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A MODIFIED SHEAR-LAG MODEL FOR PREDICTION OF
STRESS DISTRIBUTION IN UNIDIRECTIONAL FIBROUS COMPOSITES

CONSIDERING INTERPHASE

MOHAMMAD HASSAN ZARE AND MEHDI MONDALI

A modified shear-lag model is developed for unidirectional fibrous composites by considering the in-
terphase region subjected to axial loading. A perfect bond at the fiber/interphase and interphase/matrix
interfaces is assumed. The fiber, interphase, and matrix materials behave elastically during the analysis.
The axial and shear stresses in fiber, interphase and matrix are analytically obtained as functions of the
radial and axial directions using a micromechanical approach in a full-continuum model. The composite
axial displacement and composite elastic modulus also are obtained. In order to consider the effect of
inhomogeneity of the interphase in the three-phase micromechanics model, the elastic modulus of the
interphase is assumed to vary with the radial coordinate. Two case studies, a carbon nanotube-reinforced
polymer composite and an aramid fiber-reinforced rubber composite are used to validate the results of
the model. The results predicted by the proposed analytical approach exhibited good agreement with the
finite element results and available experimental measurements.

1. Introduction

The mechanical properties of composite materials are affected by geometrical factors and the structural
behavior of the composite constituents [Fu et al. 2008; Lauke 2006]. In many composites reinforced by
continuous or discontinuous fibers, there is also an interphase region which transmits the load between
the matrix and fiber like a bridge. The interphase is an important constituent with significant effects on
the performance of fiber-reinforced composites [Yang and Pitchumani 2004]. One concern during the
modeling of the interphase region is its dimensional specifications and physical properties, which can
be provided through experimental methods. Typical examples of composite materials having interphase
regions are polymer composites reinforced with carbon nanotubes (CNTs) and hybrid fiber-reinforced
rubber composites.

Several numerical studies have been conducted to investigate the effects of interphase mechanical
properties on stress transfer of fiber-reinforced composites [Maligno et al. 2010; Wang et al. 2006; 2011].
Because of the importance of and wide applications for nanocomposites, numerical modeling using
full-continuum or semicontinuum models has been the goal of many researchers. In full-continuum
models, the material of the interphase region behaves as a continuum with constant or variable mechanical
properties. In semicontinuum models, the interphase region consists of a regular set of spring elements
which make the modeling and solution complicated and time-consuming [Wan et al. 2005; Needleman
et al. 2010; Hernández-Pérez and Avilés 2010; Golestanian and Shojaie 2010; Kumar and Srinivas 2014;
Rafiee and Pourazizi 2015]. Kumar and Srinivas [2014] used a three-phase finite element (FE) model to
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analyze the effect of interphase properties on the elastic modulus of nanocomposites. The effect of CNT
functionalization on the properties of interphase regions has been studied by Rafiee and Pourazizi [2015].
In their model, the interaction between CNTs and polymer in the interphase region was simulated using
the semicontinuum approach.

Analytical methods can also be used to consider the effect of the interphase region in a unit cell.
However, the complexity of the solution has meant that analytical studies have primarily been carried
out without considering the interphase region [Muki and Sternberg 1970; Lawrence 1972; Takaku and
Arridge 1973; Luk and Keer 1979; Budiansky et al. 1986; Kerans and Parthasarathy 1991; Abedian et al.
2007; Gao and Li 2005; Haque and Ramasetty 2005; Ang and Ahmed 2013]. The most well-known
analytical model for describing the load transfer mechanism from matrix to reinforcement in fibrous
composites is the shear-lag model presented by Cox [1952] and subsequently modified by others [Dow
1963; Rosen 1964; Nair and Kim 1992; Hsueh 1995]. In this theory, the load applied to the matrix is
transferred to reinforcements through its cylindrical walls.

In comparison with models such as those by Tsai [Halpin 1984] and Eshelby [Taya and Arsenault 1987;
Withers et al. 1989], the shear-lag model more comprehensively describes the load transfer mechanism
from matrix to reinforcement; thus, researchers have tried to overcome the shortcomings of this model
[Gao and Li 2005; Ang and Ahmed 2013; Nairn 1997; Zhao and Ji 1997; Beyerlein and Landis 1999;
Zhang and He 2008]. Studies have also been conducted stress analysis of fibrous composites based
on elasticity theory. Abedian et al. [2007] presented a micromechanics model to determine the elastic
stress field in fiber-reinforced composites. In this model, the shear stress was obtained as a function
of both radial and axial directions using the exact solution of the displacement fields in the matrix and
reinforcement.

One shortcoming of the shear-lag model is its inability to consider the interphase region, but consider-
ation of this region is required for improving the accuracy of analysis. Yao et al. [2013] investigated the
effect of a graded interphase on the mechanism of stress transfer in a fiber reinforced composite using an
improved shear-lag model with simple assumptions. The inhomogeneity of the interphase in their model
was represented by the graded feature of the Young’s modulus, which is graded according to a power
law or a linear law in the radius direction.

Researchers have recently used the shear-lag model for CNT-reinforced polymer composites and
hybrid fiber-reinforced rubber composites using the representative volume element [Gao and Li 2005;
Haque and Ramasetty 2005; Liu and Chen 2003; Zhang et al. 2017]. Gao and Li [2005] developed a two-
phase shear-lag model for CNT-reinforced polymer composites using a multiscale approach. Haque and
Ramasetty [2005] analyzed a two-phase continuous fiber model of CNT-reinforced polymer composites
to predict the interfacial axial and shear stresses.

The interface properties of CNT-reinforced composites were determined by Ang and Ahmed [2013]
using an improved shear-lag model. The analytical results obtained by Ang and Ahmed were used to
investigate the stress sustainability of CNT-reinforced polymer composites. Recently, a shear-lag model
for stress analysis in hybrid fiber-reinforced rubber composites was presented by Zhang et al. [2017];
however, the model cannot determine the radial dependence of shear and axial stresses in the fiber and
matrix.

The present study micromechanically analyzed unidirectional fibrous composites by considering the
interphase region using a new modified shear-lag model. All stress components, including the shear and



A MODIFIED SHEAR-LAG MODEL IN UNIDIRECTIONAL FIBROUS COMPOSITES 99

axial stresses, in the fiber, interphase and matrix have been analytically obtained as functions of both
the radial and axial directions. In order to consider the effect of inhomogeneity of the interphase, it
was assumed that interphase properties such as elastic modulus will vary with the variation of the unit
cell radius. To validate the results of the proposed model, two case studies on CNT-reinforced polymer
composites and aramid fiber-reinforced rubber composites are presented to provide practical applications
for this model.

The proposed model can also be applied for stress analysis of short fiber composites considering the
interphase, which has not been addressed by other researchers thus far. The imaginary fiber technique
was chosen to analyze the stress field in short fiber composites. In this method, the unit cell is divided
into two regions (I and II) along the model length [Abedian et al. 2007; Hsueh 1988; 1990; 1992; 2000;
Hsueh et al. 1997; Mondali and Abedian 2013]. Region I consists of the fiber and matrix and region II
is the matrix material. The stress field in region I is determined first. The relations obtained for the
stress field in region I can be used in region II if the mechanical properties of the fiber are replaced by
the mechanical properties of the matrix in these relations. In fact, because the matrix along the fiber in
region II is an “imaginary” fiber, this technique is known as the imaginary fiber technique.

The relation constants can be determined using appropriate continuity conditions on the common
boundary of regions I and II. The significant difference and novelty of the present study with respect to
the state-of-the-art is its ability to carry out stress analysis on the short fiber composites with interphase
regions. It is necessary to note that application of the present model to short fiber composites and
development of a modified imaginary fiber technique is currently being undertaken and the related articles
will be published in the future.

2. Analytical method

2.1. RVE modeling. Analysis of the three-phase micromechanics unit cell was carried out using a full-
continuum model. A continuous cylindrical fiber with radius r f and length of 2l f is surrounded by
an interphase region with radius rip and thickness ti . The interphase region is homogeneously and
isotropically located between matrix and fiber, see Figure 1 (left).

The cylindrical polar coordinate system (r, θ, z) was used with the origin at the center of the unit cell.
Geometrical symmetry, loading, and boundary conditions meant that analysis of three-phase model RVE
could be performed only on the half length of lm outside radius rm in a 2D axisymmetric model of the
unit cell, see Figure 1 (right). The following assumptions were made for the purpose of analysis:
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Figure 1. The three-phase model of RVE: 3D model (left) and 2D axisymmetric model (right).
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(1) Interphase properties such as the elastic modulus vary with the unit cell radius.

(2) The fiber, matrix and interphase behave elastically.

(3) The analytical model is based on the shear-lag theory assuming a perfect bond at the fiber-interphase
and interphase-matrix interfaces.

(4) Body and bonding forces are neglected in equilibrium equations.

(5) Partial derivatives of radial displacement relative to z are neglected [Gao and Li 2005; Yao et al.
2013].

2.2. Governing equations and boundary conditions. Governing equilibrium equations for axisymmet-
ric problem in cylindrical coordinate are obtained as [Timoshenko and Goodier 1970]

∂σ
η
rr

∂r
+
∂τ

η
rz

∂z
+
σ
η
rr − σ

η
θθ

r
= 0, (1)

∂τ
η
rz

∂r
+
∂σ

η
zz

∂z
+
τ
η
rz

r
= 0, (2)

where superscript η is a variable that denotes the fiber, interphase, and matrix regions.
The constitutive equations of stress-strain for an isotropic material are

εηrr =
1

Eη
[σ ηrr − νη(σ

η
θθ + σ

η
zz)], (3)

ε
η
θθ =

1
Eη
[σ
η
θθ − νη(σ

η
rr + σ

η
zz)], (4)

εηzz =
1

Eη
[σ ηzz − νη(σ

η
rr + σ

η
θθ )], (5)

γ ηrz =
τ
η
rz

Gη

. (6)

Strain-displacement relations (geometrical equations) for axisymmetric problem are also given by

εηrr =
∂uη

∂r
, (7)

ε
η
θθ =

uη

r
, (8)

εηzz =
∂wη

∂z
, (9)

γ ηrz =
∂uη

∂z
+
∂wη

∂r
. (10)

In the above relations, σ ηrr , σ ηθθ , σ ηzz , and τ ηrz are the radial, circumferential, axial, and shear stresses, re-
spectively. Also, εηrr , εηθθ , εηzz , and γ ηrz are the radial, circumferential, axial, and shear strains components.
Moreover, uη and wη are the radial and axial displacements and Eη, νη, and Gη are Young modulus,
Poisson’s ratio, and shear modulus of an isotropic material, respectively.
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In such a problem, the applied boundary conditions are [Abedian et al. 2007]

τ f
rz(r f )= τ

ip
rz (r f )= τ1, (11)

τ ip
rz (rip)= τ

m
rz (rip)= τ2, (12)

τm
rz (rm)= 0, (13)

σm
zz (±lm)= σ0, (14)

σm
rr (rm)= 0, (15)

σ f
rr (r f )= σ

ip
rr (r f ), (16)

σ ip
rr (rip)= σ

m
rr (rip). (17)

2.3. Obtaining the shear stresses in fiber, interphase, and matrix. The shear-lag relation for fiber can
be obtained by integration of equilibrium (2) with respect to r from 0 to r f as [Gao and Li 2005]

∂ σ
f

zz

∂z
=−

2τ1

r f
, (18)

where σ f
zz is the average axial normal stress over the cross-section of the effective fiber and τ1 is the

fiber-interphase interface shear stress.
Because ∂σ f

zz/∂z in (2) is a function of z, by applying (11), the fiber shear stress as a function of r
can be obtained as [Abedian et al. 2007]

τ f
rz =

r
r f
τ1. (19)

Then the shear-lag relation of the interphase is obtained by integration of (2) with respect to r from r f

to rip as

∂ σ
ip
zz

∂z
=−

2
(r2

ip−r2
f )
(ripτ2− r f τ1), (20)

where σ ip
zz is the average axial normal stress over the cross-section of the interphase and τ2 is the

interphase-matrix interface shear stress.
Similarly taking into account that ∂σ ip

zz /∂z in (2) is a function of z and applying (11) and (12), the
interphase shear stress as a function of r can be obtained as

τ ip
rz =

τ1 r f (r2
ip − r2)+ τ2 rip(r2

− r2
f )

r(r2
ip − r2

f )
. (21)

As stated, equations (12) and (13) can be used to obtain the matrix shear stress as a function of r as
[Abedian et al. 2007]

τm
rz =

rip

(r2
m − r2

ip)

(
r2

m

r
− r

)
τ2. (22)

However, the interfacial shear stresses τ1(z) and τ2(z) in (19), (21), and (22) are still unknown func-
tions of z. Therefore, substituting (22) into (6) and (10), and then integrating with respect to r from rip
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to rm will yield

τ2 = Gm
(r2

m − r2
ip)

rip[r2
m ln(rm/rip)−

1
2(r

2
m − r2

ip)]
(wm

rm
−wm

rip
), (23)

where wm
rip

and wm
rm

are the matrix axial displacements at rip and rm , respectively.
Also, by substituting (23) into (21) and then substituting the obtained equation into (6) and (10), τ1

can be expressed by integrating with respect to r from r f to rip as

τ1 =
Gip(r2

ip − r2
f )

r f [r2
ip ln(rip/r f )−

1
2(r

2
ip − r2

f )]
(wip

rip
−wip

rf
)

+

[Gm[r2
f ln(rip/r f )−

1
2(r

2
ip − r2

f )]

[r2
m ln(rm/rip)−

1
2(r

2
m − r2

ip)]
×

(r2
m − r2

ip)(w
m
rm
−wm

rip
)

r f [r2
ip ln(rip/r f )−

1
2(r

2
ip − r2

f )]

]
, (24)

where wip
rf and wip

rip are the interphase axial displacements at r f and rip, respectively.
In this case, the terms ∂uη/∂z for the matrix and interphase are neglected according to the assumption

that ∂uη/∂z� ∂wη/∂r , which is reasonable because of the tensile loading condition and the symmetry
of the model.

Finally, substituting (23) into (22) gives the matrix shear stress as

τm
rz = Gm

(wm
rm
−wm

rip
)

[r2
m ln(rm/rip)−

1
2(r

2
m − r2

ip)]

(
r2

m

r
− r

)
. (25)

Also, substituting (23) and (24) into (21) gives the interphase shear stress as

τ ip
rz =

(r2
ip

r
− r

)
[A(wip

rip
−wip

rf
)+ B(wm

rm
−wm

rip
)] +C

(
r −

r2
f

r

)
(wm

rm
−wm

rip
), (26)

where the constants A, B, and C are given as

A =
Gip(

r2
ip ln(rip/r f )−

1
2(r

2
ip − r2

f )
) ,

B =
Gm(r2

m − r2
ip)
(
r2

f ln(rip/r f )−
1
2(r

2
ip − r2

f )
)

(r2
ip − r2

f )
(
r2

ip ln(rip/r f )−
1
2(r

2
ip − r2

f )
)(

r2
m ln(rm/rip)−

1
2(r

2
m − r2

ip)
) ,

C =
Gm(r2

m − r2
ip)

(r2
ip − r2

f )
(
r2

m ln(rm/rip)−
1
2(r

2
m − r2

ip)
) .

(27)

2.4. Obtaining the axial stresses in matrix and interphase. In this section, wm(r, z), the matrix axial
displacement, is determined first. Substituting (25) into (6) and (10), and then integrating with respect
to r from rip to r will yield

wm(r, z)= wm
rip
+

r2
m ln(r/rip)−

1
2(r

2
− r2

ip)(
r2

m ln(rm/rip)−
1
2(r

2
m − r2

ip)
) (wm

rm
−wm

rip
). (28)
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Next, assuming that the radial and circumferential stresses in the matrix are much smaller than the
axial stress [(σ ηrr + σ

η
θθ ) � σ

η
zz], one can neglect the term (σ

η
rr + σ

η
θθ ) in comparison with σ ηzz in (5).

Therefore, substituting (28) into (9) and using (5) give the matrix axial stress as

σm
zz = σ

m
rip
+

r2
m ln(r/rip)−

1
2(r

2
− r2

ip)(
r2

m ln(rm/rip)−
1
2(r

2
m − r2

ip)
) (σm

rm
− σm

rip
), (29)

where σm
rip

and σm
rm

are the matrix axial stresses at rip and rm , respectively.
Similarly, wip(r, z), the interphase axial displacement, can be determined by substituting (26) into (6)

and (10), and integrating with respect to r from r f to r as

wip(r, z)= wip
rf
+

(
r2

ip ln(r/r f )−
1
2(r

2
− r2

f )
)

Gip

(
A(wip

rip
−wip

rf
)+ B(wm

rm
−wm

rip
)
)

+
C
( 1

2(r
2
− r2

f )− r2
f ln(r/r f )

)
Gip

(wm
rm
−wm

rip
). (30)

When Eip is a constant, equation (30) reduces to the value reported by Zhang and He [2008]. Therefore,
the average axial displacement of the interphase, wip(r, z), is

wip(r, z)= wip
rf
+ (wm

rm
−wm

rip
)

Em(1+ νip)

Eip(1+ νm)

(
λ2λ4− λ1λ5

λ1λ3

)
+
λ4

λ1
(wip

rip
−wip

rf
), (31)

where

λ1 =
r2

ip

r2
ip − r2

f
ln

rip

r f
−

1
2
, λ2 =

r2
f

r2
ip − r2

f
ln

rip

r f
−

1
2
, λ3 =

r2
m

r2
m − r2

ip
ln

rm

rip
−

1
2
,

λ4 =
r4

ip ln(rip/r f )−
1
4(3r2

ip − r2
f )(r

2
ip − r2

f )

(r2
ip − r2

f )
2

, λ5 =
r2

ipr2
f ln(rip/r f )−

1
4(r

4
ip − r4

f )

(r2
ip − r2

f )
2

.

(32)

Finally, substituting (30) into (9) and using (5) give the interphase axial stress as

σ ip
zz = σ

ip
rf
+

(
r2

ip ln(r/r f )−
1
2(r

2
− r2

f )
)

Gip

(
A(σ ip

rip
− σ ip

rf
)+ B

Eip

Em
(σm

rm
− σm

rip
)

)
+C

( 1
2(r

2
− r2

f )− r2
f ln(r/r f )

)2(1+ νip)

Em
(σm

rm
− σm

rip
), (33)

where σ ip
rf and σ ip

rip are the interphase axial stresses at r f and rip, respectively.

2.5. Obtaining the elastic modulus of the composite. The effective Young’s modulus of the composite,
Ec, can be determined as

Ec =
σ0

w/lm
, (34)

where w is the matrix axial displacement of the unit cell at z = lm .



104 MOHAMMAD HASSAN ZARE AND MEHDI MONDALI

To determine w at z = lm , the matrix axial displacement as a function of z must be determined. Here,
using (6) and (10) and assuming that ∂uη/∂z� ∂wη/∂r one can obtain

τm
rz = Gm

∂wm

∂r
−→ wm

=
1

Gm

∫
τm

rz dr. (35)

Now, to determine τm
rz as a function of z, the average axial stress in the fiber and interphase as functions

of z should be obtained first. Hence, substituting (24) into shear-lag equation, (18), and differentiating
the resultant equation using (5) and (9) with respect to z yields

d2(σ
f

zz)

dz2 − λ2 σ
f

zz = α σ
ip
zz +βσ0. (36)

Similarly, substituting (23) and (24) into (20) and differentiating the resultant equation with respect
to z yield

d2 σ
ip
zz

dz2 − λ̄
2 σ

ip
zz = ᾱ σ

f
zz + β̄σ0, (37)

where

α =−2
(r2

ip

r2
f
− 1

)(
A

Eip
−

B
Em

χ1χ2

)
, ᾱ =

2(C − B)
Em

r2
f χ1−

2A
E f
,

β =−2
(r2

ip

r2
f
− 1

)
B

Em
r2

mχ1, β̄ =−
2(C − B)

Em
r2

mχ1,

λ=

[
2
(r2

ip

r2
f
− 1

)(
A
E f
+

B
Em

r2
f χ1

)]1/2

, λ̄=

(
2(C − B)

Em
χ1χ2+

2A
Eip

)1/2

,

(38)

in terms of the parameters

χ1 =

(
r2

m ln(rm/rip)−
1
2(r

2
m − r2

ip)
)(

r4
m ln(rm/rip)−

1
4(r

2
m − r2

ip)(3r2
m − r2

ip)
) , χ2 = r2

ip − r2
f +

Em

Eip
(r2

m − r2
ip). (39)

It should be noted that when the interphase layer thickness is set to zero, i.e. rip − r f = 0, substitut-
ing (24) into (18) and differentiating with respect to z reduce (36) and (37) to (40) which is the same as
that of Gao and Li [2005]:

d2 σ
f

zz

dz2 − λ
2 σ

f
zz =−λ

2 r2
m

r2
f +

Em
E f
(r2

m − r2
f )
σ0. (40)

In this equation, the average axial stress in fiber σ f
zz and interfacial shear stress τ1 can be obtained with

the same form as those given by Gao and Li [2005].
Using (36) and (37), one can obtain a fourth-order characteristic equation as

m4
− (λ2

+ λ̄2)m2
+ (λ2 λ̄2

−αᾱ)= 0. (41)
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In order to obtain the shear and axial stresses in all three phases, the roots of the characteristic equation
should be obtained first. The characteristic equation has four distinct real roots for which negative values
are not feasible. The positive values of the roots can be calculated as follows:

m1 =

√
(λ2+ λ̄2)+

√
(λ2− λ̄2)2+ 4αᾱ
2

, m2 =

√
(λ2+ λ̄2)−

√
(λ2− λ̄2)2+ 4αᾱ
2

. (42)

Solve (36) and (37) for fiber and interphase average axial stresses:

σ
f

zz = c1 em1z
+ c2 e−m1z

+ c3 em2z
+ c4 e−m2z

+
β̄α− λ̄2β

λ2 λ̄2−αᾱ
σ0 , (43)

σ
ip
zz =

m2
1− λ

2

α
(c1 em1z

+ c2 e−m1z)+
m2

2− λ
2

α
(c3 em2z

+ c4 e−m2z)−
β̄λ2
−βᾱ

λ2 λ̄2−αᾱ
σ0 . (44)

Substitute (43) into (18) to obtain the shear stress at the interface between the fiber and interphase as

τ1 =−
r f

2

(
m1(c1 em1z

− c2 e−m1z)+m2(c3 em2z
− c4 e−m2z)

)
. (45)

Also, substituting (44) and (45) into (20) gives the shear stress at the interface between interphase and
matrix as

τ2 =−
m1

2ripα

(
(r2

ip − r2
f )(m

2
1− λ

2)+αr2
f
)
(c1 em1z

− c2 e−m1z)

−
m2

2ripα

(
(r2

ip − r2
f )(m

2
2− λ

2)+αr2
f
)
(c3 em2z

− c4 e−m2z). (46)

Next, the shear stresses in fiber, interphase, and matrix are obtained by substituting (45) and (46) into
(19), (21), and (22), respectively:

τ f
rz(r, z)=−r

2
(
m1(c1 em1z

−c2 e−m1z)+m2(c3 em2z
−c4 e−m2z)

)
, (47)

τ ip
rz (r, z)=−

(c1 em1z
−c2 e−m1z)

2(r2
ip−r2

f )α

[
m1

(
r−

r2
f

2

)(
(r2

ip−r2
f )(m

2
1−λ

2)+αr2
f
)
+m1r2

f α

(r2
ip

r
−r
)]

−
(c3 em2z

−c4 e−m2z)

2(r2
ip−r2

f )α

[
m2

(
r−
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τm
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m/r−r)

2α(r2
m−r2

ip)

[
m1(c1 em1z
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2
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f
)

+m2(c3 em2z
−c4 e−m2z)

(
(r2

ip−r2
f )(m

2
2−λ

2)+αr2
f
)]
. (49)

Because the average axial stresses of the fiber, matrix and interphase at z = lm are equal to applied
stress σ0 and interfacial shear stresses τ1 and τ2 are equal to zero at the center of the unit cell (z = 0),
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Material Young’s modulus (GPa) Poisson’s ratio

Carbon nanotube 1000 0.28
Polymer matrix 2.5 0.3

Interphase 10 0.3

Table 1. Mechanical properties of the materials used in the model [Kumar and Srinivas 2014].

the constants c1 to c4 can be determined as

c1 = c2 =

m2
2−λ

2

α

(
1− β̄α−λ̄2β

λ2λ̄2−αᾱ

)
−

β̄λ2
−βᾱ

λ2λ̄2−αᾱ
− 1

(em1lm + e−m1lm )
m2

2−m2
1

α

σ0 , (50)

c3 = c4 =
1− m2

1−λ
2

α

(
1− β̄α−λ̄2β

λ2λ̄2−αᾱ

)
+

β̄λ2
−βᾱ

λ2λ̄2−αᾱ

(em2lm + e−m2lm )
m2

2−m2
1

α

σ0 . (51)

Finally, substituting (49) into (35) and integrating with respect to r from rip to rm , gives the matrix
axial displacement. Its value at z = lm is

w =
r2

m ln rip − r2
ip/2

2αGm(r2
m − r2

ip)

[
m1c1(em1lm − e−m1lm )

(
(r2

ip − r2
f )(m

2
1− λ

2)+αr2
f
)

+m2c3(em2lm − e−m2lm )
(
(r2

ip − r2
f )(m

2
2− λ

2)+αr2
f
)]
. (52)

3. Results and discussion

Two case studies of composite materials having interphase regions were considered to examine the valid-
ity of the present analytical model. The composite materials were CNT-reinforced polymer composites
(CNTRC) and aramid fiber reinforced rubber composites (AFRC). The results obtained using the pro-
posed analytical modeling was compared with available experimental studies and with the results of
the FE model in ABAQUS software. Moreover, the effect of the geometrical factors and mechanical
properties of the constituents were investigated for each case study.

3.1. Case study 1 (CNTRC). In this case study, capped nanotube is replaced by a solid cylindrical fiber
with flat ends [Gao and Li 2005]. The elastic modulus of CNT is ECNT = 1000 GPa while the effective
elastic modulus of fiber is determined as E f = 1006 GPa [Gao and Li 2005; Ang and Ahmed 2013].
The dimensions of RVE are taken to be r f = 0.471 nm and rm = 5r f where r f and rm are the fiber and
matrix radii, respectively [Gao and Li 2005]. Also, the nanotube thickness is tCNT = 0.34 nm though the
interphase thickness can be determined versus nanotube thickness as ti/tCNT = 1 [Hernández-Pérez and
Avilés 2010]. Other required mechanical specifications are represented in Table 1.

3.1.1. Analytical model validation. The analytical results were validated by FE simulation of a full-
continuum three-phase model as shown in Figure 1. The analytical and FE results of the normalized
average axial stress in the fiber and matrix and normalized shear stress at the interface between the
fiber and interphase versus the normalized length of the fiber are presented in Figures 2 and 3. Good
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Figure 2. Analytical and FEA results of normalized average axial stress in fiber (left)
and matrix (right) versus normalized fiber length.
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Figure 3. Analytical and FEA results of normalized shear stress at the interface between
fiber and interphase versus normalized length of fiber.

agreement was found between the analytical and numerical predictions for these stress components,
which demonstrates the capability of the proposed analytical model.

Validation was also done by calculating the axial elastic modulus of the composite normalized by
the matrix elastic modulus and comparing it with the results presented by Hernández-Pérez and Avilés
[2010]. Figure 4 shows the influence of interphase thickness on the elastic modulus of the composite.
As seen, the modulus of the CNTRC strongly depends on the thickness of the interphase. The maximum
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Figure 4. Axial elastic modulus of composite versus interphase thickness.The reference
curve (solid) is from [Kumar and Srinivas 2014].

value for the CNTRC elastic modulus was obtained at a thickness ratio equal to one, i.e. ti/tCNT = 1.
This result has been confirmed by other researchers [Wan et al. 2005].

Now, the influence of effective parameters such as fiber aspect ratio, matrix-to-nanotube modulus ratio
and inhomogeneity of the interphase are investigated to determine the analytical modeling accuracy.

3.1.2. Effect of fiber aspect ratio. The average axial stresses of fiber and interphase normalized by the
applied stress σ0 in four different aspect ratios along the fiber length are presented in Figure 5.
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Figure 5. Normalized axial stress in fiber (left) and in interphase (right) versus normal-
ized length of fiber for various aspect ratios.
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Figure 6. Normalized average axial stress of CNT along the fiber length in five different
ratios of matrix to fiber elastic modulus.

As shown, the axial stress in the fiber increased as the aspect ratio increased and the axial stress in
interphase decreased as aspect ratio increased. It can be concluded that more loads are transmitted to the
fiber at high aspect ratios.

3.1.3. Effects of the ratio of matrix to fiber elastic modulus. The average axial stress of the fiber and the
interfacial shear stress of the fiber-interphase along the fiber length are presented for five ratios of matrix
to fiber elastic modulus, m = Em/E f . Figure 6 shows the average axial stress of the fiber normalized by
applied stress σ0 along the fiber length.

The figure shows that a decrease in the modulus ratio will increase the axial stress of the CNTs,
which indicates that more loads have been transmitted to the fiber. The interfacial shear stress of the
fiber-interphase normalized by applied stress σ0 along the fiber length is shown in Figure 7.

As mentioned, based on shear-lag theory, the interfacial shear stress of fiber-interphase τ1 increase
with a decrease in the modulus ratio. Hence, the CNTs will be stronger at lower values of m and the load
capacity will increase. There are no significant differences between the results of the axial and shear
stresses of CNTs for values of m smaller than 1/200. In addition, if the elastic modulus of the fiber and
matrix are equal (m ≈ 1), the axial stress of the fiber will be equal to applied stress σ0, which suggests
that reinforcement has no effect on composite strength.

3.1.4. Effect of inhomogeneous interphase. In order to investigate the effect of an inhomogeneous inter-
phase on the stress transfer mechanism in a three-phase micromechanics model, the interphase Young’s
modulus was considered to be an exponential function of r as

Eip(r)= Pe−Qr , (53)

where P and Q are material constants obtained by applying the continuity condition of the modulus at
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Figure 7. Normalized interfacial shear stress of fiber-interphase along the fiber length
in five different ratios of matrix to fiber elastic modulus.

the interfaces:

Q =
1
t1

ln
E f

Em
, P = EmeQ(rf+ti ). (54)

The variation in the interphase Young’s modulus Eip along the normalized RVE radius at four ratios
of interphase thickness is shown in Figure 8. Because the Young’s modulus of the fiber was considerably
higher than that of the matrix, Eip decreased with an increase in r from r f to rip because of the continuity
of the Young’s modulus over the interfaces.
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Figure 8. Interphase Young modulus (Eip) along the normalized RVE radius in four
different ratios of interphase thickness.
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Figure 9. Normalized average axial stress of CNT along the fiber length in four different
ratios of interphase thickness.

Figure 9 shows the average axial stress of CNTs normalized by applied stress σ0 along the fiber length
at four ratios of interphase thickness. As seen, the average axial stress in the fiber decreased with an
increase in the interphase thickness. Consequently, the volume fraction of the interphase increased while
the volume fraction of matrix decreased, which suggests that the contribution of the fiber for bearing the
applied load decreased substantially.

The interfacial shear stresses of the fiber-interphase and interphase-matrix, τ1 and τ2, normalized by
applied stress σ0 along the fiber length at four ratios of interphase thickness are shown in Figure 10. Both
interfacial shear stresses τ1 and τ2 increased with a decrease in the interphase thickness.

3.2. Case study 2 (AFRC). The material used in this case study was AFRC, the mechanical properties
of which are given in Table 2.

The RVE radius was rm = 5r f and the dimensions of the fiber were r f = 6µm and l f = 15r f where r f

is the fiber radius and l f is the half length of the RVE [Yu et al. 2015]. The interphase thickness varied
from 0 to 1µm, which is in accordance with the suggestions made by Papanicolaou et al. [2007]. For the
composite used here, the interphase elastic modulus and Poisson’s ratio were assumed to be functions
of r f as presented in (55) as suggested by Shen and Li [2003]:

Zip(r)= Zm

[
1− P

t Q
i

(rip − r)Q
]
. (55)

Material Young’s modulus Poisson’s ratio

Fiber 136 GPa 0.2
Matrix 128 MPa 0.3

Table 2. Mechanical properties of aramid fiber reinforced composite [Coffey et al. 2007].
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Figure 10. Normalized interfacial shear stress of fiber-interphase (left) and interphase-
matrix (right) along fiber length in four different ratios of interphase thickness.

The symbol Z in (55) denotes both the elastic modulus and the Poisson’s ratio. The constant Q varies
from 0.2 to 3 and the constant P can be given as

P =
Zm − Zip(r f )

Zm
. (56)

Figure 11 shows the predicted values of the average elastic modulus and Poisson’s ratio of the inter-
phase versus Q. The Poisson’s ratio increased with Q, going from 0.216 to 0.275. The average elastic
modulus decreased with an increase in Q, varying from 134 GPa to 113 GPa.
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Figure 11. Average elastic modulus and Poisson’s ratio of the interphase versus Q.
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Figure 12. Average stress of fiber and interfacial shear stress of fiber-interphase along
the fiber length at four different values of Q for ti = 0.2µm (left) and for ti = 0.6µm
(right).

The normalized average stress of the fiber and the normalized interfacial shear stress of the fiber-
interphase along the fiber length at four values of Q were obtained for interphase thicknesses of ti =
0.2µm and ti = 0.6µm as depicted in Figure 12.

As is clear from the figures, both the average axial stress of the fiber and interfacial shear stress τ1

increased with an increase in Q because the elastic modulus of the interphase decreased with an increase
in Q. Also, the dependence of the fiber axial and interfacial stresses on Q was noticeably at higher
interphase thicknesses, which is in accordance with the results obtained by Kiritsi and Anifantis [2001].

Figure 13 shows the normalized average stress of the fiber and the normalized interfacial shear stress
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Figure 13. Average stress of fiber and interfacial shear stress of fiber-interphase along
the fiber length in six different thicknesses of interphase for Q = 0.2.
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σ
f

max/σ0 τmax/σ0
Q νip = cte νip(r) νip = cte νip(r)

0.2 11.9464 11.947 1.758 1.7653
0.6 13.3192 13.3194 2.4671 2.4745

Table 3. Effect of radial dependency of interphase Poisson’s ratio on the average stress
of fiber and interfacial shear stress of fiber-interphase for ti = 0.6µm.

of the fiber-interphase along the fiber length at Q = 0.2 at six interphase thicknesses from 0 to 1µm. As
seen, the stresses decreased as the interphase thickness increased; thus, at ti = 0 without considering the
interphase region, the average axial stress of the fiber and interfacial shear stress τ1 reach their maximum
values.

It is noted that the radial dependence for the interphase Poisson’s ratio had no significant effect on
the average stress of the fiber and the interfacial shear stress of the fiber-interphase. The normalized
maximum average stress of the fiber and the normalized maximum interfacial shear stress of the fiber-
interphase at ti = 0.6µm with and without radial dependence on the interphase Poisson’s ratio are given
in Table 3.

As shown, radial variation of the interphase Poisson’s ratio had a slight effect on the maximum average
stress of the fiber and maximum interfacial shear stress of the fiber-interphase. This may be due to the
fact that the difference between the Poisson’s ratios of the fiber and matrix was small. Thus, the radial
variation of the Poisson’s ratio of the interphase can be neglected.

Finally, the analytical model was validated by comparison of the results with those obtained from
available experimental measurements. Comparison of the analytical model predictions and Raman
spectroscopy experimental data [Coffey et al. 2007] of the fiber axial stress obtained for applied stress
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Figure 14. Comparison of analytical model prediction with experimental data of fiber
axial stress for applied stress σ0 = 10 MPa [Coffey et al. 2007].
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σ0 = 10 MPa is shown in Figure 14. More information on the experimental measurements of the average
axial stress of the fiber can be found in [Coffey et al. 2007].

Figure 14 shows that the average axial stress of the fiber is in good agreement with the experimental
measurements, especially for Z/ l f > 0.5. Therefore, the accuracy of the proposed analytical model and
the results of this research has been validated as well.

4. Conclusion

A three-phase shear-lag model was developed to investigate the effects of an inhomogeneous interphase
on the mechanism of stress transfer in unidirectional fibrous composites. Considering the results of
two case studies on composite materials having interphase regions, CNTRC and AFRC, the following
conclusions were made.

• The thickness of the interphase strongly influenced the elastic modulus of the CNTRC, such that the
maximum value of the composite elastic modulus occurred at an interphase thickness which was
equal to the radius of the fiber.

• The average axial stress in fiber decreased with an increase in the interphase thickness and interfacial
shear stresses τ1 and τ2 increased with a decrease in the interphase thickness.

• The average axial stress of the fiber and the interfacial shear stress of the fiber-interphase increased
with a decrease in the modulus ratio, which indicates that the fiber was stronger at lower modulus
ratios and, consequently, its load capacity increased.

• When the difference between the Poisson’s ratio of the fiber and matrix was small, the radial variation
of the interphase Poisson’s ratio could be neglected.

• Finally, the results obtained by the proposed analytical model were in good agreement with the re-
sults of FE analysis and the available experimental measurements, which demonstrates the capability
of the model.
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