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Periodically embedded specified materials and laminas into the beam of a beam-mass system to form
a stiffness-driven nonhomogeneous beam having the potential to shift its specific stiffness to avoid the
happening of large amplitude vibration and resonance is worthy of note. However, if the arrangement
of composed materials and layers of the beam is changed, the developed model generally has to be
reestablished. To propose a model that can be used to analyze beams consisting of different assemblies
of materials and laminas is of great importance. Another point is using specified materials and laminas,
which are periodically embedded into a beam to form transversely periodic arrays, to make the beam
have the capability to change its specific stiffness to satisfy designing requirement. The Fourier-series
based approach is employed to take into account the periodicity of material properties and matching
conditions across laminas’ interfaces. The influence produced by the arrays to the dynamics of the
system is examined.

Result shows that the axial Young’s modulus and density of the proposed beam are biaxial periodic
functions. Different arrangements of embedded arrays bring different stiffness shifting potential of the
beam to reduce the vibration of the system. With proper choice of the stiffness and thickness ratios
between the arrays and basic layers, the growth of small amplitude vibration into large motion regime
can be attenuated. Meanwhile, by changing the thickness ratios in the width and height directions, there
exist seven possible compositions of the beam. It discloses that despite without considering the material
damping, the proposed beam still has good ability to diminish the beam vibration even after the mass left
the beam.

1. Introduction

Stiffness-driven beam-like members have been widely found in civil and mechanical engineering. Due
to high demand of operational safety of structures and mechanical systems, flexible members having
the capability to shift their stiffness-to-weight-ratio to avoid the happening of large amplitude vibration
are of great importance. For a beam-mass system, if the beam has the potential to vary its transverse
frequency, the dynamic response of the system is able to be improved. In other words, short useful life
and failure of structures caused by the occurrence of large amplitude vibration can be attenuated.

Mohebpour et al. [2016] studied the dynamics of a mass riding on an inclined symmetric cross-ply
laminated beam. Based on classical laminated theory and finite element approach, the equations of
motion were derived and solved. Their results indicated that a laminated composite beam had better
bending stiffness than a homogeneous beam. Meanwhile, the orientation of the layer had influential
effect to the bending stiffness of the composite beam.

Keywords: transversely periodic arrays, stiffness-driven beam, Fourier series, thickness ratio.
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Misiurek and Śniady [2013] investigated the dynamics of a force moving at constant speed on a
simply supported sandwich beam. A closed-form solution was obtained by the method of superimposed
deflections. They pointed out that when the speed of a point force was less and larger than the shear
wave velocity of the beam, different forms of the closed-form solutions were presented. Song et al.
[2018] made a parametric study to the dynamics of a sandwich plate subjected to a mass moving with
constant speed. The composite plate was composed of two isotropic face plates and a viscoelastic inner
layer. The effects produced by different boundary constraints were determined. They showed that using
nonhomogeneous structural members improved the dynamic behaviors of structures.

Tao et al. [2016] analyzed the dynamics of a fiber metal laminated beam induced by the motion of a
riding load and the change of environmental temperature. The beam consisted of three symmetric cross-
ply fiber reinforced layers and two metal layers. Their results disclosed that the geometric properties
and environmental temperature played key roles to the mid-span response of the beam. Meanwhile, the
increase of temperature decreased the bending stiffness of the beam.

Wang [2009] considered the dynamics induced by a mass traveling on a beam having periodic arrays
in axial direction. The inhomogeneous beam was assumed to be composed of two different laminas. The
Fourier-series based approach was introduced to take over the axial periodicity of the beam. This is also
one of the bases of this study.

Sayyad and Ghugal [2017] made an excellent review of existing studies on bending, buckling and
free vibration of laminated composite and sandwich beams. They discussed many popular methods
that have been applied on the analysis, e.g., finite element approaches based on classical and refined
theories, displacement fields of various equivalent single layer, layerwise, and zig-zag theories, and
etc. Many other authors used these approaches to study the vibration of laminated composite beams.
For example, Rao et al. [2001] investigated the natural frequencies of a laminated simply supported
beam. Friswell and Lees [2001] discussed the modes of vibration for nonhomogeneous damped beams
composed of two materials with different stiffness, damping and mass properties. Li et al. [2008] studied
the free vibration and buckling activities of laminated composite beams having lay-up in lateral direction
subjected by axially loading. In general, the problems were solved by assuming that the variation of
material properties was piecewise constants and continuity constraints were applied at the interface of
two neighboring segments. As the number of segments increased, a large number of unknowns were
generated and great computational efforts were needed.

Sheng and Wang [2018] investigated the nonlinear phenomena and resonant conditions of functionally
graded (FG) beams when the beams were subjected to parametric and external excitations. They pointed
out that, depending on the values of parameters, e.g., excitation frequency, excitation amplitude, damping,
volume fraction exponent, etc., chaotic response could occur when the magnitude of excitation was
greater than the Euler’s buckling load. Kahya and Turan [2018] analyzed the free vibration and stability of
FG sandwich beams without/with axial forces. Based on shear deformation theory, a finite element model
was obtained to derive the natural frequency and buckling loads of FG sandwich beams. The effects of
slenderness ratio and layer thickness to the fundamental frequency and buckling loads were examined.
Lee and Lee [2017] studied the free vibration of FG beams by using transfer matrix method. They
showed that when the slenderness ratio was not large, the effect produced by the coupling between the
axial and bending displacements to the natural frequency of a beam shouldn’t be ignored. Nevertheless,
the coupling effect becomes tiny when the slenderness ratio is large.
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Şimşek [2010], Şimşek and Kocatürk [2009], and Şimşek et al. [2012] employed Euler–Bernoulli
beam theory combined with numerical integration to study the dynamics of a FG and an axially FG (AFG)
beams with simply supported boundary condition, respectively. For the first two, they assumed that the
variation of material properties of the beam was continuous in thickness direction and could be expressed
by power-law functions. For the latter, the material properties were assumed to vary continuously in the
axial direction. Their results showed that using FG/AFG beams had influential benefits to the dynamics
of a beam-mass system.

Although stiffness-driven beam-like members with or without riding masses had been studied by many
authors, generally, the mathematic model developed was able to be used for the scheme proposed in that
study only. In other words, if the structure of the composite beam is changed, e.g., rearranging the
assembly of composed materials/laminas, the mathematic model may have to be remodeled. Unlike
other papers, in this study, the proposed model can be diversely applied on a composite beam having
different arrangements and compositions of materials and layers. Meanwhile, by transversely applying
specified arrays to form a periodic-array beam, the beam has the capability to shift its specific stiffness
and frequency. This means that the embedded arrays can be treated as tuning parameters to the bending
frequency of the beam. By assuming that all the layers of the periodic arrays are bonded, the periodicity
and matching conditions across the interfaces arrays are taken into account by the Fourier series expan-
sion. The dynamic characteristics induced by the inhomogeneity of materials/laminas of the proposed
beam and the motion of the riding mass are examined.

2. Basic formulas

As shown in Figure 1 (top), a mass traveling on a finite simply supported periodic-array beam with
rectangular cross-section having length `, width W , and thickness H is considered. Here, the occurrence
of delamination due to the interaction between laminas is prevented by the adjacent layers; hence, in the
modeling, the arrays with bonded strips and layers are assumed. The Cartesian coordinate system xyz is
on the inextensible centroidal axis of the beam (y = 0). Prior to the mass being set on motion, the beam
is in straight and in the state of equilibrium. The composite beam is composed of a number of bonded
periodic layers, basic and embedded laminas. The basic layer is a homogeneous lamina with the material
c having the Young’s modulus Ec and density ρc. The embedded lamina consists of periodic strips which
are formed by two different rectangular strips of a and b of length `; the Young’s moduli and densities
of the former and latter are Ea , Eb, ρa , and ρb, respectively. For the embedded lamina, the periodic
arrangement is two strips of b separated by one strip of a; these strips are stacked in a row in the width
(z) direction. For the beam, the periodic pattern is two basic layers separated by one embedded lamina
and they are piled symmetrically in the thickness (y) direction. Hence, unless otherwise specified, the
central ply of the embedded lamina is the strip a and the middle layer of the beam is the embedded lamina.
By assuming that the beam is an inhomogeneous continuum, the two different strips of the embedded
lamina and the two different layers of the beam are accounted for by spatial variation of the moduli of
their phases. Therefore, the Young’s modulus and density of the beam are biaxial periodic functions. It
is known that the Fourier analysis can be applied in a limited range and will converge to that function in
the interval. As a result, the variation of the moduli of the embedded lamina and the beam is expressed
by the Fourier series expansion.
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Figure 1. The schematic diagram of the cross-section of the periodic-array beam (top)
and the Fourier series representation (bottom).

Due to symmetry, the variation of the moduli is assumed to be an even periodic function and is stated as
a series of cosine terms; therefore, the number of strips and layers is odd. Referring to Figure 1 (bottom),
let E z

1, which is a periodic function in the z direction, be the axial Young’s modulus of an embedded
layer and be given by

E z
1(z)= Ea

dz

hz
+ Eb

(
1−

dz

hz

)
+ (Ea − Eb)

∞∑
j=1

2
jπ

sin
(

jπdz

hz

)
cos
(

jπ z
hz

)
≡ E z

10+

∞∑
j=1

E z
1 j cos

(
jπ z
hz

)
, (1a)
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where

E z
1 j =

2
hz

∫ hz

0
E z

1(z) cos
jπ z
hz

dz = (Ea − Eb)
2
jπ

sin
jπdz

hz
.

Here, dz is one-half of the thickness of the strip a; hz is one-half of the distance between the midpoint
of two strips of b separated by one ply of a. Therefore, dz/hz presents the thickness ratio of the strip a
that is present in one period 2hz in the z (width) direction. Similarly, the axial Young’s modulus of the
beam E1(y, z) is also periodic in the y direction. Hence, one has

E1(y, z)= E z
1

(
dy

h y

)
+ Ec

(
1−

dy

h y

)
+ (E z

1− Ec)

∞∑
k=1

2
kπ

sin
(

kπdy

h y

)
cos

kπy
h y

≡ E10+

∞∑
k=1

E1k cos
kπy
h y

, (1b)

where

E1k =
2

h y

∫ h y

0
E1(y, z) cos

kπy
h y

dy = (E z
1− Ec)

2
kπ

sin
kπdy

h y
.

Here, dy is one-half of the thickness of an embedded lamina; h y is one-half of the distance between the
midpoint of two basic layers separated by one embedded lamina; dy/h y denotes the thickness ratio of an
embedded lamina that is present in one period 2h y in the y direction. Hence, there exist seven possible
compositions of the composite beam:

(1) 0 < dz < hz and 0 < dy < h y . The beam consists of embedded and basic laminas. The Young’s
moduli of the embedded lamina and the beam are given by (1a) and (1b).

(2) dz = 0 and 0 < dy < h y . The embedded layer reduces to a homogeneous lamina with the strip b.
The axial Young’s moduli of the embedded layer and the beam become, respectively,

E z
1 = Eb and E1 = E1(y)= E10+

∞∑
k=1

E1k cos
kπy
h y

, (1c)

where

E10 = Eb

(
dy

h y

)
+ Ec

(
1−

dy

h y

)
and E1k = (Eb− Ec)

2
kπ

sin
(

kπdy

h y

)
.

(3) dz = hz and 0< dy < h y . For this condition, one has

E z
1 = Ea and E1 = E1(y)= E10+

∞∑
k=1

E1k cos
kπy
h y

, (1d)

where

E10 = Ea

(
dy

h y

)
+ Ec

(
1−

dy

h y

)
and E1k = (Ea − Ec)

2
kπ

sin
(

kπdy

h y

)
.

(4) dy = 0. This means the vanish of embedded layers; the beam is homogeneous with the material c,
i.e., E1 = Ec.
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(5) 0< dz < hz and dy = h y . The basic layer disappears; the beam is composed of two different kinds
of vertical plies of the materials of a and b. The axial Young’s modulus of the beam then turns into
E1 = E1(z)= E z

1 (1a).

(6) dz = 0 and dy = h y . The beam becomes a homogeneous beam with the material b, i.e., E1 = Eb.

(7) dz = hz and dy = h y . The axial Young’s modulus of the beam reduces to E1 = Ea .

It is seen that the proposed model can be diversely used to simulate the composite beams having different
arrangements of laminas and compositions of materials. Similar to the periodic distribution of Young’s
modulus, the density of the beam has the form

ρ(y, z)=ρz
(

dy

h y

)
+ρc

(
1−

dy

h y

)
+(ρz

−ρc)

∞∑
q=1

2
qπ

sin
(

qπdy

h y

)
cos

qπy
h y
≡ρ0+

∞∑
q=1

ρq cos
qπy
h y

, (2)

where ρz is the density of an embedded lamina and is given by

ρz
= ρz(z)= ρz

0 +

∞∑
p=1

ρz
p cos

(
pπ z
hz

)
,

with

ρz
0 = ρa

dz

hz
+ ρb

(
1−

dz

hz

)
and ρz

p =
2
hz

∫ hz

0
ρz(z) cos

rπ z
hz

dz = (ρa − ρb)
2

pπ
sin

pπdz

hz
.

Therefore, the mass per unit length of the beam can be obtained by

m =
∫ W/2

−W/2

∫ H/2

−H/2
ρ(y, z) dy dz = m0+

∞∑
p=1

m p +

∞∑
q=1

mq +

∞∑
p=1

∞∑
q=1

m pq ≡ mr (m̂0+ m̂ pq), (3)

where mr = ρr WH , r = c, b, a. The selection of the subscript r depends on d̂z and d̂y . For example,
r = c if cases (1)–(4) are considered; r = b if cases (5) and (6) are taken into account; r = a if case (7)
is examined. Other parameters in (3) are given by

m̂0 =
(
ρ̂a d̂z + ρ̂b(1− d̂z)

)
d̂y + ρ̂c(1− d̂y),

with

ρ̂a =
ρa

ρr
, ρ̂b =

ρb

ρr
(1− δra), ρ̂c =

ρcb

ρr
δrc, d̂z =

dz

hz
, d̂y =

dy

h y
,
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m̂ pq =

∞∑
p=1

m̂ p +

∞∑
q=1

m̂q +

∞∑
p=1

∞∑
q=1

m̂ pq ,

m̂ p =
1
2

d̂y ĥz

[
(ρ̂a − ρ̂b)

(
2

pπ

)2

sin(pπ d̂z) sin
pπ

ĥz

]
, with ĥz =

2hz

W
,

m̂q =
1
2

ĥ y
[(
ρ̂a d̂z + ρ̂b(1− d̂z)

)
− ρ̂c

]( 2
qπ

)2

sin(qπ d̂y) sin
qπ

ĥ y
, with ĥ y =

2h y

H
,

m̂ pq =
1
4

ĥz ĥ y

[
(ρ̂a − ρ̂b)

(
2

pπ

)2( 2
qπ

)2

sin
pπ

ĥz
sin(qπ d̂y) sin

qπ

ĥ y

]
,

where ĥz = 2hz/W = the ratio of the distance of the period 2hz to the width of the beam, ĥ y = 2h y/H =
the ratio of the length of the period 2h y to the height of the beam, δr p = the Dirac delta symbol with
p = a, c.

Since the axial Young’s modulus of the beam is also spatial dependence, E1 = E1(y, z), prior to
deriving the equations of motion of the system, the resultant bending moment about the neutral axis of
the cross section of the beam at time t has to be determined and is given by

M̃ = κ
∫ H/2

−H/2

∫ W/2

−W/2
E1(y, z) y2dz dy, (4a)

where κ is the beam curvature; y is the perpendicular distance from the neutral axis to the centroid of
the differential area d A, d A = dy dz. After some manipulations, it yields

M̃ = κ I
[

E10+

∞∑
j=1

E1 j − Îy

( ∞∑
k=1

E1k +

∞∑
j=1

∞∑
k=1

E1 jk

)]
≡ κEr I

(
Ê10+ Ê t

1 jk
)
, (4b)

where I = 1
12 WH 3, Îy = Iy/I = 1

8(ĥ y)
3 with Iy =

1
12 W h3

y ,

Ê10 = [Êa d̂z + Êb(1− d̂z)] d̂y + Êc(1− d̂y), with Êa =
Ea

Er
, Êb =

Eb

Er
(1− δra), Êc =

Ec

Er
δrc,

Ê t
1 jk =

∞∑
j=1

Ê1 j − Îy

( ∞∑
k=1

Ê1k +

∞∑
j=1

∞∑
k=1

Ê1 jk

)
,

Ê1 j =
1
2

d̂y ĥz

[
(Êa − Êb)

(
2
jπ

)2

sin( jπ d̂z) sin
jπ

ĥz

]
,

Ê1k = 6[Êa d̂z + Êb(1− d̂z)− Êc]

(
2

kπ

)4

sin(kπ d̂y) sin
kπ

ĥ y
,

Ê1 jk = 3ĥz

[
(Êa − Êb)

(
2
jπ

)2( 2
kπ

)4

sin( jπ d̂z) sin
jπ

ĥz
sin(kπ d̂y) sin

kπ

ĥ y

]
.

From (3) and (4b), one finds that increasing the number of layers decreases the distance of the period h y .
Therefore, when the beam has a many of layers, the length of h y becomes a tiny value and the terms ĥ y and
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Îy approach to zero such that m̂ pq→
∑
∞

p=1 m̂ p and Ê t
1 jk→

∑
∞

j=1 Ê1 j . This means that as h y decreases,
the Young’s modulus and mass of the composite beam converge to E10+

∑
∞

j=1 E1 j and m0+
∑
∞

p=1 m p,
respectively. Similar phenomenon is also observed when hz and ĥz are taken into account.

As mentioned previously, the number of strips and layers is always odd. The distance of the periods
hz and h y along the width and height can be calculated and yields

hz =
W

2i±2d̂z
, 0< d̂z < 1, i = 2, 3, 4, . . . , (5a)

h y =
H

2 j±2d̂y
, 0< d̂y < 1, j = 2, 3, 4, . . . , (5b)

where i and j are the number of the strips b and the total of basic layers, respectively. The plus and minus
signs used in (5a) are when the number of the strips b is less than and greater than the total of the strips a,
respectively. Therefore, for the plus and minus signs, the number of strips of an embedded lamina is
equal to 5+ 4(i − 1) and 3+ 4(i − 1), i = 1, 2, 3, . . ., respectively. The selection of the plus and minus
signs in (5b) can be done similarly. For example, a sandwich (three horizontal layers) beam is composed
of one embedded lamina (core) and two basic layers. The embedded lamina consists of three strips of a
of equal lateral thickness 2dz and four strips of b of equal lateral thickness 2(hz − dz). The lengths of
hz and h y are given by hz =W/(8− 2d̂z), 0< d̂z < 1, and hz = H/(4− 2d̂y), 0< d̂y < 1, respectively.
Another example is that a composite beam consists of five horizontal layers, three embedded and two
basic laminas. The period h y then is h y = H/(4+ 2d̂y). Note that (5a) and (5b) are not applied to
the cases when d̂z = 0, 1 and d̂y = 0, 1, respectively. For d̂z = 0 and 1, the embedded lamina reduces
to a homogeneous layer having the materials b and a, respectively. For d̂y = 0 and 1, the beam is
homogeneous having the material c and the beam consists of two different vertical layers of a and b,
respectively.

As the structure of the composite beam is established, in the following, the dynamics of a beam-mass
system is considered. From Figure 2, the mechanics of the interface between the mass and beam is
determined by modeling the mass as a rigid body that is rolling on the beam. The equations governing
the motion of the system can be derived from the dynamic equilibrium of forces and momenta and are
given by

F,s + f = mr (m̂0+ m̂ pq) r,t t , 0< s < l, t > 0, (6a)

F = T τ̂ + V n= (T cos θ − V sin θ) i + (T sin θ + V cos θ) j , (6b)

Er (Ê10+ Ê t
1 jk) Iv,sss + V = 0, (6c)

with the inextensibility constraint r,s · r,s = 1. The corresponding boundary conditions for the simply
supported beam are

u(0, t)= v(0, t)= v(`, t)=
∂2v(0, t)
∂s2 =

∂2v(`, t)
∂s2 = 0, (7a)

T (`, t)(1+ u,s)+ Er (Ê10+ Ê t
1 jk) Iv,sss v,s = 0, at s = `, (7b)

where (7b) is obtained when the resultant force in the i direction vanishes at s = `. In above equations,
i, j = the unit vectors in the horizontal and gravitational (transverse) directions, respectively, r(s, t)=
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Figure 2. System configuration (left) and force equilibrium diagram (right).

[x(s)+ u(s, t)]i + v(s, t) j with u(s, t) and v(s, t) being the axial and transverse displacements of the
beam measured from the undeformed state, respectively, n, τ̂ = the unit normal and tangent vectors to
the beam configuration, respectively, T, V, θ = the axial and transverse forces in the beam and the angle
between the neutral axis of the beam and the x-axis, respectively. The subscripts s and t mean the s
and t differentiation. In this study, the slenderness ratio of the beam s = `(

√
I/A)−1 [Han et al. 1999]

selected is a large value such that the Euler–Bernoulli beam theory is applicable to be applied, where A
is the cross-sectional area of the beam. By considering the small deformation theory and applying the
inextensibility constraint r,s · r,s = 1, the axial displacement of the beam is in the second order nonlinearity
and can be neglected. Therefore, r(s, t)= x(s) i + v(s, t) j and τ̂ = i + v,s j . The force f represents the
external forces including the weight and the reactions of the moving mass upon the composite beam and
can be expressed as

f = (N n+µN τ̂ ) δ̄
(
s− s̄(t)

)
, (8)

where N , µ, δ̄[s− s̄(t)], and s̄(t) represent the dynamic interaction force between the mass and beam,
coefficient of friction, Dirac delta function, and the position of mass along the arc of the beam at time t ,
respectively. The equation of motion of the moving mass is given by (Figure 2)

MaM = M d2

dt2

[
r
(
s̄(t), t

)]
= M[r,ss(s̄,t)2+ 2r,st s̄,t + r,s s̄,t t + r,t t ] = M g+ fτ̂ −µN τ̂ − N n, (9)

where aM = the acceleration of the mass, M = total mass of the moving mass, g = g j , fτ̂ = M f τ̂ =
M f (i + v,s j)= tangential propelling thrust with f being a prescribed function of time. Hence, loss of
contact occurs if the interaction force becomes zero. The force N can be obtained by taking the inner
product of (9) with n and is given by

N = [M g−MaM ] · n|s=s̄(t). (10)

To determine the axial force T , one substitutes (6b), (6c), and (8)–(10) into (6a) and assumes that the
variation of axial force remains continuous at the mass. The axial force T can be obtained by taking
the inner product of (6a) by the unit vector i and integrating it from 0 to s = s̄(t) and s = s̄(t) to ` and
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using (7b). Inserting this result into (6a) in the j direction and neglecting nonlinear terms when compare
these terms to the linear term of v(s, t) and unity, the equation of motion of the nonhomogeneous beam
with a riding mass is given by

mr (m̂0+ m̂ pq) v,t t + Er I (Ê10+ Ê t
1 jk) v,ssss + f · j = 0, 0< s < `, t > 0. (11)

The differential equation is linear in the displacement field. Let the variable v(s, t) be of the form

v(s, t)=
n∑

j=1

q̃ j (s) h̃ j (t)≡ q̃(s)T h̃(t), (12)

where h̃(t) is the time dependent vector to be determined; n is a suitably large number to assure conver-
gence. In order that the variable v(s, t) satisfies the boundary condition given by (7a), one represents
q̃(s) as a vector of a continuous function:

q̃(s)=
(

sin πs
`
, sin 2πs

`
, . . . , sin iπs

`
, . . . , sin nπs

`

)T
, 0< s < `, (13)

which satisfies the spatial boundary constraints q̃|s=0,`=
d2 q̃
ds2 |s=0,`= 0.

To obtain the normalized equations of motion of the combined system, one substitutes (8)–(10), (12),
and (13) into (11) and introduces the following nondimensional quantities:

τ =

√
Er I

mr`4 t, M̂ =
M

mr`
, N̂ =

mr`
3

MEr I
N , f̂ =

mr`
3

Er I
f, ĝ =

mr`
3

Er I
g, η =

s
`
, ξ =

s̄
`
. (14)

To eliminate spatial dependence of (11), the Galerkin’s procedure is employed and is done by multiply-
ing (11) by the weighting vector q(η) and integrating (11) w.r.t. to η from 0 to 1. The result yields

(
I +

2M̂
m̂0+ m̂ pq

G1

)
ḧ+

4M̂
m̂0+ m̂ pq

ξ̇G2ḣ+
[ Ê10+ Ê t

1 jk

m̂0+ m̂ pq
�2

h +
2M̂

m̂0+ m̂ pq
(− f̂ G2− ξ̇

2G3)

]
h

+
2M̂

m̂0+ m̂ pq
ξ̈G2h =

2M̂ ĝ
m̂0+ m̂ pq

sξ , 0< ξ < 1, τ > 0, (15a)

where the superposed prime and dot denoting the η and τ differentiation, I = n×n unit matrix, q = q(η),
h = h(τ ), sξ = sξ j with sξ j = sin jπξ when j = 1, 2, . . . , n; G1 =

∫ 1
0 δ(η− ξ)q qTdη, G2 =

∫ 1
0 δ(η−

ξ)q q ′Tdη, G3 =
∫ 1

0 δ(η − ξ)q q ′′Tdη, �2
h = 2

∫ 1
0 qq ′′′′Tdη = diag[(ωh

j )
2
] with ωh

j = ( jπ)2 being the
normalized frequency of the j-th mode vibration of the homogeneous beam. Equations (9) and (10)
become

ξ̈ −µq ′′T h(ξ̇ )2− 2µq ′T ḣξ̇ −µqT ḧ− ĝq ′T h = f̂ −µĝ, η = ξ, τ > 0, (15b)

N̂ = ĝ− [qT ḧ1− 2q ′T ḣ1ξ̇ − q ′′T h1ξ̇
2
], η = ξ, τ > 0. (15c)

The initial conditions are

ξ̇ (0)= ξ̇0, ξ(0)= ξ0, h(0)= ḣ(0)= 0, (16)
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where 0 is n× 1 zero vector; ξ̇0 and ξ0 are the initial speed and the initial position of mass on the beam,
respectively. As shown in (15a), by properly arranging the material and geometric properties of periodic
arrays, the beam frequency is able to be varied. In other words, the proposed beam has the potential
to change its natural frequency to avoid the growth of small amplitude vibration and the occurrence of
resonance. It is mentioned here that (15b) was obtained by eliminating the normal reaction force N of
the beam on the mass between the two equations in directions i and j of (9).

After the mass left the beam, the dynamics of the system becomes the free vibration of the nonhomo-
geneous beam with nonzero initial conditions. In this situation, (15b) and (15c) vanish and (15a) reduces
to

ḧ+
Ê10+ Ê t

1 jk

m̂0+ m̂ pq
�2

h h = 0, τ > τ |ξ=1, (17a)

with the initial conditions

h(0)= h(τ |ξ=1) and ḣ(0)= ḣ(τ |ξ=1), (17b)

where h(τ |ξ=1) and ḣ(τ |ξ=1) denote the amplitude and velocity of response of the beam when the mass
is at the right end.

To verify the existence of solution of the system, a new state vector z is introduced into (15a) and (15b)
to form the integrational scheme. Let z = (ḣT, ξ̇ , hT, ξ)T be a 2n+ 2 vector with the associated initial
condition z(0)= (0T, ξ̇0, 0T, 0)T . The two equations can be written as

Aż+ Bz+ p= 0. (18)

In (18), A and B are (2n+ 2)× (2n+ 2) matrices and p is the (2n+ 2) vector defined by

A=


[I + 2M̂

m̂0+m̂ pq
G1]

2M̂
m̂0+m̂ pq

(G2h) [0] 0

−µqT 1 0T 0
[0] 0 I 0
0T 0 0T 1

 ,

B =


[

4M̂
m̂0+m̂ pq

ξ̇G2] 0 [
Ê10+Ê t

1 jk
m̂0+m̂ pq

�2
h +

2M̂
m̂0+m̂ pq

(− f̄ G2+ ξ̇
2G3)] 0

0T
−µ(ξ̇q ′′T h+ 2q ′T ḣ) −ĝq ′T 0

−I 0 [0] 0
0T

−1 0T 0

 ,

p=
(
−

2M̂ ĝ
m̂0+ m̂ pq

sT
ξ,− ( f̂ −µĝ), 0T, 0

)T

,

where A is a nonsingular matrix and [0] is a n× n zero matrix.

3. Numerical results and discussions

Numerical results refer to an assumed model wherein a mass travels with variable speed on a finite simply
supported beam having transversely periodic arrays. To study the influence produced by the variation of
various parameters to the dynamics of the system, the Runge–Kutta method with sixth order accuracy
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Figure 3. Comparison of the results with those reported in [Mohebpour et al. 2016]
(dashed line, left), [Tao et al. 2016] (dashed line, middle), and [Kahya and Turan 2018]
(symbolized by point symbols©, •, and 1, right).

is employed to numerically integrate (18). The number of terms of the Fourier series in (1) and (2) is
set to be 30 to assure convergence. The convergence of the model is tested by increasing the terms of
approximation. It shows that for n ≥ 10, the difference among the results is negligible. Hence, the
dimension n of z is set to be 15 to retain for sufficient accuracy.

To validate the accuracy of the model, in agreement with previous works is considered. As shown
in Figure 3, the accuracy of the model is verified by numerically integrating (18) and then the solutions
(solid lines) of this study are compared with the results (dashed lines) reported in Figure 3 by Mohebpour
et al. [2016] and in the Figure 2 by Tao et al. [2016]. The parameters selected are the same as those used
in the two papers, respectively, and are given in Table 1. Note that in [Tao et al. 2016], the massless
point force was used; under such condition, (18) reduces to ż+ Bz+ p= 0, where

z = (ḣT , hT )T , B =

[
[0] [

Ê10+Ê t
1 jk

m̂0+m̂ pq
�2

h]

−I [0]

]
, p=

(
−

2P̂
m̂0+ m̂ pq

sT
ξ , 0T

)T

, and P̂ =
`2

Er I
P,

with P being the massless point force. As shown in Figure 3 (left and middle), the solutions derived
from the proposed model nearly coincide with the results obtained by Mohebpour et al. [2016] and Tao
et al. [2016].

In addition to the verification mentioned above, the normalized fundamental frequency (≡ ω1) of the
proposed beam under simply-supported boundary condition is checked and compares it with the first
nondimensional frequency (≡ $1) reported in the Table 3 by [Kahya and Turan 2018]. The relation

[Mohebpour et al. 2016] Stiffness E = 2020.797216 · 108 Pa, density ρ = 15267.2 kg/m3,
length `= 4.352 m, thickness H = 0.072322 m, width W = 0.018113 m
Mass of the traveling mass m = 21.8 kg, mass speed v = 27.49 m/s

[Tao et al. 2016] Stiffness E = 72.4 GPa, density ρ = 2770 kg/m3, length `= 10 m,
thickness H = 0.5 m, width W = 0.4 m
Magnitude of the point force P = 500 kN, force speed v = 40 m/s

Table 1. The properties of the beams and moving masses used in [Mohebpour et al.
2016] and [Tao et al. 2016].
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k = 0 d̂y = 0 (a homogeneous ceramic beam)
k = 1 d̂y = 0.67 (dy = 0.5tm and h y = 0.75tm = 1.5tc),

tc, tm = the thickness of one ceramic lamina and metal core, respectively

k = 2 d̂y = 0.857 (dy = 0.5tm and h y = 0.583tm = 3.5tc)
k = 10 d̂y ≈ 1 (a beam with almost all metal material)

Table 2. The relations between k and the parameters used in Figure 3 (right).

Set 1 The Young’s moduli (GPa) of the strips of a, b, and the material c of the basic layer
Ea = 205 (Êa = 2.05), Eb = 142 (Êb = 1.42), Ec = 100 (Êc = 1)

The densities (103 kg/m3) of the strips of a, b, and the material c of the basic layer
ρa = 7.7 (ρ̂a = 1.1), ρb = 1.6 (ρ̂b = 0.229), ρc = 7 (ρ̂c = 1)

Set 2 Ea = 250 (Êa = 2.5), Eb = 175 (Êb = 1.75), Ec = 100 (Êc = 1)
ρa = 3.5 (ρ̂a = 0.5), ρb = 5.25 (ρ̂b = 0.75), ρc = 7 (ρ̂c = 1)

Table 3. The material properties of the proposed beam for set 1 and set 2.

between these two frequencies $1 and ω1 is $ = (`/Hs)ω1, where s denotes the slenderness ratio s.
For a beam having rectangular cross-section area with height H , the slenderness ratio s equals

√
12 `/H

and hence

$1 =
ωh

1
√

12

√√√√ Ê10+ Ê t
1 jk

m̂0+ m̂ pq
.

Therefore, with the same materials as those used in [Kahya and Turan 2018], the frequency ω1 varies
from 2.849 ($1 = 2.8057), where ω1 = ω

h
1/
√

12 = 2.849 (ωh
1 = π

2, [Han et al. 1999]), to 5.483
($1 = 5.4658). The frequency of the proposed beam under other kinds of boundary conditions can
be obtained by similar ways. For example, the frequency ω1 for clamped-clamped BC is from 6.458
($1 = 6.302), where 6.458= ω1 = ω

h
1/
√

12 (ωh
1 = (4.73)2, [Han et al. 1999]), to 12.42 ($1 = 12.235).

Figure 3 (right) shows the frequency ω1 of the proposed beam versus the thickness ratio d̂y under different
boundary conditions and the results reported in the Table 3 by [Kahya and Turan 2018] (symbolized by
point symbols©, •, and 1) where the face-core-face thickness ratio 1-0-1 is chosen and the power-law
exponent k selected are k = 0, 1, 2, and 10. In this figure, the FG beam is modeled as a sandwich
beam composed of one metal core and two ceramic face layers. The solid, dashed, and central lines
shown denote the results of this study under the simply-supported, clamped-clamped, and clamped-free
boundary conditions, respectively. The relation between the power-law exponent k and the parameters
used in Figure 3 (right) is given in Table 2. It clearly indicates that the solutions derived from the proposed
model are in agreement with the results obtained by Kahya and Turan [2018].

To parametric study the dynamics of a mass traveling on the periodic-array beam, two sets of param-
eters are chosen and given in Table 3. The difference between the two sets is different arrangements
of material properties. The numerical order of the Young’s moduli and densities of materials selected
in set 1 and set 2 is Ea > Eb > Ec, ρa > ρc > ρb and Ea > Eb > Ec, ρc > ρb > ρa , respectively.
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The geometric properties of the beam are: ` = 10 m and W = H = 0.15 m, where the slenderness
ratio s = `(

√
I/A)−1

=
√

12 `/H = 231. The traveling mass has the mass M = 200 kg. Note that in
the following figures, unless otherwise specified, the dashed line without symbol denotes the beam is a
homogeneous beam having the material c. Meanwhile, in Figures 4–8, the mass moves at constant speed
˙̄s(t) = 20 m/s. With the view to illustrating the diversity of the proposed model, firstly the dynamics
of a sandwich beam (having three horizontal layers) with a riding mass is considered and presented in
Figures 4 and 5; the parameter set 1 is chosen. The beam consists of one embedded and two basic
laminas; the core layer consists of three and two strips of a and b, respectively. The hz and h y are given
by hz = 0.15/(4+ 2d̂z), 0< d̂z < 1, and h y = 0.15/(4− 2d̂y), 0< d̂y < 1.

Figure 4 presents the trajectory of mass (mm) versus the position of mass along the beam (m) and the
time history (s) of the midpoint deflection (mm) of the beam, respectively. The thickness ratios d̂y and
d̂z are d̂y = 0.25 and d̂z = 0.1 (symbolized by +), 0.5 (symbolized by �), and 0.9 (symbolized by 1).
Figure 5 presents similar information to that shown in Figure 4, except d̂z = 0.25 and three different
values of d̂y being selected, d̂y = 0.1 (symbolized by +), 0.5 (symbolized by �), and 0.9 (symbolized
by 1). These two figures clearly indicate that different arrangements of the geometric and material
properties of the arrays bring different capabilities of the beam to reduce the amplitude of vibration,
even after the mass left the terminal point. Figure 4 also indicates that the strip a having the largest
density, increasing d̂z increases not only the stiffness but also the mass of the embedded lamina; this
causes that changing d̂z makes a little difference to reduce the amplitude of beam vibration. For the
thickness ratio d̂y , since the embedded layer has greater specific stiffness than the basic layer, as shown
in Figure 5, increasing d̂y has significant potentials to diminish the vibration of the system.

To study the impact arising from different arrangements of the moduli of the arrays, in Figure 6, the
midpoint deflection of the beam (mm) is plotted as a function of the variation of d̂z (Figure 6, left) and d̂y

(Figure 6, right) when the mass reaches the midpoint (ξ = 0.5). The parameter set 1 and the beam having
horizontally three embedded and four basic laminas are chosen. The embedded layer consists of three
and four strips of a and b, respectively. The periods hz and h y are hz = 0.15/(8− 2d̂z) (0 < d̂z < 1)
and h y = 0.15/(8− 2d̂y) (0< d̂y < 1). In Figure 6 (left), d̂y selected are: 0 (dashed line, case (4)), 0.1
(symbolized by +), 0.25 (symbolized by �), 0.5 (symbolized by 1), 0.75 (symbolized by ©), and 1
(symbolized by ⊕, cases (5, 6, 7)). In Figure 6 (right), d̂z used are: 0 (without symbol), 0.1 (symbolized
by +, cases (2, 6)), 0.25 (symbolized by �), 0.5 (symbolized by 1), 0.75 (symbolized by©), and 1.0
(symbolized by ⊕, cases (3, 7)). This figure clearly shows that if the embedded lamina has higher specific
stiffness than the basic layer, the integration of embedded laminas into the beam increases the capability
of the beam to diminish the vibration caused by the motion of riding mass. However, in set 1, the strips
of a and b have the largest and lowest densities, respectively. Hence, when d̂z increases from 0 to 1,
the Young’s modulus ratio is from Êb = 1.42 to Êa = 2.05 and the density ratio is from ρ̂b = 0.229 to
ρ̂a = 1.1. In other words, the increase of d̂y and d̂z increases not only the stiffness but also the mass of
the beam. This implies when d̂y becomes large, the increase of density becomes greater than that of the
Young’s modulus such that greater d̂z has lower potential to reduce the vibration than smaller d̂z .

In order to fully understand the influence produced by the change of the beam properties, the set 2
(Ea > Eb > Ec and ρc > ρb > ρa) is chosen. The speed and mass of the moving mass are the same as
before. Figure 7 presents similar information to that shown in Figure 6. This figure indicates that when



DYNAMIC ANALYSIS OF A MASS TRAVELING ON A SIMPLY SUPPORTED NONHOMOGENEOUS BEAM 251

0

2

4

6

8

10

12

14

16

18

20
0 1 2 3 4 5 6 7 8 9 10

tr
aj

ec
to

ry
 o

f 
m

as
s 

(m
m

)

position of mass along beam (m)

d = 0y

d = 0.1 = 0.25z dyh ,z hy

d = 0.5 = 0.25z dyh ,z hy

d = 0.9 = 0.25z dyh ,z hy

− 10

− 5

0

5

10

15

20
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

m
id

po
in

t d
ef

le
ct

io
n 

(m
m

)

time (s)

Figure 4. Trajectory of mass (mm) versus the position of mass along the beam (m) (left)
and the time history (s) of the midpoint deflection (mm) of the beam (right).
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Figure 5. This figure presents similar information to that shown in Figure 4, except that
the thickness ratios used are different with those shown in Figure 4.

the basic layer has lowest Young’s modulus and largest density, increasing the thickness ratios d̂y and d̂z

amplifies the capability of the beam to reduce the vibration of the system. However, if this is not the
case, e.g., as those shown in Figure 6, large d̂z may not have higher potential to diminish the amplitude
of vibration than small d̂z . From Figures 6 and 7, one may conclude that the capability of the beam
to diminish the vibration of the system increases with the stiffness ratio, but decreases with the density
ratio, between the embedded and the basic layers.

Figure 8 presents the effects produced by the change of the number of strips and layers of the beam
for set 1 (shown in dashed lines) and set 2 (shown in solid lines). In this figure, the beam deflection
at mid-span when the mass reaches ξ = 0.5 is plotted as a function of the total of strips (Figure 8,
left) and layers (Figure 8, right). In Figure 8 (left), two different beams are considered, a sandwich
(symbolized by +) and a five-layer (symbolized by 1) beams. The sandwich beam consists of one
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Figure 7. This figure presents similar information to that shown in Figure 6, except the
set 2 being selected.

embedded and two basic layers; the five-layer beam is composed of three embedded and two basic
layers. Both of the thickness ratios d̂y and d̂z are set to be 0.5. In Figure 8 (right), the number of strips of
an embedded lamina chosen are 3 (symbolized by +) and 9 (symbolized by 1). The two plots indicate
that the difference due to different numbers of strips and layers converges quickly. Recalling that the
increase of the number of strips and layers decreases the distance of the periods hz and h y , respectively.
Therefore, for example, when the beam has a many of layers, the length of h y becomes a tiny value
and the terms ĥ y and Îy approach to zero such that m̂ pq →

∑
∞

p=1 m̂ p and Ê t
1 jk →

∑
∞

j=1 Ê1 j ((3)
and (4b)). Similar phenomenon is also observed when hz(ĥz) is examined. This means that the midpoint
deflection converges to a specific value as the number of strips and layers increases. From Figures 6–8,
one concludes that with proper choice of the stiffness ratio, density ratio, and thickness ratio between
the embedded and basic laminas of the beam, the growth of small amplitude vibration into large motion
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Figure 8. This figure shows the beam deflection at mid-span when the mass reaches
ξ = 0.5 versus the number of strips of the embedded lamina (left) and the total of layers
of the beam (right).

regime can be attenuated. In other words, because of inhomogeneity of materials, when structures are
subjected to external excitations, structures have the ability to prolong their useful life by adjusting the
arrangement of material and geometric properties between the embedded periodic-array and basic layers.

In the following, the mass slows down during operation being taken into account. Figure 9 illustrates
the trajectory of mass (mm) versus the position of mass along a sandwich beam for different arrangements
of periodic arrays and sets of parameters. The embedded lamina consists of three and two strips of a
and b, respectively. The dashed and solid lines denote the set 1 and set 2, respectively. The thickness
ratios d̂y and d̂z selected are: d̂y = d̂z = 0 (dashed line, without symbol), d̂y = d̂z = 0.5 (symbolized by +),
d̂y = 1 and d̂z = 0.5 (symbolized by �). In Figure 9 (left), the mass travels at constant speed, v = 20 m/s.
In Figure 9 (right), the mass is under deceleration for v0 = 20 m/s (initial speed), µ= 0 (zero friction),
and f = −20 m/s2 (the retard force applied on the mass). Figure 10 presents similar information to
that shown in Figure 9 (right), except that the mass stops before the end support being considered. The
initial speed and retard force applied on the mass are, respectively, v0 = 20 m/s and f =−22 m/s2. The
frictions used in Figure 10 (left) and Figure 10 (right) are µ = 0 and µ = 0.5, respectively. Note that
the friction is served as another braking system and therefore it may not be a small value. These two
figures clearly disclose that the periodic-array composite beam noticeably diminishes the amplitude of
the trajectory of mass. Meanwhile, Figure 10 shows that as the mass is slowing down and stops prior to
the terminal point, acute oscillation of the trace of mass occurs. In addition, when the mass is subjected
to large reverse forces and friction force, the mass may stop away from the end support; under such
situation, as the mass moves along a homogeneous beam (showing as dashed line without symbol) and is
near the halt point, the oscillating amplitude of the trajectory of mass may become large. This condition
can be avoided if the proposed beam is employed.
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Figure 9. This figure illustrates the trajectory of mass (mm) versus the position of mass
along the sandwich beam for different arrangements of periodic arrays. Left: the mass
travels at constant speed. Right: the mass is under deceleration.
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Figure 10. This figure presents similar information to that shown in Figure 9 except
that the mass stops before the end terminal being considered with frictions µ= 0 (left)
and µ= 0.5 (right).

4. Conclusions

In this study, nonhomogeneous beams having transversely periodic arrays and different arrangements of
materials and laminas are considered. The Fourier series with a wavelength equal to the average space
between two different strips and a wavelength equivalent to the average space between embedded and
basic layers are used to take into account the periodicity of the embedded lamina and beam, respectively.
The Young’s modulus and density of the composite beam are biaxial periodic functions. The proposed
passive nonhomogeneous beam is introduced to a beam-mass system to attenuate the likelihood of large-
amplitude vibrations.



DYNAMIC ANALYSIS OF A MASS TRAVELING ON A SIMPLY SUPPORTED NONHOMOGENEOUS BEAM 255

Results show that even if the material damping is not considered, the proposed beam has excellent capa-
bility to reduce the vibration of a beam-mass system after the mass left the beam. Different arrangements
of material and geometric properties of the periodic arrays result in different bending stiffness and mass
distribution of the beam. The vibration of the system can be effectively attenuated by properly choosing
the stiffness and density ratios between the embedded strips/laminas and basic layers. It indicates that the
bending frequency of the nonhomogeneous beam varies with the change of mass ratio, Young’s modulus
ratio, and thickness ratio of the periodic arrays; this is not observed when a homogeneous beam is taken
into account. In addition, the proposed model may be applied to many applications if proper materials
are selected. For example, if the shape-memory-alloy (SMA) is used to replace the strip a, the beam is
capable of having the ability to overcome the influence produced by the change of temperature.
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Table of notations

H : height of the beam (gravitational (y) direction)

W : width of the beam (horizontal (z) direction)

I : the area moment of inertia of the beam

M̃ : the resultant bending moment about the neutral axis of the cross-section of the beam at time t

M , M̂ : the mass and the dimensionless mass of the moving mass

N , N̂ : the dimensional and nondimensional normal reaction force between the beam and the riding mass

T : the axial force in the beam

V : the transverse force in the beam

a, b, c: material symbols of the two different strips used in an embedded lamina and the basic layers,
respectively

f : the thrust applied on the riding mass

m: mass per unit length of the beam

`: length of the beam

Ea , Eb, Ec: the Young’s moduli of the strips a, b, and the basic layer, respectively

E z
1: the axial Young’s modulus of an embedded lamina, a periodic function in z direction

E1(y, z): the axial Young’s modulus of the nonhomogeneous beam, a biaxial periodic function in y and
z directions

dy , d̂y : one-half of the thickness of an embedded lamina and the thickness ratio of an embedded lamina
being present in one period (2h y) in the height direction, d̂y = dy/h y , respectively

dz , d̂z: one-half of the thickness of the strip a and the thickness ratio of the strip a being present in one
period (2hz) in the width direction, d̂z = dz/hz , respectively
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h y , ĥ y: one-half of the distance between the midpoint of two basic layers separated by one embedded
lamina and the ratio of 2h y to the height of the beam, ĥ y = 2h y/H , respectively

hz , ĥz: one-half of the distance between the midpoint of two strips of b separated by one ply of a and
the ratio of 2hz to the width of the beam (ĥz = 2hz/W ), respectively

s, s̄: the arc length and the position of the moving mass along the beam, respectively

u: the axial displacement of the beam measured from the undeformed state

v: the transverse displacement of the beam measured from the undeformed state

ρa , ρb, ρc: densities of the strips a, b, and the basic layer, respectively

ρz: density of an embedded lamina, which is a periodic function in z direction, ρz
= ρz(z)

ρ: density of the nonhomogeneous beam, which is a biaxial periodic function in y and z directions,
ρ = ρ(y, z)

aM : acceleration of the moving mass

f : the external forces including the weight and the reactions of the moving mass upon the composite
beam

g: acceleration due to gravity (= g j)
I : the n× n unit matrix

i : the unit vector in the horizontal direction

j : the unit vector in the gravitational (transverse) direction

n: the unit normal vector to the beam configuration

r: the Cartesian position vector of point s along the beam at time t

τ̂ : the unit tangent vector to the beam configuration

µ: coefficient of friction

ξ : dimensionless position of the moving mass along the beam

ωh
j : the normalized frequency of the j-th mode vibration of the homogeneous beam

δ̄(s− s̄): Dirac delta function

δr p: Dirac delta symbol
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