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THE EFFECT OF VARIABLE THERMAL CONDUCTIVITY
ON AN INFINITE FIBER-REINFORCED THICK PLATE

UNDER INITIAL STRESS

MOHAMED I. A. OTHMAN, AHMED E. ABOUELREGAL AND SAMIA M. SAID

The present paper includes an analytical study of the effect of variable thermal conductivity and initial
stress on a fiber-reinforced transversely isotropic thick plate. The model of the equations of generalized
thermoelasticity with phase lags in an isotropic elastic medium with temperature-dependent mechanical
properties are established. The upper surface of the plate is thermally insulated with prescribed surface
loading while the lower surface of the plate rests on a rigid foundation and temperature. The normal
mode analysis is used to obtain the analytical expressions of the displacement components, force stress
and temperature distribution. Numerical results for the physical quantities are given and illustrated graph-
ically with temperature-dependent and temperature-independent thermal conductivity. A comparison is
made with results obtained with initial stress and without initial stress. Also, a comparison is made with
results obtained with reinforcement and without reinforcement proprieties. It is found from the graphs
that the initial stress, the reinforcement and phase lags have great effects on the distribution of the field
quantities.

1. Introduction

Fiber-reinforced composites are used in a variety of structures due to their low weight and high strength.
The analysis of stress and deformation of fiber-reinforced composite materials has been an important
subject of solid mechanics for last three decades. The mechanical behavior of many fiber-reinforced
composite materials is adequately modeled by the theory of linear elasticity for transversely isotropic
materials, with the preferred direction coinciding with the fiber direction. In such composites the fibers
are usually arranged in parallel straight lines. Other configurations are used. An example is that of
circumferential reinforcement, for which the fibers are arranged in concentric circles, giving strength
and stiffness in the tangential (or hoop) direction. The analysis of stress and deformation of fiber-
reinforced composite materials has been an important subject of solid mechanics for last three decades.
The characteristic property of a reinforced concrete member is that its components, namely concrete and
steel, act together as a single anisotropic unit as long as they remain in the elastic condition, i.e., the two
components are bound together so that there can be no relative displacement between them.

In the past few years, attention had been given to the problems of the generation and propagation
of elastic waves in anisotropic elastic solid or layers of different configurations. The propagation of
elastic waves in anisotropic media is fundamentally different from their propagation in isotropic media.
The information obtained from such studies is important to seismologists and geophysicists to find the

Keywords: dual-phase-lag model, fiber-reinforced, initial stress, normal mode analysis, variable thermal conductivity, thick
plate.
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location of the earthquakes as well as their energy, mechanism etc. and thereby gives valuable insight
into the global tectonics. Some hard and soft rocks beneath the earth’s surface show the reinforcement
properties, i.e., the different components act as a single anisotropic unit. These rocks when come in
the way of seismic waves do affect their propagation and such seismic signals are always influenced by
the elastic properties of the media through which they travel. Fiber-reinforced composites are used in a
variety of structures due to their low weight and high strength. A continuum model is used to explain the
mechanical properties of such materials. In the case of an elastic solid reinforced by a series of parallel
fibers, it is usual to assume transverse isotropy.

In the linear case, the associated constitutive relations, relating infinitesimal stress and strain compo-
nents, have five materials constants. The idea of introducing a continuous self reinforcement at every
point of an elastic solid was given by Belfield et al. [1983]. The model was later applied to the rotation of
a tube by Verma and Rana [1983]. Sengupta and Nath [2001] discussed the problem of the surface waves
in fiber-reinforced anisotropic elastic media. Hashin and Rosen [1964] gave the elastic moduli for fiber-
reinforced materials. The two-dimensional problems of the generalized magneto-thermoelasticity in a
fiber-reinforced anisotropic half-space was discussed by Abbas et al. [2011]. Othman and Abbas [2011]
discussed the effect of rotation on plane waves at the free surface of a fiber-reinforced thermoelastic
half-space using the finite element method. Ailawalia and Budhiraja [2011] discussed the effect of hy-
drostatic initial stress on fiber-reinforced generalized thermoelastic medium. Abbas and Abd-alla [2011]
studied the effect of initial stress on a fiber-reinforced anisotropic thermoelastic thick plate. Othman
and Said [2012] investigated the effect of rotation on the two-dimensional problem of a fiber-reinforced
thermoelastic with one relaxation time.

The theory of thermoelasticity including the effect of temperature change has been well established.
According to this theory, the temperature field is coupled with the elastic strain field. In thermoelasticity,
classical heat transfer, Fourier’s conduction equation is extensively used in many engineering applica-
tions. The classical theory of thermoelasticity by Nowacki [1975; 1986] rests upon the hypothesis of the
Fourier law of heat conduction, in which the temperature distribution is governed by a parabolic-type
partial differential equation. Consequently, the theory predicts that a thermal signal is felt instantaneously
everywhere in a body. This implies that an infinite speed of propagation of the thermal signal, which
is impractical from the physical point of view, particularly for short-time. Thus, the use of Fourier’s
equation may result in discrepancies under some special conditions, such as low-temperature heat transfer,
high frequency or ultrahigh heat flux heat transfer.

The theory of the classical uncoupled theory of thermoelasticity predicts two phenomena not compati-
ble with physical observations. First, the equation of heat conduction of this theory does not contain any
elastic term contrary to the fact that the elastic changes produce heat effects. Second, the heat equation
is of parabolic type predicting infinite speeds of propagation for heat waves. Biot [1956] introduced the
theory of coupled thermoelasticity to overcome the first shortcoming.

Generalized thermoelasticity theories have been developed with the objective of removing the paradox
of infinite speed of heat propagation inherent in the conventional coupled dynamical theory of thermoelas-
ticity in which the parabolic type heat conduction equation is based on Fourier’s law of heat conduction.

Lord and Shulman [1967] introduced a theory of generalized thermoelasticity with one relaxation time
for an isotropic body. In this theory, a modified law of heat conduction, including both the heat flux and
its time derivatives replaces the conventional Fourier’s law. The heat equation associated with this theory
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is hyperbolic and hence eliminates the paradox of infinite speeds of propagation inherent in both coupled
and uncoupled theories of thermoelasticity. Green and Lindsay [1972] extended the coupled theory of
thermoelasticity by introducing the thermal relaxation times in the constitutive equations. The theory of
thermoelasticity without energy dissipation is another generalized theory and was formulated by Green
and Naghdi [1993]. It includes the “thermal displacement gradient” among its independent constitutive
variables, and differs from the previous theories in that it does not accommodate dissipation of thermal
energy. Tzou [1996; 1995a] proposed the dual-phase-lag DPL model, which describes the interaction
between phonons and electrons on the microscopic level as retarding sources causing a delayed response
on the macroscopic scale. For macroscopic formulation, it would be convenient to use the DPL model
for investigation of the micro-structural effect on the behavior of heat transfer. The DPL proposed by
Chandrasekharaiah [1986] and Tzou [1995b] is such a modification of the classical thermoelastic model
in which the Fourier law is replaced by an approximation to a modified Fourier law with tow different
time translations: a phase lag of the heat flux τq and a phase lag of temperature gradient τθ . A Taylor
series approximation of the modified Fourier law, together with the remaining field equations leads to a
complete system of equations describing a DPL thermoelastic model. The model transmits thermoelastic
disturbance in a wavelike manner if the approximation is linear with respect to τq and τθ , and 0≤ τθ < τq ;
or quadratic in τq and linear in τθ , with τq > 0 and τθ > 0. This theory is developed in a rational way to
produce a fully consistent theory which is able to incorporate thermal pulse transmission in a very logical
manner. It includes the “thermal displacement gradient” among its independent constitutive variables,
and differs from the previous theories in that it does not accommodate dissipation of thermal energy
[Ignaczak and Ostoja-Starzewski 2010]. Said and Othman [2017] studied the effect of mechanical force,
rotation and moving internal heat source on a two-temperature fiber-reinforced thermoelastic medium
with two theories. Abouelregal [2011] applied the DPL heat transfer model for an isotropic solid sphere.

The solution of the problem is carried out when the boundary of the sphere is maintained at constant
heat flux and the displacement of the surface is constrained. Abdallah [2009] used the uncoupled ther-
moelastic model based on the DPL heat conduction equation to investigate the thermoelastic properties
of a semi-infinite medium induced by a homogeneously illuminating ultrashort pulsed laser heating.
Quintanilla and Jordan [2009] present exact solutions of two initial-boundary value problems in the
setting of a recently introduced theory of heat conduction, wherein the two temperature theory of the late
1960s is merged with Tzou’s DPL flux relation.

The development of initial stresses in the medium is due to many reasons, for example, resulting from
differences of temperature, process of quenching, shot pinning and cold working, slow process of creep,
differential external forces, gravity variations, etc. The earth is assumed to be under high initial stresses.
It is, therefore, of much interest to study the influence of these stresses on the propagation of stress waves.
Biot [1965] showed the acoustic propagation under initial stress, which is fundamentally different from
that under a stress-free state. He has obtained the velocities of longitudinal and transverse waves along
the coordinate axis only.

The wave propagation in solids under initial stresses has been studied by many authors for various
models. The study of the effects of gravitational and hydrostatic initial stress on a two-temperature
fiber-reinforced thermoelastic medium for three-phase-lag is due to Said and Othman [2016], Montanaro
[1999] investigated the isotropic linear thermoelasticity with hydrostatic initial stress. Abbas and Othman
[2012], Othman et al. [2013] and Sarkar et al. [2016] studied the effect of the hydrostatic initial stress, the
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gravity and the magnetic field on a fiber-reinforced thermoelastic medium with a fractional derivative
heat transfer. Ailawalia et al. [2009] investigated deformation in a generalized thermoelastic medium
with hydrostatic initial stress.

In this study, the dual phase lag theory is applied to study the two-dimensional problem of generalized
thermoelasticity for a fiber-reinforced thick plate under initial stress and variable thermal conductivity.
The problem is solved numerically using a normal mode analysis method. Numerical results for the
temperature distribution and the displacement and stress components are given and illustrated graphi-
cally. It is found from the graphs that variability thermal conductivity parameter and the initial stress
significantly influences the variations of field quantities. This article is a continuation of the work by
Abbas and Abd-alla [2011] and Othman and Said [2012] to include the effect of reference temperature
on thermal stress distribution.

2. Basic equations

The linear equations governing thermoelastic interactions in a homogeneous transversely isotropic fiber-
reinforced solid without any heat sources or body forces with hydrostatic initial stress in the context of
generalized thermoelasticity with dual phase lags are given now.

The equation of motion in the absence of body forces can be written as

σi j, j +
(
ui,k σ

0
k j
)
, j = ρ

∂2ui

∂t2 , (1)

where σi j are the components of stress, σ 0
k j is the initial stress tensor, ρ is the density, ui are the compo-

nents of displacement vector and i, j, k = 1, 2, 3. The comma denotes space-coordinate differentiation
and the repeated index in the subscript implies summation.

The heat conduction equation corresponding to the DPL model proposed by Tzou [1996] takes the
form (

1+ τθ
∂

∂t

)
(Ki j θ, j ),i =

(
δ+ τq

∂

∂t

)(
ρCE

∂T
∂t
+βi j T0 ui, j

)
, (2)

where Ki j is the thermal conductivity, CE is the specific heat at constant strain, θ = T − T0 is the
temperature increment of the resonator, in which T0 is the environmental temperature, assumed to be
such as |(T − T0)/T | � 1, βi j is the thermal elastic coupling tensor, τq is the phase lag of the heat flux,
τθ is the phase lag of the gradient of temperature where 0≤ τθ < τq .

The constitutive equations for a fiber-reinforced linearly elastic anisotropic medium with respect to
the reinforcement direction b≡ (b1, b2, b3), with b2

1+ b2
2+ b2

3 = 1 are

σi j = λekk δi j + 2µT ei j +α(bkbmekmδi j + bi bj ekk)+ 2(µL −µT )(bkbi ek j + bkbj eki )

+βbkbm ekm bi bj −βi j (T − T0), (3)

where ei j are the components of strain, λ, µT are the elastic constants, α, β, µL−µT are the reinforcement
parameters, and δi j is Kronecker’s delta.

Strain-displacement relations

ei j =
1
2(ui, j + u j,i ). (4)
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Figure 1. Geometry of the problem.

In physics, thermal conductivity is the property of a material’s ability to conduct heat. It appears primarily
in Fourier’s law for heat conduction. Thermal conductivity is measured in watt per Kelvin per meter
(W K−1 m−1) multiplied by a temperature difference and an area, and divided by a thickness, the thermal
conductivity predicts the rate of energy loss through a piece of material. In the window building industry
“thermal conductivity” is expressed as the U-Factor, which measures the rate of heat transfer and tells
you how well the window insulates.

3. Formulation of the problem

In the present paper, we consider an infinite thick plate with traction free surfaces at x =±L (layer of
thickness 2L), which consists of homogeneous, transversely isotropic thermoelastic material. We take
the origin of the coordinate system (x, y, z) on the middle surface of the layer. The x − y plane is chosen
to coincide with the middle surface and y axis normal to it along the thickness. Then the components of
the displacement vector and temperature are independent of z and can be taken in the following forms

u = u(x, y, t), v = v(x, y, t), w = 0, θ = θ(x, y, t). (5)

The constitutive relations and field equations with an initial stress and without body forces and heat
sources in the present case are

σxx = (λ+ 2α+ 4µL − 2µT +β)
∂u
∂x
+ (λ+α)

∂v

∂y
−β11(T − T0), (6)

σyy = (λ+ 2µT )
∂v

∂y
+ (λ+α)

∂u
∂x
−β22(T − T0), (7)

σxy = µL

(
∂v

∂x
+
∂u
∂y

)
, (8)

where b is chosen so that its components are (1, 0, 0).
The equations of motion along x and y directions can be obtained as

[λ+2(α+µT )+4(µL−µT )+β+σ0]
∂2u
∂x2+(σ0+µL)

∂2u
∂y2 +(α+λ+µL)

∂2v

∂x ∂y
−β11

∂T
∂x
= ρ

∂2u
∂t2 , (9)

(λ+2µT+σ0)
∂2v

∂y2+(σ0+µL)
∂2v

∂x2+(α+λ+µL)
∂2u
∂x ∂y

−β22
∂T
∂y
= ρ

∂2v

∂t2 , (10)
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where σ0 is the initial pressure and

β11 = (2λ+ 3α+ 4µL − 2µT +β)α11+ (λ+α)α22, β22 = (2λ+α)α11+ (λ+ 2µT )α22. (11)

The heat equation can be written as(
1+ τθ

∂

∂t

)[
∂

∂x

(
K11

∂θ

∂x

)
+
∂

∂y

(
K22

∂θ

∂y

)]
=

(
δ+ τq

∂

∂t

)[
ρCE

∂θ

∂t
+ T0

∂

∂t

(
β11

∂u
∂x
+β22

∂v

∂y

)]
. (12)

Modern structural elements are often subjected to temperature changes of such magnitude that their
material properties may no longer be regarded as having constant values even in an approximate sense.
The thermal and mechanical properties of materials vary with temperature, so that the temperature de-
pendence of material properties must be taken into consideration in the thermal stress analysis of these
elements. In physics, thermal conductivity is the property of a material to conduct heat. It is evaluated
primarily in terms of Fourier’s law for heat conduction. Heat transfer occurs at a higher rate across
materials of higher thermal conductivity than across materials of low thermal conductivity. Generally,
thermal conductivity of materials is temperature dependent.

Our goal is to investigate the effect of temperature dependency of thermal conductivity keeping the
other elastic and thermal parameter constants; therefore we assume the thermal conductivities and thermal
diffusivity are assumed to vary linearly with temperature according to

K11 = K11(θ)= K01(1+K1θ), K22 = K22(θ)= K02(1+K1θ), ρCE = ρCE(θ)= ρ0CE0(1+K1θ), (13)

where K01, K02, ρ0 and CE0 are considered constants, in case of temperature-independent modulus of
elasticity K1 = 0.

Now, using the mapping [Tzou 1996]:

ψ =

∫ θ

0
(1+ K1ξ)dξ, (14)

where ψ is a new function expressing the heat conduction.
From (14), we get

ψ = θ
(
1+ 1

2 K1θ
)
. (15)

Differentiating (15) with respect to x and y, we obtain

K01
∂ψ

∂x
= K11(θ)

∂θ

∂x
, K02

∂ψ

∂y
= K22(θ)

∂θ

∂y
. (16)

With the same manner, by differentiating the mapping with respect to time t , we have

ρ0CE0
∂ψ

∂t
= ρCE

∂θ

∂t
. (17)

Using (16) and (17), the modified model of heat equation will take the form(
1+ τq

∂

∂t

)[
ρ0CE0

∂ψ

∂t
+ T0

∂

∂t

(
β11

∂u
∂x
+β22

∂v

∂y

)]
=

(
1+ τθ

∂

∂t

)[
K01

∂2ψ

∂x2 + K02
∂2ψ

∂y2

]
. (18)

For simplification, we shall use the following nondimensional variables:
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x ′ = c0ηx, y′ = c0ηy, u′ = c0ηu, v′ = c0ηv, t ′ = c2
0ηt,

σ ′0 =
σ0

ρ0 c2
0
, σ ′i j =

σi j

ρ0 c2
0
, τ ′q = c2

0ητq , τ ′θ = c2
0ητθ , ψ ′ =

β11ψ

ρ0 c2
0
.

(19)

where,

c2
0 =

A11

ρ0
, A11 = λ+ 2(α+µT )+ 4(µL −µT )+β, η =

ρ0 CE0

K01
.

The thermal property variations are assumed to be small and the approximate symmetries of the equa-
tion are calculated. A linear functional variation is assumed for the thermal properties and a similarity
solution is constructed. For linearity, such that |θ/T0| � 1, then equations of motion, with the help
of (16), may be recast into the dimensionless form after suppressing the primes as

(1+ σ0)
∂2u
∂x2 + (σ0+ B4)

∂2u
∂y2 + (B1+ B4)

∂2v

∂x ∂y
−
∂ψ

∂x
=
∂2u
∂t2 , (20)

(B2+ σ0)
∂2v

∂y2 + (σ0+ B4)
∂2v

∂x2 + (B1+ B4)
∂2u
∂x ∂y

− B3
∂ψ

∂y
=
∂2v

∂t2 , (21)(
1+ τθ

∂

∂t

)(
∂2ψ

∂x2 + ε1
∂2ψ

∂y2

)
=

(
δ+ τq

∂

∂t

)[
∂ψ

∂t
+
∂

∂t

(
ε2
∂u
∂x
+ ε3

∂v

∂y

)]
. (22)

The constitutive relations given in (1) in dimensionless forms and for linearity take the form

σxx =
∂u
∂x
+ B1

∂v

∂y
−ψ, (23)

σxy = B4

(
∂u
∂y
+
∂v

∂x

)
, (24)

where

B1 =
A12

A11
, B2 =

A22

A11
, B3 =

β22

β11
, B4 =

µL

A11
, A12 = α+ λ, A22 = λ+ 2µT ,

ε1 =
K02

K01
, ε2 =

β2
11T0

ρ0 CE0 A11
, ε3 =

β11β22T0

ρ0 CE0 A11
.

4. Normal mode analysis

The normal mode analysis gives exact solutions without any assumed restrictions on the temperature,
displacement, and stress distributions. It is applied to a wide range of problems in different branches. It
can be applied to boundary-layer problems, which are described by the linearized Navier–Stokes equa-
tions in electro-hydro-dynamics. The normal mode analysis is, in fact, to look for the solution in the
Fourier transformed domain, assuming that all the field quantities are sufficiently smooth on the real line
so that the normal mode analysis of these functions exists. The normal mode expansion method has been
proposed by Cheng et al. [2000] for modeling the thermoelastic generation process of elastic waveforms
in an isotropic plate.

The solution of the considered physical variable can be decomposed in terms of normal modes as the
following form

[u, v, ψ, σi j ](x, y, t)=
[
u∗, v∗, ψ∗, σ ∗i j

]
(x) eωt+iay, (25)
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where ω is the (complex) frequency constant, i =
√
−1, a is the wave number in the y direction, and

u∗(x), v∗(x), ψ∗(x) and σ ∗i j (x) are the amplitudes of the field quantities.
Using (25), (20)–(24) take the forms(

d2

dx2 − g1

)
u∗+ g2

dv∗

dx
= g3

dψ∗

dx
, (26)(

d2

dx2 − g4

)
v∗+ g5

du∗

dx
= g6ψ

∗, (27)(
d2

dx2 − g7

)
ψ∗ = g8

du∗

dx
+ g9v

∗, (28)

σ ∗xx =
du∗

dx
+ iaB1v

∗
−ψ∗, (29)

σ ∗xy = B4

(
iau∗+

dv∗

dx

)
, (30)

where

g1 =
a2(σ0+B4)

1+σ0
+

ω2

1+σ0
, g2 =

ia(B1+B4)

1+σ0
, g3 =

1
1+σ0

, g4 =
a2(σ0+B2)+ω

2

σ0+B4
,

g5 =
ia(B1+B4)

σ0+B4
, g6 =

iaB3

σ0+B4
, g7 = a2ε1+

ω(δ+τqω)

1+τθω
, g8 =

ε2ω(δ+τqω)

1+τθω
, g9 =

iaε3ω(δ+τqω)

1+τθω
.

Eliminating ψ∗(x) and v∗(x) in (26)–(28), one obtains(
D6
− AD4

+ BD2
−C

)
u∗(x)= 0, (31)

where

D= d
dx
, A = g3 g8+ g2 g5+ g1+ g4+ g7,

B = g2 g5 g7+ g2 g6 g8+ g3 g4 g8+ g1 g4+ g1 g7+ g4 g7− g6 g9+ g3 g5 g9, C = g1 g4 g7− g1 g6 g9.

Equation (31) can be factorized as(
D2
− k2

1
)(

D2
− k2

2
)(

D2
− k2

3
)
u∗(x)= 0, (32)

where k2
n (n = 1, 2, 3) are the roots of the following characteristic equation:

k6
− Ak4

+ Bk2
−C = 0. (33)

The solution of (31), bound at x→∞, is given by

u∗(x)=
3∑

n=1

M1n e−kn x . (34)

In a similar manner, one gets

ψ∗(x)=
3∑

n=1

H1n M1n e−kn x , v∗(x)=
3∑

n=1

H2n M1n e−kn x , (35)



EFFECT OF VARIABLE THERMAL CONDUCTIVITY ON AN INFINITE FIBER-REINFORCED THICK PLATE 285

where

H1n =
(g5 g9+ g4 g8)kn − g8 k3

n

k4
n − (g4+ g7)k2

n + (g4 g7− g6 g9)
, H2n =

g8 kn + (k2
n − g7)H1n

g9
.

Introducing (34)–(35) into (29) and (30), we obtain

σ ∗xx =

3∑
n=1

H3n M1n e−kn x , σ ∗xy =

3∑
n=1

H4n M1n e−kn x , (36)

where H3n =−kn + iaB1 H2n − H1n , H4n = B4(ia− kn H3n).

5. Boundary conditions

In this section we determine the parameters M1n (n = 1, 2, 3). In the physical problem, we should
suppress the positive exponentials that are unbounded at infinity. The constants M11, M12, M13 have to
be chosen such that the boundary conditions on the surface at x = L take the form

σxx(L , y, t)=−P1 f, σxy(L , y, t)= 0, ψ(L , y, t)= P3, (37)

where f is constant, P1 is the magnitude of a hydrostatic initial stress and P3 = P2+
1
2 K1 P2

2 . If P2 = 0,
we obtain the corresponding expressions for normal force applied on the plane surface. If we put P1 = 0,
then the corresponding expressions yield the results for thermal sources.

Substituting the expressions of the variables considered into the above boundary conditions, we obtain

ψ∗|x=L =

3∑
n=1

H1n M1n e−kn x
= P∗3 , (38)

σ ∗xx |x=L =

3∑
n=1

H3n M1n e−kn x
=−P∗1 , (39)

σ ∗xy|x=L =

3∑
n=1

H4n M1n e−kn x
= 0, (40)

where P∗1 = P1 e−(ωt+iay), P∗3 = P3 e−(ωt+iay).
Solving the above system of (38)–(40), we obtain a system of three equations. After applying the

inverse of the matrix method, we have the values of the three constants M1n (n = 1, 2, 3). Hence, we
obtain the expressions for the displacements, the temperature distribution, and other physical quantities:

M11

M12

M13

=
H11 e−k1 L H12 e−k2 L H13 e−k3 L

H31 e−k1 L H32 e−k2 L H33 e−k3 L

H41 e−k1 L H42 e−k2 L H43 e−k3 L

−1 P∗3
−P∗1

0

 . (41)

After obtaining ψ , the temperature increment θ can be obtained by solving (15) to give

θ =
−1+

√
1+ 2K1ψ

K1
. (42)
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6. Particular cases

(1) Generalized thermoelastic medium with hydrostatic initial stress and with temperature-dependent
thermal conductivity from above equations with µL = µT = µ, α = β = 0.

(2) Fiber-reinforced generalized thermoelastic medium without hydrostatic initial stress and with temper-
ature-dependent thermal conductivity from above equations with P1 = σ0 = 0.

(3) Fiber-reinforced generalized thermoelastic medium without temperature-dependent thermal conduc-
tivity from above equations with K1 = 0.

(4) Equation of coupled thermoelasticity (CD theory) when τθ = τq = 0, δ = 1.

(5) Lord–Shulman theory (LS theory) τθ = 0, δ = 1, τq > 0.

(6) Green–Naghdi theory (GN II theory) when τθ = 0, δ = 0, τq = 1.

(7) Equations of generalized thermoelasticity with phase lags (DPL theory) when δ = 1, τq ≥ τθ > 0.

7. Numerical results

In order to illustrate the theoretical results obtained in the preceding section and to compare these in the
context of the DPL model, the CD theory and the LS theory, we now present some numerical results
for the physical constants as λ = 3.76 · 109 N/m2, µT = 1.89 · 1010 N/m2, µL = 2.45 · 1010 N/m2,
α = −1.28 · 1010 N/m2, β = 0.32 · N/m2, τq = 0.95 s, CE0 = 23.1 J/(kg K), ρ0 = 7800 kg/m3, µ =
3.86 · 1010 N/m2, α11 = 1.7 · 10−5 K−1, α22 = 1.5 · 10−5 K−1, τθ = 0.8 s, K01 = 9.21 · 105 J/(ms K),
K02 = 9.63 · 105 J/(ms K), ω = ω0+ iξ , ω0 = 0.6, ξ = 0.2, a = 0.5, P1 = 30, L = 0.1 m, T0 = 293 K,
K1 =−5, f = 1, P2 = 0.5, σ0 = 1.45 · 108 N/m2, αt = 1.78 · 10−5 K−1, P = 0.5.

The computations were carried out for a value of time t = 0.3. The variations of the thermal temper-
ature θ , the horizontal displacement u, and the stress components σxx , σxy with distance x for the value
of y, namely y = 1.5, were substituted in performing the computation. The results are shown in Figures
2–12. The graphs show the six curves predicted by three different theories of thermoelasticity. In these
figures, the solid line represents the solution in the coupled theory, the dotted line represents the solution
in the generalized LS theory, and the dashed line represents the solution derived using the DPL model.
Here all the variables are taken in nondimensional forms and the physical quantities depend not only on
space x and time t , but also on phase lags τθ and τq .

Figures 2–5 show comparisons between the horizontal displacement components u, the thermal tem-
perature θ and the stress components σxx , σxy with temperature-dependent and temperature-independent
thermal conductivity. Figure 2 depicts that the distribution of the horizontal displacement u begins from
positive values. In the context of the three theories, u starts with decreasing, then increases, and again
decreases. The values of u, increasing with the temperature-dependent thermal conductivity in the first
and then, decrease. It is clear from Figure 3 that the thermal temperature θ begins from negative values
with temperature-dependent thermal conductivity, but it begins from positive values with temperature-
independent thermal conductivity and satisfies the boundary condition at x = 0.1. In the context of the
three theories with temperature-dependent thermal conductivity, θ increases in the range 0≤ x ≤ 6, but
with the temperature-independent thermal conductivity, θ decreases in the range 0≤ x ≤ 6. The values
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temperature-independent thermal conductivity.
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of θ decrease and then increasing with temperature-dependent thermal conductivity. Therefore, the effect
of temperature-dependent thermal conductivity should be taken into consideration.

Figure 4 displays that the distribution of the stress component σxx begins from negative values and
satisfies the boundary condition at x = 0.1. In the context of the three theories with temperature-dependent
thermal conductivity, σxx starts with increasing, then decreases, and again increases. However, the con-
text of the three theories with temperature-independent thermal conductivity, σxx starts with decreasing to
a minimum value, then increases to a maximum value, and again decreases. The temperature-dependent
thermal conductivity increase, then decrease, and last increase values of σxx . Figure 5 shows the distribu-
tion of the stress component σxy and demonstrates that it reaches a zero value and satisfies the boundary
condition at x = 0.1. In the context of the three theories with temperature-dependent thermal conductivity,
σxy starts with increasing, and then decreases.

However, in the context of the three theories with temperature-independent thermal conductivity, σxy

starts with decreasing to a minimum value, then increase to a maximum value, and again decreases. The
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Figure 5. Distribution of stress component σxy with temperature-dependent and
temperature-independent thermal conductivity.

values of σxy increase and then, decrease with temperature-dependent thermal conductivity. Figures 2–5
demonstrate that the temperature-dependent thermal conductivity has a significant role on all the physical
quantities. The result provides a motivation to investigate the thermoelastic materials with temperature-
dependent thermal conductivity as a new class of applications thermoelastic materials.

Also, the results obtained in this case should be useful for physicists, researchers in material science,
designers of new materials as well as for those working on the development of thermal stresses and in
practical situations as in optics, geophysics, geomagnetic, acoustics and oil prospecting.

Figures 6–9 show comparisons between the horizontal displacement components u, the thermal tem-
perature θ , and the stress components σxx , σxy with and without the initial stress. Figure 6 depicts that
the distribution of the horizontal displacement u begins from positive values. In the context of the three
theories without initial stress, u decreases in the range 0≤ x ≤ 6. The values of u increase with initial
stress in the first and then decrease. It is clear from Figure 7 that the thermal temperature θ begins
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Figure 7. Thermal temperature distribution θ with initial stress and without initial stress.

from negative values and satisfies the boundary condition at x = 0.1. In the context of the three theories
with without initial stress, θ increases in the range 0 ≤ x ≤ 6. The values of θ decrease with initial
stress. Figure 8 displays that the distribution of the stress component σxx begins from negative values
and satisfies the boundary condition at x = 0.1. In the context of the three theories without initial stress,
σxx starts with decreasing to a minimum value, and then increases. The initial stress, decrease, then
increase, and last decrease values of σxx . Figure 9 shows the distribution of the stress component σxy ,
and demonstrates that it reaches a zero value and satisfies the boundary condition at x = 0.1. In the
context of the three theories without initial stress, σxy starts with decreasing to a minimum value, and
then increases. The initial stress increase and then decrease values of σxy . Figures 6–9 demonstrate that
the initial stress has a significant role on all the physical quantities. Figures 10–12 show that the values of
horizontal displacement components u, and the stress components σxx , σxy increase and then, decrease
with reinforcement.

Due to the presence of reinforcement and initial stress, the magnitude of the thermophysical quantities
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decay, which indicates that initial stress and reinforcement have a tendency in maintaining the smoothness
of the profiles of the thermophysical quantities. So it is more advantageous to consider the effect of initial
stress and reinforcement in such problems of engineering.

In addition, for a fiber-reinforced generalized thermoelastic medium without temperature-dependent
thermal conductivity (K1 = 0) the results agree with the existing literature [Abbas and Abd-alla 2011].

8. Conclusion

In the present study, normal mode analysis is used to study the effect of the initial stress and temperature-
dependent thermal conductivity on fiber-reinforced generalized thermoelastic medium based on the DPL
theory, CD theory and the LS theory. We obtain the following conclusions based on the above analysis:

(1) It is clear that the initial stress, temperature-dependent thermal conductivity, and the reinforcement
play significant roles on all the physical quantities.
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(2) The phase lags τq and τθ has great influence on the distribution of all physical quantities.

(3) The curves in the context of the DPL model, CD theory and the LS theory, decrease exponentially
with increasing x ; this indicates that the thermoelastic waves are unattenuated and nondispersive,
while purely thermoelastic waves undergo both attenuation and dispersion.

(4) Deformation of a generalized thermoelastic medium depends on the nature of the applied force as
well as the type of boundary conditions.

(5) Analytical solutions based upon normal mode analysis of the thermoelastic problem in solids have
been developed and utilized.

The results carried out in this paper can be used to design various fiber reinforced anisotropic media with
initial stress in order to meet special engineering requirements.
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