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ANISOTROPIC MULTIMATERIAL LATTICES AS THERMAL ADAPTERS

MARINA M. TOROPOVA

Design concepts for anisotropic adaptive lattices compounded of triangular multimaterial cells are con-
sidered. The lattices connect two parts of a structure (referred here as the substrates) made of materials
with different coefficients of thermal expansion (CTEs) and subject to large variation of temperature.
They are designed to eliminate mismatched thermal expansion and provide constant independent of
temperature distance between the substrates. Because all connections with the substrates and within
the lattice are made with pins, the whole structure is free of bending and thermal expansion mismatch
stresses. The designed lattices are scale independent. Relationships between cell geometry (triangle
angles and height) and the CTEs of selected lattice materials are obtained. Two-cell and three-cell
one-row and five-cell two-row planar lattices are designed. Furthermore, axisymmetric adaptive lattice
assembly is considered. Such a lattice can have cylindrical or conical shape and may be compounded of
several rows. Cell members in all designed lattices are made of conventional materials. Lattice materials
providing the largest structural efficiency are recommended.

1. Introduction

Multimaterial adaptive lattices are used as connectors between two parts of a structure that are made
of materials with different CTEs. If the structure experiences cyclic temperature variations, thermal
expansion mismatch stresses may lead to deformations and damages [Edeson et al. 2010]. Various
approaches are used to eliminate or mitigate the stresses. The first approach relates to thermal expansion
mismatch adapters made of layered composite materials with graded CTE. For example, in [Yousefiani
et al. 2009a; Yousefiani et al. 2009b], the authors proposed this type of adapter for a composite plate
with contoured profile layers and for a layered injector-chamber attachment components in rocket engines.
[Dang 2006] used composite adapters with graded CTE as components of a precision optical assembly
to prevent lens misalignment. However, layered composite thermal adapters tend to accumulate residual
stresses arising between the layers due to differences in the CTEs. Cyclic thermal variation amplifies
the stresses and causes nonrecoverable deformations. Another approach to accommodate differential
thermal expansion relates to compliant connections with low stiffness, e.g., Du et al. [2016; 2017] used
flexible connections to mitigate thermal expansion mismatch deformations between a satellite platform
and supporting composite rods, but this strategy reduces the overall stiffness. Multimaterial lattices do not
have these drawbacks and are perfect in structures for which low weight is desirable. They are stiff and do
not generate thermal expansion mismatch stresses. The lattices are compound of conventional materials
and are designed in such a way that on the edges connected to the substrates, the lattice CTEs coincide
with the CTEs of the corresponding substrate materials. Various thermally adaptive lattices are presented

Keywords: thermal mismatch adapters, composite cylindrical and conical lattices, multimaterial triangular cells, satellite
connectors.
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in [Toropova and Steeves 2014; 2015; 2016]. In these papers, the lattices are comprised of hexagonal
cells with pin-joined members; three hexagon vertices are connected to an internal triangle made of a
material with the CTE that differs from the hexagon material CTE. Each cell is anisotropic with three
CTEs along the sides of the virtual base triangle upon which the cell is built. Such cells provide a wide
range of the CTEs, but are noticeably sensitive to manufacturing imperfections in pin joints. However,
the lattice design methodology elaborated in these works can be used in the design of adaptive lattices
compounded of planar triangular cells that can be considered as a particular case of the hexagonal cells
with zero skew angles. The triangular cells have much simpler configuration with only three pin joints,
may be easily manufactured, and are much less sensitive to manufacturing imperfections compared to
hexagonal cells. Three linear cell members may be made of materials with different CTEs, and the
angles adjacent to the triangle base may also be different. Such cells are similar to the triangular cells
used in [Grima et al. 2007a; 2007b; Miller et al. 2008; Wei et al. 2016; 2017], but have a higher degree
of anisotropy, which is needed for thermal adapters. The lattices comprised of the cells are nonperiodic
and the cells are nonidentical, which differs from [Sigmund and Torquato 1996; 1997; Lakes 1996; 2007;
Ha et al. 2017; Gibiansky and Torquato 1997; Jefferson et al. 2009; Steeves et al. 2007; Berger et al.
2011; Berger and McMeeking 2018; Lehman and Lakes 2013; Gdoutos et al. 2013; Hopkins et al. 2013;
Xu and Pasini 2016; Wei et al. 2018a]. Despite the cell’s simple structure, the lattices composed of the
triangular cells are able to eliminate or mitigate stresses due to different CTEs in the substrate materials.

In this paper, one-row and two-row planar lattices and multirow nonplanar axisymmetric cylindrical
and conical adaptive lattices are designed. The lattices have straight-line members with pin connec-
tions to the substrates, between and within cells. Because of this, the lattices accommodate thermal
deformations of the substrates without generating thermal stresses. Also, the designed lattices provide
a constant temperature-independent distance between the substrates. The planar adaptive lattices may
be used in multifunctional sandwich panels when they operate under variable thermal conditions, while
the multirow axisymmetric adaptive lattices are used in various artificial Earth satellites as interface
adapters that are not intended to bear large loads but must have optimal structural efficiency [Vasiliev
et al. 2012], for example, as connectors and parts of platforms for antennas, mirrors, and other optical
systems. Such nonplanar one-row axisymmetric lattices consisting of planar hexagonal cells and adapting
or tuning the CTEs of two cylindrical substrates were suggested in [Toropova and Steeves 2015; 2016].
Later, the design of nonplanar lattices compounded of planar cells was developed in [Wei et al. 2018b],
where planar triangular and square cells were used in lattice cylindrical shells with tailorable thermal
expansion. Thermal tuning and morphing of anisotropic composite lattice shells (anisogrids) formed
by clockwise and counterclockwise helical and circumferential tubular members were investigated in
[Phoenix and Tarazaga 2017; 2018; Phoenix et al. 2018]. In the present work, multirow axisymmetric
lattices comprised of planar triangular cells with members made of conventional materials are designed
to serve as thermal adapters. The lattices can be comprised of the desirable number of cylindrical and
conical rows; the cells in different rows can have different geometry and be made of different materials.
However, there are no thermal expansion mismatch stresses between the rows. Relationships linking
cell geometry with the CTEs of lattice cells are obtained. In contrast with conventional anisogrids, the
lattices are free of bending and thermal stresses.

For all lattices presented here, the structural efficiency defined as stiffness per mass is calculated. Cell
materials that provide the largest structural efficiency are indicated. The lattices are scale independent
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and may be used at macro- and microscales. They do not accumulate residual stresses or display material
hysteresis [Steeves et al. 2009]. Strength problems related to the lattices are not studied in the paper.

2. Formulation of the problem

Consider a structure subject to cyclic variations of temperature and consisting of two adjacent parts
(referred here as the substrate one and the substrate two) made of materials with different CTEs A1 and
A2, respectively. If the parts are connected to each other directly, temperature variations cause mechanical
stresses due to thermal expansion mismatch that can lead to nonrecoverable deformations. An anisotropic
adaptive lattice that connects the two substrates and has the CTE A1 on the edge adjacent to the substrate
one and the CTE A2 on the edge connected to the substrate two eliminates thermal expansion mismatch
stresses (Figure 1).

Lattice cells have triangular shape with straight-line members that can have different lengths and be
made of materials with different CTEs. Because all joints with the substrates, between cells and cell
members are made with pins, the cell members can rotate and accommodate thermal expansions. The
design of the adaptive lattice consists of finding angles in all cells if cell member materials are selected.
Design requirements define candidates for cell materials. Then, equations linking cell geometry with
material CTEs must be derived accounting for the number of rows and the number of cells in every row.
The equations can be satisfied for different CTE combinations of materials-candidates providing multiple
solutions to the problem. The cell member materials for which the structural efficiency is maximal are
indicated.

3. Triangular anisotropic cell

In an arbitrary triangular cell, the members AB, BC , and AC (Figure 2) are made of conventional
materials with Young’s modulus Ei , density ρi , and CTE αi , i = 1, 2, 3, respectively. Cell angles a and
b can be different providing different member lengths AB = L1, BC = L2, and AC = L3.

If the three member CTEs αi , i = 1, 2, 3, are known, the cell geometry, i.e., the angles a and b, can
be found from the conditions that the CTE along the height h is zero, the CTE along the line AB is
A1, and the CTE along the connection line to the second substrate, which passes through the vertex C ,
is A2. Therefore, the cell geometry depends on A1, A2, and three-cell CTEs αi , i = 1, 2, 3, which are

Substrate two with CTE = A2

Substrate one with CTE = A1

Figure 1. An example of an adaptive lattice eliminating thermal mismatch stresses be-
tween substrates with different CTEs. Lattice cell members with different CTEs are
depicted with different shade of gray.
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Figure 2. A lattice cell ABC with angles a and b. The members AB, BC , and AC are
made of materials with CTE αi , Young’s modulus Ei , and density ρi , i = 1, 2, 3, respec-
tively.

equal to the CTEs of selected member materials. In this work, we do not account for thermal expansion
of the substrates in the vertical direction. This problem was considered in [Toropova and Steeves 2016].
Because different choices of member materials for given A1, A2 determines different cell geometry, it is
important to select the cell materials that provide the largest structural efficiency, i.e., stiffness per mass.
For anisotropic cells compound of external hexagons and internal triangles, the structural efficiency under
uniaxial loading was found in [Toropova and Steeves 2015]. A similar approach is used here to find the
structural efficiency of the triangular cell under a vertical force N applied to the vertex C . The forces in
the members AB, BC , AC are equal, respectively:

F1 = N cos a cos b
sin(a+b)

, F2 =−N cos a
sin(a+b)

, F3 =−N cos b
sin(a+b)

.

The vertical deflection of the cell in vertex C where the force N is applied is

δ =
N

sin2(a+ b)

[
L1

31 E1
cos2 a cos2 b+

L2

32 E2
cos2 a+

L3

33 E3
cos2 b

]
,

where 3i , i = 1, 2, 3, are cross-sectional areas of the members AB, BC , AC , respectively. The structural
stiffness Su under uniaxial loading can be expressed as

Su =
Nh
δL1

.

Then, the nondimensional structural efficiency P is equal to

P =
ρ1

E1

Su

M
=
ρ1

E1

h sin2(a+ b)

L1

[
L1

31 E1
cos2 a cos2 b+

L2

32 E2
cos2 a+

L3

33 E3
cos2 b

]
M
, (3-1)

where the mass M per unit area of the lattice is

M =
ρ131L1+ ρ232L2+ ρ333L3

L1h
. (3-2)
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Taking into account (3-2), Equation (3-1) can be rewritten as

P =
( h

L1

)2 sin4(a+b)
D

, (3-3)

where

D = [sin(a+ b)+ Q1 sin a+ Q2 sin b][sin(a+ b) cos2 a cos2 b+ Q3 cos2 a sin a+ Q4 cos2 b sin b],

Q1 =
ρ2

ρ1

32

31
, Q2 =

ρ3

ρ1

33

31
, Q3 =

E1

E2

31

32
, Q4 =

E1

E3

31

33
.

From (3-3), we see that P increases when a→ 1
2π or b→ 1

2π and decreases when a→ 0 or b→ 0;
the structural efficiency reduces when coefficients Qi , i = 1, 4, containing physical constants of member
materials increase. In a particular case, when the angles a = b and all members have the same cross-
sectional areas and are made of the same material, the nondimensional structural efficiency is equal to

P =
sin4 a

(cos a+ 1)(cos3 a+ 1)
.

If, for example, a = b= 60◦, then P = 1
3 , which is identical with the maximal structural efficiency for the

triangular lattice with equilateral cells found in [Steeves et al. 2007]. If a = b= 70◦, P = 0.5587; for a =
b= 80◦, P = 0.7973. Thus, cells with larger angles a and b are preferable in terms of structural efficiency.

4. Planar lattices

In this section, stretch dominated two-cell and three-cell one-row lattices and a five-cell two-row lattice
compounded of triangular cells are considered. All the lattices have a vertical line of symmetry. For
two-cell and three-cell lattices the relationships connecting cell angles with member material CTEs are
derived using the condition of constant, temperature-independent lattice height and kinematic conditions
on the lattice edges connected to the substrates. Then, it is shown how the relationships are modified if
these two lattices are combined into a five-cell two-row lattice. For lattices of more complicated shape or
lattices without the vertical line of symmetry, the relationships between cell geometry and material CTEs
can be derived in similar way. Lattice design starts with the selection of cell lateral side materials, and
then cell angles are found. In all cells, the triangle base side material coincides with the first substrate
material to exclude thermal expansion mismatch.

4A. Two-cell lattices. Let a two-cell lattice (Figure 3) be connected to the first substrate with the CTE
A1 along the line AB and to the second substrate with the CTE A2 along the line C E , and αAD, αDB ,
and αh denote the CTEs along AD, DB, and the height h, respectively. Because αh = 0,

αAD =
α3

cos2 a
, αDB =

α2

cos2 b
.

The distance C E between the vertex C and the lattice line of symmetry must thermally expand with the
CTE A2, hence

cos b =
√
α2/A2 (4-1)
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Figure 3. Two-cell lattice with a line of symmetry and a distance h between substrates.

and α2 < A2. The distance between vertices A and B must expand with CTE A1, so

α3

sin a cos a
− A1 cot a = (A1− A2) cot b. (4-2)

The angles a and b can be found from (4-1) and (4-2) as

a = 1
2

[
arccos

(
2α3− A1

w1

)
+φ1

]
, b = arccos

√
α2/A2, (4-3)

where

w1 =

√
A2

1+
α2

A2−α2
(A1− A2)2, φ1 = arccos

A1

w1
. (4-4)

The second equation in (4-3) shows that the angle b rises when α2 decreases and A2 increases. From
(4-2), it is seen that the angle a depends on the angle b and the CTE α3. Therefore, the first equation in
(4-3) shows that if the angle b is found, then the angle a is greater for a greater difference A1− 2α3, i.e.,
for a smaller CTE α3.

4B. Three-cell lattices. Let a three-cell lattice (Figure 4) be connected to the first substrate with the
CTE A1 along the line AD and to the second substrate with the CTE A2 along the line C E . The lattice
has a vertical line of symmetry so that the angles in the middle cell a2 = b2 (Figure 4). To define lattice
geometry, we have to find relationships between cell angles a1, b1 (related to the left cell), the angles
a2 = b2 and the material CTEs A1, A2, α1i , i = 1, 2, 3, and α2 j , j = 1, 2, 3, where α11, α12, α13 are the
material CTEs of the members AB, BC , AC , respectively, and α21, α22, α23 are the material CTEs of
the members B D, DE , and B E , respectively.

Repeating the procedure applied in the subsection above, we find

cos2 a2 =
α23

A1
,

α12

sin b1 cos b1
− A2 cot b1 = (A2− A1) cot a2,

α13

sin a1 cos a1
− A1 cot a1 =

(
A1−

α12

cos2 b1

)
cot b1.

(4-5)
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Figure 4. Designation of CTEs in a three-cell lattice with a line of symmetry and a
distance h between substrates.

The solutions to the equations (4-5) can be presented as

a2 = b2 = arccos
√
α23

A1
,

b1 =
1
2

[
arccos

2α12− A2

w2
+φ2

]
,

a1 =
1
2

[
arccos

2α13− A1

w3
+φ3

]
,

(4-6)

where α23 < A1 and

w2 =

√
A2

2+
α23

A1−α23
(A1− A2)2, φ2 = arccos

A2

w2
, (4-7)

w3 =

√
A2

1+ cot2 b1

(
A1−

α12

cos2 b1

)2

, φ3 = arccos
A1

w3
. (4-8)

Equations (4-5) show that the angle b1 depends on the angle a2, and the angle a1 depends on the angle b1.
From (4-6)–(4-8) it follows that smaller values of α23 lead to larger values of the angle a2. When a2 is
found, the angle b1 is larger for a smaller α12, and for the found values of a2 and b1 the angle a1 is larger
for a smaller α13.

4C. Five-cell two-row lattice. The lower row in a five-cell two-row lattice is designed as if it connects
two substrates with the same CTE A1 (Figure 5).

In this case, (4-6) are transformed into

a1 = arccos
√
α13

A1
, b1 = arccos

√
α12

A1
, a2 = b2 = arccos

√
α23

A1
, (4-9)

where α1i < A1, i = 2, 3, and α11 = A1, α12, α13 are the CTEs pertaining to the left cell in the lower row
and the CTEs α21 = A1, α22 = α23 relate to the middle cell in the lower row. For the angles in the upper
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Figure 5. Designation of CTEs in a two-row five-cell lattice with a line of symmetry;
the height of the first row is h1 and the height of the second row is h2.

row cells, (4-3) can be rewritten as

c = 1
2

[
arccos

(
2β13− A1

w1

)
+φ1

]
, d = arccos

√
β12

A2
,

w1 =

√
A2

1+
β12

A2−β12
(A1− A2)2, φ1 = arccos

A1

w1
,

(4-10)

where the angles c, d, and the CTEs β11 = A1, β12, and β13 relate to the left cell in the upper row,
and β12 < A2. Note, that in a two-row lattice, the rows can have different heights h1 6= h2, which are
independent of temperature changes.

Expressions (4-3), (4-6), (4-9), and (4-10) obtained in this section are scale independent and present
the cell angles as functions of A1, A2, and the CTEs of the cell member materials.

5. Examples of lattice design

In the examples considered in this paper, the first substrate is made of aluminum (CTE= 22.2 ppm/◦C,
Young’s modulus E = 70 GPa, density ρ = 2.7 kg/m3), while the second substrate is made of titanium
(CTE = 8.6 ppm/◦C, Young’s modulus E = 116 GPa, density ρ = 4.5 kg/m3). For lattice design, we
have to select cell member materials and then find cell geometry. Because the first substrate is made
of aluminum, the cell base members are also made of aluminum. Let possible candidates for the cell
lateral member materials be titanium, Kovar (CTE= 5.5 ppm/◦C, Young’s modulus E = 138 GPa, density
ρ = 8.0 kg/m3), and Invar (CTE= 1.2 ppm/◦C, Young’s modulus E = 140 GPa, density ρ = 8.1 kg/m3).
These materials are selected because they are conventional in aerospace applications. In other design
problems, different materials can be considered. Having the relationships (4-3), (4-6), (4-9), and (4-10)
derived in the previous section, we can find cell geometry for two-cell and three-cell one-row lattices
and five-cell two-row lattices. Here, the cell angles are found for different combinations of titanium,
Kovar, and Invar for cell members. The structural efficiency calculated under uniaxial loading using (3-3)
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line # α2 (ppm/◦C) α3 (ppm/◦C) a b P

1 1.2 8.6 58.2◦ 68.1◦ 0.3631
2 1.2 5.5 66.6◦ 68.1◦ 0.3842
3 1.2 1.2 81.9◦ 68.1◦ 0.4453
4 5.5 8.6 69.7◦ 36.9◦ 0.1697
5 5.5 5.5 76.2◦ 36.9◦ 0.2010

Table 1. Angles and structural efficiency of cells in two-cell lattices connecting alu-
minum and titanium substrates; lateral cell members are made of different combinations
of titanium, Kovar, and Invar materials.

depends on the cell angles, which depend on the cell material CTEs. The coefficients Qi , i = 1, 2, 3, 4,
reflecting the cell material physical properties, act as parameters. The structural efficiency of the whole
lattice is equal to the minimum structural efficiency among all cells.

5A. Two-cell lattice. The structural efficiency and the angles in two-cell lattices calculated by (4-3) and
(4-4) for member materials with CTEs α2 and α3 are shown in Table 1. It is seen that the lattice with
cells made of Invar lateral and aluminum base sides and the angles a = 81.9◦, b = 68.1◦ (line 3) has the
largest structural efficiency P = 0.4453. The presence of smaller angles b (lines 4, 5) noticeably reduces
the structural efficiency.

5B. Three-cell lattice. Let P1 and P2 denote the structural efficiency of the left and the middle lattice
cells (Figure 4), respectively. According to Table 2, the left cell made of the left titanium and the right
Invar lateral sides has the structural efficiency P1 = 0.2947, and the middle cell with Invar lateral sides
has the structural efficiency P2 = 0.5401 (line 3). Hence, the structural efficiency of the whole lattice is
P = 0.2947, which is the largest among all other three-cell lattices with different combinations of cell
member materials (lines 1, 2, 4, 5, 6) but significantly lower than the structural efficiency of the two-cell
lattice connecting substrates made of the same materials. In general, analysis shows that the more cells
the adaptive lattice comprises, the more the cells differ from isosceles triangles and as a result the total
lattice structural efficiency reduces. In all lines of Table 2, P2 > P1, this is because the geometry of the
middle cell in the designed lattice does not depend on A2. Therefore, a lattice connecting two substrates
with the same CTEs has the maximum structural efficiency.

5C. Five-cell two-row lattice. It is possible to increase the structural efficiency of a three-cell lattice by
transforming it into a five-cell two-row lattice with an additional upper row consisting of two cells. In
this case, the first row of the five-cell two-row lattice is designed as if it connects two substrates with the
same CTE and the lateral members are made of the same material. Hence, the triangular cells in the first
row have the same angles ai = bi , i = 1, 2. Table 3 contains the cell angles ai = bi = a and the structural
efficiency of the cells calculated for lateral member materials with CTEs α12 = α13 = α23. It is seen that
cells with Invar lateral sides have the largest structural efficiency P = 0.5401.

The upper row of the lattice coincides with the two-cell lattice designed earlier. Table 1 shows that cells
with Invar lateral sides and aluminum base side have the largest structural efficiency P = 0.4453, which
is less than 0.5401. Hence, the total lattice structural efficiency, which is identical with the structural
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line # α12 (ppm/◦C) α13 (ppm/◦C) α23 (ppm/◦C) a1 b1 a2 P1 P2

1 1.2 8.6 8.6 76.4◦ 32.6◦ 51.5◦ 0.1751 0.1943
2 1.2 8.6 5.5 73.0◦ 40.0◦ 60.2◦ 0.2099 0.2593
3 1.2 8.6 1.2 65.3◦ 55.9◦ 76.6◦ 0.2947 0.5401
4 5.5 8.6 8.6 82.6◦ 14.3◦ 51.5◦ 0.0830 0.1911
5 5.5 8.6 5.5 80.6◦ 17.9◦ 60.2◦ 0.0995 0.2593
6 5.5 8.6 1.2 75.5◦ 27.1◦ 76.6◦ 0.1357 0.5401

Table 2. Angles and structural efficiency of cells in three-cell lattices connecting alu-
minum and titanium substrates; lateral cell members are made of different combinations
of titanium, Kovar, and Invar materials.

line # α12 = α13 = α23 (ppm/◦C) a1 = b1 = a2 = a P

1 8.6 51.5◦ 0.1943
2 5.5 60.2◦ 0.2593
3 1.2 76.6◦ 0.5401

Table 3. Angles and structural efficiency of cells in the first row of five-cell two-row
lattices; lateral cell members are made of titanium, Kovar, and Invar materials as if they
connect two aluminum substrates.

efficiency of the two-cell lattice, is attained if the cell lateral sides in both rows are made of Invar and the
base sides of aluminum. A sketch of the kinematics of the lattice is shown in Figure 6 where the lattice
edges connected to the aluminum and titanium substrates thermally expand with the CTE of aluminum
and titanium, respectively.

Three examples presented in this section demonstrate that cell lateral sides made of materials with
smaller CTEs lead to larger angles adjacent to the triangle base side, and the cells with the larger angles
have the larger structural efficiency even if the lateral side materials have a larger density. Note that if
A1 > A2, hexagonal cells [Toropova and Steeves 2014; 2015] cannot be used in planar thermally adaptive
lattices because in this case the range of their CTEs [Toropova and Steeves 2016] is not wide enough for
adapting purposes.

6. Axisymmetric lattices

In this section, we consider cylindrical and conical axisymmetric lattices. Such lattices can be used in
satellite structures as connectors between the main satellite body and an outboard platform. Here, the
two substrates are simulated as circular disks with radii R1 and R2, respectively. The lattices may consist
of one or more rows of different heights, so that a desirable total distance between the substrates can be
attained by combination of different rows (Figure 7).

We assume that every row has a lower and an upper circular boundary, which are virtual, so that the
cells in every row are connected to the virtual lower circle with radius ri and to the virtual upper circle
with radius ri+1, and r1 = R1, rm+1 = R2 where m is the total number of rows. To form a smooth
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a = 76.6º
c = 81.9º
d = 68.1º

Al

Titanium substrate with CTE = 8.6 ppm ºC

Aluminum substrate with CTE = 22.2 ppm ºC

Invarc

a a a a a a

cd d

Figure 6. Sketch of the kinematics of the thermal expansion of the two-row five-cell
lattice with aluminum cell base sides and Invar lateral sides. The cells with the angles
a = 76.6o, c = 81.9o, d = 68.1o provide the largest structural efficiency of the lattice
P = 0.4453 for the selected materials. The solid lines show the initial positions of the
lattice, while the dashed lines show the lattice configuration and substrates after thermal
changes. Note that the height of every row does not change with temperature.

2R2

2R1

The second substrate
with CTE A2

The first substrate with CTE A1

H

hm

h

...

3

h2

h1

Figure 7. An example of an axisymmetric adaptive lattice consisting of m rows and
connecting two circular disks with CTEs A1 and A2 and radii R1 and R2, respectively.
The distance between the substrates is H , while the height of every row is hi , i = 1,m.
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Figure 8. An axisymmetric lattice cell ABC in the ith row. ri and ri+1 are the radii of
the lower and the upper row boundaries, respectively; hi is the row height; the angle
φ = π/n, where n is a number of cells in every row. The base side AB is made of a
material with the CTE α1i , while the lateral sides AC and BC are made of a material
with CTE α2i . The cell angles at the base triangle side are equal to each other ai = bi .

cylindrical or conical surface, all rows have the same slope: (ri − ri+1)/hi = constant = γ , i = 1,m.
In every row, there are the same number of cells and all cells have the same geometry and combination
of materials that may differ from the cells in other rows. Different rows can have different heights,
which remain independent of temperature, and the total distance H = h1+ h2+ · · · + hm between the
two substrates (Figure 7) also stays independent of temperature changes. Each cell in the i-th row is a
planar straight-side triangle with the base side AB made of a material with the CTEs α1i , and the lateral
sides BC and AC made of materials with the CTEs α2i and α3i , i = 1,m, respectively (Figure 8). It is
assumed that the cell angles ai and bi are equal to each other and the lateral cell sides are made of the
same material, so α2i = α3i . Therefore, the adaptive lattice is axisymmetric. In every row, we need to
know two CTEs on its lower and upper boundaries, which are denoted as Bi and Bi+1, respectively. Two
types of lattice arrangement can be used. In the first-type lattice, the first row is designed as if it connects
substrates with the CTEs A1 and A2, i.e., B1 = A1 and B2 = A2 and all other rows connect substrates
with the CTEs A2 and A2, i.e., B2 = Bi = A2, i = 3,m+ 1. In the second-type lattice, all rows except
the last one are designed as if they connect substrates with the CTEs A1 and A1, i.e., Bi = Bi+1 = A1,
i = 1,m−1 and the last row connects substrates with the CTEs A1 and A2, i.e., Bm = A1 and Bm+1 = A2.
In every row, the height hi and the angles ai = bi depend on Bi , Bi+1, and the CTE α2i = α3i . Before
starting lattice design, we have to specify a number n of cells in every row and a lattice slope γ . The
rows are designed sequentially starting with the first row. In every row, we have to select cell materials
and then find the cell angles and the row height. In conical lattices, the slope differs from zero, so in
every row, a radius of the upper circle ri+1 must be found to be used in the design of the next row. When
the rows are designed, they are arranged into a whole lattice. Among all solutions to the problem, we
select the combination of lattice materials that provide the largest structural efficiency.

7. One-row design

Consider a separate row of the axisymmetric lattice. It consists of n cells that connect a lower circle
with radius ri and the CTE Bi and an upper circle with radius ri+1 and the CTE Bi+1. Repeating the
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procedure described in [Toropova and Steeves 2015; 2016], the CTE of the material of the cell lateral
sides can be presented in the form

α2i = α3i =
r2

i Bi − riri+1 cosφ(Bi + Bi+1)+ r2
i+1 Bi+1

r2
i + r2

i+1− 2riri+1 cosφ+ h2
i

, (7-1)

where φ = π/n. The normalized height of every row can be expressed from (7-1) as

ηi =
hi

R1
=

√
Bi −α2i + q2

i (Bi+1−α2i )− qi cosφ(Bi + Bi+1− 2α2i )

α2i
, (7-2)

where qi = ri+1/ri . The angles ai = bi between the base and the lateral sides in the cell are

ai = bi = arccos
sinφ

√

1+ q2
i − 2qi cosφ+ η2

i

. (7-3)

Now, we need to specify the CTEs Bi and Bi+1. Because aluminum and titanium are conventional
materials for a satellite and its outboard platform, the triangle base sides in the first-row cells are made
of aluminum and α11 = B1 is equal to the CTE of aluminum. For Bi and Bi+1, i = 2,m, there are three
possibilities: both Bi and Bi+1 are equal to the CTE of aluminum, both Bi and Bi+1 are equal to the CTE
of titanium, and Bi is equal to the CTE of aluminum, while Bi+1 is equal to the CTE of titanium. The
normalized height of a lattice row and the angles between the base and the lateral cell sides are found
from (7-2), (7-3), which are scale independent, and shown in Figures 9–11 for 0.5 ≤ qi ≤ 1, n = 16.
Cylindrical lattices have qi = 1, while for conical lattices qi < 1. The curves in the plots correspond
to three possible materials of the cell lateral sides: titanium, Kovar, and Invar. The intersections of
these curves with the vertical line qi = 1 in left sides of Figures 9, 10, and 11 provide the values of
the row heights if the lateral cell sides in the cylindrical lattice are made of titanium, Kovar, and Invar,
respectively. The intersections of these curves with the vertical line qi = 1 in the right sides of Figures 9,
10, and 11 provide the values of the angles at the cell base sides if the lateral cell sides are made of
the same set of materials. Figure 9 relates to aluminum and titanium row boundaries, Figure 10 to both
titanium row boundaries, and Figure 11 to both aluminum row boundaries.

In conical lattices, ηi =−qi/γ + 1/γ . Hence, the intersections of the straight lines in Figures 9, 10,
11 with the curves indicate the values of the row normalized height ηi and the normalized radius qi of
the row upper boundary if the cell lateral sides are made of titanium, Kovar or Invar, respectively. These
values of qi are marked with an asterisk. In this work, all plots are built for γ = 0.25. The cell angles
ai = bi can be found in Figures 9, 10, 11 when qi are equal to the values marked with an asterisk. It is
seen (Figures 9, 11) that for γ = 0.25, the straight line does not cross the Invar curves, hence, the conic
lattice rows connecting aluminum and titanium substrates or both aluminum substrates can have the cell
lateral sides made of titanium or Kovar but not of Invar. In a conic lattice with a smaller slope γ , cell
lateral sides made of Invar may be possible. The plots in Figure 10 contain only two curves because cells
with all sides made of titanium cannot provide zero CTE along the row height.

All plots show that the smaller the CTE of the lateral-side material is, cells with larger angles ai = bi

and heights ηi are needed to adapt thermal expansion. In all plots, the curves related to Invar lateral sides
lie noticeably higher than the curves related to Kovar or titanium lateral members. The influence of the
cell geometry on the structural efficiency is considered in the next section.
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Figure 9. Normalized row height (left) and angle between the base and the lateral cell
sides (right) for Bi = 22.2 ppm/◦C, Bi+1 = 8.6 ppm/◦C, n = 16. Lateral cell side are
made of Invar, Kovar, or titanium. Values of qi with asterisks relate to conical lattices
with the slope γ = 0.25.
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Figure 10. Normalized row height (left) and angle between the base and the cell lateral
sides (right) for Bi = Bi+1 = 8.6 ppm/◦C, n = 16. Lateral cell sides are made of Invar,
Kovar, or titanium. Values of qi with asterisks relate to conical lattices with the slope
γ = 0.25.
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Figure 11. Normalized row height (left) and angle between the base and the cell lateral
sides (right) for Bi = Bi+1 = 22.2 ppm/◦C, n = 16. Lateral cell sides are made of Invar,
Kovar, or titanium. Values of qi with asterisks relate to conical lattices with the slope
γ = 0.25.
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Figure 12. Nondimensional structural efficiency of a cell in axisymmetric lattice under
uniaxial loading with Invar, Kovar, and titanium lateral sides for Bi = 22.2 ppm/◦C,
Bi+1 = 8.6 ppm/◦C, n = 16, 31i =32i .

8. Structural efficiency of a cell in the axisymmetric lattice

If a cell in the axisymmetric lattice is in equilibrium when the force N is applied to its upper vertex C
(Figure 8), the forces in the base and the lateral triangle sides are

F1 =
1
2 N cot a, F2 = F3 =−

N
2 sin a

.

Equation (3-3) for nondimensional structural efficiency of a cell in the axisymmetric lattice can be trans-
formed into

P =
η4

i

(sinφ+ Q1l)(sin3φ+ Q2l3)
,

where

l =
√

1+ q2
i − 2qi cosφ+ η2

i , Q1 =
ρ2i32i

ρ1i31i
, Q2 =

31i E1i

32i E2i
,

and 31i , 32i , E1i , E2i , ρ1i , and ρ2i are cross-sectional area, Young’s modulus, and density of the ma-
terials of the base and the lateral cell sides, respectively. The curves describing the structural efficiency
of the lattice cell with the lateral sides made of titanium, Kovar, or Invar are shown in Figures 12–
14 for aluminum and titanium, both titanium, and both aluminum row boundaries, respectively. The
intersections of these curves with the vertical line qi = 1 provide the values of the structural efficiency
of the cell in the one-row cylindrical lattice. The structural efficiency of the cell in the one-row conical
lattice can be found in these figures when qi takes the values marked with an asterisk; they coincide with
the corresponding qi marked with an asterisk in Figures 9, 10, 11. The plots are built for 31i =32i .

The plots show that the structural efficiency depends of cell geometry, which depends on cell material
CTEs. Note that the number of cells n in each row insignificantly affects the cell angles ai = bi and the
structural efficiency P , although they both slightly decrease when n increases.
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Figure 13. Nondimensional structural efficiency of a cell in axisymmetric lattice under
uniaxial loading with Invar and Kovar lateral sides for Bi = Bi+1 = 8.6 ppm/◦C, n = 16,
31i =32i .
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Figure 14. Nondimensional structural efficiency of a cell in axisymmetric lattice un-
der uniaxial loading with Invar, Kovar, and titanium lateral sides for Bi = Bi+1 =

22.2 ppm/◦C, n = 16, 31i =32i .

9. Cylindrical lattices

In cylindrical lattices R1= R2= R, and all lattice rows also have the same radius R. Equations (7-1)–(7-2)
can be rewritten as

α2i = α3i =
2 sin2( 1

2φ
)
(Bi + Bi+1)

4R2 sin2( 1
2φ
)
+ h2

i

,

ηi = sin
( 1

2φ
)√2Bi + 2Bi+1− 4α2i

α2i
. (9-1)

Cell angles ai = bi can be found as

ai = bi = arccos
cos
( 1

2φ
)√

2α2i
√

Bi + Bi+1
. (9-2)
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line # Bi (ppm/◦C) Bi+1 (ppm/◦C) α2i = α3i (ppm/◦C) ηi a1 = b1 P

1 22.2 8.6 1.2 0.67 73.9◦ 0.4788
2 22.2 8.6 5.5 0.26 53.5◦ 0.1562
3 22.2 8.6 8.6 0.17 42.0◦ 0.0798

4 22.2 22.2 1.2 0.82 76.6◦ 0.5198
5 22.2 22.2 5.5 0.34 60.3◦ 0.2508
6 22.2 22.2 8.6 0.25 51.7◦ 0.1954

7 8.6 8.6 1.2 0.49 68.2◦ 0.3841
8 8.6 8.6 5.5 0.15 37.3◦ 0.0364

Table 4. Normalized row height, cell angles, and structural efficiency in 16-cell one-row
cylindrical lattices connecting two substrates with CTEs Bi and Bi+1 corresponding to
aluminum or titanium. Lines 1–3 relate to Figures 9 and 12; lines 4–6 to Figures 11 and
14; and lines 7, 8 to Figures 10 and 13; qi = 1. Lateral cell sides are made of titanium,
Kovar, or Invar materials.

The cylindrical lattice is assembled row by row. The total number of lattice rows depends on a desirable
lattice height. Every row is designed as if it connects two circles so that the second circle material in
a row and the first circle material in the next row must have the same CTE. Because A1 and A2 relate
to aluminum and titanium, respectively, the row circle materials may be aluminum or titanium. Hence
the base cell sides can be made of aluminum or titanium. Figures 9, 10, 11 show that titanium, Kovar,
and Invar can be selected as cell lateral side materials if the lower and the upper circles are made of
aluminum and titanium, respectively, or if the both circles are made of aluminum. For both titanium
row circle boundaries, Invar and Kovar lateral cell sides are possible. Cell geometry (the angles and
the normalized height) and the nondimensional cell structural efficiency under uniaxial loading obtained
from (9-1) and (9-2) are shown in Table 4.

Table 4 demonstrates that cell lateral sides made of Invar provide the largest structural efficiency
compared to Kovar and titanium lateral sides, which is in agreement with the data in Figures 12–14.
Hence, we consider the design of the first- and the second-type adaptive lattices with Invar cell lateral
sides connecting aluminum and titanium substrates, which are shown in Figures 15 and 16, respectively.
Only four rows are depicted.

First-type lattice. The normalized height of the lattice’s first row (line 1 in Table 4) is 0.67 and the cell
base side is made of aluminum while the lateral sides are made of Invar; the cell angles are 73.9◦ and
the structural efficiency is 0.4788. All other rows have the normalized height 0.49 (line 7 in Table 4)
and are made of titanium for the base and Invar for the lateral sides; the cell angles are 68.2◦ and the
structural efficiency is 0.3841. Hence, the lattice structural efficiency is 0.3841 and the total height is
[0.67+ (m−1)0.49]R (Figure 15).

Second-type lattice. The normalized height of the lattice’s first m−1 rows is 0.82 (line 4 in Table 4), the
cell base side is made of aluminum, while the lateral sides are made of Invar; the cell angles are 76.6◦

and the structural efficiency is 0.5198. The last row has a normalized height 0.67 (line 1 in Table 4)
with aluminum base and Invar lateral cell sides, the cell angles are 73.9◦ and the structural efficiency is
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Figure 15. First-type cylindrical adaptive lattice connecting aluminum and titanium cir-
cular disks. The cell lateral members are made of Invar. In the first row, the angle at the
triangle base side is a = 73.9o and the base members are made of aluminum, while in
all other rows the angle at the triangle base side is b = 68.2o and the base members are
made of titanium. The lattice structural efficiency is P = 0.3841.

0.4788. Hence, the lattice structural efficiency is 0.4788 and the total height is [0.82(m−1)+ 0.67]R
(Figure 16), which are larger than in the first-type lattice.

It is possible to design other adaptive cylindrical lattices connecting aluminum and titanium substrates
composed of cells made of Kovar or titanium lateral sides, but their structural efficiency is significantly
smaller. For example, in the second-type cylindrical lattice with Kovar cell lateral sides the cell angles in
the first m−1 rows are 60.3◦ (line 5 in Table 4), the heights of the rows are equal to 0.34, and the structural
efficiency is 0.2508. In the last row, the angles are 53.5◦ (line 2 in Table 4), the height is 0.26, and the
structural efficiency is 0.1562. The total structural efficiency is min {0.2508, 0.1562} = 0.1562 and the
total height is [0.34(m−1)+ 0.26]R. Also, a first-type lattice with Kovar lateral sides is possible, but its
structural efficiency is extremely low (line 8 in Table 4). A second-type lattice with all titanium lateral
cell sides (line 6 and 3 in Table 4) has very small structural efficiency min {0.1954, 0.0798} = 0.0798.

10. Conical lattices

A truncated conical lattice consists of several rows. If the lattice slope and the CTEs of the row boundaries
Bi , Bi+1 are predetermined and the lateral cell side CTEs α2i = α3i are selected, the normalized radius
of the upper-row circle can be expressed from (7-2) as

qi =
2α2i −w(s1i + s2i )γ

2
−
√
(2α2i −w(s1i + s2i )γ 2)2− 4(α2i − s2iγ 2)(α2i − s1iγ 2)

2(α2i − s2iγ 2)
,
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Figure 16. Second-type cylindrical adaptive lattice connecting aluminum and titanium
circular disks. The cell lateral members are made of Invar, while the base members are
made of aluminum. In the last row, the angle at the triangle base side is b= 73.9o and in
all other rows the angle at the triangle base side is a = 76.6o. Lattice structural efficiency
is P = 0.4788.

where s1i = Bi −α2i , s2i = Bi+1−α2i , w = cosφ. The cell angles in the i-th row are

ai = bi = arccos
sinφ
√
α2i

√

Bi + q2
i Bi+1− qi cosφ(Bi + Bi+1)

.

Because the lattices designed in this work are scale independent, let R1 = 1.

First-type lattices. Here, we design two first-type lattices. If γ = 0.25, then the first row of the conical
lattice can have titanium or Kovar cell lateral sides (Section 8). In the next rows connecting two virtual
titanium circles the cell lateral sides may be made of Kovar or Invar, but Invar is preferable because it
provides larger structural efficiency. In the first row of the first lattice, the lateral and the base cell sides
are made of titanium and aluminum, respectively, while in the first row of the second lattice the lateral
and the base cell sides are made of Kovar and aluminum, respectively. In both lattices, starting from the
second row, the cells have Invar lateral and titanium base sides. Tables 5 and 6 contain the values of the
row height, the cell angles and the structural efficiency in the two first-type lattices. Both lattices can
have as many rows as it is necessary for design purposes; in all following rows the cell materials and
the angles will be the same as in the lines 2, 3, 4 of Tables 5 and 6. The minimum structural efficiency
in both tables is the same P = 0.3914 but their total heights are different: H = 178 in the first lattice
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row # Bi (ppm/◦C) Bi+1 (ppm/◦C) α2i = α3i (ppm/◦C) hi ai = bi qi P

1 22.2 8.6 8.6 0.46 67.2◦ 0.89 0.4892
2 8.6 8.6 1.2 0.51 71.6◦ 0.86 0.3914
3 8.6 8.6 1.2 0.44 71.6◦ 0.86 0.3914
4 8.6 8.6 1.2 0.37 71.6◦ 0.86 0.3914

Table 5. Cell angles, structural efficiency, and row heights in the first-type conical lattice
consisting of four rows and connecting aluminum and titanium substrates. The cell
lateral sides in the first row are made of titanium, while in other rows of Invar.

row # Bi (ppm/◦C) Bi+1 (ppm/◦C) α2i = α3i (ppm/◦C) hi ai = bi qi P

1 22.2 8.6 5.5 0.72 75.2◦ 0.82 0.4523
2 8.6 8.6 1.2 0.47 71.6◦ 0.86 0.3914
3 8.6 8.6 1.2 0.40 71.6◦ 0.86 0.3914
4 8.6 8.6 1.2 0.35 71.6◦ 0.86 0.3914

Table 6. Cell angles, structural efficiency, and row heights in the first-type conical lattice
consisting of four rows and connecting aluminum and titanium substrates. The cell
lateral sides in the first row are made of Kovar, while in other rows of Invar.

row # Bi (ppm/◦C) Bi+1 (ppm/◦C) α2i = α3i (ppm/◦C) hi ai = bi qi P

1 22.2 22.2 8.6 0.25 52.6◦ 0.94 0.1996
2 22.2 22.2 8.6 0.24 52.6◦ 0.94 0.1996
3 22.2 22.2 8.6 0.22 52.6◦ 0.94 0.1996
4 22.2 8.6 8.6 0.37 67.2◦ 0.89 0.4892

Table 7. Cell angles, structural efficiency, and row heights in the second-type conical
lattice consisting of four rows and connecting aluminum and titanium substrates. The
cell lateral sides are made of titanium.

(Figure 17) and H = 194 in the second lattice. Note that in conical lattices neighboring rows can have
the same cell angles but row heights are different.

Second-type lattices. Two second-type conical lattices are designed here; their geometric data and the
structural efficiency are shown in Tables 7 and 8, respectively. In both lattices, the base cell sides in all
rows are made of aluminum. As it was shown in Section 8, second-type conical lattices cannot have cell
lateral sides made of Invar. Hence, the cell lateral sides in the first lattice are made of titanium with the
total structural efficiency P = 0.1996 and the total height H = 108, while the lateral sides in the second
lattice are made of Kovar with the total structural efficiency P = 0.2608 and the total heights H = 153,
which is noticeably smaller than for two first-type conical lattices designed earlier.

Cylindrical and conical lattice rows designed in this work can be combined in any desirable way. For
example, a lattice in Figure 18 consists of a one-row cylindrical lattice and a four-row conical lattice. Both
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row # Bi (ppm/◦C) Bi+1 (ppm/◦C) α2i = α3i (ppm/◦C) hi ai = bi qi P

1 22.2 22.2 5.5 0.36 62.13◦ 0.91 0.2608
2 22.2 22.2 5.5 0.33 62.13◦ 0.91 0.2608
3 22.2 22.2 5.5 0.30 62.13◦ 0.91 0.2608
4 22.2 8.6 5.5 0.54 75.23◦ 0.82 0.4523

Table 8. Cell angles, structural efficiency, and row heights in the second-type conical
lattice consisting of four rows and connecting aluminum and titanium substrates. The
cell lateral sides are made of Kovar.

Titanium substrate
with CTE A  = 8.6 ppm / ºC2

b

b

b

a

Invar
Ti

a = 67.2º
b = 71.6

Aluminum substrate
with CTE A  = 22.2 ppm / ºC1

Figure 17. First-type conical adaptive lattice with Invar lateral cell members connecting
aluminum and titanium circular disks. In the first row, the angle at the triangle base side
is a = 67.2o and the base members are made of aluminum, while in all other rows the
angle at the triangle base side is b = 71.6o and the base members are made of titanium.
Lattice structural efficiency is P = 0.3914.

lattices in Figures 17, 18 have the same structural efficiency P = 0.3914. The design of axisymmetric
lattices performed here demonstrates that both types of lattice arrangement can provide large structural
efficiency. For example, the first row in Figure 18 belongs to the first-type, while the other rows to the
second-type of lattice arrangement.

11. Conclusions

The research shows that planar triangular cells can form planar or 3-D axisymmetric cylindrical or conical
anisotropic adaptive lattices connecting two substrates with different CTEs. Such lattices do not accu-
mulate thermal stresses, provide temperature independent-distance and have high ability to eliminate
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Ti
Al

Aluminum substrate
with CTE A  = 22.2 ppm / ºC1

Figure 18. Five-row axisymmetric adaptive lattice combined of a one-row cylindrical
lattice and a four-row conical lattice and connecting aluminum and titanium circular
disks. Cell lateral sides are made of Invar. The cells in the first two rows have aluminum
base sides and in all other rows - titanium base sides. The angle at the triangle base
side in the first row is a = 73.9o, in the second row is b = 67.2o, and in all other rows
c = 71.6o. Lattice structural efficiency is P = 0.3914.

thermal expansion mismatch stresses between the substrates. Lattice cells are straight line triangles
with different angles at the cell base sides; three-cell members are made of conventional materials with
different CTEs. Nonidentical cells can be arranged in several rows of different heights. To design such a
lattice, the equations linking the cell angles to the CTEs of member materials must be obtained from the
kinematic constraints imposed on the lattice; their solutions are scale independent. Materials desirable
for the design task with CTEs that provide the existence of a solution to these equations are considered
in order to select a combination yielding the maximum structural efficiency of the lattice. The cell angles
are found from the equations as functions of two substrate CTEs and the CTEs of cell materials. It is
noticed that materials with smaller CTEs lead to cells with larger angles at the cell base sides, which
results in larger structural efficiency of the cells under uniaxial loading. The lattices with triangular cells
can connect substrates with both ratios of their CTEs A1 < A2 or A1 > A2, which is different from planar
lattices with hexagonal cells (used in previous works) that can serve as adapters only when A1 < A2.
Compared to the lattices with hexagonal cells the presented lattices can be easily manufactured and are
more stable to manufacturing imperfections because each cell has only three joints.
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