicit expression for stress intensity factor as

K+III = τ0
√
πa

N∑
n=0

(n+ 1)bn, K−III = τ0
√
πa

N∑
n=0

(−1)n(n+ 1)bn. (69)



54 XIAN-FANG LI

To get the stress distribution, from (25) and (46) one acquires the stress at the crack-free part:

σyz(x, 0)= τ0

N∑
n=0

(n+ 1)bn[x/a− x/|x |
√
(x/a)2− 1]n+1

[

√
(x/a)2− 1]−1, |x |> a. (70)

It is obvious from the above result that bulk stress still exhibits an inverse square-root singularity unless
b0 6= 0. This conclusion is different from the previous results. The reason is that Kim et al. [2009; 2011b]
assumed a vanishing out-of-plane displacement gradient at the crack tips and found no singularity at the
crack tips. Their treatment in fact corresponds to b0 = 0. Finally, it is worth noting that on account of
the influence of surface stress, the bulk stresses at the crack faces are not equal to applied loading at
the crack faces. Or rather, using (38) and (39) one gets the bulk stress at the crack faces in the upper
half-plane:

σyz(x, 0+)=−τ0

{
1− θ

N∑
n=0

bn(n+ 1)
[
(n+ 1)aUn(x/a)
√

a2− x2
+

a2xTn+1(x/a)
(a2− x2)3/2

]}
, |x |< a, (71)

where in deriving the above result, (55) and

dTn+1(x)
dx

= (n+ 1)Un(x) (72)

have been used. It is readily found that because of consideration of surface effect, the bulk stress at
the crack face exhibits a singular behavior near the crack tips, rather than a constant, although applied
antiplane shear loading is uniform. When the surface effect is neglected, i.e., θ = 0, applied constant
loading is recovered, as expected.

5. Numerical results and discussion

In this section, numerical examples are presented to examine the influence of surface effect on stress in-
tensity factors, crack face displacement, and stress distribution. In addition to bulk shear modulus µ, only
the parameter θ enters the final equation (46). It indicates that all surface parameters including surface
elasticity and surface residual stress in connection with crack length are combined into a dimensionless
parameter θ .

We first examine the influence of the parameter θ on the stress intensity factors. As such, the following
numerical results are only presented for uniform loading, i.e., q(x)=−τ0. Under such circumstances,
we have ζ(x̄)=−x̄ and (61) becomes

N∑
n=0

[
(2n+1)π

2
θδmn+

1
1−4(m−n)2

+
1

1−4(m+n+1)2

]
bn=

2
3−4m(1+m)

, m=0, 1, . . . , N . (73)

It is clear that the coefficients bn are dependent on the parameter θ alone. By solving the above linear
equations, the bn are determined and the stress intensity factors are evaluated by (69). According to the
estimate of Kim et al. [2009], the range of θ is not in excess of 0.1. Considering the occurrence of a
negative parameter θ [Hu et al. 2018], Table 1 examines the convergence of the numerical results of the
normalized stress intensity factor K III /τ0

√
πa for various values of θ . From Table 1, one finds that if

taking θ = 10−8, meaning that surface effect is nearly negligible, the normalized stress intensity factors
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θ ↓ N → 20 40 60 80 100

−10−4 1.06148 1.28376 1.9920 9.87854 -
−10−6 1.00058 1.00217 1.0048 1.00848 1.01324
−10−8 1.00001 1.00002 1.00005 1.00008 1.00013

0 1 1 1 1 1
10−8 0.999994 0.999978 0.999952 0.999916 0.999869
10−6 0.999424 0.997837 0.995247 0.991669 0.987129
10−4 0.945787 0.824715 0.686202 0.562309 0.462943
10−3 0.646534 0.357601 0.230787 0.168227 0.132117
10−2 0.206562 0.0998366 0.0659344 0.0492867 0.039375
10−1 0.0561862 0.0284717 0.0190879 0.0143603 0.0115109

Table 1. The normalized stress intensity factor K+III /τ0
√
πa.

are almost equal to unity. Since θ is inversely proportional to the crack length, as shown in (42), that
is to say that when the crack length arrives at a macroscale such as centimeter or larger, the value of θ
is close to 10−8, and the classical stress intensity factor is then recovered. Moreover, for such θ values,
the convergence of the numerical results is very satisfactory. However, with the crack length decreasing,
or θ rising, we find that the influence of surface effect is enhanced, and the normalized stress intensity
factors obviously decline if the same term number N is chosen. It implies that when the crack length
drops, the surface effect gives rise to a reduction of the stress intensity factor. That is, consideration of
the surface effect enhances apparent fracture toughness of the material. This conclusion agrees well with
theoretical prediction [Wang et al. 2013; Yang et al. 2018] and some experimental observation [Gojny
et al. 2004; Kim et al. 2008; Liu et al. 2011]. Additionally, for a given θ value, θ = 0.001, say, one
views that the evaluated normalized stress intensity factors take 0.65 for N = 20 and 0.13 for N = 100,
respectively. That implies that the convergence rate becomes quite slow, particularly for larger values of θ .
This conclusion is attributed to the contribution of the first term of the left-hand side of (46) containing
an unbounded derivative operator, which plays an amplification role for small values, particularly when
the term number is large enough. This characteristic belongs to the nature of the derivative operator. For
most cases, θ is positive. However, for a few cases with a negative θ value, the stress intensity factors
increase with θ being larger in magnitude, which is capable of promoting crack growth or decreasing
apparent fracture toughness. In the following, N = 100 is chosen unless otherwise stated.

If the coefficients bn are determined by solving the resulting algebraic equations, the dimensionless
out-of-plane displacement µḡ(x̄)/τ0 is numerically calculated through the expansion (52), and the cor-
responding profiles at the upper crack-face are plotted in Figure 2 for several different θ values. From
Figure 2, one finds that when θ is less than 10−3, the profile curve of the dimensionless out-of-plane
displacement µḡ(x̄)/τ0 almost does not vary. For larger values such as θ = 0.05, 0.1, the profile curve
has a relatively large deviation.

Figure 3 shows the variation of bulk stress σzy(x, 0)/τ0 as a function of x for various values of θ .
From Figure 3, it is seen that the bulk stress nearly takes a constant at the crack face (|x |< a) and the
influence of surface effect is undetectable since the dimensionless parameter θ = 10−8 is sufficiently
small. If setting θ = 0, the bulk stress at the crack face identically takes a constant −1, which reduces
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Figure 2. Profile of the dimensionless out-of-plane displacement µḡ(x̄)/τ0 at the upper
crack-face.

-4 -2 0 2 4

-1.0

-0.5

0.0

0.5

1.0

1.5

zy
(x

,0
)/

0

x/a
-4 -2 0 2 4

-1.0

-0.5

0.0

0.5

1.0

1.5
zy
(x

,0
)/

0

x/a

-4 -2 0 2 4

-1.0

-0.5

0.0

0.5

1.0

1.5

zy
(x

,0
)/

0

x/a
-4 -2 0 2 4

-1.0

-0.5

0.0

0.5

1.0

1.5

zy
(x

,0
)/

0

x/a

Figure 3. The variation of bulk stress σzy(x, 0)/τ0 as a function of x for various values
of θ . Top left: θ = 10−8. Top right: θ = 10−4. Bottom left: θ = 10−2. Bottom right:
θ = 10−1.
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to the classical result. With θ rising, the surface effect alters the stress distribution. For example, for
θ = 10−2, 10−1, it is seen in Figure 3, bottom, that the bulk stress at the crack face varies. At the
crack-free part, the bulk stress always exhibits inverse square-root singularity, as shown in Figure 3.

For practical situations, the θ values need to be given beforehand. Usually, bulk and surface material
properties cover a large range. For example, the material properties of GaN, composed of a mixture of
nitrified aluminum (Al), gallium (Ga) and indium (In) take the following values: 1.7 GPa ≤ µ≤ 168 GPa,
0.7 N/m < σ0 < 2 N/m, µs

= 161.73 J/m2 [Sharma and Ganti 2004]. A copper single crystal with
E = 123.5 GPa, 11.6 N/m, σ0 = 1.5 N/m [Choi et al. 2010], and an anodic alumina with E = 70 GPa,
E s
= 5.19 N/m, σ0 = 0.91 N/m [Shenoy 2005]. Therefore, in what follows we consider several typical

values of (µs
− σ0)/µ, reflecting the surface characteristic length, and plot the variation of the stress

intensity factors against the crack half-length a in Figure 4. From Figure 4, left, we see that for those
materials with (µs

− σ0)/µ= 10−10m, when the crack half-length is lower than 10µm, the surface effect
comes into play and rapidly decreases the stress intensity factor, and when the crack half-length arrives
at nanometer order, the stress intensity factor nearly equals zero, implying very weak singularity near
the crack tips. In other words, the load-carrying capacity is effectively enhanced. Furthermore, if the
surface shear modulus µs is raised, which causes (µs

− σ0)/µ to rise, (µs
− σ0)/µ= 10−8 m, say, one

finds that the influence of surface effect is apparently observed for those cracks with length of millimeter
order. Moreover, when the crack length drops to micrometer, the stress singularity almost disappears.
This also sheds light on a mechanism that it is more difficult for micro/nanometer cracks to grow since
the surface effect decreases the stress singularity and impedes crack advance. Or rather, the effective
fracture toughness of cracked materials is enhanced when the crack length is reduced. This conclusion
is verified by some experimental evidence. For example, Zhang et al. [2014] demonstrated that fracture
stress is raised when the crack length is lowered for a bilayer graphene with a precrack. Cohen-Tanugi and
Grossman [2014] showed an increase in fracture stress with nanopore radius decreasing in nanoporous
graphene. Since most materials give a positive value of the parameter θ , it is worth noting that a negative
value of θ for a few materials increases the stress intensity factors, as seen in Figure 4, right, which
speeds crack advance. This trend is opposite to that for the case of θ > 0.
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Figure 4. Dimensionless stress intensity factor K III /τ0
√
πa against the crack half-

length a (m) for typical values of (left) positive and (right) negative (µs
− σ0)/µ (m).
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6. Conclusions

In this paper, we analyzed a mode-III crack embedded in an isotropic homogeneous medium with surface
effect and examined the influence of surface material properties on a stress singularity near the crack
tips. Using the Fourier transform, we first derived a hypersingular integro-differential equation. The
Galerkin method was adopted to solve the resulting equation. Based on the expansion of the out-of-
plane displacement jump across crack faces in terms of Chebyshev polynomials, the unknown coefficients
were determined. The stress intensity factors were obtained and displayed for different surface properties.
Obtained results show that for most materials with positive values of the parameter θ , consideration of
surface effect decreases the stress intensity factors, or the effective fracture toughness is enhanced for
materials with nano/microscale crack. Conversely, negative θ values increase the stress intensity factors
or reduce the effective fracture toughness.
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