
Journal of

Mechanics of
Materials and Structures

NONLINEAR FREE VIBRATION OF NANOBEAMS BASED ON NONLOCAL
STRAIN GRADIENT THEORY WITH THE CONSIDERATION OF

THICKNESS-DEPENDENT SIZE EFFECT

Wei Chen, Lin Wang and Hu-Liang Dai

Volume 14, No. 1 January 2019

msp





JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 14, No. 1, 2019

dx.doi.org/10.2140/jomms.2019.14.119 msp

NONLINEAR FREE VIBRATION OF NANOBEAMS BASED ON NONLOCAL
STRAIN GRADIENT THEORY WITH THE CONSIDERATION OF

THICKNESS-DEPENDENT SIZE EFFECT

WEI CHEN, LIN WANG AND HU-LIANG DAI

Although the strain gradient and stress gradient parameters have been widely considered in the frame of
nonlocal strain gradient theory, the literature concerned with the additional effect of slender ratio param-
eter in nonlocal strain gradient beam models is limited. In this paper, a nonlinear dynamical model for
nonlocal strain gradient beams is developed and its nonlinear free vibration is analyzed. In the proposed
dynamical model, the size-dependent properties associated not only with the nonlocal strain gradient and
nonlocal stress gradient parameters but also with the slender ratio parameter are discussed. The effect of
slender ratio parameter, which may be also interpreted as the thickness-dependent size effect, is caused
by the stress on account of the thickness-direction strain gradient. Based on nonlocal strain gradient
theory, the nonlinear governing equation of boundary conditions of the nanobeam are derived first. Then
the nonlinear governing equation is simplified for special symmetric boundary conditions and external
loadings. In the nonlinear free vibration analysis, an analytical solution for predicting the nonlinear
free vibration frequencies is derived via the homotopy analysis method. It is shown that the nonlinear
frequencies of the nanobeam display significant size-dependent phenomena for large values of slender
ratio parameter and either stiffness-softening or stiffness-hardening behavior may occur. Our results
also demonstrate that, besides conventional strain gradient and stress gradient effects, the thickness-
dependent size effect can be significant for slender nanobeams and cannot be ignored in many cases.

1. Introduction

In the past years, nanoscience and nanotechnology have developed rapidly. Many nano- and micro-sized
devices and structures have been applied in advanced technology, such as biosensors [Pei et al. 2004],
nanosensors [Anker et al. 2008; Cui et al. 2001; Patolsky and Lieber 2005], nanoactuators [Shi et al.
2010; Sul and Yang 2009], atomic force microscopy (AFM) [Eaton and West 2010; Eom et al. 2011;
Farokhi et al. 2016; Pereira 2001], and nano-/micro-electromechanical systems (NEMS/MEMS) [Li et al.
2003; Li et al. 2007]. In these engineering applications, beams, plates and shells in nano-size are the
basic components and have been used widely [Pei et al. 2004; Ç. Demir and Civalek 2017].

For the purpose of better guidance to nanotechnology, more extensive studies of the statics and dynam-
ics of nanobeams, nanoplates and nanoshells are requisite. It has been reported that nano-/micro-scale
materials/structures have the properties of size effects observed by both experiments [Lam et al. 2003;
McFarland et al. 2005; Kulkarni et al. 2005] and numerical simulations [Agrawal et al. 2008; Duan and
Wang 2007]. Some results showed that structures in nano-size may behave either stiffness-hardening or
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stiffness-softening (see, e.g., Li et al. 2015a; Li et al. 2015b; Li 2014). Because of the time-consuming
of molecular (atom) dynamics simulations and the difficulties of controlling experiments at micro/nano-
scale, many nonclassical continuum theories have been proposed to explain and predict the size effects of
structures at small sizes. Among various nonclassical continuum theories, the nonlocal elasticity theory
is one of the most popular ones for static and dynamic analysis of nanostructures.

The nonlocal elasticity theory developed by Eringen [2002] thinks that the nonlocal stress at a reference
point is influenced by the strain at all points of the body. From this point of view, the nonlocal elasticity
theory is quite different from the point-to-point stress-strain relationship in the classical local elasticity
theory. According to the nonlocal elasticity theory, by means of an integral with a nonlocal kernel
function over the body, the long-range interactions between the atoms are incorporated. Eringen [2002]
suggested that the integral constitutive law may be simplified to the form of differential equations when
considering specified kind of kernel function. Based on nonlocal elasticity theory, there were a large
number of studies on the static and dynamic responses of nanorods [Huang 2012; Lembo 2016; Narendar
and Gopalakrishnan 2010; Wang et al. 2006], nanobeams [Aydogdu 2009; Dai et al. 2018; Reddy 2007;
Thai 2012; Tuna and Kirca 2016], nanoplates [Assadi and Farshi 2011; Reddy 2010; Murmu and Adhikari
2011; Wang and Zhang 2018] and nanoshells [Shen 2010; Khademolhosseini et al. 2010; Hu et al. 2008;
Ghavanloo and Fazelzadeh 2013a]. In many early studies on nonlocal elastic models, it was reported that
the nonlocal natural frequency is generally lower than the local one, showing a stiffness-softening effects.
For more details on nonlocal elastic models, the interested reader is referred to the comprehensive review
by Eltaher et al. [2016].

Other than the nonlocal elastic models, the stiffness-softening effect of which was frequently reported,
a stiffness-hardening effect may occur in the strain gradient elasticity theory [Aifantis 1992]. Based on
the assumption that small-scale effect is associated with high-order deformation mechanism, additional
strain gradient terms were suggested to be considered in the strain gradient elasticity theory. Recently,
based on strain gradient elasticity theory, the significant strain gradient effects have been investigated
in many studies when considering the static and dynamic behaviors of rods [Rahaeifard 2015], beams
[Akgöz and Civalek 2011; Kong et al. 2009; Lazopoulos 2012; Xu and Deng 2016; Wang et al. 2018],
plates [Ansari et al. 2015; Movassagh and Mahmoodi 2013; Ieşan 2014; Wang et al. 2011; Zhang et al.
2015], and shells [Ghavanloo and Fazelzadeh 2013b; Zeighampour and Beni 2014; Papargyri-Beskou
et al. 2012] in nano-size.

In order to capture both size-dependent stiffness-softening and stiffness-hardening phenomena, Lim
et al. [2015] developed a “nonlocal strain gradient theory” and investigated the wave propagation based
on nonlocal strain beam models. This theory may be viewed as a combination of nonlocal elasticity
theory and strain gradient theory. Because of its more generalized feature, there were fruitful studies
on nonlocal strain gradient rods [Li et al. 2016a; Xu et al. 2017b; Zhu and Li 2017], beams [Li et al.
2015c; Li et al. 2016b; Xu et al. 2017a] and plates [Ebrahimi et al. 2016]. It is noted that the boundary
conditions in nonlocal strain gradient models are complex due to the high-order stress. In this regard, Xu
et al. [2017b] have recommended a weighted residual approach to derive the expressions of high-order
forces and boundary conditions.

The aforementioned nonlocal strain gradient beam models assumed that the size effect in the beam’s
thickness direction of nanobeams may be neglected for simplification, i.e., the Laplacian operator was
supposed to be ∇2

= ∂2/∂x2 for various beam models. Very recently, however, it was shown by Li et al.
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[2018] that the size effect of strain gradient in the thickness direction (εxx,z) may be important for statics
analysis and should be accounted for. Although there were several previous studies on the nonlinear
vibration of nonlocal strain gradient beams (see, e.g., Li et al. 2016b; Şimşek 2016), these studies have
not considered the strain gradient in the beam’s thickness direction. In this work, we initiate to investigate
the nonlinear free vibration of nonlocal strain gradient beams incorporating the strain gradient effect in
the beam’s thickness direction. It will be shown that the thickness-dependent size effect associated with
the nanobeam’s slender ratio on the nonlinear free vibration of nanobeams may be remarkable.

2. Nonlocal strain gradient theory

According to the nonlocal strain gradient theory developed by Lim et al. [2015], the total stress tensor
accounts for not only the nonlocal stress tensor but also the strain gradient stress tensor, i.e.

ti j = σi j −∇σ
(1)
i jm, (1)

where ∇ is the Laplacian operator, and the nonlocal stress tensor σi j and the higher-order nonlocal stress
tensor σ (1)i jm are defined by

σi j = Ci jkl

∫
V
α0(|χ

′
−χ |, e0a) ε′kl dV, (2)

σ
(1)
i jm = l2Ci jkl

∫
V
α1(|χ

′
−χ |, e1a) ε′kl,m dV, (3)

where εkl is the classical strain tensor, εkl,m is the strain gradient tensor, Ci jkl is the fourth-order elasticity
tensor, l is the material length scale parameter introduced to consider the significance of strain gradient
stress field, e0a and e1a, which are nonlocal parameters, are introduced to consider the significance of
nonlocal elastic stress field.

As solving the integral constitutive equations of (1) is very difficult, a simplified form of differential
equations will be used in this study. Let α0(χ

′, χ, e0a) and α1(χ
′, χ, e1a) be the nonlocal functions for

the classical stress tensor and the strain gradient stress tensor, respectively. We suppose that α0 and α1

can satisfy the conditions given by Eringen [1983]. The linear nonlocal differential operator is used in
the nonlocal functions, i.e., Li = 1− (ei a)2∇2 for i = 0, 1. Furthermore, it is assumed that e = e0 = e1;
thus one obtains (

1− (ea)2∇2)σi j = Ci jkl εkl, (4)(
1− (ea)2∇2)σ (1)i jm = l2Ci jkl εkl,m . (5)

The general constitutive equations for size-dependent beams can be simplified as [Lim et al. 2015]

[1− (ea)2∇2
] ti j = Ci jkl εkl − l2

∇
2Ci jkl εkl, (6)

where ea is a stress-gradient parameter introduced to involve stress gradient effect, while l is a strain-
gradient parameter introduced to involve strain gradient effect.
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Figure 1. Schematic of a nanobeam.

For an Euler–Bernoulli beam-type structure, the size-dependent behavior may be neglected in the
width directions. Thus, the general constitutive relation can be further simplified to [Li et al. 2018][

1− (ea)2
∂2

∂x2

]
txx =

[
1− l2

(
∂2

∂x2 +
∂2

∂z2

)]
Eεxx , (7)

where E denotes the elasticity modulus, txx denotes the axial normal stress, and εxx denotes the axial
strain. It should be noted that the formulations for the nonlocal elasticity theory [Eringen 1983] or the
strain gradient theory [Aifantis 1992; Mindlin 1965; Aifantis and Willis 2005; Polizzotto 2012] can be
obtained by setting ea = 0 or l = 0.

3. Formulation

The system under consideration consists of a nanobeam of length L between two immovable supports,
internal cross-sectional area A, mass density ρ, and flexural rigidity EI , as shown in Figure 1. The
beam is uniform along its length and the cross-section is symmetric. In this section, we will derive
the equations of motion based on the nonlocal strain gradient theory by accounting for the geometric
nonlinearity associated with the axial extension of the beam.

3.1. General governing equations. The displacements (u1, u2, u3) of an Euler–Bernoulli beam along
the (x, z) coordinate directions are given by

u1(x, z)= u(x)− zw′, u2(x, z)= 0, u3(x, z)= w(x), (8)

where u is the longitudinal displacement, w is the transverse displacement of the mid-plane, and ( )′ =
∂/∂x .

According to the von-kármán nonlinear strain expression, the nonzero strain for a beam under large
displacements can be written as

εxx = u′+ 1
2w
′2
− zw′′, (9)

where εxx is the axial strain.
We will derive the nonlinear equations of motion and boundary conditions by utilizing Hamilton’s

principle. Based on the nonlocal strain gradient theory, the virtual work of the strain energy is given by
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[Li et al. 2018]

δU =
∫

V

(
σxx δεxx + σ

(1)
xxx δεxx,x + σ

(1)
xxz δεxx,z

)
dV

=

∫ L

0

∫
A

[
σxx δ

(
u′+ 1

2w
′2
− zw′′

)
+ σ (1)xxx δ(u

′′
+w′w′′− zw′′′)+ σ (1)xxz δ(−w

′′)
]

d A dx

=

∫ L

0
N (0)δ

(
u′+ 1

2w
′2) dx −

∫ L

0
M (0)δw′′dx +

∫ L

0
N (1)

x δ(u′′+w′w′′) dx

−

∫ L

0
M (1)

x δw′′′ dx +
∫ L

0
N (1)

z δ(−w′′) dx

=

∫ L

0

(
N (1)′′

x − N (0)′) δu dx

+

∫ L

0

[
−(N (0)w′)′− (N (1)

x w′′)′+ (N (1)
x w′)′′+M (1)′′′

x −M (0)′′
− N (1)′′

z
]
δw dx

+
(
N (0)
− N (1)′

x
)
δu
∣∣L
0 + N (1)

x δu′|L0

+
(
N (0)w′+ N (1)

x w′′+M (0)′
+ N (1)′

z − (N
(1)
x w′)′−M (1)′′

x
)
δw
∣∣L
0

+
(
−M (0)

+ N (1)
x w′+M (1)′

x − N (1)
z
)
δw′

∣∣L
0 −M (1)

x δw′′
∣∣L
0 . (10)

In (10), N (0) and M (0) are the lower-order force and moment for axial and transverse directions,
respectively; N (1)

x and N (1)
z are the high-order axial forces due to strain gradient in the axial and thickness

directions, respectively; M (1)
x is the high-order moment. These resultants are defined by

N (0)
=

∫
A
σxx d A, (11a)

N (1)
x =

∫
A
σ (1)xxx d A, (11b)

N (1)
z =

∫
A
σ (1)xxz d A, (11c)

M (0)
=

∫
A

zσxx d A, (11d)

M (1)
x =

∫
A

zσ (1)xxx d A. (11e)

The stress resultants can be given by

(1−µ2
∇

2) N (0)
= EA

(
u′+ 1

2w
′2), (12a)

(1−µ2
∇)2 N (1)

x = l2 EA(u′′+w′w′′), (12b)

(1−µ2
∇

2)M (0)
=−Elw′′, (12c)

(1−µ2
∇

2)M (1)
x =−l2 EIw′′′, (12d)

(1−µ2
∇

2) N (1)
z =−l2 EAw′′. (12e)
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If body force, body couple and externally imposed tension are either absent or neglected, the virtual
work done by an external transverse force q f can be written as

δW =−
∫ L

0
q f δw dx . (13)

Since the considered beam is supported at both ends, the longitudinal displacement and velocity are
relatively small. Hence, the kinetic energy of the nanobeam may be approximated as

K = 1
2

∫ L

0
ρA
(
∂w

∂t

)2
dx . (14)

In the frame of Hamilton’s principle, the dynamic governing equation and boundary conditions of this
beam can be derived based on the following variational equation:

δ

∫ t2

t1
(K −U +W ) dt = 0. (15)

Substituting (10), (13), and (14) into (15), one obtains the equations of motion as

δu :
(
N (0)
− N (1)′

x
)′
= 0, (16a)

δw : ρAẅ− (N (0)w′)′− (N (1)
x w′′)′+ (N (1)

x w′)′′+M (1)′′′
x −M (0)′′

− N (1)′′
z + q f = 0, (16b)

and the boundary conditions as

δu : N (0)
− N (1)′

x = 0 or u = 0, (17a)

δu′ : N (1)
x = 0 or u′ = 0, (17b)

δw : N (0)w′+ N (1)
x w′′+M (0)′

+ N (1)′
z − (N

(1)
x w′)′−M (1)′′

x = 0 or w = 0, (17c)

δw′ : −M (0)
+ N (1)

x w′+M (1)′
x − N (1)

z = 0 or w′ = 0, (17d)

δw′′ : M (1)
x = 0 or w′′ = 0, (17e)

where the dot above w denotes the time differentiation with respect to t . By defining

N0x = N (0)
− N (1)′

x , (18)

and combining (12a), (12b), and (17a), we have

N0x = EA
(
u′+ 1

2w
′2)
− EIl2(u′′′+w′w′′′+w′′2)= constant. (19)

Hence (16b) can be rewritten as

ρAẅ− N0xw
′′
+
(
M (1)′

x −M (0)
− N (1)

z
)′′
+ q f = 0. (20)

Upon combining (12c)–(12e), we have

(1−µ2
∇

2)
(
M (1)′

x −M (0)
− N (1)

z
)
=−l2 EIw(IV )

+ EIw′′+ l2 EAw′′, (21)
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where (IV ) denotes the fourth derivative. With the help of (20) and (21), the final governing equation of
the nanobeam can be obtained as

ρA
(

1−µ2 ∂

∂x2

)
ẅ−N0x

(
1−µ2 ∂

∂x2

)
w′′+

(
EI−EI l2 ∂

∂x2+l2 EA
)
w(IV )

+

(
1−µ2 ∂

∂x2

)
q f =0. (22)

3.2. Governing equations for special boundary conditions. In Section 3.1, we have obtained the gen-
eral equation of motion, equation (22). This governing equation can be finalized once N0x is given.
Nevertheless, N0x may have different forms for different boundary conditions. In this subsection, we
will discuss the N0x expression for several typical boundary conditions, and then finalize the governing
equations.

For free-free boundary conditions, since N0x(0)= N0x(L)= 0, it is clear that N0x = 0 based on (19). In
this work, the system under consideration is a beam assumed supported at two axially immobile supports,
i.e., u(0)= u(L)= 0. Hence, there are three possible types of boundary conditions for the longitudinal
displacement to determine the N0x expression. These three types of boundary conditions are

case 1 : u(0)= 0, u(L)= 0, N (1)
x (0)= 0, N (1)

x (L)= 0, (23a)

case 2 : u(0)= 0, u(L)= 0, u′(0)= 0, N (1)
x (L)= 0, (23b)

case 3 : u(0)= 0, u(L)= 0, u′(0)= 0, u′(L)= 0. (23c)

Based on the weighted residual approaches, the high-order axial forces due to strain gradient in the
axial direction is given by Xu et al. [2017b]

N (1)
x = EAl2(u′′+w′w′′). (24)

For pinned-pinned or clamped-clamped supports, case 1 and case 2 can be rewritten as

case 1 : u(0)= 0, u(L)= 0, u′′(0)= 0, u′′(L)= 0, (25a)

case 2 : u(0)= 0, u(L)= 0, u′(0)= 0, u′′(L)= 0. (25b)

3.2.1. Determination of N0x for Case 1. With the help of (25a), integrating (19) over the beam length
results in

N0x =
EA
2L

∫ L

0
w′2dx −

l2 EA
L
[w′(L) w′′(L)−w′(0) w′′(0)]. (26)

For pinned-pinned or clamped-clamped supports, we have

N0x =
EA
2L

∫ L

0
w′2dx . (27)

Now the governing equation of the nanobeam can be obtained as

ρA(1−µ2∂/∂x2)ẅ−
EA
2L

(∫ L

0
w′2dx

)
(1−µ2∂/∂x2)w′′+ EI (1− l2∂/∂x2)w(IV )

+ l2 EAw(IV )
+ (1−µ2∂/∂x2) q f = 0. (28)
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3.2.2. Determination of N0x for Case 2 and Case 3. For case 2 or case 3, N0x cannot be obtained using
a similar treatment as that proposed in Section 3.2.1. A more general method is required to obtain the
expression of u in the form of w and its derivatives. We rewrite (19) as

u′− l2u′′′ = f (x), (29)

where

f (x)=− 1
2w
′2
+ l2(w′′w′′+w′w′′′)+

N0x

EA
. (30)

The general solution of the homogeneous part of (29) is

u0(x)= C1+C2 ex/ l
+C3 e−x/ l, (31)

where C1, C2, and C3 are constants to be determined by using boundary conditions. By rewriting (29)
as

Y ′ = AY + B(x), (32)

where

Y =
[

u′′

u′

]
, A=

[
0 1/l2

1 0

]
, B =

[
− f/l2

0

]
, (33)

and setting
Y(x)= P(x)Q(x). (34)

Equation (33) can be written as
(P ′− AP)Q+ P Q′ = B. (35)

By using the condition
P ′− AP = 0, (36)

Equation (35) leads to

Q =
∫

P−1 B dx . (37)

By solving (36) we have

P =

[1
l

ex/ l
−

1
l

e−x/ l

ex/ l e−x/ l

]
. (38)

Upon combining (33), (34), (37), and (38), a particular solution of (29) can be found, i.e.,

u1(x)=−
1
2l

∫ (
ex/ l

∫
f e−x/ ldx

)
dx + 1

2l

∫ (
e−x/ l

∫
f ex/ ldx

)
dx . (39)

Therefore, the general solution of (29) is finally given by

u(x)= C1+C2 ex/ l
+C3 e−x/ l

−
1
2l

∫ (
ex/ l

∫
f e−x/ ldx

)
dx + 1

2l

∫ (
e−x/ l

∫
f ex/ ldx

)
dx . (40)
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The four undetermined constants C1, C2, C3, and N0x in the u expression of (40) can be determined
for a set of given boundary conditions. However, the solving process for C1, C2, C3, and N0x may be
complicated.

3.2.3. Final governing equations for symmetric boundary conditions. In Section 3.2.1, we have given
the explicit expression of N0x for boundary conditions of case 1. As discussed in Section 3.2.2, however,
the general expression of N0x is difficult to obtain for case 2 and case 3. It is also noted that the beam
of case 3 has the same longitudinal constraints at both ends. For case 3, actually, the expression of N0x

can be obtained only for some special situations.
As a result, when the nanobeam with both ends subjected to the same boundary conditions for either

longitudinal or transverse motions (i.e., the equations for boundary conditions at both ends are identical),
the explicit expression of N0x can be obtained and hence the governing equations finalized. Now we
consider the following possible special type of symmetric boundary conditions:

u′′(0)= u′′(L), w′(0)= w′(L), w′′(0)= w′′(L). (41)

Based on (41), integrating (19) over the beam length yields

N0x =
EA
2L

∫ L

0
w′2 dx . (42)

Since the expression in (42) is identical to the result of (27) for case 1, the governing equation (28)
is still valid for the considered symmetric boundary conditions. For asymmetric boundary conditions,
equation (28) is not applicable.

3.3. Nondimensionalization. In order to simplify the form of the governing equation and to reduce the
number of parameters, we introduce the following dimensionless quantities:

x̄ = x
L
, w =

w

r
, t = t̄

√
ρAL4

EI
, η =

L
r
, τ =

ea
L
, ζ =

l
L
, q̄ f =

q f L4

EIr
, (43)

where
r =

√
I/A , (44)

is the turning radius of the nanobeam’s cross section, and η is the slenderness ratio of the nanobeam.
With the aid of (43), the dimensionless governing equation of the system is written as(

1− τ 2 ∂
2

∂ x̄2

)
∂2w

∂ t̄ 2 −
1
2

[∫ 1

0

(
∂2w

∂ x̄2

)2

dx
](

1− τ 2 ∂
2

∂ x̄2

)
∂2w

∂ x̄2

+

(
1− ζ 2 ∂

2

∂ x̄2

)
∂4w

∂ x̄4 + ζ
2η2 ∂

4w

∂ x̄4 +

(
1− τ 2 ∂

2

∂ x̄2

)
q̄ f = 0. (45)

Since (45) is represented in dimensionless form, it is more convenient for us to further investigate the
free vibrations of the nanobeam in a more general sense.

Equation (45) is the dimensionless equation of motion considering geometric nonlinearities and the
strain gradient in the lateral direction. Upon dropping the time varying terms and transverse loading q̄,
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equation (45) may be reduced to the equation developed by Li et al. [2018] for static problems. Fur-
ther, if the terms associated with the thickness-direction strain gradient and geometric nonlinearities are
either neglected or absent, we can obtain the same equation given by Lu et al. [2017]. A new term,
ζ 2η2 ∂4w/∂ x̄4, has been added in (45) if compared with the mathematical model proposed by Şimşek
[2016]. This new term represents the thickness-dependent size effect. It must be noted that the value of
slenderness ratio η is always large (the order of 101 or more). Therefore, the thickness-dependent size
effect can be remarkable in many cases and needs to be considered in the dynamic analysis of nanobeams.
It should also be mentioned that (45) is valid when (i) the longitudinal constraints satisfy (25a) of case 1
and the transverse constraints at both ends are either pinned or clamped, or (ii) the longitudinal constraints
satisfy case 3 and the transverse constraints at both ends are identical with q̄ f (x̄) = q̄ f 0(1− x̄) when
0≤ x̄ ≤ 1.

4. Solutions

In this section, the nonlinear free vibration of a nanobeam governed by (45) will be studied. The external
transverse loading q f (x, t) is assumed to be absent. Thus, we have(

1−τ 2 ∂
2

∂ x̄2

)
∂2w

∂ t̄ 2 −
1
2

[∫ 1

0

(
∂2w

∂ x̄2

)2

dx
](

1−τ 2 ∂
2

∂ x̄2

)
∂2w

∂ x̄2 +

(
1−ζ 2 ∂

2

∂ x̄2

)
∂4w

∂ x̄4 +ζ
2η2 ∂

4w

∂ x̄4 = 0. (46)

Based on the Galerkin’s approach, equation (46) can be solved analytically by using a single-mode
discretization or numerically by using a multi-mode discretization.

4.1. Analytical solution based on the homotopy analysis method. According to the Galerkin’s approach,
the approximate expression of w(x̄, t̄) is assumed as

w(x̄, t̄)= φ(x̄) q(t̄), (47)

where φ(x̄) is the characteristic mode for a set of given boundary conditions, and q(t̄) is the corresponding
time-dependent generalized coordinate. The substitution of (47) into (46) yields

∂2q
∂ t̄ 2 + (DL1+ DL2+ DL3) q + (DN1+ DN2) q3

= 0, (48)

where

DL1 =

∫ 1
0 φφ

(IV )dx̄
S

, DL2 =
−ζ 2

∫ 1
0 φφ

(VI )dx̄
S

, DL3 =
ζ 2η2

∫ 1
0 φφ

(IV )dx̄
S

, (49)

DN1 =
−

1
2

∫ 1
0 φφ

′′dx̄
∫ 1

0 φ
′φ′dx̄

S
, DN2 =

1
2τ

2
∫ 1

0 φφ
(IV )dx̄

∫ 1
0 φ
′φ′dx̄

S
. (50)

where

S =
∫ 1

0
φφ dx̄ − τ 2

∫ 1

0
φφ′′dx̄ .

For pinned-pinned nanobeams, the characteristic modes can be defined as follows [Li et al. 2016b;
Şimşek 2016]:

φn(x̄)= sin(nπ x̄) (n = 1, 2, 3, . . .). (51)
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By combining (48)–(51), one obtains

∂2q
∂ t̄ 2 +

(1+ ζ 2η2
+ n2π2ζ 2) n4π4

1+ n2π2τ 2 q +
n4π4

2
q3
= 0. (52)

One may rewrite (52) as
∂2q
∂ t̂ 2
+ q + γ q3

= 0, (53)

where t̂ = ωt̄ , and

ω = n2π2

√
1+ ζ 2η2+ n2π2ζ 2

1+ n2π2τ 2 , γ =
1+ n2π2τ 2

2(1+ ζ 2η2+ n2π2ζ 2)
. (54)

Equation (54)1 is the expression of linear natural frequencies for nonlocal strain gradient beams. It is
noted that the thickness-dependent effect is associated with the term of ζ 2η2. If the term of ζ 2η2 in (54)2

is neglected, equation (54)2 can be reduced to the expression obtained by Li et al. [2016b]. For calculation
purpose, the initial conditions of the nanobeam considered are assumed to be

q(0)= a, q̇(0)= 0. (55)

The second-order approximate frequency of (53) in the frame of homotopy analysis method can be
obtained as [Liao 2003]

�≈
131072+ 393216γ a2

+ 440832γ 2a4
+ 218880γ 3a6

+ 40599γ 4a8

1024(4+ 3γ a2)7/2
. (56)

Hence the nonlinear free vibration frequency is given by

ωNL = ωL�=
n2π2
√

2γ
131072+ 393216γ a2

+ 440832γ 2a4
+ 218880γ 3a6

+ 40599γ 4a8

1024(4+ 3γ a2)7/2
. (57)

4.2. Numerical results based on Galerkin’s approach using a multi-mode approximation. In Section
4.1, we have obtained the analytical solution of (57) via the homotopy analysis method based on a
single-mode discretization. To demonstrate the validity of expression (57), we will numerically solve
the governing equation (46) by using a multi-mode discretization. Based on the Galerkin’s approach, w
can be expressed as

w(x̄, t̄)=
N∑

j=1

φ j (x̄) q j (t̄). (58)

Substituting (58) into (46), multiplying by φi (x̄) and integrating over x̄ from 0 to 1 further lead to

mi j
∂2q j

∂ t̄ 2 + ki j q j +αi jkl q j qk ql = 0, (59)

where

mi j =

∫ 1

0
φiφ j dx̄ − τ 2

∫ 1

0
φ1φ

′′

j dx̄, ki j = (1+ ζ 2η2)

∫ 1

0
φ1φ

(IV )
j dx̄ − ζ 2

∫ 1

0
φ1φ

(VI )
j dx̄,

αi jkl =−
1
2

∫ 1

0
φiφ
′′

j

∫ 1

0
φ′kφ

′

l dx̄ d x̄ + 1
2
τ 2
∫ 1

0
φiφ

(IV )
j

∫ 1

0
φ′kφ

′

l dx̄ d x̄ .

(60)
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For the purpose of numerical calculations, equation (59) is rewritten as its first-order state form, i.e.,

ż = Az+G(z), (61)

where

p=
∂ p
∂ t̄
, z = [q; p] and A=

[
0 I

−M−1 K 0

]
, G =

[
0

−M−1 g

]
. (62)

The initial conditions of the beam are assumed to be defined by (55) as well.
Equation (62) is then solved by employing a fourth-order Runge–Kutta integration method with vari-

able step sizes. Hence we can obtain the displacement responses for given values of initial conditions,
strain-gradient parameter ζ , stress-gradient parameter τ and slenderness ratio η. Typical results are
shown in Figure 2.

Numerical results of nonlinear free vibration frequencies are compared in Figure 3 with the analytical
solutions, for various truncated mode number N , strain-gradient and stress-gradient parameters. That
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Figure 2. Displacement responses based on high-dimensional Galerkin discretization
model. N = 3; a = 0.1; η = 20; ζ = 0.1 (top) or ζ = 0.2 (bottom); τ = 0.1 (left) or
τ = 0.2 (right).
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Figure 3. The nonlinear fundamental frequencies ωNL ,1 predicted by analytical and
numerical methods (η = 20, a = 0.1); τ = 0.1 (left) and ζ = 0.1 (right).

figure suggests that the single-mode analytical results agree well with the high-dimensional numerical
ones. Since the single-mode-based analytical result has high precision, we will utilize the analytical
expression of (57) to investigate the nonlinear free vibrations of the nanobeam in the following analysis.

4.3. Parameter analysis. Based on (57), the ratios of nonlinear nonclassical fundamental frequencies
ωNL ,1 to the linear nonclassical fundamental frequencies ωL ,1 are obtained for various γ a2. Typical
results are shown in Figure 4 (left). It is seen that the nonlinear frequency ratio increases as the initial
amplitude a increases, which is known as a nonlinear “hardening spring” behavior. This is because that
the increase of initial amplitude can increase the axial stretching, yielding larger nonlinear frequencies.
The size-dependent effects of ζ , τ , and η on the nonlinear frequencies of the nanobeam may be implicit
in the nonlinear parameter γ . Thus, there is a “hardening spring” behavior of size effects when γ is
larger than the classic one of γ = 0.5 and a “softening spring” behavior when γ < 0.5.
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Figure 4. Left: fundamental frequencies ratios ωNL ,1/ωL ,1 versus γ a2. Right: non-
linear parameter γ versus slenderness ratio η.
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Figure 5. Left: nonlinear parameter γ for various ζ and τ when a = 0.1 and η = 20.
Right: the effect of slenderness ratio η on ωNL ,1.

Unlike the size-dependent effect of ζ , τ , and η on linear frequencies, the evolution of which shows
a trend of monotonous increase (see expression (54)1) when any one of these three key parameters is
increased, the evolution of the size-dependent effect of ζ , τ , and η on nonlinear frequencies is quite
different. It is observed from Figure 4 (right) and Figure 5 (left) that the parameter γ increases with
increasing τ and decreases with increasing ζ and η. This implies that the two key parameters of ζ
and η can reduce the size-dependent effect on nonlinear frequencies when considering the geometric
nonlinearities quantized by γ . As shown in Figure 5 (left), for ζ = 0 and τ = 0, the value of γ corresponds
to the case of a classical beam. Interestingly, the nonlocal strain gradient beams can produce either a
lager or a smaller nonlinear frequency ratio than the classical one.

More importantly, the slenderness ratio η has a significant effect on the nonlinearity of the nanobeam,
as shown in Figure 4 (right). It is not surprising, therefore, that the influence of η on the nonlinear
frequencies is remarkable (see Figure 5, right). It is noted that the nonlinear frequencies increase nearly
linearly with increasing slenderness ratio η.

The results shown in Figure 6 indicate that the nonlinear fundamental frequencies ωNL ,1 with consider-
ation of the thickness-dependent size effect is much larger than those without that consideration. Indeed,
the underlying reason for the thickness-dependent size effect (stiffness-hardening) is associated with the
nanobeam’s oscillations. During oscillations, the cross section of the nanobeam and the corresponding
turning radius become smaller while the slenderness ratio is increased. In this case, the strain gradient
in the thickness direction will become larger and the effect of the corresponding high-order stress is
amplified, resulting in an added remarkable positive stiffness.

5. Conclusions

We proposed a nonlinear nonlocal strain gradient Euler–Bernoulli beam model for dynamic analysis of
nanobeams with two immovable supports and used it to study the nonlinear free vibration of nanobeams.
In particular, the effect of strain gradient in the thickness direction, which was usually neglected before,
has been accounted for in the current dynamic analysis. The governing equation is derived for all possible
boundary conditions and is further simplified for symmetric boundary conditions and lateral loads.
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Figure 6. The nonlinear fundamental frequencies ωNL ,1 with and without strain gradient
effect in the thickness direction: η= 20, without εxx,z effect (left) and η= 20, with εxx,z

effect (right).

Using a one-mode Galerkin’s discretization, the governing equation is analytically solved using the
homotopy analysis method, yielding an approximate analytical formulation of the nonlinear frequencies
for pinned-pinned boundary conditions. The governing equation is further numerically solved via a
Galerkin approach with a multi-mode discretization. It is found that the numerical results agree well
with the analytical one. Our results showed that the thickness-dependent size effect on the nonlinear free
vibration of nanobeams may be remarkable, highlighting the importance of thickness-dependent size
effects in the design of nanoscale devices and systems.

In this study, we have finalized the nonlinear governing equation for symmetric boundary conditions
by deriving the explicit expression of axial stretching forces (N0x). For asymmetric boundary conditions
and some other cases with complex kinds of lateral loads, how to determine the expression of N0x is still
a challenging question and needs further investigations.

The thickness-dependent size effect is also a kind of strain gradient one. However, some previous
studies focused on the strain gradient effect in the lengthwise direction (x direction) only by neglecting
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the strain gradient effect in the thickness direction (z direction). In this work, we found that the strain
gradient in the thickness direction can be very important for slender nanobeams. As can be expected,
when a three-dimensional nanobeam is considered, the strain gradient effects in all the x , y, and z
directions need to be considered.
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