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ANALYTICAL INVESTIGATION OF FREE VIBRATIONS OF A BOUNDED
NONLINEAR BULK-ELASTIC MEDIUM IN A FIELD OF MASS FORCES

EUGENE I. RYZHAK AND SVETLANA V. SINYUKHINA

Free vibrations of a homogeneous nonlinear bulk-elastic medium, namely a solid with negligible shear
stiffness, occupying a bounded domain and nonuniformly deformed under the action of a field of mass
forces are investigated through variational methods. The nonlinear constitutive law of bulk elasticity is
assumed to be arbitrary, the applied field of mass forces is assumed to be an arbitrary potential field,
and conditions of free sliding are prescribed on the whole boundary. The associated problem of free
vibrations corresponds to significantly nonuniform distribution of mechanical parameters of the medium,
which results in significantly varying coefficients of governing equations — a case where standard meth-
ods are inapplicable and results of analysis are almost absent. A crucial element of presented variational
analysis is the use of derived by the authors earlier the canonical form for the second variation of the
total potential energy. This canonical form enables to state and prove a modified spectral theorem, and
additionally a comparison theorem for the free vibration frequencies of different media in different fields
of mass forces, provided the media occupy domains possessing the same or similar shapes. For some
special shapes, the bilateral bounds for all the free vibration frequencies are obtained. The results are
illustrated by clarifying examples.

1. Introduction

“Vibration problems for inhomogeneous structural elements present a challenge to the acoustics and
vibration community. In contrast to classical problems for homogeneous strings, rods, membranes or
plates for which exact solutions and a variety of approximate methods are available for finding frequen-
cies and mode shapes, analogous results for inhomogeneous bodies are relatively scarce” [Horgan and
Chan 1999]. This kind of problems is addressed in the present paper, considering the free vibrations
of nonlinear bulk-elastic media occupying bounded domains. The nonuniformity of initial state of the
medium is a result of ‘stratification’, namely, nonuniform strain produced by the action of a mass force
field. With the term “bulk-elastic media” we mean nonlinearly elastic media characterized by an elastic
potential depending exclusively on the volumetric strain (for instance, compressible fluids and gases), so
that bulk-elastic media have a null shear stiffness. Although, strictly speaking, the presented analysis is
based on constitutive relations of this very type, one can expect that the results may be extended to media
characterized by shear moduli which are small as compared to their bulk moduli (say, gels, foams, etc.).

The considered problem is related to numerous technical devices, for instance, gas storage tanks,
distillation columns, and pipeline sections (in the cases when there is a significant variation in altitude
along the pipe). In addition to engineering equipment, some mechanical systems of natural origin (for
instance atmospheres of planets) can be of interest in geophysics, atmospheric physics, or astrophysics.
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In technical devices (especially those of large size) the vibrations are an undesirable (but inevitable)
phenomenon, which may result even in the failure of the device. To prevent the excitation of resonant
vibrations of large amplitude, it is desirable to know at least the ranges for free vibration frequencies, i.e.
to find bilateral bounds for them, and also to understand how they depend on the mechanical properties
of the bulk-elastic medium and on geometry of the domain. In the case of the gravity field for the
domains large in the vertical dimension, the nonuniformity of density and bulk modulus distributions
under the action of gravity is significant, which affects free vibrations. For large natural systems, as well
as for rotating devices, where mass forces are implemented as the centrifugal forces, the nonuniformity
of mass forces (that can manifest itself both as nonuniformity in absolute value and nonuniformity in the
direction) can also play an important role.

Free vibrations of bulk-elastic media in bounded domains were not previously explored with regard for
significantly nonuniform distribution of mechanical parameters of a medium. The well-known analytical
solutions (based on equations with constant coefficients) are applicable only if nonuniformity of distri-
bution of mechanical parameters of a compressible medium due to the action of mass forces is neglected
(see e.g. Landau and Lifshitz 1987), that can be justified only in cases of low compressibility, or low
mass forces, or small “vertical” dimension of the system. It should be mentioned that the particular case
of constant sound velocity in a heavy medium (independent of pressure) and the resulting exponential
distribution of density over depth, has been studied analytically and numerically by means of some special
method (see e.g. Gaziev and Kopachevsky 2013). Nevertheless, this particular case does not exhaust the
general problem, and its relevance motivates the purpose of the present article, namely, the general study
of free vibrations of bulk-elastic media in bounded domains with regard for the action of mass forces. The
bulk-elastic media are assumed to be constitutively homogeneous with an arbitrary nonlinear bulk-elastic
law. The field of mass forces is assumed to be an arbitrary potential field. The domains are assumed
to be bounded, simply connected, and having a piecewise smooth boundary (obeying some additional
requirements which will be specified in detail in formulation of the lemma proved in Appendix A). The
domains of several special shapes are studied separately.

Note that the problem setting is highly general, so that one can hardly expect to obtain any definite
analytical results for the characteristics of free vibrations. In particular, the conventional methods of
solving the corresponding problems in the presence of significant nonuniformity of coefficients and for
rather arbitrary shape of the domain are not effective. The only known method that can be effective in
this case is the variational method: the free vibration modes are the extremals of a well-known functional,
and the squares of eigenfrequencies are the corresponding extremal values. The functional mentioned
is the ratio of two quadratic functionals, namely, the second variation of the total potential energy of
the system and its doubled kinetic energy (in the latter the velocity field is replaced by the field of
small displacements). The analytical expression for the second variation of the total potential energy
is derived in principle easily and briefly through linearization of the equations of nonlinear elasticity,
but this rather cumbersome expression yields almost nothing for investigation of free vibrations. A truly
effective research tool is the usage of derived earlier by the authors [Ryzhak et al. 2017]: the canonical
form of the second variation of the total potential energy. We use the term “canonical form” in the
same sense as it is used in linear algebra with regard to quadratic forms: it does reveal the structure
(in particular, the sign) of the quadratic functional representing the second variation. In contrast to the
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Figure 1. The mechanical system under investigation.

general case, when canonical form of the second variation consists of four terms [Ryzhak et al. 2017];
in the problem under consideration it is especially simple and consists of a single term.

In this paper, the investigation of free vibrations is carried out by the variational method, the crucial
element of which being the usage of the above-mentioned canonical form of the second variation. Firstly,
the canonical form reveals the not evident fact that for a homogeneous bulk-elastic medium the mass
forces affect free vibrations only indirectly, specifically via resulting nonuniformity of equilibrium dis-
tribution of mechanical parameters of a medium. Secondly, the usage of the canonical form allows to
prove for the considered class of problems some appropriate modifications of fundamental theorems of
the theory of free vibrations for elastic solids. The modified theorems are applied both to compare the
free vibration frequencies for different bulk-elastic media in domains of identical or similar shapes and to
obtain analytical bilateral bounds for the frequencies in the case of domains that have the shape of either
a rectangular parallelepiped or some different polyhedra, depending on the quantities characterizing
nonuniformity of the equilibrium state of a medium and the geometry of a domain.

In Section 7 the general analytical results are illustrated by examples, where for a bulk-elastic medium
of some specific type there are studied various situations characterized by different relations between
gravity, geometry, and mechanical properties of the medium. The considered examples allow both to
compare our results with the classical ones, corresponding to the case of governing equations with
constant coefficients, and to clarify the situation where classical methods are inapplicable.

2. The investigated classes of mechanical systems and some elements of their kinematics in
reference description

We assume that the potential of mass forces ϕ(r), where r is the space position vector, is a continuously
differentiable function with nonzero bounded gradient. The mass forces field intensity g is a vector
opposite to the gradient of ϕ:

g =−∇ϕ(r). (2-1)

The mechanical system under investigation consists of a constitutively homogeneous bulk-elastic
medium occupying a domain with fixed and perfectly smooth boundary (Figure 1). A law of bulk
elasticity is supposed to be arbitrary. In spite of constitutive homogeneity, the equilibrium state of the
medium is nonuniform due to stratification caused by the action of mass forces. The boundary conditions
of free sliding are posed on the whole of the boundary of the domain. The kinematical part of conditions
of sliding specify the class of kinematically admissible motions of the medium at deviations of considered
mechanical system from the equilibrium state which is assumed to be stable.
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In all subsequent calculations we use the reference description of the continua considered (see for
example Truesdell 1972). As a reference configuration κ (which is fixed in principle) it is taken the
equilibrium configuration of the system. Material points of a continuum are identified by their position
vectors x in the reference configuration; for each material point its identifier x is invariable. The actual
position of a material point x is specified by the image of mapping

r = r(x, t), (2-2)

which will be called the “transformation”; here t is a time, r(x, t) is the position vector of a given material
point at a given time instant. Without loss of generality, we assume that the reference configuration
coincides with the actual one at t = 0:

r(x, 0)= x. (2-3)

The domain occupied by the medium in the reference equilibrium state will be denoted B (Figure 1).
The domain B is supposed to be bounded and simply connected. Its boundary ∂B is supposed to be
piecewise smooth (Figure 1). Since the boundary is immovable, the domain occupied by the medium in
any actual configuration is the same.

3. Some formulas of coordinateless tensor calculus and the relations associated with the reference
and spatial descriptions of continua

We introduce some notations related to the reference description and derive equations permanently used
in further analysis.

For any physical field 9(x, t) (scalar, vector or tensor) its derivative with respect to t at a constant x
will be called the “material” time derivative, conventionally denoted by a dot over a symbol:

9̇(x, t) :=
(
∂9

∂t

)
x
. (3-1)

Note that the velocity and acceleration are the first and the second material derivatives of the position
vector r(x, t):

v(x, t)= ṙ(x, t), (3-2)

v̇(x, t)= r̈(x, t). (3-3)

Along with the material derivatives with respect to time, in some cases there will be used the “spatial”
derivatives (i.e., the derivatives with respect to time at a constant r), which will be denoted (∂9/∂t)r .
The material and spatial derivatives with respect to time are related to each other by the well-known
Euler’s formula which will be presented below.

Throughout the paper we use the coordinateless tensor calculus in the notation, almost coinciding with
the system of tensor notation of J. W. Gibbs. Presented below is a summary of the main formulas used
in this work: just the minimum necessary to enable us to avoid citing any additional sources.

The main strain-rotation quantity in the reference description is the transformation gradient:

F(x, t) := ∇κ⊗ r(x, t), (3-4)

d r(x, t, dx)= dx · ∇κ⊗ r(x, t). (3-5)
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The transformation gradient F(x, t) is a tensor of rank two (TR(2)), i.e. the linear operator that speci-
fies the principal linear part of mapping of the vicinity of a material point x in the reference configuration
into the vicinity of corresponding point r(x, t) in the actual configuration.

The subscript “κ” referred to the symbol “nabla” in the gradient notation indicates that this is a “refer-
ence” gradient, i.e. differentiation is carried out with respect to x. The gradient of a tensor field of rank k
is defined in a completely similar way:

d M(x, t, dx)= dx · ∇k ⊗M(x, t), (3-6)

i.e. ∇κ⊗ M(x, t) is a TR(k + 1) that specifies the principal linear part of the increment of the rank-k
tensor field M(x, t) in the vicinity of a point x in the reference configuration. In the case of a scalar field
gradient, the tensor product sign ⊗ in the gradient notation is omitted (χ(x, t)↔∇κχ(x, t)).

Along with the reference description sometimes it is needed to use the spatial description with the
independent variables (r, t). For the gradient with respect to r we will use the symbol ∇ (without a
subscript):

d M(r, t, d r)= d r · ∇ ⊗M(r, t). (3-7)

Due to (3-5) we have

∇κ⊗M = F · ∇ ⊗M, ∇ ⊗M = F−1
· ∇κ⊗M. (3-8)

Mentioned above Euler’s formula is represented by the following equality:

Ṁ(r, t)=
(
∂M
∂t

)
r
(r, t)+ v(r, t) · ∇ ⊗M(r, t). (3-9)

The reference and space divergences of a tensor field of rank k are the TR(k−1) specified by the following
equalities:

∇κ ·M(r, t) := I : ∇κ⊗M(x, t), (3-10)

∇ ·M(r, t) := I : ∇ ⊗M(r, t), (3-11)

where I is the unit TR(2) (the unit linear operator in a vector space).

4. The nonlinear and linearized (incremental) relations of the theory of elasticity used in the work

We present without derivation those known formulas of the theory of elastic constitutive relations, which
are used subsequently.

Let σκ(F, x) be the reference volume density of the elastic energy of a material at the point x of
the reference configuration. Due to the principle of material objectivity [Truesdell 1972], it does not
depend on rotations, i.e. for any proper orthogonal TR(2) Q (a rotation) and for any F (having a positive
determinant), the following equality holds:

σκ(F · Q, x)= σκ(F, x). (4-1)
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The Piola stress tensor Tκ(F, x) is related to σκ(F, x) by the following equivalent equalities:

δσκ(F, x)= δF : Tκ(F, x), (4-2)

Tκ(F, x)=
∂σκ

∂F
(F, x). (4-3)

The surface force vector d f , which acts on a surface element with the normal n and the area d6 in
the actual configuration, whose pre-image in the reference configuration is the surface element with the
normal nκ and the area d6κ , can be expressed in terms of the Cauchy stress tensor T (F, x) and the
Piola stress tensor Tκ(F, x) as follows:

d f = d6 n · T = d6κ nκ · Tκ , (4-4)

which results in the known relationship between the two stress tensors:

Tκ = (det F)(F−1)T · T , T = 1
det F FT

· Tκ . (4-5)

Due to the principle of material objectivity and in accordance with their own specific properties, the Piola
and Cauchy stress tensors differently depend on rotations:

Tκ(F · Q)= Tκ(F) · Q (4-6)

T (F · Q)= QT
· T (F) · Q =: T (F) ∗ Q. (4-7)

The following incremental (linearized) constitutive relations correspond to nonlinear relations T (F)
and Tκ(F) (with regard for the principle of material objectivity and equalities (4-5)), the linearization
being carried out in the vicinity of reference configuration (where t = 0, r = x, F = I , ∇ = ∇κ ):

δT = L : δε+ T · δω− δω · T , (4-8)

δTκ |F=I = L : δε+ T (I : δε)− δε · T + T · δω. (4-9)

Here, with regard for coincidence of the actual configuration with the reference one at t = 0, the in-
cremental tensors of strain δε and rotation δω are related to the small displacement field δu(x) by the
following equalities:

δε = 1
2(∇κ⊗ δu+∇κ⊗ δuT ), δω = 1

2(∇κ⊗ δu−∇κ⊗ δuT ), δε+ δω =∇κ⊗ δu. (4-10)

A TR(4) L(F) is one of conventional elastic moduli tensors, the values of TR(4) L(F) being different
for different states of one and the same elastic material.

Since δε is symmetric, whereas δω is skew-symmetric, we have

I : δε = I : ∇κ⊗ δu =∇κ · δu. (4-11)

If T =−p I , the stress state is called hydrostatic with pressure p. In the neighborhood of such a state
the equalities (4-8) and (4-9) are simplified and take the form

δT = L : δε, δTκ |F=I = L : δε− p(∇κ · δu)I + p∇κ⊗ δuT. (4-12)

In what follows it will be assumed that the investigated equilibrium (unperturbed) configuration is char-
acterized by a hydrostatic stress state in the entire domain B. The elastic potential of a bulk-elastic
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medium is characterized by the property that its dependence on the transformation gradient F is reduced
to dependence on its determinant (i.e. on the volume change coefficient):

σκ(F, x)= ψ(det F, x), (4-13)

Tκ(F, x)= d(det F)
d F

∂ψ

∂(det F)
(det F, x)= (det F)(F−1)T

∂ψ

∂(det F)
(det F, x), (4-14)

T (F, x)=
∂ψ

∂(det F)
(det F, x)I =: − p(det F, x)I, (4-15)

δT (F, x)|F=I =−
∂p

∂(det F)
(1, x) δ(det F)|F=I I

=−
∂p

∂(det F)
(1, x) I(I : δε)=: K (1, x) I(I : δε), (4-16)

H⇒ L(1, x)= K (1, x) I ⊗ I ⇐⇒ Lκ(x)= Kκ(x) I ⊗ I, (4-17)

where Kκ(x) is the bulk modulus field of a medium in the reference configuration.
We emphasize that the reference configuration is neither unloaded nor uniform: there is a nonzero

pressure distribution p(1, x) characterizing the equilibrium state in the field of mass forces.

5. The problem of finding the free vibration frequencies and modes as a variational problem

The concept of free vibrations is known to be related to the linearized problem of motion of an elastic
body (in particular, a bulk-elastic medium) in the neighborhood of stable equilibrium state.

To derive the linearized equations of motion and the linearized boundary conditions, we first consider
the exact equations and boundary conditions and then linearize them in displacements and their gradients.

The exact equations of motion in a nonuniform potential field of mass forces g and the exact boundary
conditions are as follows:

ρκ(x) r̈(x, t)=∇κ · Tκ(x, F(x, t))+ ρκ(x)g, g =−∇ϕ(r(x, t)), (5-1)

r(x, t)|x∈∂B ∈ ∂B, (5-2)

nκ(x) · Tκ(x, F(x, t)) ·
(
I − nκ(r(x, t))⊗ nκ(r(x, t))

)∣∣
x∈∂B = 0. (5-3)

We introduce the displacement field that is supposed to be small in what follows:

δu(x, t) := r(x, t)− x ⇐⇒ r(x, t)= x+ δu(x, t). (5-4)

It is obvious that

ṙ(x, t)= δu̇(x, t), r̈(x, t)= δü(x, t), F(x, t)= I +∇κ⊗ δu(x, t). (5-5)

In the equilibrium state we have

δu(x, 0)= 0 ⇐⇒ r(x, 0)= x, F(x, 0)= I, nκ
(
r(x, 0)

)
= nκ(x), (5-6)

∇κ · Tκ(x, I)+ ρκ(x)g = 0, (5-7)

nκ(x) · Tκ(x, I) ·
(
I − nκ(x)⊗ nκ(x)

)∣∣
x∈∂B = 0. (5-8)
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Subtracting the equilibrium values of the quantities from their current values and linearizing the differ-
ences in δu(x, t) and ∇κ⊗ δu(x, t), we obtain

δTκ(x, t)= Tκ
(
x, F(x, t)

)
− Tκ(x, I)= Cκ(x, I) : ∇κ⊗ δu(x, t), (5-9)

δnκ(x, t)= nκ
(
r(x, t)

)
− nκ(x)= δu · ∇6κ ⊗ nκ(x),

δnκ(x, t) · nκ(x)= 0, δ(I − nκ⊗ nκ)=−δnκ⊗ nκ − nκ⊗ δnκ .
(5-10)

The surface gradient ∇6κ ⊗ nκ is specified here by the equality

∇
6
κ ⊗ nκ = (I − nκ⊗ nκ) · ∇κ⊗ nκ . (5-11)

It is not difficult to demonstrate that the surface gradient (5-11) is a symmetric TR(2) over the subspace
tangent to ∂B at the points of smoothness.

Taking into account the equalities (5-6)–(5-11), we obtain the following linearized equations of motion
and boundary conditions:

ρκ(x) · δü(x, t)=∇κ · δTκ(x, I)− ρκ(x) δu(x, t) · ∇κ⊗∇κ ϕ(x)
=∇κ ·

(
Cκ(x, I) : ∇κ⊗ δu(x, t)

)
− ρκ(x) δu(x, t) · ∇κ⊗∇κ ϕ(x), (5-12)

δu(x, t) · nκ(x)= 0, x ∈ ∂B, (5-13)(
nκ(x) ·δTκ(x, I)

)
·
(
I−nκ(x)⊗nκ(x)

)
−
(
nκ(x) ·Tκ(x, I) ·nκ(x)

)
δu(x, t) ·∇6κ ⊗nκ(x)= 0,

x ∈ ∂B. (5-14)

The solutions of the linearized equations of motion under linearized boundary conditions, having the
form

δu(x, t)= u(x) sinωt, (5-15)

are called the free vibrations with frequency ω and mode u(x). Thus, for the modes the following
equations and boundary conditions take place:

ω2ρκ(x) u(x)=−∇κ ·
(
Cκ(x, I) : ∇κ⊗ u(x)

)
+ ρκ(x) u(x) · ∇κ⊗∇κ ϕ(x)=:A(u), (5-16)

u(x) · nκ(x)= 0, x ∈ ∂B, (5-17)

nκ(x)·
(
Cκ(x, I) :∇κ⊗u(x)

)
·
(
I−nκ(x)⊗nκ(x)

)
=
(
nκ(x)·Tκ(x, I)·nκ(x)

)
u(x)·∇6κ ⊗nκ(x),

x ∈ ∂B. (5-18)

In further calculations, the arguments of related quantities (which remain the same) will not be indi-
cated so detailed.

we rewrite Equation (5-16) in the following operator form:

λρκu := ω2ρκu =A(u). (5-19)

Thus, the free vibration modes are the generalized eigenvectors of the linear differential operator A, and
the squared frequencies are the corresponding generalized eigenvalues (subsequently the term “general-
ized” will be omitted).
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The mechanical system in hand has some fundamental distinctions from the elastic systems for which a
rigorous mathematical theory of free vibrations (that is essentially a spectral theory for the corresponding
operators under certain boundary conditions) does exist and is presented in the literature. For this reason,
when constructing the spectral theory for the system under consideration, it is necessary to substantially
modify the well-known fundamental theorems, preserving the general concept of the theory of free
vibrations. Although in what follows the distinctions mentioned will be considered in detail, here we
characterize them concisely:

(1) The operator A is positive semidefinite, the eigensubspace that corresponds to zero eigenvalue (so-
called neutral perturbations not violating the equilibrium of the system) being infinite-dimensional.

(2) The boundary conditions are those of free sliding over a curved surface (that in particular, may have
flat parts).

Let us derive an integral relationship for the free vibration frequencies and modes with regard for
special features of the mechanical system in hand. To this end we multiply both sides of (5-16) by u(x)
and after integrating over the region B, applying the Gauss theorem and making use of the boundary
conditions (5-17), (5-18), we arrive at the equality

ω2
〈ρκu·u〉B = 〈∇κ⊗u : Cκ : ∇κ⊗u〉B+〈ρκu·∇κ⊗∇κϕ ·u〉B−〈(nκ ·Tκ ·nκ)(u·∇6κ ⊗nκ ·u)〉∂B

= R{u}. (5-20)

Here the angular brackets denote the integral over the reference set indicated as the right subscript. We
note that the quadratic functional

R{u} := 〈u ·A(u)〉B, (5-21)

is nothing but the second variation of total potential energy of the system on the kinematically admissi-
ble displacement fields (with regard for zero work of the boundary tractions). Thus, provided the free
vibrations do exist, the following equality for corresponding frequencies and modes takes place:

λ= ω2
=

R{u}
〈ρκ u · u〉B

=:9{u}. (5-22)

We note that the operator A is symmetric on the displacement fields satisfying boundary conditions
(5-17), (5-18) in the sense that the bilinear functional 〈ũ ·A(u)〉B is symmetric on such the fields. Indeed,
we reason in exactly the same way as while deriving the equality (5-20), and obtain

〈ũ·A(u)〉B = 〈∇κ⊗ũ : Cκ : ∇κ⊗u〉B+〈ρκ ũ·∇κ⊗∇κϕ ·u〉B−〈(nκ ·Tκ ·nκ)(ũ·∇6κ ⊗nκ ·u)〉∂B

=:R{ũ, u}, (5-23)

whence, due to the symmetry of Cκ (the elastic moduli tensor for the Piola stress) and to the symmetry
of TR(2) ∇κ⊗∇κ ϕ and TR(2) ∇6κ ⊗ nκ , the symmetry of the bilinear functional R{ũ, u} follows:

R{ũ, u} =R{u, ũ}. (5-24)

In what follows, the symmetric bilinear functional R{ũ, u} will be considered as the functional defined
on a broader set, namely, on any kinematically admissible (i.e. tangential at the boundary) fields of small
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displacements, as well as the quadratic functional

R{u} =R{u, u}. (5-25)

Kinematically admissible fields u(x) form an infinite-dimensional linear space N which will be sub-
sequently supplied with a scalar product that converts it into a Hilbert space.

From equations (5-19) and (5-24) it follows double orthogonality of the free vibration modes u(x)
and ũ(x) corresponding to different eigenvalues λ and λ̃:

λρκ u =A(u)
λ̃ρκ ũ =A(ũ)

λ 6= λ̃

 H⇒ 〈ρκ u · ũ〉B = 〈u ·A(ũ)〉B = 0. (5-26)

From the expression (5-20) for the functional R{u} it is by no means obvious its positive semidefinite-
ness, but this is absolutely obvious from its canonical form derived by the authors for the bulk-elastic
media in essentially more general assumptions [Ryzhak et al. 2017]. As for the systems considered here,
due to the assumption of constitutive homogeneity of a bulk-elastic medium, the canonical form of the
functional is especially simple and reduces to the following:

R{u} =
〈
Kκ

(
∇κ · u+

ρκ

Kκ

u · g
)2〉

B
, (5-27)

where Kκ(x) and ρκ(x) are the distributions of bulk modulus and density of a bulk-elastic medium in the
reference equilibrium state. Taking into account that the constitutive relation for a bulk-elastic medium
can be brought to the form

ρ = ρ(p), (5-28)

its bulk modulus is specified by the equality

1
K (ρ)

=
1

ρ(p)
dρ
dp
(p), (5-29)

whereas the equilibrium pressure gradient obeys the equation

∇κ pκ = ρκ g, (5-30)

we reduce R{u} to the form

R{u} =
〈
Kκ

(
∇κ · u+

1
ρκ
(u · ∇κρκ)

)2〉
B
=

〈
Kκ

ρ2
κ

(
(∇κ · (ρκu)

)2
〉

B
. (5-31)

Further spectral analysis will be based on the properties of the functionals entering into (5-22).
From (5-31) it is obvious that positive semidefinite quadratic functional R{u} vanishes on the infinite-

dimensional subspace N0 ⊂ N formed by the fields u0(x) for which

∇κ ·
(
ρκ(x) u0(x)

)
= 0, u0 · nκ |∂B = 0. (5-32)

These fields are the “neutral perturbations” that satisfy the linearized equilibrium equations and bound-
ary conditions. In addition to the formal proof of this fact, which will be given in Appendix B, it can
be justified also as follows: the fields u0(x) are the incremental displacements of such transformations
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for which the spatial distribution of density remains unchanged, whence for a homogeneous bulk-elastic
medium it follows that the spatial distribution of pressure does not change either.

Let us consider the subspace N⊥0 ⊂ N formed by the fields ũ(x) orthogonal to N0 in the sense of the
scalar product 〈ρκ u · ũ〉B :

ũ ∈ N⊥0 ⇐⇒ 〈ρκu0 · ũ〉B = 0, ∀u0 ∈ N0. (5-33)

It is easy to demonstrate that the fields ũ ∈ N⊥0 are potential, i.e. they have the form

ũ(x)=∇κγ (x), nκ · ∇κγ |∂B = 0. (5-34)

Moreover, any admissible field u(x) can be represented in a unique way as the sum of u0(x) and ũ(x):

u(x)= u0(x)+ ũ(x) ⇐⇒ N = N0⊕ N⊥0 , (5-35)

meaning that N is the orthogonal direct sum of subspaces N0 and N⊥0 .
The space of admissible fields N supplied with the above-mentioned scalar product is a Hilbert space.

We note that the norm generated by this scalar product, namely

‖u‖ := (〈ρκ u · u〉B)1/2, (5-36)

is equivalent to all the norms generated by scalar products of the type 〈β(x) u(x) · ũ(x)〉B with weight
functions β(x) that are continuous and strictly positive in the closure of the domain B.

The subsets of the subspace N⊥0 , bounded both in the value of the functional R{u} and in the norm ‖u‖
are compact in the sense of convergence with respect to this norm (and with respect to every norm equiv-
alent to it). The presence of such a compactness is proved in Appendix A under additional supposition
of piecewise convexity of the boundary ∂B, basing on classical Rellich’s lemma together with a specific
inequality of Korn’s type, not occurred in the literature (cf. Horgan 1995).

Due to the presence of this compactness, a standard spectral theorem can be proved for the operator A
on the subspace N⊥0 , that implies that the standard properties of eigenvalues and eigenvectors (i.e. the
free vibration modes) also take place.

We state the spectral theorem on a subspace N⊥0 . An outline of its proof (containing some nonstan-
dard elements resulting from the features of the mechanical system under consideration) is presented in
Appendix B.

Spectral theorem. The linear operator A (5-16) under boundary conditions (5-17) on the subspace N⊥0
has a positive discrete spectrum 0< λ1 ≤ λ2 ≤ . . ., limm→∞ λm =+∞, with corresponding eigenvectors
um(x) ∈ N⊥0 satisfying boundary conditions (5-18). Herein

λm = inf
u 6=0

u∈N⊥m−1

9{u} =9{um}, m = 1, 2, . . . , (5-37)

where the subspace N⊥m−1 for m > 1 is the orthogonal complement to span(u1, . . . , um−1)=: Nm−1 in
the subspace N⊥0 . Eigenvectors um(x) are the extremals of the functional 9{u} on subspaces N⊥m−1; they
are mutually orthogonal and can be normalized. The corresponding orthonormal system of eigenvectors
is complete in the sense of convergence in the norm (5-36) (and every norm equivalent to it).

A consequence of the spectral theorem in combination with certain fundamental properties of linear
spaces is the comparison theorem for eigenvalues corresponding to different operators with different



72 EUGENE I. RYZHAK AND SVETLANA V. SINYUKHINA

weight functions and related different scalar products. The latter theorem is an effective tool for investi-
gating the free vibration frequencies in the cases when it is impossible to obtain their exact values, since
it allows one to obtain upper and lower bounds for them by finding the corresponding frequencies for
suitable simple “comparison systems.”

The statement and proof of the comparison theorem for the mechanical systems under consideration
have a number of distinctions from those for the standard theorem.

Having in mind the comparison theorem, we reformulate in an equivalent way both the spectral prob-
lem and the spectral theorem in terms of a new unknown quantity w(x):

w(x) := ρκ(x) u(x) ⇐⇒ u(x)= 1
ρκ(x)

w(x), w(x) · nκ(x)= 0, x ∈ ∂B, (5-38)

R̃{w} := R
{
w

ρκ

}
=

〈
Kκ

ρ2
κ

(∇κ ·w)
2
〉
B
,

〈ρκu · u〉B =
〈 1
ρκ
w ·w

〉
B
, 9̃{w} :=9

{
w

ρκ

}
, Ã(w) :=A

(
w

ρκ

)
.

(5-39)

The equalities (5-19) and (5-22) take the following form:

λw = ω2w = Ã(w), (5-40)

λ= ω2
=

R̃{w}
〈(1/ρκ)w ·w〉B

=: 9̃{w}. (5-41)

The space of all w(x) tangential at the boundary ∂B and supplied with a scalar product 〈(1/ρκ)w ·w′〉B
is denoted Ñ , whereas the infinite-dimensional subspace of divergenceless fields w0(x) corresponding
to the zero eigenvalue, is denoted Ñ0. We introduce also the subspaces into which the subspaces N⊥0 ,
Nm−1, N⊥m−1 will be converted: Ñ⊥0 is the subspace orthogonal to Ñ0 (in the sense of the scalar product
of space Ñ ); Ñm−1 = span(w1, . . . ,wm−1), where wi =: ρκui is the eigenvector corresponding to the
eigenvalue λi ; Ñ⊥m−1 is the orthogonal complement to the subspace Ñm−1 in the subspace Ñ⊥0 (or, equiv-
alently, the orthogonal complement to the subspace span(Ñ0, Ñm−1) in Ñ ). It is obvious that Ñ is the
direct orthogonal sum of Ñ0, Ñm−1, and Ñ⊥m−1:

Ñ = Ñ0⊕ Ñm−1⊕ Ñ⊥m−1. (5-42)

The assertion of the spectral theorem remains the same except for the fact that equality (5-37) is converted
into the following equality:

λm = inf
w 6=0,w∈Ñ⊥m−1

9̃{w} = 9̃{wm}, m = 1, 2, . . . , (5-43)

The eigenvectors wm(x) are the extremals of functional 9̃{w} on the subspaces Ñ⊥m−1, they are mutually
orthogonal (〈(1/ρκ)wm1 · wm2〉B = 0, m1 6= m2) and can be normalized with respect to the norm of
space Ñ :

‖|w|‖ :=

√〈 1
ρκ
w ·w

〉
B
. (5-44)
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The corresponding orthonormal system of eigenvectors is complete in the sense of convergence in the
norm (5-44) (and in every norm equivalent to it).

We now assume that there are two different continuous mechanical systems of a similar type occu-
pying identical domains B with identical boundary conditions, but characterized by their own density
distributions ρ(1)κ (x), ρ(2)κ (x) and bulk moduli distributions K (1)

κ (x), K (2)
κ (x), which allows one to define

for these systems in a completely similar manner the functionals:

R̃( j)
{w},

〈
1
ρ
( j)
κ

w ·w

〉
B
, 9̃( j)

{w}, j = 1, 2.

It is obvious that for each of the systems there is its own set of eigenvalues λ( j)
0 = 0, 0<λ( j)

1 ≤λ
( j)
2 ≤ . . .,

j = 1, 2 and its own set of eigenvectors whose existence and properties result from the corresponding
spectral theorem. Note that the subspaces Ñ (1)

0 , Ñ (2)
0 (corresponding to the zero eigenvalue and being

formed by the divergenceless fields w( j)
0 (x) tangential on ∂B) coincide with each other.

The Hilbert spaces Ñ ( j) are characterized by different scalar products 〈(1/ρ( j)
κ )w · w′〉B . Hence,

the eigenvectors w( j)
0 (x),w( j)

1 (x), . . . are mutually orthogonal in the sense of the corresponding scalar
products, as well as the mutually orthogonal subspaces.

Now we state the comparison theorem.
Comparison theorem. Assume that the functional 9̃(2)

{w} majorizes the functional 9̃(1)
{w}:

9̃(1)
{w} ≤ 9̃(2)

{w}, ∀w ∈ Ñ , w 6= 0. (5-45)

Then for the corresponding eigenvalues (numbered in the order of nondecreasing) the following inequal-
ities hold:

λ(1)m ≤ λ
(2)
m , m = 1, 2, . . . . (5-46)

The proof of the theorem, which differs from the standard proofs (due to the presence of an infinite-
dimensional subspace corresponding to the zero eigenvalue) is presented in Appendix B.

The functionals 9̃(1)
{w} and 9̃(2)

{w} have a form that allows to obtain completely obvious minorizing
and majorizing functionals with constant coefficients. To this end we introduce for each of the bulk-elastic
media the fields of sound velocities c(1)κ (x) and c(2)κ (x):

c(1)κ (x)=

√√√√K (1)
κ

ρ
(1)
κ

, c(2)κ (x)=

√√√√K (2)
κ

ρ
(2)
κ

. (5-47)

In addition, we introduce notations for the minimal (line below the symbol) and maximal (line above the
symbol) values of a quantity. Then we have

9̃(1)
{w} ≤ (c̄(1)κ )

2 ρ̄
(1)
κ

ρ
(1)
κ

〈(∇κ ·w)
2
〉B

〈w ·w〉B
, (c(2)κ )

2 ρ
(2)
κ

ρ̄
(2)
κ

〈(∇κ ·w)
2
〉B

〈w ·w〉B
≤ 9̃(2)

{w}. (5-48)

If for two different bulk-elastic media occupying identical domains, the following inequality holds:√√√√ ρ̄
(1)
κ

ρ
(1)
κ

ρ̄
(2)
κ

ρ
(2)
κ

≤
c(2)κ
c̄(1)κ

, (5-49)
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g  

g

Figure 2. Comparison of the free vibration frequencies for different media occupying
similar domains in different fields.

then the functional 9̃(2)
{w} obviously majorizes the functional 9̃(1)

{w}, from which it follows that each
of the nonzero free vibration frequencies of the first medium does not exceed the corresponding frequency
of the second medium:

ω(1)m ≤ ω
(2)
m , m = 1, 2, . . . . (5-50)

Remark. The relations obtained can easily be extended to the case when the domains occupied by
different bulk-elastic media are similar (Figure 2).

In that case the functionals 〈(∇κ ·w)2〉B( j)/〈w ·w〉B( j) entering into each of the inequalities (5-48), for
different (similar) domains are to be reduced to one and the same domain B of some characteristic (unit)
size. Then for the functionals mentioned it results in

〈(∇κ ·w)
2
〉B( j)

〈w ·w〉B( j)
=

1
(l( j))2

〈(∇κ ·w)
2
〉B

〈w ·w〉B
, (5-51)

where l( j) is the characteristic size (say, the diameter) of the domain B( j). Hence, the inequality (5-49),
from which the inequality for frequencies (5-50) follows, takes the following form:√√√√ ρ̄

(1)
κ

ρ
(1)
κ

ρ̄
(2)
κ

ρ
(2)
κ

≤
c(2)κ / l(2)

c̄(1)κ / l(1)
. (5-52)

6. Explicit bounds for the free vibration frequencies for domains of some special shapes

As for domains of arbitrary shape, the comparison theorem, in accordance with its statement, makes it
possible only to compare the free vibration frequencies of different bulk-elastic media in the same (or
similar) domains, but it fails to yield the explicit frequency bounds. However, for domains of the shape of
a rectangular parallelepiped and for a certain set of other shapes the comparison theorem allows to obtain
concrete analytical upper and lower bounds for the corresponding free vibration frequencies depending
on the limit values of mechanical parameters of a medium and on the geometric parameters of a domain.

We note that the force field enters into the above bounds only via the quantities ρκ , ρ̄κ , cκ , c̄κ . For this
reason orientation of the domain with respect to the field can be absolutely arbitrary, and its influence
on the resulting bounds for frequencies is related to its influence on the above-mentioned limit values of
the mechanical parameters of a bulk-elastic medium that depend on the orientation.

The derivation of the bounds for frequencies is based on investigation of the functional

8{w} :=
〈(∇κ ·w)

2
〉B

〈w ·w〉B
, (6-1)
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Figure 3. A domain B of the shape of a rectangular parallelepiped.

by means of expansion of the fields w(x) (previously converted into spatially periodic fields) into a
spatial Fourier series. Various aspects of this method are presented in [Ryzhak 1993, 1994; 1997; 1999].

We consider first the domain B having the shape of a rectangular parallelepiped (Figure 3).
Let (e1, e2, e3) be an orthonormal basis, and the corresponding Cartesian rectangular coordinates are

specified by
x = x1e1+ x2e2+ x3e3. (6-2)

The rectangular parallelepiped B is specified by the following system of inequalities:

B = {x|0≤ xi ≤ li , i = 1, 2, 3}. (6-3)

To convert the field w(x) tangential at the boundary ∂B into a spatially periodic field, we successively
reflect the parallelepiped B together with the field defined on it with respect to the planes x1 = 0, x2 = 0,
x3 = 0. Thus the parallelepiped B is converted into the parallelepiped B ′:

B ′ = {x|−li ≤ xi ≤ li , i = 1, 2, 3}, (6-4)

whereas the field w(x) is converted into a spatially periodic field with three planes of symmetry in the B ′.
Using for the converted field the same notation w(x), we determine it by the following equalities:

w(x · Qi )= w(x) · Qi , x ∈ B ′, i = 1, 2, 3, (6-5)

where Qi is the TR(2) specifying reflection with respect to the plane xi = 0 (Figure 4, plane scheme).

B  

0 

1
l  

1
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2
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2
l-  

1
x  

2
x  

Figure 4. Conversion of the field into a periodic one by means of reflections.
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We note that in mirror-symmetric points the following equalities take place:

|w(x · Qi )| = |w(x)|, ∇κ ·w(x · Qi )=∇κ ·w(x). (6-6)

For this reason

〈(∇κ ·w)
2
〉B ′ = 8〈(∇κ ·w)2〉B, 〈w ·w〉B ′ = 8〈w ·w〉B (6-7)

H⇒ 8{w} =
〈(∇κ ·w)

2
〉B ′

〈w ·w〉B ′
. (6-8)

A well-known consequence of the spatial periodicity of the field w(x) is that the Fourier series for the
field ∇κ⊗w(x) is equal to the formally differentiated Fourier series for the field w(x). In combination
with the Parseval theorem, this allows to replace the integrals in the numerator and denominator of
expression (6-8) for the functional 8{w} by the sums of corresponding series (containing only the Fourier
coefficients for the field w(x)), and then investigate the ratio of the sums.

We introduce the notation for used hereinafter version of the triple Fourier series in the parallelepiped B ′.
The integer vectors µ are specified by the following equalities and inequalities:

µ= µ1e1+µ2e2+µ3e3, µi are integer,

µ1 > 0, or µ1 = 0, µ2 > 0, or µ1 = 0, µ2 = 0, µ3 > 0. (6-9)

We define the discrete vectors qµ:

qµ =
3∑

i=1

πµi

li
ei , (6-10)

and the following system of functions:

ϕ0(x)= (8l1l2l3)
−1/2, ϕµ(x)= (4l1l2l3)

−1/2 cos qµ · x, ψµ(x)= (4l1l2l3)
−1/2 sin qµ · x. (6-11)

This system is complete and orthonormal in L2(B ′), the convergence in the norm of the corresponding
space being independent of the order of summation, which allows to use triple summation (i.e. the
summation over µ) without specifying the order of summation. We will use the symbol ∼ to denote the
correspondence between the field and its Fourier series. Then for the fields w(x) and ∇κ⊗w(x), as well
as for ∇κ ·w(x) and ∇κ ×w(x), we have

w ∼ a0ϕ0+
∑
µ

(aµϕµ+ bµψµ), a0 = 0, (6-12)

∇κ⊗w ∼
∑
µ

(qµ⊗ bµϕµ− qµ⊗ aµψµ),

∇κ ·w ∼
∑
µ

(qµ · bµϕµ− qµ · aµψµ),

∇κ ×w ∼
∑
µ

(qµ× bµϕµ− qµ× aµψµ).

(6-13)
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Vanishing of the vector a0 is a consequence of symmetry of the field w(x), which is equivalent to
tangentiality of the original field on the faces of original parallelepiped B. The presence of these sym-
metries results in the existence of certain relations between the Fourier coefficients corresponding to
integer vectors µ with the same values of µ1 and of |µi |, i = 2, 3. Specifically, basing on a vector µ
corresponding to positive µi , we form the remaining three vectors:

µ′ = µ1e1−µ2e2+µ3e3 = µ · Q2,

µ′′ = µ1e1+µ2e2−µ3e3 = µ · Q3, (6-14)

µ′′′ = µ1e1−µ2e2−µ3e3 =−µ · Q1 = µ · Q2 · Q3.

Then for the Fourier coefficients corresponding to vectors µ′, µ′′, and µ′′′, the following equalities hold:

aµ = aµ′ = aµ′′ = aµ′′′ = 0,
bµ′ = bµ · Q2, bµ′′ = bµ · Q3, bµ′′′ =−bµ · Q1.

(6-15)

Note that in the Fourier expansion of the divergence for the divergenceless modes all the coefficients van-
ish, whence by virtue of (6-13) it follows that vectors bµ are orthogonal to the corresponding vectors qµ:

bµ · qµ = 0, ∀µ. (6-16)

For the elements of the orthogonal subspace in hand, formed by the gradients of the scalar functions,
their curls vanish, whence it follows that the vectors bµ are collinear to the corresponding vectors qµ:

bµ = βµqµ, ∀µ. (6-17)

Thus, in the above-mentioned subspace, by the Parseval theorem the following equalities hold:

8{w} =

∑
µ(qµ · bµ)

2∑
µ(bµ · bµ)

=

∑
µ β

2
µ(qµ · qµ)2∑

µ β
2
µ(qµ · qµ)

=

∑
µ

β2
µ(qµ · qµ)∑
µ̃ β

2
µ̃
(qµ̃ · qµ̃)

(qµ · qµ)

≥min
µ
(qµ · qµ)= (qµ1 · qµ1) (6-18)

H⇒ θ1 := inf
w∈N⊥0

8{w} = qµ1 · qµ1 =8{qµ1ψµ1}> 0. (6-19)

The value θ1 defined by (6-19) is the smallest positive eigenvalue of the self-adjoint operator correspond-
ing to the functional 8{w}. In accordance with the spectral theorem, the next eigenvalue θ2 ≥ θ1 is
equal to the minimal value of the functional on the orthogonal complement of the “vector” qµ1ψµ1 in the
subspace N⊥0 . In the Fourier expansions for the elements of such an orthogonal complement the term
bµ1ψµ1 is absent. Therefore on this orthogonal complement we have

8{w} =

∑
µ6=µ1 β2

µ(qµ · qµ)2∑
µ6=µ1 β2

µ(qµ · qµ)
≥ min
µ6=µ1

(qµ · qµ)= qµ2 · qµ2 (6-20)

H⇒ θ2 := inf
w∈N⊥0

w⊥q
µ1ψµ1

8{w} =8{qµ2ψµ2} = qµ2 · qµ2 ≥ θ1. (6-21)
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It is obvious that the integer vectors µ form a countable set; we number them in the order of nondecreasing
of the absolute values of vectors qµ. Then, by induction

θm =8{qµmψµm } = qµm · qµm ≥ θm−1, m = 1, 2, . . . . (6-22)

Thus, for a bulk-elastic medium in a domain having the shape and dimensions of the rectangular paral-
lelepiped B, in accordance with inequalities (5-48), we obtain the following upper and lower bounds for
the free vibration frequencies:

cκ

√
ρκ

ρ̄κ

√
θm ≤ ωm ≤ c̄κ

√
ρ̄κ

ρκ

√
θm ,

√
θm = |qµm | =

√
3∑

i=1

π2

l2
i
(µm

i )
2 . (6-23)

The bounds for the first frequency are determined by the greatest edge length:

√
θ1 = |qµ1 | =

π

maxi li
=:
π

l̄
,

√
ρκ

ρ̄κ
π

cκ
l̄
≤ ω1 ≤

√
ρ̄κ

ρκ
π

c̄κ
l̄
. (6-24)

The further order of nondecreasing in absolute value vectors qµm and the corresponding eigenvalues θm

depends on the “proportions” of the rectangular parallelepiped (i.e. on the ratios of the lengths of edges)
and can vary greatly. As a simple example, we present the values of the first few eigenvalues θm for a
cube with an edge l:

θ1 = θ2 = θ3 =
π2

l2 , θ4 = θ5 = θ6 =
2π2

l2 ,

θ7 =
3π2

l2 , θ8 = θ9 = θ10 =
4π2

l2 .

(6-25)

Remark. In the absence of a force field, the equilibrium state of a bulk-elastic medium is uniform;
consequently ρ̄κ = ρκ , cκ = c̄κ = cκ and every pair of inequalities (6-24) converts into the equality

ω1 =
πcκ

l̄
.

In exactly the same way, the inequalities (6-23) convert into the following equalities:

ωm = cκ
√
θm = cκ |qµm | = cκ

√
3∑

i=1

π2

l2
i
(µm

i )
2 . (6-26)

Thus, the bounds (6-23) and (6-24) give exact values of the free vibration frequencies in the case of
a uniform equilibrium state and provide a good approximation in the case when the nonuniformity of
the equilibrium state is not significant. The stated remark applies equally to other shapes of the domain
considered below.

Remark. In the case of a significant value of the acceleration of gravity (or if the system under consider-
ation moves with a high acceleration), and also in the case of a significant value of one of the dimensions
of a system, the quantities entering into the upper and lower bounds (6-23), (6-24) for one and the same
domain and the same bulk-elastic medium will be different for different orientations of the domain with
respect to the direction of the force field.
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g  

Figure 5. The influence of orientation with respect to the field direction.

Indeed, if the direction of the longest edge is close to the direction orthogonal to the field, and the
dimension in the direction parallel to the field is small, then the values ρ̄κ , c̄κ differ little from the values
ρκ , cκ . If, on the contrary, the greatest dimension corresponds to the direction parallel to the field, then
these values differ greatly from each other (Figure 5). Obviously, this remark applies equally to any other
shapes of the domain.

The above-described method is straightforward for a domain of the shape of a rectangular paral-
lelepiped, but it can also be applied (in a somewhat more complicated way) to some other polyhedra. Let
us consider three more shapes of the domain, which by means of similar techniques (reflection of the
domain together with the vector field defined on it) can be converted into parallelepipeds with a spatially
periodic vector field generated by the initial one.

The periodic field by construction will have a number of additional symmetries, which will affect
the set of extremals of the functional 8{w} (i.e. eigenvectors of the corresponding operator): only a
part of the eigenvectors for the parallelepiped (namely, those that possess the needed symmetries) will
correspond to the eigenvectors for the original domain.

(a) A straight trihedral prism having a rectangular isosceles triangle as its base, which, when reflected
with respect to the hypotenuse, turns into a square. Thus, the prism itself, when reflected with respect
to the corresponding lateral face, is converted into a rectangular parallelepiped with a pair of square
faces. Herewith the field w(x) reflected together with the original prism, is converted into a field in
the rectangular parallelepiped, tangential at its boundary, but additionally possessing the symmetry with
respect to one of the “diagonal” planes (Figure 6).

In what follows, as before, the parallelepiped together with the field w(x) is reflected with respect to
the planes of faces. Finally we obtain a spatially periodic field for which the functional 8{w} takes the
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Figure 6. A straight trihedral prism with a rectangular isosceles triangle in the base.



80 EUGENE I. RYZHAK AND SVETLANA V. SINYUKHINA

same value as the original functional on the initial field w(x), whereas the Fourier series for ∇κ⊗w(x)
appears to be equal to formally differentiated Fourier series for w(x).

The presence of an additional symmetry of the field w(x) as compared to an arbitrary (tangential at
the boundary) field in the rectangular parallelepiped results in certain additional properties of the Fourier
coefficients in the expansion of the field w(x). Specifically, the pairs of terms of the Fourier series
symmetric with respect to the diagonal plane should be equal in amplitude (while for the rectangular
parallelepiped with square faces of one of the pairs, the amplitudes could be arbitrary). This results in
less multiplicity of corresponding eigenvalues.

To describe the corresponding modes, we introduce some notation: the axis x1 is the one directed along
the edge orthogonal to the planes of the square faces, the axes x2 and x3 are directed along the catheti of
an isosceles rectangular triangle, l1 is the length of the edge directed along the axis x1, l = l2 = l3 is the
length of the edges directed along the axes x2 and x3, µ1, µ2, µ3 ≤ µ2 are the nonnegative integers not
equal to zero simultaneously. Then the mentioned pair of terms of the Fourier series has the following
form (up to an arbitrary factor):

wµ1µ2µ3(x)=∇κ
(

cos
(
π

l1
µ1x1

)
cos
(
π

l
µ2x2

)
cos
(
π

l
µ3x3

)
+ cos

(
π

l1
µ1x1

)
cos
(
π

l
µ3x2

)
cos
(
πµ2

x3

l

))
. (6-27)

The field (6-27) is one of the extremals of functional 8{w} for the considered triangle prism, i.e. the
eigenvector of corresponding self-adjoint operator, with related eigenvalue

θµ1µ2µ3 = π
2
(
µ2

1

l2
1
+
µ2

2+µ
2
3

l2

)
= qµ · qµ, qµ =

πµ1

l1
e1+

πµ2

l
e2+

πµ3

l
e3. (6-28)

Numbering the integer vectors µ=µm in the order of nondecreasing of |qµm |, we obtain a nondecreasing
sequence of eigenvalues:

θµm = qµm · qµm , m = 1, 2, . . . . (6-29)

It is obvious that
θµ1 =min

µ
qµ · qµ =

(
π

max(l1, l)

)2
. (6-30)

Bounds for the free vibration frequencies ωm , as before, are given by inequalities (6-23).

(b) A triangular pyramid, the base of which is an isosceles rectangular triangle; the planes of the lateral
faces passing through its catheti are orthogonal to the plane of the base, and the plane of lateral face
passing through the hypotenuse makes with the plane of the base an angle equal to π/4 (Figure 7). Such
a pyramid by a number of reflections with respect to the planes of the faces is converted into a cube.

Specifically, first, reflections are made with respect to the planes of the faces orthogonal to the base;
hereby the original pyramid turns into a quadrangular pyramid, the base of which is a square with a
side equal to the hypotenuse of the base of the original pyramid. Then the quadrangular pyramid is
reflected with respect to the planes of the side faces and four quadrangular pyramids are formed with
bases orthogonal to the base plane of the original pyramid and passing through the sides of the square
mentioned. At the last stage, one (any) of the reflected pyramids is reflected with respect to one of its
lateral faces in such a way that the plane of the base of reflected pyramid be parallel to the plane of the
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Figure 7. A triangular pyramid with rectangular isosceles triangle in the base.

base of the original pyramid. The totality of six quadrangular pyramids forms a cube with an edge equal
to the hypotenuse of the base of the original triangular pyramid.

As for the vector field w(x) in the original pyramid, it also undergoes all the listed reflections and
eventually turns into a field in the cube, which we still denote w(x). Although the cube is a particular case
of the rectangular parallelepiped, considered in (a), in this case an important role in finding the extremals
of functional 8{w} is played by the symmetries that the field w(x) gets by construction, namely: the
resulting field w(x) is symmetric with respect to all diagonal planes of the cube (i.e. the planes orthogonal
to the planes of a pair of faces and passing through the diagonals of the faces of this pair).

We introduce the Cartesian rectangular coordinates with the origin at one of vertices of the cube and
axes directed along its edges. The edge length (the length of the hypotenuse of an isosceles triangle) will
be denoted l. It can be shown that in the case under consideration the groups of terms of the Fourier
series corresponding to the sets of integers µ1, µ2, µ3, such that

0≤ µ1 ≤ µ2 ≤ µ3, µ3 > 0, (6-31)

are given by the following equality:

wµ1µ2µ3(x)=
∑
(i, j,k)

∇κ

(
cos
(
π

l
µi x1

)
cos
(
π

l
µ j x2

)
cos
(
π

l
µk x3

))
, (6-32)

where (i, j, k) are possible permutations of numbers (1, 2, 3), and the numbers µ1, µ2, µ3 additionally
possess the property that the sum of any pair of them is an even number. The property is equivalent to that
the numbers µi either all are odd, or all are even. The fields (6-32) are extremals of the functional 8{w},
i.e. eigenvectors of the corresponding operator with eigenvalues

θµ1µ2µ3 =
π2

l2 (µ
2
1+µ

2
2+µ

2
3)= qµ · qµ, qµ =

π

l
(µ1e1+µ2e2+µ3e3). (6-33)

Numbering, as before, integer vectors µ=µm in order of nondecreasing of |qµm |, we obtain a nondecreas-
ing sequence of eigenvalues θµm , where m = 1, 2, 3, . . . . Obviously, the smallest eigenvalue corresponds
to the triplet (1, 1, 1):

θµ1 =min
µ

qµ · qµ =
3π2

l2 . (6-34)
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Figure 8. A straight trihedral prism with a regular triangle in the base. Conversion into
a hexahedral prism.

It is also obvious that the second eigenvalue corresponds to the triplet (0, 0, 2), and the third one corre-
sponds to the triplet (0, 2, 2):

θµ2 =
4π2

l2 , θµ3 =
8π2

l2 . (6-35)

In principle, it is not difficult to find any given number of the first eigenvalues. Bounds for the free
vibration frequencies ωm , as before, are given by inequalities (6-23).

(c) A straight trihedral prism with a height l3, whose base is a regular triangle with the side l (and corre-
sponding height h = l

√
3/2). We reflect the prism (as before, together with tangential at the boundary

vector field defined in it) with respect to the two lateral faces, then the resulting quadrangular prism we
reflect with respect to a larger lateral face; the resulting regular straight hexahedral prism is reflected
with respect to the base (Figure 8).

As a result, we obtain a regular straight hexahedral prism of double height. Reflecting this hexahedral
prism with respect to all the lateral faces, we obtain a polyhedron, the cross-section of which by a plane
parallel to the base is shown in Figure 9, left. Continuing such reflections, we obtain a periodic vector
field with a period 2h in the directions of axes x1 and x2 (parallel to the heights of regular triangle) and
with a period 2l3 in the direction of axis x3 (orthogonal to the base of the prism). Note that periodicity
with a period 2h is also present in the direction parallel to the third height of regular triangle, but for
the expansion of a vector field into a triple Fourier series only three directions of periodicity should be
chosen from the four available; however, the presence of the fourth will result in the structure of terms
of the Fourier series.

The elementary cell of periodicity here is an oblique parallelepiped with the edges (2h, 2h, 2l3), the
cross-section of which by a plane parallel to the base of the original prism (that being a parallelogram)
is also depicted in Figure 9, left. To represent the corresponding Fourier series taking into account the
obliqueness of the coordinate system (x1, x2, x3), we introduce the following notation: e1, e2, e3 are the
unit basis vectors specifying the axes (x1, x2, x3) (Figures 8 and 9)); the dual basis corresponding to the
basis (e1, e2, e3) is the basis (ẽ1, ẽ2, ẽ3 = e3) (Figure 9, right).

The system of basis functions (up to normalizing factors, which play a minor role in this problem) is
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Figure 9. Left: Conversion of the field in the hexahedral prism into a periodic one by
means of reflections. Right: Conventions for the Fourier series expansion in an oblique
parallelepiped.

taken to be of the following form:

sin(qµ · x) sin
(
π

l3
µ3x3

)
, sin(qµ · x) cos

(
π

l3
µ3x3

)
,

cos(qµ · x) sin
(
π

l3
µ3x3

)
, cos(qµ · x) cos

(
π

l3
µ3x3

)
,

qµ =
π

h
(µ1 ẽ1+µ2 ẽ2), (6-36)

µ3 ≥ 0, µ3 > 0⇒ µ1, µ2 = 0,±1,±2, . . . ,

µ3 = 0⇒ µ1 ≥ 0, µ1 > 0⇒ µ2 = 0,±1,±2, . . . ,

µ1 = 0⇒ µ2 = 1, 2, . . . .

Taking into account that the subspace of vector fields of interest is formed by the gradients of scalar
fields, as well as the presence of symmetry with respect to the plane x3 = 0, we arrive at the following
expressions for two types of terms of the Fourier series corresponding to a set of integers (µ1, µ2, µ3):

wc
µ1µ2µ3

= qµ cos(qµ · x) cos
(
π

l3
µ3x3

)
−
π

l3
µ3e3 sin(qµ · x) sin

(
π

l3
µ3x3

)
,

ws
µ1µ2µ3

= qµ sin(qµ · x) cos
(
π

l3
µ3x3

)
+
π

l3
µ3e3 cos(qµ · x) sin

(
π

l3
µ3x3

)
.

(6-37)

Each of the modes (6-37) would enter into an expansion with its own coefficient, these coefficients being
arbitrary and independent, if not for the presence of symmetry of the vector field with respect to the
planes of the lateral faces of original prism (due to sequence of reflections having led to periodicity):
this results in definite relations between the coefficients. To specify these relations, we introduce, apart
from the vectors ẽ1 and ẽ2, an additional vector f (Figure 9, right):

f =−(ẽ1+ ẽ2). (6-38)
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The vectors (ẽ1, ẽ2, f ) under these reflections pass into each other and are equivalent to each other in
the sense of the structure and symmetries of the constructed periodic field. The symmetry of a field, when
the latter is expanded into the Fourier series, results in the symmetries of groups of its terms corresponding
to the same value of µ3 and the values of qµ that pass into each other under the reflections. In general
case, there are six such values, but in particular, they can coincide in pairs, and then there will be three
of them.

We describe both cases. In the first case, we set µ2 > 0, µ1 > µ2. Then

q(1)µ1µ2
:=
π

h
(µ1 ẽ1+µ2 ẽ2), q(2)µ1µ2

:=
π

h
(µ1 ẽ2+µ2 ẽ1), q(3)µ1µ2

:=
π

h
(µ1 ẽ2+µ2 f ),

q(4)µ1µ2
:=
π

h
(µ1 f +µ2 ẽ2), q(5)µ1µ2

:=
π

h
(µ1 f +µ2 ẽ1), q(6)µ1µ2

:=
π

h
(µ1 ẽ1+µ2 f ).

(6-39)

In the second case, we set µ2 = 0, µ1 > 0. Then

q(1)µ1
=
π

h
µ1 ẽ1, q(2)µ1

=
π

h
µ1 ẽ2, q(3)µ1

=
π

h
µ1 f . (6-40)

Modes of each type (i.e. wc and ws), corresponding to the same set (6-40) or to the same set (6-39)
of vectors q, should have the same coefficients. It is almost obvious that when such vectors belong to
the same set invariant with respect to reflections, that is equivalent to their absolute values being equal
to each other.

Taking all the foregoing into account, we represent the Fourier series for the constructed periodic
field w, which possesses all the necessary symmetries, in the following form:

w ∼
∑
µ3>0

as
µ3

π

l3
µ3e3 sin

(
π

l3
µ3x3

)

+

∑
µ1>0

∑
µ3≥0

3∑
i=1

(
ac
µ1µ3

(
q(i)µ1

cos(q(i)µ1
·x) cos

(
π

l3
µ3x3

)
−
π

l3
µ3e3 sin(q(i)µ1

·x) sin
(
π

l3
µ3x3

))
+as

µ1µ3

(
q(i)µ1

sin(q(i)µ1
·x) cos

(
π

l3
µ3x3

)
+
π

l3
µ3e3 cos(q(i)µ1

·x) sin
(
π

l3
µ3x3

)))

+

∑
µ2>0
µ1>µ2

∑
µ3≥0

6∑
i=1

(
ac
µ1µ2µ3

(
q(i)µ1µ2

cos(q(i)µ1µ2
·x) cos

(
π

l3
µ3x3

)
−
π

l3
µ3e3 sin(q(i)µ1µ2

·x) sin
(
π

l3
µ3x3

))
+as

µ1µ2µ3

(
q(i)µ1µ2

sin(q(i)µ1µ2
·x) cos

(
π

l3
µ3x3

)
+
π

l3
µ3e3 cos(q(i)µ1µ2

·x) sin
(
π

l3
µ3x3

)))
. (6-41)

Due to periodicity of the “constructed” field w, the Fourier expansions for ∇κ⊗w and ∇κ ·w= I : ∇κ⊗w
are the result of applying of the corresponding operators to the terms of the Fourier series for the field
itself. We note that multiplicity of the terms corresponding to µ1 = µ2 = 0, µ3 > 0 is equal to one, and
multiplicity of the remaining terms is equal to two.

Each group of terms of the Fourier series forms either one-dimensional or two-dimensional subspace,
these subspaces being mutually orthogonal both in the sense of the scalar product 〈w · w̃〉B ′ corre-
sponding to the denominator of the functional 8{w} (6-8) and in the sense of the bilinear functional
〈(∇κ · w)(∇κ · w̃)〉B ′ corresponding to its numerator (here the domain B ′ is an oblique parallelepiped
specifying the cell of periodicity of the constructed field). By arguments almost coinciding with those in
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derivation of (6-18)–(6-22), we obtain a set of values of the functional 8{w} on the Fourier series terms
that correspond to all possible sets of numbers (µ1, µ2, µ3):

θ00µ3 =

(
π

l3

)2
µ2

3,

θ c
µ10µ3

= θ s
µ10µ3

= q(i)µ1
· q(i)µ1
+

(
π

l3

)2
µ2

3 = π
2
(
µ2

1

( 3
4 l)2
+
µ2

3

l2
3

)
, (6-42)

θ c
µ1µ2µ3

= θ s
µ1µ2µ3

= q(i)µ1µ21
· q(i)µ1µ2

+

(
π

l3

)2
µ2

3 = π
2
(
µ2

1+µ
2
2−µ1µ2

( 3
4 l)2

+
µ2

3

l2
3

)
.

From the same arguments it follows that these are the eigenvalues of a self-adjoint operator corresponding
to the functional8{w}. Numbering them in the order of nondecreasing and using the comparison theorem,
we obtain upper and lower bounds for numbered in the same way the free vibration frequencies of the
bulk-elastic medium in the domain of the shape under consideration:

cκ

√
ρκ

ρ̄κ

√
θ ≤ ω ≤ c̄κ

√
ρ̄κ

ρκ

√
θ . (6-43)

In deriving the equalities (6-42), the following equations are used:

ẽ1 · ẽ1 = ẽ2 · ẽ2 = f · f = 4
3 , ẽ1 · ẽ2 = ẽ1 · f = ẽ2 · f =− 2

3 . (6-44)

From equalities (6-42) we obtain the value of the smallest eigenvalue:

θmin =

(
π

max( 3
4 l, l3)

)2

, (6-45)

and the corresponding bounds (6-43) for the lowest frequency.

7. Examples of bilateral bounds for free vibration frequencies of the Mooney–Rivlin bulk-elastic
media in rectangular parallelepipeds

The examples given below are based on the nonlinear bulk-elastic constitutive relation having some
essential features of the well-known Mooney–Rivlin elastic solid. In what follows the former will be
called the Mooney–Rivlin bulk-elastic medium. We remark that this type of constitutive relation is
meaningful for any values of strain up to arbitrarily large values. This property is very important for
the problems considered in the work. We remind that unlike the cases presented in the literature, in
the problems investigated here the unperturbed state may be deformed greatly and nonuniformly with
respect to the homogeneous unloaded configuration and this entails a great difference in possible methods
of analysis.

In the cases presented in the literature, substantial restrictions are assumed regarding the unperturbed
state of the medium, because the equations of motion with variable coefficients in general case cannot be
solved analytically. In each particular case certain simplifications in the formulation of the problem are
employed. For example, there may be equations of motion with variable coefficients of some specific
type. In other cases, conditions of low compressibility of the medium are assumed, that allows at further
analytical study to consider the equilibrium state of the medium as uniform. Sometimes nonuniformity
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can be neglected due to a certain geometrical configuration of the system, for example, if the medium
under consideration occupies a layer which is very thin in direction perpendicular to the direction of
mass force field. All those assumptions allow to reduce the problem under consideration to an analytical
study of equations with either constant coefficients or variable coefficients of some specific type, whereas
further analysis is based on exact solutions of the equations.

As for our method, it is based on variational approach together with usage of some essential analytical
findings of our own [Ryzhak et al. 2017; Ryzhak 1993; 1994; 1997], giving the opportunity of obtaining
rigorous upper and lower bounds for the free vibration frequencies for a broad class of mechanical
systems whose behavior is governed by equations with variable coefficients.

In the examples given below we demonstrate the bilateral bounds in the case of some mechanical
systems with great nonuniformity of loaded configuration, and compare them with the well-known exact
values for uniform systems.

For simplicity we assume that the domain occupied by the Mooney–Rivlin bulk-elastic medium is a
rectangular parallelepiped. We first set the elastic potential of such a medium with respect to unit volume
in the unloaded configuration κ̃:

σκ̃(F̃)=
K0

2

(
det F̃+

1
det F̃

)
=

K0

2

(
ρ0

ρ
+
ρ

ρ0

)
, (7-1)

where F̃ is the transformation gradient with respect to configuration κ̃ , K0, and ρ0 are the bulk modulus
and density in the unloaded state.

Let the medium occupying the rectangular parallelepiped be under the action of constant vertical
gravity field g. We assume that the largest edge of rectangular parallelepiped l3 is the vertical one (see
Figure 3). In this case it is not difficult to obtain the following analytical expressions for sound velocity,
density, and bulk modulus as functions of the vertical coordinate x3 measured from the bottom. On the
upper face of parallelepiped, where x3 = l3, there are the minimal values of density ρ(l3) = ρ, bulk
modulus K (l3)= K , and sound velocity c(l3)= c. Then we have

ρ(l3− x3)= ρ
(

1+
ρ

K
g(l3− x3)

)
= ρ

(
1+

g(l3− x2)

c2

)
,

K (l3− x3)= K
(

1+
g(l3− x3)

c2

)2

,

c(l3− x3)=

√
K
ρ

(
1+

g(l3− x3)

c2

)
= c

√
1+

g(l3− x3)

c2 .

(7-2)

Maximal values of the quantities are attained at the bottom of parallelepiped, where x3 = 0:

ρ(l3)= ρ̄ = ρ

(
1+

gl3

c2

)
, K (l3)= K = K

(
1+

gl3

c2

)2

, c(l3)= c̄ = c

√
1+

gl3

c2 . (7-3)



FREE VIBRATIONS OF A NONLINEAR BULK-ELASTIC MEDIUM IN A MASS FORCE FIELD 87

Substituting the values (7-3) into inequalities (6-23), we obtain the following upper and lower bounds
for the free vibration frequencies:

c√
1+ (gl3/c2)

√
θm ≤ ωm ≤ c

(
1+

gl3

c2

)√
θm ,

√
θm = |qµm | =

√
3∑

i=1

π2

l2
i
(µm

i )
2 ,

(7-4)

Introducing the dimensionless quantity
θ̃m := l2

3θm, (7-5)

we rewrite inequalities (7-4) as follows:

c
l3

√
θ̃m√

1+ (gl3/c2)
≤ ωm ≤

c
l3

√
θ̃m

(
1+

gl3

c2

)
. (7-6)

In particular for the first frequency we obtain:√
θ1 = |qµ1 | =

π

maxi li
=:
π

l3
,

c
l3

π√
1+(gl3/c2)

≤ ω1 ≤
c
l3
π

(
1+

gl3

c2

)
. (7-7)

From formulas (7-3) it follows that if the quantity gl3/c2 is small enough, then

ρ(l3− x3)≈ ρ ≈ ρ̄, K (l3− x3)≈ K ≈ K , c(l3− x3)≈ c ≈ c̄,

and it is possible to consider the loaded unperturbed configuration of the medium as uniform or close
to uniform. In the case of uniform equilibrium state (when c = c̄ = c) every pair of inequalities (7-7)
and (7-6) converts into the equalities and gives the well-known exact values of free vibration frequencies:

ω1 =
πc
l3
, ωm =

c
l3

√
θ̃m . (7-8)

In the case when the nonuniformity of the equilibrium state is not significant, the formulas (7-6) and (7-7)
provide a good (and moreover, rigorous) approximation for free vibration frequencies. Clearly it will
take place if:

(1) for given l3 and c the mass force g is small enough,

(2) for given g and l3 the minimal sound velocity c is great enough,

(3) for given g and c the vertical dimension l3 is small enough.

Let us now consider the case when the classical methods by no means give any results. For example
we set

1+
gl3

c2 = 2.

Then

ρ̄ = ρ

(
1+

gl3

c2

)
= 2ρ, K = K

(
1+

gl3

c2

)2

= 4K , c̄ = c

√
1+

gl3

c2 =
√

2 c,
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i.e. the equilibrium state of the medium is strongly nonuniform. Nevertheless our approach makes it
possible to obtain the rigorous bilateral bounds for all free vibration frequencies:

c
l3

√
θ̃m
√

2
≤ ωm ≤

c
l3

√
θ̃m ,

c
l3

π
√

2
≤ ω1 ≤

c
l3

2π. (7-9)

Conclusions

In the work the free vibrations of a homogeneous bulk-elastic medium occupying a closed domain with
fixed and perfectly smooth boundary and subject to the action of a field of mass forces are investigated
analytically by variational methods. The formulation of the problem is highly general: the nonlinear law
of bulk elasticity is arbitrary, the shape of the domain is almost arbitrary (see Appendix A), the force field
is an arbitrary potential field. Additionally the domains of a number of special shapes are considered.

For investigation of the problem under consideration it has become necessary to prove modifications
of the fundamental theorems in the theory of free vibrations for elastic bodies. The main novel research
tool is the use of the canonical form of second variation of total potential energy of the system [Ryzhak
et al. 2017], which in this case assumes a particularly simple form, namely (5-27) and (5-31).

Proved in the work version of the comparison theorem for the free vibration frequencies results in the
inequalities (5-49), (5-52). The inequalities obtained make it possible to compare with each other all the
free vibration frequencies of two different bulk-elastic media in domains of identical or similar shapes
and for different fields of mass forces as well as for the same field, but for different orientations of the
domain with respect to it (Figure 5). The latter can be regarded as a special case of different fields. These
results (expressing a certain combination of geometrical and mechanical similarity of the problems) find
a number of applications, e.g. enable to model and investigate in laboratory the free vibrations of real
large-scale systems (say, atmospheric layers).

Another important result of the work are the analytical bilateral bounds for all the free vibration
frequencies of bulk-elastic media in domains of the following shapes: a rectangular parallelepiped with
an arbitrary ratio of the lengths of edges, a straight trihedral prism (with either an isosceles rectangular
triangle or regular triangle as the base), and a triangular pyramid with an isosceles rectangular triangle as
the base, whose lateral faces passing through the catheti of the base are orthogonal to its plane, whereas
a face passing through the hypotenuse of the base is inclined to its plane at a π/4 angle.

The above-mentioned analytical results are also valid for different fields of mass forces and for differ-
ent orientations of the domains with respect to the same field, which obviously concerns the technical
devices whose spatial position can be varied (see Figure 5). We note that the field itself enters into the
obtained bilateral bounds indirectly, namely, via the maximal and minimal equilibrium values of the
sound velocity in the medium in combination with the ratio of the maximal and minimal equilibrium
density values. Obviously, in the absence of the force field, the equilibrium state of the medium is
uniform, and hence, the upper and lower bounds coincide with each other and thus give the exact values
of all frequencies of the spectrum not only for rectangular parallelepipeds (for which they could be
obtained by the method of separation of variables), but also for other polyhedra (for which separation of
variables cannot be applied).

If for a domain of some different shape (for example, a circular cylinder, a sphere or a spherical layer)
the problem of free vibrations of a homogeneous bulk-elastic medium in the absence of the force field
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Figure 10. From exact values for the free vibration frequencies in the case of uniform
equilibrium state to the bounds for them in the problem with stratification due to mass
forces.

can be solved analytically and the values of all quantities θm are found, then the comparison theorem via
inequalities (6-43) will give upper and lower bounds for all the frequencies ωm of the medium in that
domain with regard for the field and corresponding nonuniform distribution of density and velocity of
sound (Figure 10). In the case when the values of quantities θm are found analytically only for a part of
the free vibration modes in the absence of the field, then for the m-th frequency in the presence of the
field only an upper bound will follow from the comparison theorem.

Appendix A. Proof of the compactness of subsets of subspace N⊥
0 bounded both in the value of

functional R{u} and in the norm ‖u‖

This compactness is a consequence of classical Rellich’s lemma, the condition of which incorporates the
boundedness both in the norm (〈u ·u〉B)1/2 and in the value of the quadratic functional 〈∇κ⊗u : ∇κ⊗u〉B .
Obviously, the norms ‖u‖ and (〈u · u〉B)1/2 are equivalent to each other and to all norms of the same
type with positive weights β(x). Thus, it should be additionally proved that from boundedness of R{u}
and from boundedness of ‖u‖ it follows the boundedness of 〈∇κ⊗ u : ∇κ⊗ u〉B . Since the fields u(x) on
the subspace N⊥0 are the gradients of scalar fields (5-34), we have

u(x)=∇κγ (x) H⇒ ∇κ⊗ u(x)=∇κ⊗∇κγ (x)=
(
∇κ⊗ u(x)

)T
. (A-1)

Thus, the equivalent assertion is the boundedness of the functional

〈∇κ⊗ uT
: ∇κ⊗ u〉B = 〈∇κ⊗ u : ∇κ⊗ u〉B . (A-2)

We prove first of all that the integral of the square of divergence of u(x) is bounded:

∇κ · u = (∇κ · u+ u · ∇κρκ/ρκ)− u · ∇κρκ/ρκ
H⇒ (∇κ · u)2 ≤ 2(∇κ · u+ u · ∇κρκ/ρκ)2+ 2(u · ∇κρκ/ρκ)2

≤
2

K κ
Kκ(∇κ · u+ u · ∇κρκ/ρκ)2+ 2(|∇κρκ |2/ρ3

κ)ρκu · u

H⇒ 〈(∇κ · u)2〉B ≤
2

K κ
R{u}+ 2(|∇κρκ |2/ρ3

κ)max‖u‖2. (A-3)
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Further we make use of some formulas of tensor analysis and calculations similar to those in deriving
the well-known Kelvin formula:

∇κ · (∇κ⊗ uT
· u)=∇κ⊗ uT

: ∇κ⊗ u+ u ·
(
∇κ · (∇κ⊗ uT )

)
=∇κ⊗ uT

: ∇κ⊗ u+ u · ∇κ(∇κ · u)

=∇κ⊗ uT
: ∇κ⊗ u+∇κ ·

(
u(∇κ · u)

)
− (∇κ · u)2

H⇒ 〈∇κ⊗ uT
: ∇κ⊗ u〉B = 〈(∇κ · u)2〉B +〈nκ · ∇κ⊗ uT

· u〉∂B −〈(nκ · u)∇κ · u〉∂B

= 〈(∇κ · u)2〉B +〈u · ∇κ⊗ u · nκ〉∂B . (A-4)

On smooth pieces of the boundary ∂B

u(x) · nκ(x)= 0 H⇒ du · nκ + u · dnκ = 0. (A-5)

Hence, for any tangential vector y the following equalities hold:

y · ∇κ⊗ u · nκ =− y · ∇6κ ⊗ nκ · u, y ⊥ nκ H⇒ u · ∇κ⊗ u · nκ =−u · ∇6κ ⊗ nκ · u. (A-6)

Thus, taking into account the assumption of piecewise convexity of the boundary, we obtain

〈∇κ⊗ uT
: ∇κ⊗ u〉B = 〈(∇κ · u)2〉B −〈u · ∇6κ ⊗ nκ · u〉∂B ≤ 〈(∇κ · u)2〉B, (A-7)

that, with regard for equalities (A-1), (A-2) and inequality (A-3), proves the assertion.
We remark that condition of piecewise convexity here is only a sufficient condition, not a necessary

one.

Appendix B. Outline of the proof of modified spectral theorem

In this appendix there will be stated in detail only the elements of the proof of formulated in the work
modified spectral theorem, which differ significantly from the corresponding elements of the proof of
classical spectral theorem for elastic bodies (see, for example, Gurtin 1972; Mikhlin 1964). These
significant distinctions are related to the presence of an infinite-dimensional subspace of neutral pertur-
bations N0 (on which λ = ω2

= 0), and also to nonstandard boundary conditions (free sliding over a
nonplane surface).

We consider first of all the variational problem of the infimum of functional 9{u} (5-22) on nonzero
elements of the space N formed by all kinematically admissible fields u(x):

u(x) ∈ N ⇐⇒ u(x) · nκ(x)|∂B = 0. (B-1)

From the canonical form (5-31) of the functional R{u} it is obvious that the infimum is equal to zero and
is attained on nonzero fields u0(x) forming the subspace N0 (5-32). For what follows it should be proved
that the fields u0(x) are the solutions of linearized equilibrium equations (equations (5-16), (5-19) for
λ= ω2

= 0 with boundary conditions (5-18)). We will analyze the inequality

R{u} ≥ R{u0} = 0, ∀u ∈ N , (B-2)
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not excluding u = 0. We represent u as follows:

u = αu0+ ũ, −∞< α <∞, ũ ∈ N , (B-3)

R{αu0+ ũ} = α2 R{u0}+ 2αR{ũ, u0}+ R{ũ} = 2αR{ũ, u0}+ R{ũ} ≥ 0, ∀α

H⇒ R{ũ, u0} = 0, ∀ũ ∈ N . (B-4)

The initial equality (5-23) for the functional R{ũ, u0} will be used:

R{ũ, u0} = 〈∇κ⊗ ũ : Cκ : ∇κ⊗ u0〉B +〈ρκ ũ · ∇κ ⊗∇κ ϕ · u0〉B −
〈
(nκ · Tκ · nκ)ũ · ∇6κ ⊗ nκ · u0

〉
∂B

= 0,

∇κ⊗ ũ : Cκ : ∇κ⊗ u0 =∇κ ·
(
(Cκ : ∇κ⊗ u0) · ũ

)
−
(
∇κ · (Cκ : ∇κ⊗ u0)

)
· ũ

H⇒
〈
−ũ ·

(
∇κ · (Cκ : ∇κ⊗ u0)− ρκ∇κ⊗∇κ ϕ · u0

)〉
∂B

+
〈(

nκ ·Cκ : ∇κ⊗ u0− (nκ · Tκ · nκ)∇6κ ⊗ nκ · u0
)
· ũ
〉
∂B = 0

H⇒ A(u0)=∇κ · (Cκ : ∇κ⊗ u0)− ρκ∇κ⊗∇κ ϕ · u0 = 0, x ∈ B,

(nκ ·Cκ · ∇κ⊗ u0) · (I − nκ ⊗ nκ)− (nκ · Tκ · nκ)∇6κ ⊗ nκ · u0 = 0, x ∈ ∂B.

Thus, the fulfillment of the linearized equations of equilibrium and boundary conditions on the sub-
space N0 is proved (in other words, it is proved that the elements of the subspace N0 are the neutral
perturbations).

Now we pass to the problem of infimum of the functional 9{u} (5-22) on the subspace N⊥0 (5-33).
From the canonical form of the functional R{u} (5-27), (5-31) it is obvious that the infimum does exist
and is nonnegative. Moreover, from the compactness of the subsets of subspace N⊥0 , bounded both in
value of R{u} and in the norm ‖u‖ (5-36) (that is proved in Appendix A), it follows that it is attained at
an extremal u1(x) ∈ N⊥0 :

λ1 = inf
u 6=0

u∈N⊥0

9{u} =9{u1} ≥ 0. (B-5)

Making use of the canonical form of R{u} together with existence of an extremal, it is not difficult to
prove that

λ1 > 0. (B-6)

Indeed, assume that λ1 = 0. Then it follows from (5-31) that

∇κ · (ρκu)=∇κ · (ρκ∇κ γ )= 0, nκ · ∇κ γ |∂B = 0

H⇒ ∇κ · (γρκ∇κ γ )= ρκ∇κ γ · ∇κ γ

H⇒ 〈ρκ∇κ γ · ∇κ γ 〉B = 〈γρκnκ · ∇κ γ 〉∂B = 0 H⇒ ∇κ γ ≡ 0. (B-7)

The contradiction obtained proves the positivity of λ1 (B-6).
Now it is to be proved that the field u1(x) is a free vibration mode, i.e. an eigenvector of operator

A with eigenvalue λ1 = ω
2
1, satisfying not only the kinematic boundary conditions of the tangentiality
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at the boundary of the domain ∂B (5-17), but also the free sliding condition, whose linearized form is
given by (5-18). In the proof, we again use the initial form of the functional R{u} (5-20).

The condition for minimality of the functional 9{u} (B-1) is equivalent to the following inequality:

R{u} ≥ λ1〈ρκ u · u〉B, ∀u ∈ N⊥0 , (B-8)

the value u = 0 being not excluded. We represent u as follows:

u = αu1+ ũ, −∞< α <∞, ũ ∈ N⊥0 . (B-9)

Substituting u (B-9) into (B-8), we obtain

α2(R{u1}− λ1〈ρκu1 · u1〉B)+ 2α(R{ũ, u1}− λ1〈ρκ ũ · u1〉B)+ R{ũ}− λ1〈ρκ ũ · ũ〉B ≥ 0,

∀ũ ∈ N⊥0 , ∀α. (B-10)

It is obvious that the first term is equal to zero, the third term is nonnegative and does not depend on α.
Hence, for satisfaction of the inequality (B-6) due to arbitrariness of α it is necessary and sufficient that
the following equality be valid:

R{ũ, u1}− λ1〈ρκ ũ · u1〉B = 0, ∀ũ ∈ N⊥0 .

Taking into account that (B-4) implies the equality

R{u0, u1} = 0, ∀u0 ∈ N0,

and also taking into account the orthogonality of the subspaces N0 (5-32) and N⊥0 (5-33), we obtain a
stronger equality:

R{ũ, u1}− λ1〈ρκ ũ · u1〉B = 0, ∀ũ ∈ N . (B-11)

Repeating the calculations used earlier in the analysis of the equality (B-4), we obtain from (B-11)
both the equality

λ1ρκ u1 =A(u1), x ∈ B, (B-12)

and boundary conditions (5-18):

(nκ ·Cκ : ∇κ⊗ u1) · (I − nκ ⊗ nκ)− (nκ · Tκ · nκ)∇6κ ⊗ nκ · u1 = 0, x ∈ ∂B,

which means the following: u1(x) is a free vibration mode of the system with the frequency ω1 =
√
λ1 .

Subsequently, as in the standard proof of the spectral theorem in linear elasticity, it is assumed that the
assertion of the spectral theorem is valid for the first m− 1 eigenvectors and it is proved (by means of
the reasoning completely analogous to the preceding one) that the next extremal (with number m) on the
subspace N⊥m−1 also satisfies the equality

R{ũ, um}− λm〈ρκ ũ · um〉B = 0, ∀ũ ∈ N⊥m−1, λm ≥ λm−1, um ∈ N⊥m−1. (B-13)

From the preceding steps it followed that for each k < m

R{ũ, uk}− λk〈ρκ ũ · uk〉B = 0, ∀ũ ∈ N ,

H⇒ R{uk, um}− λk〈ρκuk · um〉B =R{uk, um} = 0, k = 0, 1, . . . ,m− 1,

H⇒ R{ũ, um}− λm〈ρκ ũ · um〉B = 0, ∀ũ ∈ N .

(B-14)
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From (B-14) follows the validity of both the equality

λmρκum =A(um), x ∈ B, (B-15)

and the boundary conditions (5-18)

(nκ ·Cκ : ∇κ⊗ um) · (I − nκ ⊗ nκ)− (nκ · Tκ · nκ)∇6κ ⊗ nκ · um = 0, x ∈ ∂B. (B-16)

Thus, um(x) is the free vibration mode with frequency ωm =
√
λm .

The proof of the remaining assertions of the spectral theorem reduces to standard reasoning (see, for
example, Gurtin 1972; Mikhlin 1964) with the use of proved in Appendix A the compactness of subsets
of space N⊥0 bounded both in values of R{u} and in the norm ‖u‖ (5-36).

Appendix C. Proof of the comparison theorem

We introduce the scalar products of two Hilbert spaces corresponding to two different bulk-elastic media
occupying the identical domains (denoted by the same symbol B):

M̃( j)
{w,w′} :=

〈 1
ρ( j)w ·w

′

〉
B
, j = 1, 2, (C-1)

M̃ ( j)
{w} := M̃( j)

{w,w}, (C-2)

9̃( j)
{w} =

R̃( j)
{w}

M̃ ( j){w}
. (C-3)

For each of the systems the divergenceless fields w(x) satisfying the kinematic boundary conditions
w · nκ |∂B = 0 form a common infinite-dimensional subspace Ñ0 on which R̃( j)

{w} = 0 and 9̃( j)
{w} = 0.

From the spectral theorem for each of the systems it follows that on its own orthogonal complement to
the subspace Ñ0 there exists its own discrete set of eigenvectors orthogonal in the sense of its own scalar
product M̃( j)

{w,w′}. We denote the orthogonal complements to the subspace Ñ0 in the sense of scalar
products M̃( j) as (Ñ ( j)

0 )⊥, and the orthogonal complements in (Ñ ( j)
0 )⊥ to the subspaces Ñ ( j)

m spanned by
the first m eigenvectors as (Ñ ( j)

m )⊥. The eigenvectors will be denoted w( j)
k . Then we have

Ñ ( j)
m = span(w( j)

1 , . . . ,w( j)
m ), (C-4)

λ
( j)
m+1 = inf

w 6=0
w∈(Ñ ( j)

m )⊥̃

9( j)
{w} = 9̃( j)

{w
( j)
m+1}. (C-5)

The space Ñ of all kinematically admissible fields can be represented in two ways as a direct sum of
subspaces:

Ñ = Ñ0⊕ Ñ ( j)
m ⊕ (Ñ

( j)
m )⊥, j = 1, 2, (C-6)

where Ñ0 and (Ñ ( j)
m )⊥ are infinite-dimensional subspaces, and Ñ ( j)

m are finite-dimensional ones:

dim Ñ ( j)
m = m. (C-7)

Consider the values of the functional 9̃(2)
{w} on the “alien” subspace (Ñ (1)

m )⊥, having in mind to prove
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that there exists a nonzero vector v in it for which

9̃(2)
{v} ≤ λ

(2)
m+1. (C-8)

For this purpose we prove that there exists a nonzero vector v such that

v ∈ (Ñ (1)
m )⊥, v ∈ span(Ñ0, Ñ (2)

m+1). (C-9)

Consider a basis of the subspace Ñ (2)
m+1 consisting of orthogonal (in the sense of M̃(2)) eigenvectors

w
(2)
1 , . . . ,w

(2)
m+1. Normalizing them in the sense of the same scalar product, we denote the corresponding

orthonormal basis (e1, . . . , em+1). Due to the expansion (C-6), each of the vectors ei can be uniquely
represented in the form of the following sum:

ei = gi + hi + fi = gi + g′i , i = 1, . . . ,m+ 1,

gi ∈ Ñ0, hi ∈ Ñ (1)
m , fi ∈ (Ñ (1)

m )⊥.
(C-10)

In order to prove that the vectors (g′1, . . . , g′m+1) are linearly independent, we assume that their linear
combination is equal to zero:

α1 g′1+ · · ·+αm+1 g′m+1 = 0 H⇒ α1e1+ · · ·+αm+1em+1 = α1 g1+ · · ·+αm+1 gm+1

H⇒ α1e1+ · · ·+αm+1em+1 = 0

H⇒ αi = 0, i = 1, . . . ,m+ 1.

Thus, the linear independence of the vectors (g′1, . . . , g′m+1) is proved. Consider now once again their
linear combination

m+1∑
i=1

αi g′i =
m+1∑
i=1

αi hi +

m+1∑
i=1

αi fi . (C-11)

Since hi ∈ Ñ (1)
m , which is m-dimensional subspace, the vectors (h1, . . . , hm+1) are linearly dependent;

hence, there exists a set of numbers (α1, . . . , αm+1), not all equal to zero, and such that

m+1∑
i=1

αi hi = 0, (C-12)

H⇒ v :=

m+1∑
i=1

αi g′1 =
m+1∑
i=1

αi fi 6= 0, (C-13)

H⇒

m+1∑
i=1

αi ei −

m+1∑
i=1

αi gi =

m+1∑
i=1

αi fi ,

−γ :=

m+1∑
i=1

αi gi ∈ Ñ0,

m+1∑
i=1

αi ei ∈ Ñ (2)
m+1,

m+1∑
i=1

αi fi ∈ (Ñ (1)
m )⊥.

(C-14)

Thus, it is proved that there exists a nonzero vector v ∈ (Ñ (1)
m )⊥ such that
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v = γ +

m+1∑
i=1

αi ei (C-15)

H⇒ 9̃(2)
{v} =

R̃(2)
{
γ +

∑m+1
i=1 αi ei

}
M̃ (2)

{
γ +

∑m+1
i=1 αi ei

} = ∑m+1
i=1 α

2
i λ
(2)
i

M̃ (2){γ }+
∑m+1

i=1 α
2
i

≤ λ
(2)
m+1. (C-16)

Due to the assumption regarding the functionals 9̃(i)
{w} we have

9̃(1)
{v} ≤ 9̃(2)

{v} ≤ λ
(2)
m+1 (C-17)

H⇒ λ
(1)
m+1 = inf

w 6=0
w∈(Ñ (1)

m )⊥̃

9(1)
{w} ≤ 9̃(1)

{v} ≤ λ
(2)
m+1. (C-18)

which completes the proof.
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