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ENERGY-MAXIMIZING HOLES IN AN ELASTIC PLATE
UNDER REMOTE LOADING

SHMUEL VIGDERGAUZ AND ISAAC ELISHAKOFF

A single hole in an infinite elastic plate is used as the simplest setup to find the hole shape which in-
duces the maximum energy increment in a homogeneous stress field given at infinity. In order to avoid
the energy unboundedness trivially caused by jagged shapes with an arbitrarily large number of sharp
notches, we restrict our attention to only fully concave shapes with everywhere negative curvature. It
goes in parallel with the well-known fact that the energy-minimizing hole shapes are invariably con-
vex. Though rather empirical, this easily verified condition allows us to obtain finite and stable energy
maxima at moderate computation cost using the same flexible scheme as in the first author’s previous
research on optimal shaping of the single energy-minimizing hole. The scheme combines a standard
genetic algorithm optimization with an efficient semianalytic direct solver and with an economic shape
parametrization, both formulated in complex-variable terms. The results obtained are detailed in tables
and graphs. They may stimulate further studies in both theoretical and practical directions.

1. Background and motivation

Thin and flat perforated construction elements are widely employed in engineering design. Fulfilling
technological functions, holes weaken the structure and hence may substantially reduce its mechanical
performance. This happens due to high stresses and energy local concentration induced by the holes in
an applied external field σ∞ with the components

σ∞xx = P, σ∞yy = Q, σ∞xy = 0. (1-1)

The resultant stress state of the structure depends on the holes’ shapes, areas, and mutual arrangement.
Of these geometrical factors, the shapes are less important and less determined. On the one hand, they
can be chosen to achieve a more favorable construction stress state which, on the other hand, may be
adversely affected by technologically inevitable shape uncertainties, even relatively small ones (in the
intuitive sense).

Mathematically, such situations fall either in optimization, i.e., looking for the most favorable so-
lutions, or antioptimization, i.e., searching for the least favorable solutions (with regard to the same
certain criterion). Interested readers may consult with [Elishakoff and Ohsaki 2010; Hlaváček et al.
2004; Banichuk and Neittaanmäki 2010]. This paper also adopts the worst-case scenario approach.

Quantitatively, the stress state is assessed by either of two interrelated criteria, each having its own
field of application:

Keywords: 2-D elastostatic problem, Kolosov–Muskhelishvili potentials, shape extremization, effective energy, surface
roughness, genetic algorithm.
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(A) The stress concentration factor (SCF), that is, the maximum of the von Mises stresses along the hole
shapes.

(B) The energy increment brought by the holes into a given outer stress field. For definiteness purposes,
the increment is taken at unit load and normalized by the area of the hole.

Extremization of either (A) or (B) gives some extremal (the “best” or the “worst”) properties of the
perforated plate.

The SCF (criterion (A)) is most generally employed when the holes’ shapes are treated deterministi-
cally and is found by solving the direct in-plane problem of elastostatics with no optimization involved.
One can refer to [Pilkey and Pilkey 2008; Savruk and Kazberuk 2017; Murakami 2017], as well as the
review paper [Hardy and Malik 1992].

Shape uncertainties were dealt with probabilistically by Pal’mov [1963] and Sheinin [1972] who
developed a probabilistic risk measure. These and other researches were summarized in [Khusu et al.
1975; Vitenberg 1971]. This approach has a drawback which consists in the difficulty of obtaining
the needed probabilistic characteristics of the random shapes. Recognizing this difficulty, Givoli and
Elishakoff [1992] resorted to an alternative approach where they characterized uncertainty via some
integral bounds and correctly exemplified a hypocycloid as the simplest “worst” hole shape. The possible
disadvantage of such an approach consists in the possibility that the integral inequality is satisfied and
still the shape of the form might possess a very sharp, even if very small, notch with an arbitrarily large
SCF. In other words, this criterion, due to its local nature, is unbounded above and so is unsuitable for
antioptimization.

At the same time, such a single notch produces only a finite energy increment, even in the limiting
case of a needle shape. By this reason, more promising is the stress-averaging energy criterion (B),
which can deal with some sort of extremal forms over a wide variety of the holes’ shapes. For examples,
the reader may consult [Cherkaev et al. 1998; Vigdergauz 2006; Pedersen et al. 1992; Pedersen 2013].
To the authors’ best knowledge, the only published attempt to analyze the energy-maximizing (“worst”)
shape was made by Vigdergauz [2006] for the simplest case of a single square symmetric hole in a
plate under remote shear by exploiting the semianalytical optimization scheme specially developed for
identifying the energy-minimizing shapes. As the shape’s design variables, this accepts the first n nonzero
terms of the Laurent series of the conformal mapping of the shape sought onto a circle. Expectedly, with
increasing n the antioptimized hole shape tends to form a rapidly growing number of small sharp notches
(manifested themselves as shape curvature oscillations) whose overall energy increment also grows and
actually turns unbounded. By contrast, the energy-minimizing process is highly stable even for n = 4÷ 6
as shown numerically in [Cherkaev et al. 1998; Vigdergauz 2006].

Remarkably, the resultant optimal holes’ shapes are convex (or, equivalently, have a nonnegative
curvature) everywhere, although this was not required a priori in the solving procedure. As if reversing
the situation, we propose to confine our further antioptimization analysis to only concave shapes with
nonpositive curvature and hence avoid generating multiple notches. Computations performed under this
restriction show fast convergence (again at n = 4÷ 6) to stable finite maxima. These, combined with the
previously obtained minimum values, comprise the attainable two-sided bounds on the energy increment
for any hole shape of a constant-signed curvature.

Our contribution is therefore three-fold:
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• First, the integral-type energy increment is proposed as a new antioptimization criterion instead of
the local SCF, which is trivially unbounded in the deterministic (nonprobabilistic) risk maximization.

• Second, the obvious necessity of avoiding the uncontrolled appearance of multiple edge notches is
transformed to a rather “natural” and easily verified condition of a nonpositive shape curvature.

• Finally, using the previously developed global optimization scheme, the detailed numerical results
are obtained for a single energy-maximizing hole with various degrees p of rotational symmetry
under biaxial tension and pure shear. The resultant shapes are close to p-cusped hypocycloids with
the energy maximum decreasing at increasing p. Recently, similar curves have been considered by
Shahzad et al. [2017] in the related context of out-of-plane elasticity.

The rest of the paper is structured as follows. Section 2 formalizes the problem in terms of the relevant
analytical background. Section 3 details the proposed three-component algorithm which provides a
stable numerical solution of the antioptimization problem at hand. The results obtained are presented
and discussed in Section 4. Our findings are summarized in Section 5. Some new analytical derivations
are placed in the Appendix.

2. Proposed model and basic equations

Locate an isotropic and linearly elastic infinite plate in the plane of a complex variable z = x+ iy. Let the
plate contain a single traction-free hole with a piecewise smooth boundary L enclosing the origin of the
Cartesian system x Oy. Let also the contour L be composed of p convex or concave identical smooth arcs
λ j , j = 1, p sequentially rotated around the origin. They form p connection points, possibly irregular, as
exemplified in Figure 1 for p= 4. In what follows, we denote these shapes as L p, p= 2, 3, . . . , retaining
the notation L for general closed curves. The assumption of the constant-signed arcs’ curvature will be
shown to be crucial for the optimization analysis performed in the next sections.

To facilitate further general derivations, we parameterize a shape L with a real angular variable θ
along the unit circle γ :

L : t = ω(ξ), ξ = exp iθ ∈ γ, ξ̄ = ξ−1, |ξ | = 1, (2-1)

where ω(ζ ) is the univalent analytic function informally mapping the exterior 6 : |ζ | ≥ 1 of γ onto the
considered elastic domain S:

6+ γ −−→
ω(ζ )

S+ L , ω(ζ )= ζ +

∞∑
k=1

dkζ
−k . (2-2)

Without loss of generality, say L is placed symmetrically with respect to the x-axis and, hence, the
coefficients {dk} are pure real.

The traction-free condition along the hole boundary reads

σρρ(t), σρτ (t)≡ 0, t ∈ L , (2-3)

where σ(t) = {σρρ, σττ , σρτ } stands for the stress tensor in a local system of curvilinear orthogonal
coordinates (ρ, τ ) at a point t ∈ L .
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Figure 1. The problem schematic: an infinite plate with a traction-free hole under uni-
form stresses. The cases P = Q and P = −Q correspond to remote bulk and shear,
respectively. The piecewise smooth hole boundary possesses a certain rotational sym-
metry and is either concave (a) or convex (b) everywhere except possibly at a finite
number of angular points.

Under a given remote load (1-1), the plate is in plain strain or plain stress, so displacements or gradients
in the out-of-plain direction may be omitted from consideration. Then the resultant state of stress in the
auxiliary domain 6 + γ can be effectively described by a pair of the Kolosov–Muskhelishvili (KM)
potentials [Muskhelishvili 1963], which are complex-valued analytic functions in 6 and continuously
extendible to γ , with far-field asymptotics (1-1):

80(ζ )= B+8(ζ), 90(ζ )= 0+9(ζ), ζ ∈6, 8(ζ ), 9(ζ )= O(|ζ |−2); (2-4a)

4B = Tr{σ∞} = Q+ P, 20 = Dev{σ∞} = Q− P, Im B, Im0 = 0, (2-4b)

and convergent series expansions

8(ζ)=

∞∑
k=2

akζ
−k, 9(ζ )=

∞∑
k=2

bkζ
−k, ζ ∈6+ γ. (2-5)

The local stresses are related to 80(ζ ),90(ζ ) through the commonly known formulae which are not
displayed here to save room. The first order items ∼ ζ−1 must be zero to match the static state conditions
[Muskhelishvili 1963].

Substituting (2-4a) into (2-3) yields the boundary condition for the KM potentials 8(ζ),9(ζ ) vanish-
ing at infinity:

−
2
ξ 2ω

′

(ξ)[Re80(ξ)+ B] +ω(ξ)80
′(ξ)+0ω

′

(ξ)=−ω
′

(ξ)90(ξ), ξ ∈ l. (2-6)

The terms in (2-6) are rearranged specifically for later use.
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By integrating (2-6) over γ , one gets the hole-induced energy increment δW as a linear combination
of the leading coefficients a2, b2 (see, for instance, [Vigdergauz 2001]):

δW = 2π f −1(20a2+ Bb2), (2-7)

where f signifies the hole area, by which δW is normalized.
For dimensional reasons, a2, b2 are proportional to f [Muskhelishvili 1963]:

a2 = α2 f, b2 = β2 f, (2-8)

and hence, equivalently,
δW = 2π(20α2+ Bβ2). (2-9)

So, in fact, (2-7) and (2-9) present the energy density that is the hole-induced energy stored in the plate
and taken per hole area unit. At given remote loading this quantity depends only on the hole shape. In
particular, for a circle (t ∈ L , |t |2 = R2, ω(ξ)= ξ ), one has [Muskhelishvili 1963]

8(ξ)=
0R2

ξ 2 , 9(ξ)=
2B R2

ξ 2 + 3
0R4

ξ 4 , α2 =
0

π
, β2 =

2B
π
, (2-10)

and therefore,
δW = 4(02

+ B2). (2-11)

By the residues theorem [Ahlfors 1953], the hole area f is expressed in current terms as

f = 1
2i

∫
L

t̄ dt = 1
2i

∫
γ

ω(ξ)ω′(ξ) dξ = π
(

1−
∞∑

k=1

k|dk |
2
)
. (2-12)

Similarly, some other useful integrals are (where δn,0 is the Kronecker delta)

1
2π i

∫
L

tn dt = 0, 1
2π i

∫
L

dt
tn = δn,1, n = 0, 1, . . . , t ∈ L , (2-13)

and [Muskhelishvili 1963]

2π i B+ 2I m
∫
γ

φ(ξ)ω′(ξ) dξ =−
∫
γ

ψ(ξ)ω′(ξ) dξ = 2π ib2, (2-14)

where
φ′(ξ)= ω′(ξ)8(ξ), ψ ′(ξ)= ω′(ξ)9(ξ). (2-15)

3. Problem formulation and solution scheme

We are now in a position to quantitatively rephrase the 2-D shape antioptimization problem at hand in
complex-variable terms.

Given a far stress field (B, 0) find a p-cusped hole boundary L p which maximizes the normalized
increment (2-9):

δW (B, 0, L p)−−→
{L p}

max(B, 0, p). (3-1)
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Recall that L p is defined in Section 1 as composed of p identical arcs with constant-signed curvature κ .
Pure geometrical considerations give [Pólya and Szegő 1972, part 3, problem 108]

κ(t)≡ 1
ρ(t)
=

1+Re(τω′′(τ )/ω′(τ ))
|τω′(τ )|

, t = ω(τ) ∈ L , τ ∈ γ, (3-2)

where ρ(t) is the radius of curvature (reciprocal of curvature) at a point t ∈ L .
Since the denominator in the right-hand side of (3-2) is always nonnegative, the hole boundary is non-

convex (nonconcave) everywhere if and only if the numerator is nonpositive (nonnegative), respectively,
along the basic arc λ1:

Re
(
τ
ω′′(τ )

ω′(τ )

)
−−−→
∀τ∈λ1

{
concave if ≤−1,
convex if ≥−1.

(3-3)

This easily verified condition effectively restricts the optimization process to target only the L p-type
shapes as required.

In general, (3-1) cannot be performed analytically, except in some simple but nontrivial cases described
below, though numerically this is a rather standard problem. Its solution is conveniently obtained by an
iterative loop over successively modified shapes while computing the criterion (fitness function) of each
feasible candidate selected from the predefined pool {L p}. For this purpose, a specially tailored approach
was developed and validated in the first author’s previous papers (see, for instance, [Vigdergauz 2006]).
It includes three main ingredients:

• an efficient and adaptive shape parametrization scheme,

• an enhanced direct solver to evaluate the energy increment for an arbitrarily given shape, and

• a genetic algorithm (GA) approach as the antioptimum search engine.

Their peculiarities are briefly outlined in the next subsections for reader’s convenience.

3.1. Shape parametrization scheme. For numerical purposes, the infinite Laurent expansion (2-2) is
commonly truncated to the first M terms. In the current context, it is justified a posteriori by the fact that
with increasing M the GA approximations do converge rapidly to a stable solution under the restriction
(3-3). Geometrically, higher coefficients in (2-2) are responsible for quickly changing local elements of
the mapped shape which inevitably violate the constant signed curvature requirement. Otherwise, the
antioptimized shape tends to form acute-angled cusps and teeth resulting in unbounded growth of the
energy increment as compared at the top right of Figure 4 in Section 4.

Independently of (3-3), coefficients {d j } must fall into the successfully narrowing intervals

−1/
√

k ≤ dk ≤ 1/
√

k, k = 1, 2, . . . (3-4)

to provide one-to-one mapping between L and γ [Ahlfors 1953]. This allows us to treat these intervals as
linear constraints in the maximization problem (3-1) and hence encode the pool {L p} of shapes through an
ordered M-length string of real numbers (bk, k = 1,M) which form an M-dimensional hyper-rectangle
5M where any shape is presented with a point specified by its coordinates. This scheme is used to
perform numerical single-objective global maximization of the energy increment over a wide range of
design variables {dk} subject to the nonstrict inequality constraint (3-3).
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Remark. Inequalities (3-4) are necessary, but are on no account sufficient conditions for the mapping
uniqueness. However, in numerical practice it is desirable to accelerate the computations by narrowing
these intervals. To our best knowledge, it can be done only for the one-term mapping

ω(ξ)= ξ + dk/ξ
k, |dk | ≤ 1/k, k ≥ 1, (3-5)

where the right inequality is necessary and sufficient to prevent self-crossing of L . However, simple
geometrical arguments show that for any shape the constant-signed curvature (3-3) is a more restrictive
requirement than the mapping uniqueness which, therefore, has no need to be checked separately. The
case of an ellipse (k = 1) is excluded as impractical for the current problem since its limiting one-to-one
map degenerates in a straight slit with zero area f = 0. Otherwise this limit corresponds to a p-cusped
hypocycloid (k = p− 1, dk =±(p− 1)) with f = 1− 1/(p− 1) and the negative curvature

κ(θ)=−
p−2

4
csc
( 1

2 pθ
)
, 0≤ θ ≤ 2π, p = 3, 4, . . . (3-6)

Here and henceforth, the opposite signs in dk indicate rotation through the angle π/p.

In the next subsection this L p shape is proven to solve the antioptimization problem with only one of
the two orientations corresponding to the global energy maximum.

3.2. Direct solver. Equation (2-6) states that its left side is the boundary value of a function holomorphic
outside the unit circle γ and vanishing at infinity, which thus has no nonnegative powers of ζ as actu-
ally taken in the Laurent series (2-5) for 9(ξ). However, substitution of the first expansion from (2-5)
and (2-2) into (2-6) does produce these powers with the coefficients composed of ak , dk , and integers.
The reason is the conjugation operation over ζ : ξ k = ξ−k, k = ±1,±2, . . . By equating them to zero,
Kalandiya [1975] gets an infinite system of linear algebraic equations in the unknowns {ak} only:

am+2−

m∑
k=1

(m− k+ 1)d̄m−k+1ak − (m+ 1)
∞∑

k=1

d̄m+k+1āk = Am, m = 0, 1, . . . ; (3-7a)

A0 = 2B−0, A1 = 0, Am =−2B(m+ 1)d̄m+1, m ≥ 2, (3-7b)

with no coefficients of 9(ξ). These can be simply restored afterwards through (2-6) and (2-13), when
needed. The first sum in (3-7a) is omitted for m = 0, 1.

Remarkably, for any M-term finite mapping (dk = 0, ∀k > M), the system (3-7) also shrinks to the
first M equations in the unknowns ak, k = 1,M while the infinite remainder of them in the unknowns
ak , k > M is next solved analytically by a finite differences technique [Vigdergauz 2006].

As applied to ω(ζ ), the p-fold symmetry states that only dpl−1, l = 1, 2, . . . , differ from zero so
that M = np − 1, where n is a new truncation parameter which also governs the solution, though in
a different way. While M appears implicitly in the resolving system (3-7), n serves as the number of
design variables in the optimization encoding/decoding scheme (see the next subsection).

For better clarity, two basic loadings of different rotational symmetry and analytical peculiarities are
considered separately, those of square-antisymmetric pure shear (B = 0, 0= 1) and isotropic bulk loading
(2B = 1, 0 = 0). In either case, the coefficients {ak} could also partially vanish due to adopted p-fold
symmetry of the hole shape, thus further diminishing the system size from M to N < M in nonzero
unknowns ak, k = 1, 2, . . . , N .
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3.2.1. Pure shear. Here the coefficient β2 disappears in the energy increment expression δW = 4α02,
which can be obtained by taking directly from the solution of the (N × N ) truncated system (3-7).
This case has been studied in detail previously [Vigdergauz 2006] though the energy maxima were not
considered there. Particularly, for only one nonzero mapping term (n = 1) we have:

• A triangular symmetry (p = 3, M = 2, N = 1):

a2 = 1, δW2 =
4

(1− 2d2
2 )
, min

d2
δW2 = δW (min)

2 = 4, d(min)
2 = 0, (3-8a)

max
d2
δW2 = δW (max)

2 = 8, d(max)
2 =±

1
2 . (3-8b)

• A square symmetry (p = 4, M = 3, N = 1):

a2 =
1

1− d3
, δW3 =

4
(1− d3)(1− 3d2

3 )
(3-9a)

δW (min)
3 =

9
√

2+ 1
, d(min)

3 =
1−
√

2
3

, (3-9b)

δW (max)
3 = 9, d(max)

3 =
1
3 . (3-9c)

• A more-fold symmetry (p ≥ 5, M = p− 1, N = 2):

a2 =
1

1− (M − 1)d2
M
, δWp =

4
(1− (M − 1)d2

M)(1−Md2
M)
, (3-10a)

δW (min)
p = 4, d(min)

M = 0, (3-10b)

δW (max)
p =

4M3

(M2−M + 2)(M − 1)
, d(max)

M =±
1
M
. (3-10c)

We note that only the case p = 4 is sensitive to the hypocycloid angular position as given by the sign
of d3. It produces the global energy maximum (3-9c) when aligned with the main stresses directions(
d3 =

1
3

)
and the halved value δW = 4.5 otherwise.

3.2.2. Bulk loading. With solved ak , k = 1,M , the 9-related coefficient b2 is arrived at analytically by
a little algebra as detailed in the Appendix. Again, as before, the case n = 1 takes a simple closed form
(M = p− 1):

δW (dM)= 4B2 1+Md2
M

1−Md2
M
, δW (max)

M =
4(M+1)

M−1
, d(max)

M =±
1
M
. (3-11)

The above formulas suggest two analytical conclusions for n = 1:

(A) for any p > 2 and either loading the energy-maximizing hole shape with constant-signed curvature
is an everywhere concave p-cusped hypocycloid, or

(B) the associated energy maximum monotonically decreases with increasing p.

In the general case of n > 1 these are numerically extended in the next section.
The subsection is concluded with the following summarizing observation. It is a matter of direct

verification to prove that a hypocycloid is the only fully concave one-term mapping (3-5). All smaller
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values of |dk | give raise to convex zones gradually expanding from the vertices. Put it differently, under
the concavity requirement, the searching space {L p} is nontrivially populated only for n > 1

3.3. The global optimization scheme. The design variables (ak, k = 1,M) must meet the constant-
signed curvature condition (3-3), otherwise they are free to vary in large intervals (3-4). Due to the
nature of the objective function δW , the maximization problem (3-1) may have many local maxima
even though the number M of design variables is small (at most six in our numerical simulations). This
circumstance precludes the use of exhaustive search or traditional descent methods.

An effective alternative is provided by an evolutionary-type genetic algorithm (GA). Devised by Hol-
land [1975], it has become well-accepted in the last several decades (see, for instance, [Goldberg and
Sastry 2007]). This heuristic approach performs a gradientless optimization in a large search space by
mimicking the Darwinian process of natural selection over successive generations through blind crossover
and mutation operations. The major advantage of the GA is that it explores the solution space by testing
parameter combinations simultaneously to avoid local extrema of the objective function, and requires no
derivative information [Goldberg and Sastry 2007].

The GA operates by constructing a population of M-strings and finds δW for each string. These are
encoded using a discrete 16-bit procedure where each design variable is represented only by 216

− 1
separate values in the continuous search space. In view of (3-4), this representation is decoded from a
randomly generated integer (or gene) ν ∈ [−I ; I ], I = 215 as dk = v/I

√
k, k = 1,M . The genes for

different coefficients are concatenated into an ordered 16N binary set, or chromosome, that encodes a
set of design variables. The chromosome’s fitness value is obtained by solving the corresponding direct
problem of finding δW while checking the restriction (3-3) at 100 points equally spaced in the irreducible
interval θ ∈ [0;π/p]. Once a randomly generated set’s population has been evaluated, bitwise crossover
and mutations are next applied to the chromosomes with a certain probability level, thus producing the
next generation. Then the process is successively repeated to gradually increase the species’ fitness δW
in the long run. In view of this, wherever (3-3) is violated, the corresponding set obtains a penalty as
its fitness, and the GA process takes the next candidate. The idea is to make the set noncompetitive by
assigning the penalty, as the squared violation is multiplied by a very large negative constant. The opti-
mization is stopped after some Niter iterations — in belief that the process really converges. Practically,
Niter is chosen in such a way that the optimization criterion remains unchanged in successive iterations
well in advance of termination.

For the reader’s convenience, Table 1 summarizes the above-introduced governing parameters.
After adjusting the heuristic probability levels of the GA operations, this scheme was used to obtain

the numerical results presented in the next section. In order to prevent the GA process against possibly
being “stuck” quite far from the global maximum, multiple runs are carried out in the current work for
each separate problem at the given number n of nonzero mapping terms. Motivated by the proposed
optimization strategy, we form a sequence of approximations in ascending order of n, which converges
rapidly to a stable hole shape.

4. Numerical results

4.1. Pure shear ( Q =−P : B = 0, 0 = 1). For illustration purposes, the number p of the contour cusps
is chosen here as a power of two to better match the square antisymmetry of loading.
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GA parameter parameter value(s)

gene integer [−231
; 231
]

individual interface shape
degree of the shape’s rotational symmetry (p) integer 3÷ 128

population size 20000÷ 50000
(depending on the parameter p)

number of genes (n) up to 6
number of nonzero mapping terms depending on parameter p

truncation size of the conformal mapping (M) pn− 1
resolving system size (N ) ≤ M

initial population 20000÷ 50000 random individuals
selection tournament

elitism four best individuals
crossover 1-point

crossover rate 0.99
creep mutation by randomly changing a bit

creep mutation rate 0.35

jump mutation by adding a random integer value
typically [−29

; 29
]

jump mutation rate 0.35
stopping criterion (Niter) after 100÷ 150 iterations

Table 1. GA operator types, their probability rates, and related parameters typically
used in further optimizations.

n M d3 d7 d11 d15 d19 d23 δW (max)
4

1 3 0.33333 9.000
2 7 0.39461 −0.02626 11.967
3 11 0.43363 −0.05303 0.00648 15.613
4 15 0.43504 −0.06192 0.01431 −0.00194 16.069
5 19 0.43644 −0.06037 0.01212 −0.00164 0.00024 16.172
6 23 0.43785 −0.05794 0.01009 −0.00164 0.00024 4.45 · 10−5 16.259

Table 2. Pure shear. A single square symmetric (p = 4) hole: the antioptimal mapping
coefficients and the global criterion δW (max)

4 for different values of n and M = 4n− 1.

Table 2 confirms the expected fast convergence of the GA approximations to the steady state solution
after the few first values of n, which is typical for any p. Figure 3 shows the evolution of the antioptimal
holes from the single (n = 1) to multiterm stable (n = 4÷ 6) shape.
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(a)

(c)

(b)

ρ
(θ
)

θ (grad)

Figure 2. Pure shear. The curvature radii ρ(θ) for the energy-extremal holes with square
symmetry (p = 4).

p δW (max)
p δW (min)

p δW (max)
p /δW (min)

p

4 16.259 3.71449 4.377
8 6.975 4.0 1.744

16 5.289 4.0 1.322
32 4.571 4.0 1.143
64 4.141 4.0 1.035

128 4.067 4.0 1.017

Table 3. Pure shear. The energy extrema attained at the maximizing and minimizing
hole shapes with different degrees p of rotational symmetry and constant-signed cur-
vature. The value δW (min)

p at p = 4 is obtained by GA optimization in [Vigdergauz
2006].

Table 3 displays the stable values of δW (max)
p and δW (min)

p numerically computed at n = 4÷ 6 for
shapes of constant negative and constant positive curvature, respectively. The allowed energy interval
1Wp≡[δW (min)

p ; δW (max)
p ] is seen to shrink gradually to the point δW (max)

p = δW (min)
p = 4 with increasing

p and

max
p
1W (shear)

p =1W (shear)
4 = [3.714; 16.259]; lim

p→∞
1W (shear)

p → [4; 4]. (4-1)

The subsection is concluded with Figure 2 outlining how the signed curvatures radii ρ(θ) of different
extremal shapes (indicated in the previous figure by the same letters) relate to each other. For easier
comparison, the energy minimizing shape (b) is first rotated through 45◦ to be oriented like the two
others. In the absence of restriction (3-3), the resultant shape (c) is seen to form zones of high curvature
with alternating sign located near the vertices and is associated with unlimited growth of the energy
increment [Vigdergauz 2006].
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p = 4p = 8

p = 16 p = 32

(c)
(a)

(b)

(c)

Figure 3. Pure shear. Evolution of the energy-maximizing p-cusped concave hole
shapes with increasing number N of the conformal mapping terms to the limiting
(boldfaced) curves. The energy-minimizing (b) and the extremal cross-like (c) contours
[Vigdergauz 2006] at n = 23 are also added for contrast.

n M d2 d5 d8 d11 d14 δW (max)
3

1 2 0.5 3.000
2 5 0.55786 −0.02315 4.188
3 8 0.60657 −0.05161 0.00561 6.448
4 11 0.61837 −0.06120 0.00988 −0.00089 7.616
5 14 0.62062 −0.06233 0.01026 −0.00112 4.89E − 05 7.753

Table 4. Bulk loading. A single symmetric triangular (p = 3) hole: the antioptimal
mapping coefficients and the global criterion δW (max)

3 for different values of n and M =
3n− 1.

4.2. Bulk loading ( Q = P : 2B = 1, 0 = 0). Since this load is isotropic, the problem’s rotational
symmetry is determined only by parameter p, which is chosen here as a multiple of 3.

The results are organized like in the previous subsection. Table 4 exemplifies the GA convergence
process for p = 3. Figure 4 presents the L p shape’s evolution to the steady state form with increasing
parameter n.

Other computational findings (not displayed here to save space but available from the authors) indicate
that with increasing p the stable values of δW (max)

p expectedly decrease to the commonly known p-
independent global minimum W (min)

p = 4 invariably achieved at a circle. Here,

max
p
1W (bulk)

p =1W (bulk)
3 = [1; 7.753]; lim

p→∞
1W (bulk)

p → [1; 1]. (4-2)

A close inspection of Tables 2 and 4 suggests the following general observations, providing a deeper
understanding of how the proposed maximization criterion (2-9) works:
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p = 9

p = 3p = 6

Figure 4. The bulk loading case. Evolution of the energy-maximizing p-cusped con-
cave hole shapes with increasing number N of the conformal mapping terms to the
limiting (boldfaced) curves.

• At given n, each table row forms a sequence of rapidly vanishing mapping coefficients. It seems
like each next coefficient tends to correct the previous one with aim to increase the shape-induced
energy while preserving the arc concavity. Then the coefficients’ alternative signs implicitly indicate
a good numerical stability of the antioptimization process.

• The resultant leading coefficient dp−1 lies outside the empirical interval (3-5) — though, of course,
within the wider necessity bounds (3-4):

1
p−1

≤ |dp−1| ≤
1

√
p− 1

, p = 3, 4, . . . (4-3)

With increasing p, this interval monotonously shrinks to the zero-point, thus giving no room for antiopti-
mization under the imposed concavity assumption. That is just the reason why with growing p, the energy
maximum also shrinks to the limiting value attained at zero mapping coefficients {dk} (a circular hole).

A separate remark is necessary about the case (p = 4). For both loadings, the GA-obtained energy
maximizing shapes (shown in upper right of Figure 3) are practically the same (if not identical), unlike
the energy-minimizing ones which differ markedly from each other.

5. Conclusions

In concluding we summarize the basic assumptions under which the considered optimization problem
has been effectively solved by the simplest GA scheme combined with the semianalytical direct solver:

• The chosen energy increment is the antioptimization criterion of an averaging rather than local
nature. It allows the avoidance of the “epsilon technique” used, say, in [Givoli and Elishakoff 1992;
Pal’mov 1963] for upper prebounding the hoop stresses.
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• Instead, the global nonparametric restriction of constant-signed curvature is imposed to form a prac-
tically representative searching pool of the energy-maximizing holes’ shapes with a finite increment.
This restriction is easily verified numerically by conformal mapping technique within the simple,
robust, and computationally efficient direct solver.

As a result it turns out that the energy increments possess a high but stable sensitivity to random dis-
turbances of the fully concave/convex hole shapes, and hence can be accurately evaluated with moderate
computing effort.

The results numerically obtained here complement those for the energy-minimizing shapes in [Vigder-
gauz 2006]. Taken together, they provide new two-sided bounds on the hole-induced energy increment,
which are exact within the constant-signed curvature constraint Their widest gaps over parameter p for
the basic load cases are given in (4-1) and (4-2).

Appendix: An analytical solution of the master system (3-7) for remote bulk load

Though the unknowns ak , k > M are outside the scope of the energy increment expression (2-7), they are
needed to restore the first KM potential, and hence to evaluate the boundary hoop stresses [Muskhelishvili
1963]

σθθ (ξ)= 4 Re80(ξ)= 4B+ 4
∞∑

k=2

ak cos(kθ), ξ ∈ L . (A-1)

For pure shear (B = 0→ Am = 0, ∀m > 2) the above Fourier series can also be summed up analytically
[Vigdergauz 2006] by applying the standard finite differences technique [Levi and Lessman 1992] to the
infinite homogeneous system with the load-independent constant coefficients 1, 0,−d1,−2d2, . . . ,−MdM

of the actual bandwidth n resulted from (3-7) for m > M−1 when the second sum apparently disappears:

am+2−

M∑
k=1

kdkam−k+1 = 0, m = M,M + 1, . . . (A-2)

80(ξ) is then expressed as

80(ξ)=
RM(ξ̄ )

ξω′(ξ)
, (A-3)

where RM(ξ) is a polynomial of degree M in ξ , given as

RM(ζ )= rMζ
M
+ rM−1zM−1

+ · · ·+ r0, (A-4)

with the coefficients

r0 = a1 = 0, r1 = a2, rm = am+1−

m∑
k=2

(−1)k(k)dkam+k+1, m ≥ 2, (A-5)

which may partially vanish owing to the rotational symmetry.
Remarkably, the solution (A-3) is valid also for the bulk loading case corresponding to the same

homogeneous (Dm = 0,→ Am = 0, m = M , m = M+1, . . . ) system (A-2). Then, from (2-15) it follows
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that

φ′(ξ)=
Rn(ξ̄ )

ξ
=

M∑
m=1

rm

ξm+1 ; φ(ξ)=−

M∑
m=1

rm

mξm . (A-6)

Finally, substitution of (A-6) into (2-15) gives, while making use of (2-13),

b2 = 2
(

B+
M∑

m=1

dmrm

)
. (A-7)

Particularly, for n = 1 the above expressions are simplified to

rM = B MdM , b2 = 2B(1+Md2
M), β2 =

b2

f
= 2B

1+Md2
M

π(1−Md2
M)
, (A-8)

thus arriving at (3-11).
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