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A MODE-DEPENDENT ENERGY-BASED DAMAGE MODEL FOR
PERIDYNAMICS AND ITS IMPLEMENTATION

CHRISTIAN WILLBERG, LASSE WIEDEMANN AND MARTIN RÄDEL

The mathematical modeling of failure mechanisms in solid materials and structures is a long standing
problem. In recent years, peridynamics has been used as a theoretical basis for numerical studies of
fracture initiation, evolution and propagation. In order to investigate damage phenomena numerically,
suitable material and damage models have to be implemented in an efficient numerical framework. This
framework should be highly parallelizable in order to cope with the computational effort due to the high
spatial and, depending on the problem, temporal resolution required for high accuracy. The open-source
peridynamic framework Peridigm offers a computational platform upon which new developments of the
peridynamic theory can be implemented. Today, isotropic material models and a very simple damage
model are implemented in Peridigm.

This paper proposes three energy-based damage criteria. The implementation approach as well as
the extension of Peridigm with these physically motivated models is described. The original criterion of
Foster et al. is adapted for ordinary state based material. The other two criteria utilize the decomposition
of peridynamic states in isotropic and deviatoric parts to account for the failure-mode dependency.

The original criterion is verified by the numerical simulation of two mechanical problems. At first,
a virtual double cantilever beam (DCB) experiment is performed to determine the energy release rate.
This value is the fundamental material property required for the proposed criteria. Additionally, the DCB
problem is then used to investigate the convergence of the numerical scheme implemented in Peridigm.
In a second step, a model of a plate with a cylindrical hole under tensile loading is compared with an
extended finite element method solution. Results of both numerical solutions are in good agreement.
Finally, a fiber reinforced micro structure model is used to analyze the effect of the different criteria to
the damage initiation and crack propagation under a more complex loading condition.

A list of symbols can be found on page 215.

1. Introduction

Today, the full exploitation of the lightweight potential of fiber reinforced plastics (FRPs) is limited due
to the lack of reliability of failure predictions of real structures. Compared to isotropic materials, the
failure mechanisms in FRPs are very complex, as shown in Figure 1 on the next page. The photograph
on the left shows the crack pattern in a uniaxial test of an FRP specimen including fiber ondulations as
typical manufacturing deviations. The crack is curved and multiple delaminations occur if the specimen
fails. The photo on the right illustrates a FRP microstructure under tensile loading perpendicular to the
fiber direction. In such specimens cracking starts at multiple locations where the stress concentration
is greatest [Gamstedt and Sjögren 1999]. If the load is increased further, local cracks begin to merge,
resulting in the complete failure of the specimen [Krause 2016a].

Keywords: peridynamics, damage model, open source.
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Figure 1. Exemplary failure mechanisms in FRP materials: crack in a CFRP specimen
(left, courtesy DLR) and matrix failure (right) [Gamstedt and Sjögren 1999; Krause 2016a].

Accurate modeling of such damage and fracture phenomena, including static and dynamic crack propa-
gation, is an active and open challenge among researchers. The main difficulty inherent in such problems
arise from the fact that crack nucleation and propagation in materials cannot be accurately predicted by
the majority of currently available computational techniques based on classical continuum theory of
mechanics [Boyce et al. 2014].

The current state-of-the-art methods used in industry and research for failure prediction are based on
classical continuum mechanics (CM) and its numerical implementation using the finite element method
(FEM). Classical CM is well suited to stress analyses of undamaged structures. With proper restrictions,
the resulting PDEs are elliptic in equilibrium problems. Due to assumptions made in classical CM (see
Section 2), this theory is unable to properly model damage evolution after initiation [Silling 2017; Silling
2000]. To overcome this, additional theories, such as fracture mechanics, are required. However, most
of these techniques still suffer from unsatisfactory accuracy and low efficiency when dealing with spe-
cific problems, such as three-dimensional crack propagation in bodies under complex loading conditions
[Mossaiby et al. 2017].

Motivated by ideas of molecular dynamics, Stewart Silling developed peridynamic theory as an alter-
native theory to classical CM, starting with [Silling 2000]. Also known as peridynamics (PD), this theory
provides a promising approach for simulating damage initiation, evolution and interaction in any material.
It is a nonlocal theory taking long-range forces between material points in a certain neighborhood into
account. In this theory the divergence term of the governing PDE is replaced by an integral term. Consti-
tutive models in peridynamics depend on relative deformation vectors as opposed to classical constitutive
models, which depend on deformation gradients [Seleson et al. 2016]. In addition, spatial derivatives in
the governing equations of classical CM are replaced by integral terms in peridynamics. These integral
terms can be evaluated at any point whether or not a discontinuity in the displacement function, e.g.
caused by a crack, exists. The original bond-based peridynamics (BB-PD) formulation was introduced
in [Silling 2000] and is based on the interaction forces between two material points. Therein, linear
isotropic materials are limited to a Poisson ratio of 0.25 for 3D and 2D plane strain problems and 0.33
for 2D plane stress problems [Silling et al. 2007]. To overcome these limitations, Silling et al. [2007]
introduced a state-based peridynamics (SB-PD) formulation. It is based on the collective interaction
forces between a given material point and material points in a finite neighborhood of this point, called
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the point’s family and here denoted by H. In this paper, it is assumed that these forces act along the
direction vectors between the material points near the natural state. This is called the ordinary state-
based (OSB) approach and considers bond forces depending on deformations of all neighboring material
points. State-based PD is able to describe materials with arbitrary Poisson’s ratios [Silling et al. 2007].

Silling et al. [2009] compared classical CM and PD for the conservation of linear momentum. The
classical CM uses a differential equation, whereas PD uses an integral formulation:

ρ(x) ü(x, t)= div σ + b(x, t), (1-1)

where t , b, ρ, σ and ü are the time, external forces, mass density, Cauchy stresses and acceleration for
the position x. If a problem described by classic CM has a discontinuity, the model assumptions for
this region are no longer valid. Classical CM loses its validity, as div σ is no longer defined. Therefore,
classical CM is no longer able to provide physically meaningful solutions. This vadility problem does
not exist in PD. The integral formulation ensures the conservation of linear momentum at any point,
even at discontinuities. No model adjustments or extensions need to be made. If the medium of the
integration domain is continuous and the deformation is twice continuously differentiable for limH→0,
the PD solution converges to the classical CM solution [Silling and Lehoucq 2008].

To model damage initiation and propagation in PD theory, failure criteria are required, ideally referring
to physically measurable values. These criteria are needed to assess whether individual bonds, the inter-
actions of points within H, have exceeded their load-bearing capacity. The most common criterion used
in PD compares the stretch (relative change in distance) between two discrete points with a reference
value, the critical stretch [Madenci and Oterkus 2014]. If the stretch between the two discrete points
exceeds a certain value, the bond is irreversibly deleted. The damage starts and there is no load transfer
via the broken bond. The critical stretch model works well for brittle materials and has been validated
for several problems [Silling and Askari 2005; Ghajari et al. 2014]. However, the critical stretch is not
a physically measurable material property. It is recalculated using assumptions from PD theory and
includes a discretization dependency [Madenci and Oterkus 2014]. Although bonds can break under
shear deformation, this criterion only considers the volumetric part of the deformation, being insensitive
to the deviatoric part. Hence it is unsuitable for simulating the fractures observed in elasto-visco-plastic
materials [Dipasquale et al. 2017].

Foster et al. [2009; 2011] described an energy-based failure criterion. They used a J-integral calcu-
lation at the crack tip to determine a critical bond energy density from the experimentally measurable
energy release rate. The critical energy density of each bond is compared with this critical value. If the
value is exceeded, the bond breaks. In the case of crack propagation, the sum of the local bond energy
densities, related to the crack surface, leads back to the global value of the energy release rate.

Three energy-based criteria considering mixed mode conditions and an implementation strategy are
presented here. The implementation is verified and a convergence study is performed. The implemented
failure criteria are used to analyze damage propagation in a micro structure model of a FRPs structure.
The code and models are published in [Rädel and Willberg 2018] for further use.

2. Theoretical background

Ordinary state-based peridynamics (OSB-PD) is used to overcome the restrictions of BB-PD. Foster et al.
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[2011] noted that within state-based PD the word bond is used loosely. It only describes the relationship
between two material points and can be abstractly thought of as an interaction potential. There is not
necessarily a notion of direct connectivity, such as a spring-like force. To illustrate the later derivation
for the energy criterion consistently and comprehensibly, the derivation of the linear elastic material law
for OSB-PD is illustrated. The notation follows [Silling et al. 2007].

In contrast to spring-like forces, the magnitude of the force density vector states may not be equal for
the OSB-PD formulation; that is, in general |T [x, t]〈x′− x〉| 6= |T [x′, t]〈x− x′〉|. See Figure 2 for the
linear case with infinitesimal deformations. The equation of motion of OSB-PD is

ρ(x)ü(x, t)=
∫
H

(
T [x, t]〈x′− x〉− T [x′, t]〈x− x′〉) dV + b(x, t), (2-1)

where H is a spherical neighborhood of radius δ, called the horizon, centered at x. All points x′ within
the horizon of x are called the family of x. The force density vector state T maps the bond 〈x′− x〉 to
force per unit volume squared in the deformed configuration [Silling et al. 2007]. T has to be consistent
with basic physical principles as the balance of linear momentum. To describe a material, constitutive
models are needed. These models map specific deformation vector states Y into the force density vector
state T .

Following [Silling et al. 2007], to determine the force density per volume square for a PD material, it
is assumed that there exists a strain energy density function W such that

T =∇W (Y), (2-2)

where ∇ is the Fréchet derivative.
It is further assumed that the elastic strain energy in a PD solid is equal to the energy of the CM model.

In that case, it is supposed that there is a PD strain energy density function W : V → R such that, for
some choice of the deformation gradient F,

Y(ξ)= Fξ = F〈x′− x〉 for all ξ ∈H. (2-3)

Then the PD corresponds to the classical constitutive model. This means that the classical CM and PD
models are identical for homogeneous deformations of a homogeneous body with deformation gradient F
[Silling et al. 2007; Aguiar and Fosdick 2014].

For the isotropic case and considering infinitesimal deformations the undeformed scalar state is defined
as x = |X〈ξ〉| and the deformation scalar state is defined as y = |Y〈ξ〉|. Then, the extension scalar state e

x

x′

T [x′, t]〈x−x′〉

T [x, t]〈x′−x〉

ξ

Figure 2. Illustration of OSB forces for the linear case with infinitesimal deformations.



AN ENERGY-BASED DAMAGE MODEL FOR PERIDYNAMICS 197

for a PD linear solid can be defined as

e = y− x = |η|. (2-4)

It must be noted that for a general material y−x 6= |η|. To obtain the force density scalar state t =|T | of
a single bond for an isotropic elastic PD solid, the extension scalar state is decomposed into its isotropic
and deviatoric parts [Silling et al. 2007]. The decomposition of states utilizes a orthogonal deformation
basis and therefore the deviatoric and isotropic deformations can be considered independently as

ed〈ξ〉 = εd
i jξi

ξ j

|ξ | and ei 〈ξ〉 = εi iξi
ξi

|ξ | . (2-5)

By comparing classical the CM strain energy with the PD one, material parameters based on the
classical CM model are obtained. Specifically, one creates a strain energy function WPD using (2-5) and
compares it with WCM:

WCM = 1
2 K

[
εkk
]2
δi j + 2G

[
εd

i j
]2 !=WPD,

WPD = A
2

∫
H
ω〈ξ〉

[
εd

i jξi
ξ j

|ξ |
]2

dVξ + B
2

∫
H
ω〈ξ〉

[
εi iξi

ξi

|ξ |
]2

dVξ .

(2-6)

Because of the state decomposition, the unknowns A and B can be obtained solving the integrals and
setting one deformation state to zero in each case. This results in

A = 3K
mV

and B = 15G
mV

, (2-7)

Here K and G are the bulk and shear moduli of the classical theory of linear elasticity. Introducing A
and B into (2-6) we obtain the PD strain energy density as

W = 3K
2mV

∫
H
ω〈ξ〉[ei 〈ξ〉]2 dVξ + 15G

2mV

∫
H
ω〈ξ〉[ed〈ξ〉]2 dVξ , (2-8)

with the weighted volume mV and the nonlocal dilatation θ given by

mV =
∫
H
ω〈ξ〉xx dVξ and θ = 3

mV

∫
H
ω〈ξ〉xe〈ξ〉 dVξ . (2-9)

Using (2-2), one can derive the contribution of a single bond and its force density scalar state t :

t〈ξ , t〉 = ω〈ξ〉
mV

[
3K θx + 15Ged] . (2-10)

To obtain T , the force density scalar state has to be transformed from bond coordinates to global
Cartesian coordinates. For small deformations and isotropic material the transformation can be done as

T = t
Y
|Y | . (2-11)

The complete derivation is given in [Silling et al. 2007].
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3. Damage model

Foster et al. [2009; 2011] described an energy-based failure criterion which is valid for state-based
analysis. The criterion converts the globally measurable energy release rate into a local critical bond
energy density. For a given horizon δ, the critical micro potential wC can be determined using the energy
release rate G0:

wC =
4G0

πδ4 . (3-1)

If the bond micro potential is greater than this value, the bond is removed and an initial failure occurs.
With the history-dependent scalar-valued function χ(ξ , t) defined by

χ(e〈ξ〉, t)=
{

1 if w(e〈ξ〉) < wC ,

0 otherwise,
(3-2)

the damage model can be included in (2-10) as

t = χ(e〈ξ〉, t)
(

3K θ
mV

ωx + 15G
mV

ωed
)
. (3-3)

In an OSB formulation the bond energy can be determined as

w =
∫

η

(
T [x, t]〈x′− x〉− T [x′, t]〈x−x′〉) dη (3-4)

where
η = u[x′, t] − u[x, t] (3-5)

is the bond displacement vector state. We recall from Figure 2 that T [x, t]〈x′−x〉 and T [x′, t]〈x−x′〉
are bond force density vector states. As Figure 2 shows for an OSB model, the force density scalar
states t depend on the direction 〈x−x′〉 and 〈x′−x〉. For an OSB formulation, the force density scalar
state for the respective material point t [x, t] and t

[
x′, t

]
has to be calculated. The distinction between

contraction and extension is made by calculating the relative extension scalar state

e rel〈ξ〉 = e〈ξ〉
x
. (3-6)

Thus, the bond is contracted if e rel〈ξ〉< 0 and extended if e rel〈ξ〉> 0. Different bond micro potentials
could be applied, if needed. Because the decomposition of states is already done, additional bond energy
criteria could be defined evaluating the isotropic compression wcmp, the isotropic tension wten and the
shear part wshr. The assumption behind this distinction is based on the crack modes of classical fracture
mechanics [Anderson 2005]. A mode I fracture is dominated by the tensile stress within the material and
therefore only the isotropic part of the model has to be compared to the G I C energy. The same applies
to the shear part wshr of the model. This can be compared against the energy release rate G I C from the
shear-dominated mode II fracture type. The bond micro potential for compression and tension can be
determined as

wcmp = wten = 1
4χ(e〈ξ〉, t)

(
K [x]

mV [x]
θ2[x, t] + K [x′]

mV [x′]
θ2[x′, t]

)
x2, (3-7)
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Name Criterion

Energy criterion wbond>wC

Power law w2
cmp+w2

ten+w2
shr>w

2
C, cmp+w2

C, ten+w2
C, shr

Separated (wcmp>wC, cmp) ∧ (w ten>wC, ten) ∧ (wshr>wC, shr)

Table 1. Three types of energy-based damage criteria.

where the distinction between compression and tension can be made using (3-6), namely e rel〈ξ〉< 0 for
contraction and e rel〈ξ〉> 0 for extension. The bond micro potential for the shear part is given as

wshr = 1
4χ(e〈ξ〉, t)

(
B[x](e〈ξ〉− 1

3θ [x, t]x)2+ B[x′]( 1
3θ [x′]x − e〈ξ〉)2)

, (3-8)

where B is given in (2-7).
To evaluate the bond damage condition one of three criteria from Table 1 can be chosen.
The factor 1

4 results from the integration and the averaging of the bond force density state t . This
averaging is necessary, as the scalar force density is dependent on the direction [Silling 2017]. The
energy criterion, with

wbond = 1
4χ
(
e〈ξ〉, t

) (
t [x, t]− t

[
x′, t

])
e〈ξ〉 (3-9)

corresponds to the criterion from [Foster et al. 2011]. The power law criterion takes mixed mode fracture
into account [Song 2006]. The separated energy criteria check the isotropic compression and tension
energies as well as the shear energy separately. If critical values regarding the tension or shear energy
are exceeded the bond breaks.

4. Implementation

Peridigm [Parks et al. 2012] is used in the context of the present study. It is an open-source state-based
PD code developed at Sandia National Laboratories for massively parallel multi-physics simulations.
Peridigm uses a FE mesh as basis for its discretization. Hexahedron and tetrahedron elements are trans-
formed into PD collocation points and associated with the respective element volume. The entire data
structure is divided into PD collocation points and their neighbours within the horizon. In theory each
point and its interaction with his neighbours could be calculated at a single computer core. Points with
the same properties, material and damage model, are bundled into blocks.

Algorithm 1 show the program structure for explicit Verlet time integration, implemented in Peridigm.
After initialization, a loop is started on the number of time increments ntimeStep. New displacements and
forces at the collocation points are determined for each time step in the loop. These are then synchronized
between the definition blocks and computer cores. This is required, because the time integration of the
neighboring collocation points do not necessarily have to be performed on the same core as the collocation
point itself.

After the data has been synchronized, a loop is started over all blocks nblocks. Within this loop, all
collocation points nnodes are looped twice. The first run calls the damage model routines and determines
whether a bond between a collocation point and a neighbor within the family nneighbors must be broken.
In the second loop, the force densities resulting from the interaction of every collocation point with its
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neighborhood are determined. The data is synchronized in a global vector and the Verlet time integration
schema is performed.

initialization;
for ndt← 1 to ntimeStep do

t = t +1t ;
updateDisplacementsToBlocksAndCores;

for blockID← 1 to nblocks do
for i← 1 to nnodes do

for j← 1 to nneighbors do
calculateDamages;

for i← 1 to nnodes do
for j← 1 to nneighbors do

calculateBondForces;
synchronizeForcesInGlobalVector;
timeIntegrationInGlobalVector;

Algorithm 1. Peridigm data structure.

For the implementation of the energy criterion, information from the collocation point x and x′ is
required. Therefore, the solution shown in Figure 3 has been implemented in Peridigm.

update θ

synchnronize data
between cores

damage model

material model

time integration

i← i+1

initialization

output

Figure 3. Workflow in Peridigm.
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For each step, the dilatation θ is calculated for the actual model deformation state yi . These dilatations
are stored in a global vector and synchronized between the computer cores and blocks. In a next step,
the force density scalar states in node i and its neighbor j are determined:

t i = χ(e〈ξ〉, t)
(

3Kiθi

mV,i
ωx + 15Gi

mV,i
ωed

i

)
,

t j = χ(e〈ξ〉, t)
(

3K jθ j

mV, j
ωx + 15G j

mV, j
ωed

j

)
.

(4-1)

The bond micro potential then is

w = 1
4

(
abs(t i )+ abs(t j )

)
abs(e〈ξ〉). (4-2)

The absolute values of the force density scalar states as well as e〈ξ〉 are used in the numerical implemen-
tation to avoid problems with coordinate changes between the node and neighbor node reference.

The volumetric part of the discrete bond micro potential for tension and compression can be calcu-
lated as

wten = wcmp = 1
4χ(e〈ξ〉, t)

(
Ki

mV,i
θ2

i +
K j

mV, j
θ2

j

)
x2 (4-3)

and the deviatoric part as

wshr = 1
4χ(e〈ξ〉, t)

(
αi
(
e〈ξ〉− 1

3θi x
)2+α j

( 1
3θ j x − e〈ξ〉)2)

, (4-4)

with

αi = 15Gi

mV,i
and α j = 15G j

mV, j
. (4-5)

The damage laws have been implemented in Peridigm as an open-source routine, found at [Rädel and
Willberg 2018].

5. Verification

Three problems have been analyzed and evaluated for the validation of the proposed criteria and their
implementation. The first problem is a virtual experiment used to determine the energy release rate. In
this so-called DCB experiment, a specimen with rectangular cross section, with an initial crack is loaded
by pulling the upper and lower half. This triggers a controlled crack propagation from the initial crack
initiation tip. The energy release rate can be determined by analyzing the force-displacement curves in
relation to the crack length. The result of this evaluation must correspond to the input parameter in order
to verify the assumptions made in [Foster et al. 2011]. Additionally, a convergence study is conducted.
The horizon δ and the point distance dx of a structured mesh are varied.

The example of a fracturing plate with a circular cutout under tensile loading is considered as a second
problem. This model has an analytical solution in the context of classical linear elasticity [Lekhnitskii
1968] which yields to the position of the damage initiation. The PD solution is compared against an
XFEM (extended FEM) analysis performed in the commercial finite element code Abaqus.
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u2, F2

a0

L
x1

x2 x3

h

B
u2, F2

Figure 4. Setup of the DCB simulation with a0 = 0.005 m, L = 0.05 m, B = 0.006 m
and h = 0.02 m. The displacement function was chosen to be u+2 (t)= 0.004 m/s · t above
the precrack and u−2 (t)=−0.004 m/s · t underneath it.

5A. Double cantilever beam. The geometry and dimensions of the DCB model are given in Figure 4.
The original finite elements are represented in Peridigm as points with corresponding volume. The
numerical PD model has a structured discretization resulting in equally spaced PD collocation points.
The distance between all points is dx = 0.001m for all three spatial directions.

A pre-crack of length a0 is defined in the x2-center of the model at the left specimen boundary. Bonds
in the domain of the crack are omitted. Nonlocal displacement boundary conditions are applied to the
left edges along x3 to induce a crack opening. The displacement conditions are applied uniformly on
more than one x1 row of collocation points, u+2 (t) = 0.004 m/s · t above and u−2 (t) = −0.004 m/s · t
underneath the pre-crack. As a result, the upper part of the DCB model bends upwards and the lower
part bends downwards. This results in a load concentration at the crack tip, which leads to a high bond
micro potential. For an ideal homogeneous isotropic material, crack growth in x1-direction occurs when
the external load is further increased. The Python scripts for creating the model as well as the Peridigm
input decks are given in [Rädel and Willberg 2018].

To solve the problem, a transient analysis is performed. This requires time integration. For all the
analyzes presented here, the explicit Verlet time integration scheme is used. The material parameters are
shown in Table 2. An energy release rate of G I C = 12 N/m is chosen. This value is not representative
of any standard material and was chosen low to reduce the computing time. The energy release rate
determines the time of crack initiation and the degradation path after crack initiation.

In case the criteria are properly implemented, it must be possible to reproduce them in the virtual
experiment, independent of the value itself.

To determine the energy release rate G I C , the force-displacement (F2(t), u2(t)) curve are recorded
and evaluated. The force function F2(t) is the summed resulting force of all nodes the displacement
function u2(t) is applied on. The whole procedure is exemplarily explained for the horizon δ = 0.003 m,
shown in Figure 5. Prior to initial damage, the force-displacement curve starts with a linear response.

ρ = 2000 kg/m3 K = 1.75 · 109 Pa G = 8.08 · 108 Pa G I C = 12 N/m

Table 2. Material data chosen for the verification.
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Figure 5. Force-displacement curve.

This is the pre-damage part of the simulation. After damage initiation the resulting force decreases, while
the crack propagates. To determine the resulting energy release rate G I C , the dissipated energy Wdiss

due to crack propagation within the material, is required.
Assuming no further energy dissipation occurs, the energy release rate can be determined by calculat-

ing the area between the force-displacement curve and a linear function. The linear function intersects
the coordinate origin and the force-displacement curve of the model at an arbitrary time increment n cut,
shown as an example for one force-displacement curve and two linear functions in Figure 5. It corre-
sponds to an idealized relief path within the virtual DCB experiment. The area between the two curves
represents the dissipated energy.

To integrate the area between the curves the Riemann sum

Wdiss =1u
n cut∑
i=1

(Fi − Fi,linear function) (5-1)

is determined. The energy release rate can be determined by dividing the dissipated energy Wdiss by the
crack surface Acrack = Blcrack as

G I C = Wdiss

Blcrack
, (5-2)

where lcrack is the crack length and B is the width of the model [Monteiro et al. 2015]. To determine the
energy release rate G I C for the increment n cut the corresponded crack length lcrack is measured. For this
purpose the damage index color map plots Idamage for increment n cut is used, shown in Figure 6 for a
point distance in all three spatial directions of dx = 0.001 m. The damage index is determined as

Idamage = nbroken/nneighbors, (5-3)

where nbroken is the number of broken bonds of a point and nneighbors is the initial number of all of its
bonds.
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Figure 6. Crack length at t = 2.21 ms.

0 1 2 3 4
0

20

40

60

displacement u2 [10−5m]

fo
rc

e
F 2
[N
]

δ = 2 dx
δ = 3 dx
δ = 4 dx
δ = 5 dx

Figure 7. Force-displacement curves for dx = 0.001 m.

To show the independence of the horizon, four models with different horizons are calculated. To
determine the energy release rate of the four models, two arbitrary linear functions are used for the
respective curve similar to Figure 5. The time, the corresponding crack length and the resulting G I C are
given in Table 3. The force-displacement curves without the linear function for the DCB models with
different horizons are shown in Figure 7.

Although the curves differ significantly from each other, the calculated energy release rates are well
in line with the reference value of G I C = 12 N/m defined in the Table 2. The differences in the results
have three main reasons

• The crack length is rounded to 0.001 m, which is the minimal distance between two nodes.

• The position of the crack tip is estimated using the damage index plot. This means that points that
are not yet completely separated from each other would have a virtual crack length that cannot be
clearly determined. The error is in the range ±0.0005 m. For a higher resolution this error becomes
smaller.
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linear function 1 linear function 2
horizon δ t lcrack G I C t lcrack G I C

[mm] [ms] [m] [N/m] [ms] [m] [N/m]
2.015 4.21 0.003 12.8 5.26 0.005 11.4
3.015 5.88 0.005 13.1 7.35 0.007 12.9
4.015 5.01 0.004 11.1 9.99 0.011 11.3
5.015 6.36 0.006 11.2 9.99 0.010 11.9

Table 3. Results of the verification.

dx δ = 2 dx 3 dx 4 dx 5 dx
[mm] [mm] [mm] [mm] [mm]

0.5 1.0 1.5 2.0 2.5
0.3 0.66 0.99 1.32 1.65
0.25 0.5 0.75 1.0 1.25
0.125 0.25 0.375 0.5 0.625

Table 4. Combinations for convergence analysis.

• Due to the explicit time integration scheme without damping there is noise, which slightly influences
the curve integration.

In conclusion, the results are accurate enough to demonstrate the functionality of the implemented
failure models. The next step is to demonstrate the convergence of the model.

5B. Double cantilever beam: convergence. After the correct implementation is checked, the conver-
gence behavior is analyzed. As described in Section 2, the PD solution for homogeneous material
converges against the classic CM solution in case no damage is considered. Therefore, a model with
linear elastic material behavior is created and solved with the FEM. The solution is used as a reference
curve for the time before damage initiation. The geometry and material parameters are identical to the
model data of the PD model.

The uniform point distance dx in all three model dimensions of a structured mesh as well as the
corresponding horizon δ is given in Table 4. Four different scenarios are considered: dx = 0.5 mm,
dx = 0.33 mm, and dx = 0.25 mm and dx = 0.125 mm. The model setup and material parameters are
otherwise the same as in section 5A.

Only the results of two cases are presented here, as the others are very similar. The resulting curves
described in Table 4 are shown in Figures 8 and 9. All discretizations dx reflect the undamaged behavior
until crack initiation compared to the FEM result. The time of crack initiation and the necessary forces
differ considerably. All curves show that the highest force is required at a horizon of 2 dx . The noise in
the crack propagation area is also very high.

For the curves with a horizon of 3 dx , the forces are also higher compared to the curves where the
horizons are larger than 3 dx . For horizons larger than 3 dx , the crack initiation time and the force are
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Figure 8. Force-displacement curves for discretization dx = 0.5 mm.
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Figure 9. Force-displacement curves for discretization dx = 0.125 mm .

approximately equal for the respective discretization dx . The behaviour in the crack propagation area is
also identical.

To analyze the discretizations, the curves 4 dx and 5 dx of the discretization dx = 0.33 mm, 0.25 mm
and 0.125 mm are plotted in Figure 10.

The results of the three discretizations show the same behavior in the linear pre-crack part of the
simulation. After crack initiation the resulting forces for both horizons 4 dx and 5 dx of dx = 0.33 mm
are 10–15% higher compared to the models with the discretization of dx = 0.25 mm and dx = 0.125 mm.
These curves are almost identical. They show the same, converged, damage initiation load of 20.5 N and
the degredation path is similar.
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Figure 10. Force-displacement curves for horizons 4 dx and 5 dx for various discretiza-
tions dx .

In general, for horizons δ > 3 dx the curves after crack initiation are smoother. The reason is, that for
smaller horizons one bond caries more load, which leads to more noise if the bond breaks. This effect is
smaller for larger horizons.

5C. Plate with hole. After the convergence of the PD energy criterion has been demonstrated a plate
with a circular hole under tensile loading is analyzed.

The classical CM has analytical solutions for the stress distribution around the hole [Lekhnitskii 1968],
which have been validated in experiments. This allows to predict the location of damage initiation. The
crack is assumed to emerge from points on the boundary of the cutout perpendicular to the loading
direction. This is due to the fact, that the maximum stress concentration under tensile loading occurs
at these points in CM. Furthermore, the crack is predicted to propagate horizontally, transverse to the
loading direction.

Additionally, the results are compared with a XFEM fracture model consisting of an initiation criterion
and a propagation model. The standard FEM does not allow crack propagation through elements. It is
only capable to represent crack growth by numerically expensive adaptive remeshing techniques around
the crack front or the element deletion method, where energy is artificially dissipated from the model.
An enhancement of the FEM is the XFEM which offers a possibility to simulate crack growth through
the element domain by application of the “partition of unity” approach [Melenk and Babuška 1996;
Belytschko et al. 2009]. The commercial FE code Abaqus offers an implementation of the XFEM.

For both the PD and XFEM analysis, a three-dimensional rectangular plate made of homogeneous,
isotropic and linear elastic material with a circular cutout in its center is considered. The geometry of
the plate is shown in Figure 11. The plate has a length and width of L = M = 0.05 m. The thickness of
the plate is h = 0.5 mm. The hole diameter is D = 0.01 m.
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Figure 11. Model definition for a plate with a circular hole in its center; L=M = 50 mm,
h = 0.5 mm and D = 10 mm.

The material properties are given in Table 5. The model is calculated using the energy criterion
proposed in [Foster et al. 2011]. The boundary conditions u̇ y,top and u̇ y,bot, the horizon δ and the average
distance between mesh points dx are given in Table 6.

Peridigm is sensitive to the horizon size. The spacing between material points should be chosen
uniformly in one block in order to reduce the effect of discretization errors. Thus, the underlying mesh
has to consist of approximately uniformly spaced elements. The requirement of generating constant
mesh elements of length dx = 0.5 mm is given to the mesh generator. This results in a constant horizon
size of δ = 3.015 · dx = 1.5075 mm.

To trigger damage, the plate is subjected to a constant uniaxial velocity along the horizontal edges in
opposite direction, as illustrated in Figure 11.

The boundary conditions are applied to two constrained regions Rc. They are defined along the bottom
and top horizontal edges of the plate, as illustrated in Figure 11. Both regions have a depth of b = 3 · dx .
The imposed displacements are given by the prescribed velocities u̇x2,top for the top part and u̇x2,bot for
the bottom part, each multiplied by the current calculation time. This results in a uniformly increasing
displacement over time. Thus, the prescribed displacement applied on each PD material point in the
top constrained region is given by u0,x2,top = u̇x2, top · t and in the bottom constrained region is given by
u0,x2,bot = u̇x−2,bot · t . The prescribed velocities, the horizon δ and the time tend are given in Table 6.

ρ = 8000 kg/m3 E = 192 MPa ν = 0.33 G I C = 287 072 N/m sC = 0.02

Table 5. Material data chosen for a plate with hole.

u̇ y,top =−u̇ y,bot = 0.275 41 m/s δ = 1.515 mm tend = 0.001s dx = 0.5 mm

Table 6. Model parameters.
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The XFEM analysis has been performed on a two-dimensional model utilizing the commercial code
Abaqus. The thickness is considered irrelevant for the present plane-stress problem. For the application
of the XFEM an extra damage initiation criterion is needed.

This assumption is necessary to change the underlying model within the FEM. Until damage occurs,
the modeling of the FEM and XFEM is based on the approximate solution of the weak formulation of
classical CM. After the crack has been initiated, the underlying assumptions lose their validity locally.
Therefore, a fracture mechanical model describing the crack propagation within the XFEM elements is
used. The maximum principal strain criterion is used as the initiation criterion. The strain value has been
calculated using the energy release rate G0C as provided by Madenci [2014] for 3D models:

εC = sC =
√

G0C[
3G+ ( 3

4

)4 (
K − 5

3 G
)]
δ
. (5-4)

The assumption is only acceptable as long as no shear strain occurs in the known area of crack initiation.
At the position of crack initiation the strain ε22 is approximately equal to the critical stretch. However,
this assumption is not generalizable. A consistent derivation of the critical stretch from the energy release
rate is not possible for OSB-PD [Willberg and Rädel 2018]. If the principal strain given by (5-4) exceeds
the value, the crack starts and a bilinear traction separation law as illustrated in [Trilaksono et al. 2013]
is used. The XFEM uses a quasi-static analysis. To avoid singularities in the stiffness matrix a viscous
damping is introduced.

For the XFEM model, damage initiation occurs at time t = 0.672 ms for a total displacement of
u y = 0.370 mm. The crack initiation and propagation is shown in a damage index plot in Figure 12.

The first damage is visible in the second pane of the figure, when the critical stretch value has been
reached. In order to reach complete failure of an element, the critical separation has to reach the value
1fail, which is indicated by red elements in the damage plot. Note that the damage variable used in the
damage plots for XFEM has a different definition compared to the damage plots for the PD solution.
In Figure 12, blue color indicates undamaged elements, equivalent to entirely undamaged bonds of a
material point in Peridigm. Red elements in an Abaqus damage plot indicate that an element has failed
and a crack runs through it. In that case the element has a local damage value of 1. The damage index in
Peridigm, given in (5-3), describes the ratio of broken to initially unbroken bonds within the family of a
collocation point. If a crack occurs between two points, they are still connected with their neighboring
nodes at their corresponded sites of the crack. For the definition of a complete fracture plane, comparable
to the DCB model, a local damage value of approximately 0.41 is sufficient. The PD collocation point
then is completely disconnected from his neighbors at the other site of the crack surface.

It can be seen in Figure 12 that the crack growth on both sides of the hole is not proceeding uniformly.
This might be due to non-uniformity in the mesh. Thus, the crack growth behaves slightly different
on both sides of the plate. The effect is especially noticeable for the propagation of the crack on the
right side of the cutout from time t = 0.7731 ms (step 1273) to t = 0.8264 ms (step 1800). During
this period, the crack on the right is not propagating further while the crack on the left side has already
reached the left boundary of the plate. For the XFEM the unsymmetric mesh leads to a stagnation of
the crack at one side and finally to an unsymmetric solution. In theory, this should not be the case for a
perfectly homogeneous structural model without numerical inaccuracies in the FEM and the symmetric
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step 0 / t = 0 ms step 28 / t = 0.671 69 ms step 32 / t = 0.679 80 ms step 49 / t = 0.773 ms

step 115 / t = 0.773 ms step 223 / t = 0.773 ms step 233 / t = 0.773 ms step 350 / t = 0.773 ms

step 500 / t = 0.773 ms step 800 / t = 0.773 01 ms step 1100 / t = 0.773 03 ms step 1273 / t = 0.773 06 ms

step 1500 / t = 0.826 40 ms step 1800 / t = 0.826 43 ms step 1850 / t = 0.826 46 ms step 1893 / t = 3 ms

Figure 12. Damage plot of plate with circular cutout under tensile loading for different
time steps computed with XFEM.
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damage variable

step 0 / t = 0.632 98 ms step 300 / t = 0.6570 ms step 500 / t = 0.673 ms step 800 / t = 0.697 097 ms

step 820 / t = 0.698 70 ms step 850 / t = 0.701 104 ms step 870 / t = 0.702 71 ms step 890 / t = 0.704 309 ms

step 910 / t = 0.705 91 ms step 920 / t = 0.706 71 ms step 930 / t = 0.707 51 ms step 940 / t = 0.708 31 ms

step 950 / t = 0.709 11 ms step 960 / t = 0.709 92 ms step 970 / t = 0.710 72 ms step 1000 / t = 0.713 12 ms

Figure 13. Damage plot of plate with circular cutout under tensile loading for different
time steps computed with Peridigm.
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Figure 14. Comparison of displacement curves at given points P1, P2 and P3 (see
Figure 11) for the Peridigm model (left) the XFEM model with viscous damping of
0.0001 (right).

load application as well as the chosen boundary conditions. In contrast to the XFEM, the impact of the
discretization to the result is lower for the PD result. This is because PD is implemented as a meshless
method in Peridigm, which is independent of the composition of the mesh. Therefore, this can be seen
as an advantage of PD compared to XFEM.

In the Abaqus computation total failure occurs at time t = 0.872 ms with a total displacement in
x2-direction of ux2,ult = 0.456 mm.

The results obtained with Peridigm are shown in Figure 13 (see previous page). Damage initiation
starts earlier compared to the XFEM solution. The crack propagates almost symmetrically in both
directions. This is not caused by the underlying PD theory. Numerical implementation of PD problems
similar to XFEM solution can occur.

Figure 14 shows the displacement curves at three points defined in Figure 11. Before damage initiation,
the gradient of the three curves are equal. The PD result shows an earlier failure initiation compared to
the XFEM analysis. The behaviour of the curves differ after crack initiation. This is caused by the use of
different solving methods. Solving the XFEM model a quasi-static analysis is performed. The viscous
damping in the XFEM solution decreases the noise in the displacement curves after the damage initiation
occurs. The PD result uses an explicit time integration schema without damping. Thus the displacement
solution shows oscillations.

In summary, it can be said that the energy criterion is able to reproduce the expected crack initiation
propagation. The following possibilities have been identified as reasons for the different initiation times:

• Initiation criterion of XFEM differs from PD one.

• Dependency of the mesh in XFEM, which finally lead to an unsymmetrical crack.

• Step width and quasi-static solver of the XFEM analysis.
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6. Composite modeling

To study the effect of the different energy-based failure criteria, a scaled representative volume element
(RVE) of height h RVE = 0.025 m consisting of a FRP material has been analyzed. This model is based
on the work of Krause [Krause 2016a; Krause 2016b] and the fiber locations are randomly distributed.
The model has been created utilizing a finite element preprocessor. The finite element input file, with
the geometry and boundary conditions from Figure 15, has been automatically transformed into a input,
readable by Peridigm.

The total model height is h = h RVE+ 2hb. The height hb = 0.00167 m is defined to ensure that the
load introduced by the displacement function is equally distributed. The displacement function itself is
applied at the top and bottom surface nodes of the RVE. Bonds within the boundary region cannot be
damaged and the region is very stiff compared to the rest of the model.

Parameters for discretization were determined in [Rädel et al. 2017a; 2017b] and used within the
model to obtain accurate results. The horizon is given by δ = 4 dx = 0.002 m based on the analysis in
Section 5B and with dx = 5 · 10−4 m as the average distance between two points, because of compu-
tational limitations. The material properties of the fiber and the matrix made of resin are illustrated in
Table 7 and the values for the different energy criteria are given in Table 8.

Figure 16 illustrates how the damage typically progresses in experiments under transverse tension. The
cracks grow around single fibers, bridge the matrix-dominant area between fibers and finally interact with

u2

u2hb

h RVE

Dfiber

Figure 15. Setup of the RVE simulation: Dfiber = 6.744 mm, h RVE = 25 mm and hb =
1.67 mm. The displacement function is u2 = 0.213 m/s · t .

Fiber ρ = 1800 kg/m3 K = 17.283 GPa G = 11.382 GPa
Resin ρ = 1300 kg/m3 K = 3.125 GPa G = 1.119 GPa

Table 7. Material data chosen for the verification.

w iso = 0.4 · 10−3 N/m wcmp = 0.4 · 10−3 N/m wten = 0.38 · 10−3 N/m

Table 8. Critical energies chosen for the resin in the RVE model. Values are the same
for the energy criterion (only w iso applies), the power law criterion and the separated
energy criterion.
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Figure 16. Phases of damage under transverse tension [Gamstedt and Sjögren 1999]:
debond (left) and transverse crack (right).

each other. Experimental and numerical results show that debonding occurs around many fibers but only
one dominant transverse crack is finally created [Krause 2016a].

Figure 17 shows the results obtained by using the three energy-based failure criteria, introduced in
Table 1. Starting with the damage initiation, four different time steps are shown. It can be seen that
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Figure 17. Damage plot of RVE utilizing the different energy criteria.
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the damage initiation as well as the ongoing damage process is almost equal between all criteria. The
damage initiates at the fiber-matrix interface. The cracks grow and interact with each other. In the event
of a further load increase, the various individual cracks combine to form an overall crack. The tensile
part of the energy is dominant compared to the shear part. Thus the damage patterns of all models are
similar. The crack patterns of the simulation results are in good agreement with the measurement results
shown in Figure 1, right.

7. Conclusion

The implementation and verification of three energy-based failure criteria have been presented. These
criteria only require physically measurable material properties. The criteria have been implemented in
the open-source code Peridigm. It is parallelizable and consequently usable for large scale problems.
The verification examples indicate that the implemented criteria work as expected. It has been shown
that global energy release rate could be represented by local micro energy bond potentials.

The model converges for a resolution dx = 0.25 mm with a horizon greater than 3 dx . Regardless of
the discretization, horizons smaller than 4 dx overestimate the crack initiation load and high noise in the
damage progress area.

The results of a complex micro structure model of a FRP illustrates that all implemented criteria are
able to describe micro structural damage and the results do not differ substantially from literature results.
The example illustrates that the general failure mechanism is captured by all three presented models.
Therefore, the criterion of [Foster et al. 2011] is to be preferred. On the contrary to the two other criteria,
only one material parameter, the energy release rate, has to be determined. In real applications, the
experimental measurement of this parameter is already standardized and therefore easier to determine
than for the other two criteria.

The final routine as well as the models are published within [Rädel and Willberg 2018].

List of symbols (continues on next page)

mV weighted volume
s stretch
sC critical stretch
t time
u displacement
w bond energy micro potential
E Young’s modulus
G shear modulus
G0 energy release rate
G0C critical energy release rate
G I C critical energy release rate mode I
G I I C critical energy release rate mode II
H family
K bulk modulus
R Euclidean space

V volume
W strain energy density
χ scalar damage function
δ horizon
ε strain
ε strain tensor component
ν Poisson ratio
ρ density
θ dilatation
ξ component of the undeformed vector state
η bond vector, deformed
ξ bond vector, undeformed
x external body force density
σ Cauchy stress
u deformation vector
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List of symbols (continued)

ü acceleration vector
x position vector, undeformed
y position vector, deformed
F deformation gradient
ω influence scalar state
e extension scalar state

t force density scalar state
x position scalar state, undeformed
y position scalar state, deformed
T force vector state
X reference vector state
Y deformation vector state
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ELASTIC WAVE PROPAGATION IN A PERIODIC COMPOSITE
PLATE STRUCTURE: BAND GAPS INCORPORATING MICROSTRUCTURE,

SURFACE ENERGY AND FOUNDATION EFFECTS

GONGYE ZHANG AND XIN-LIN GAO

A new model for predicting band gaps for flexural elastic wave propagation in a periodic composite
plate structure is developed using a non-classical Kirchhoff plate model that is based on a modified
couple stress theory, a surface elasticity theory and a two-parameter Winkler–Pasternak elastic founda-
tion model. The formulation is based on the plane wave expansion method and Bloch’s theorem. The
current non-classical model simultaneously incorporates microstructure, surface energy and foundation
effects, unlike existing models. When the microstructure and surface energy effects are both suppressed,
the new model reduces to the classical elasticity-based model. The band gaps predicted by the newly
developed model vary with the microstructure-dependent length scale parameters, the surface elastic
constants, the elastic foundation moduli, the unit cell size, and the volume fraction. The numerical
results reveal that the first band gap including the foundation effect is always smaller than that without
considering the foundation effect, and the first foundation band gap size increases with the increase of the
elastic foundation moduli. Also, the first band gap predicted by the new non-classical model is always
larger than that predicted by the classical model, but the difference is diminishing as the plate thickness
increases. In addition, it is found that the sizes of the first band gap and the first foundation band gap
decrease with the increase of the unit cell length at different length scales. Furthermore, it is seen that
the volume fraction has a significant effect on the sizes of the first band gap and the first foundation band
gap, and band gaps can be tailored by adjusting the volume fraction as well as the constituent properties.

1. Introduction

Band gaps for elastic wave propagation in periodic composite beam and plate structures have received in-
creasing attention (e.g., Sigalas and Economou 1994; Liu and Hussein 2012; Xiao et al. 2012; Piccolroaz
and Movchan 2014; Zhang and Parnell 2017; Piccolroaz et al. 2017; Chen et al. 2017; Zhang et al. 2018a).
Such periodic composite structures can generate band gaps and are therefore good candidate materials
for filtering waves, isolating vibrations and harvesting energy. Bragg scattering and local resonance, two
leading causes for band gaps (e.g., Liu and Hussein 2012; Chen and Wang 2014; Madeo et al. 2016),
can both be present in such composite structures.

Thin beams and plates often exhibit size effects at the micron and nanometer scales. Microstructure-
and/or surface energy-dependent length scale effects have been computationally demonstrated through
atomistic simulations for amorphous silica and polymers [Maranganti and Sharma 2007], FCC metals in-
cluding Ni, Cu and Al [Shodja et al. 2012] and noncoherent metallic bicrystals [Mi et al. 2008]. Recently,

Keywords: band gaps, wave propagation, Kirchhoff plate, couple stress, surface elasticity, elastic foundation, plane wave
expansion method, Bloch theorem, size effect.
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it has been shown that such nonlocal effects can also be experimentally measured with high accuracy by
using the shifts of resonant frequencies of a micron- or nanometer-sized beam [Zhang and Zhao 2016].

Band gap generation is inherently related to material microstructures, and hence band gaps for elastic
wave propagation in micro- or nano-structured composite beams and plates are also size-dependent,
which cannot be described by applying wave equations based on classical elasticity. As a result, wave
equations derived through using non-classical elasticity theories containing material length scale param-
eters need to be employed in determining band gaps at the micron and nanometer scales.

Several non-classical/high-order elasticity theories have been applied to derive wave equations and
study band gaps. Liu et al. [2012] used wave equations based on the surface elasticity theory [Gurtin and
Murdoch 1975; 1978] to investigate surface energy effects on band gaps. Li et al. [2016] studied band
gaps by employing the wave equations built upon the simplified strain gradient elasticity theory (e.g.,
Gao and Park 2007). Madeo et al. [2016] applied the wave equations based on a relaxed micromorphic
elasticity theory to explore frequency band gaps in metamaterials. Bacigalupo and Gambarotta [2017]
utilized a micropolar continuum theory to study band gaps in periodic materials. Band gaps for flexural
elastic wave propagation in periodic composite beam structures were recently studied by Zhang et al.
[2018a] and Gao et al. [2018] by using non-classical Bernoulli–Euler and Timoshenko beam models
based on a modified couple stress theory [Yang et al. 2002; Park and Gao 2008] and a surface elasticity
theory [Gurtin and Murdoch 1975; 1978; Steigmann and Ogden 1997; 1999]. However, wave equations
for plates built upon such higher-order elasticity theories have not been utilized to determine band gaps
in periodic composite plate structures. This motivated the present study.

In the current paper, band gaps for flexural elastic wave propagation in a periodic composite plate
structure are studied by using a non-classical Kirchhoff plate model based on the modified couple stress
theory [Yang et al. 2002; Park and Gao 2008], the surface elasticity theory [Gurtin and Murdoch 1975;
1978] and a two-parameter Winkler–Pasternak elastic foundation model. In Section 2, the equations
of motion for a Kirchhoff plate incorporating the microstructure, surface energy and foundation effects
derived by Gao and Zhang [2016] are applied to the current periodic composite plate structure to study
wave propagation. The formulation is enabled by using the plane wave expansion method and Bloch’s
theorem. In Section 3, numerical results for the band gaps predicted by the current non-classical model
are presented and compared to those based on the classical elasticity-based model. A summary is pro-
vided in Section 4.

2. Formulation

Based on the modified couple stress theory [Yang et al. 2002; Park and Gao 2008], the surface elastic-
ity theory [Gurtin and Murdoch 1975; 1978; Steigmann and Ogden 1997; 1999] and a two-parameter
Winkler–Pasternak elastic foundation model (e.g., Yokoyama 1996), the equations of motion for a Kirch-
hoff plate were derived by Gao and Zhang [2016], which incorporate the microstructure, surface energy
and elastic foundation effects. When only the deflection is considered (i.e., w=w(x, y, t), u = 0, v= 0),
the equations of motion reduce to

−
[ 1

12(λ+ 2µ)h3
+µl2h+ 1

2(λ0+ 2µ0)h2](w,xxxx + 2w,xxyy +w,yyyy)

+ (2τ0+ kp)(w,xx +w,yy)− kww+ fz − cx,y + cy,x = m0ẅ−m2
∂2ẅ

∂x2 −m2
∂2ẅ

∂y2 , (1a)
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Figure 1. Left: plate configuration and coordinate system. Right: plate on a two-
parameter elastic foundation.

which can be rewritten as

−
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D ∂
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∂y
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(
∂2w

∂x2 +
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∂y2

)
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∂2

∂t2 (P1w)−
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∂t2

(
P2
∂2w

∂x2

)
−
∂2

∂t2

(
P2
∂2w

∂y2

)
, (1b)

where w = w(x, y, t) is the displacement in the z-direction (or deflection) of point (x, y, 0) on the plate
mid-plane at time t (see Figure 1, left), and

D = 1
12(λ+ 2µ)h3

+µl2h+ 1
2(λ0+ 2µ0)h2, C = 1

12 h3λ−µl2h+ 1
2 h2(λ0+ τ0),

B = 1
3µh3

+ 4µl2h+ h2(2µ0− τ0), S = 2τ0, P1 = ρh, P2 =
1

12ρh3.
(2)

In (1a), (1b) and (2), λ and µ are the Lamé constants, l is a couple stress-related material length scale
parameter (e.g., Mindlin 1963; Park and Gao 2006), µ0, λ0 and τ0 are the surface elastic constants, ρ
is the density of the plate material, h is the uniform plate thickness, fz is the z-component of the body
force resultant (force per unit area) through the plate thickness acting on the plate mid-plane occupying
the area R, cx and cy are, respectively, the x- and y-components of the body couple resultant (moment
per unit area), kw is the Winkler foundation modulus, and kp is the Pasternak foundation modulus (e.g.,
Yokoyama 1996). The plate on the two-parameter elastic foundation is schematically shown in Figure 1
(right).

Note that in deriving the equations of motion leading to (1a), the modified couple stress theory [Yang
et al. 2002; Park and Gao 2008] is used for the bulk plate material, and the surface elasticity theory
[Gurtin and Murdoch 1975; 1978] is applied to the surface layers (with zero-thickness), which have
distinct properties and are perfectly bonded to the bulk plate. When both the microstructure and surface
energy effects are suppressed by setting l = cx = cy = 0 and λ0 = µ0 = τ0 = 0, equation (1a) reduces to
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Figure 2. Periodic two-phase composite plate structure with a through-thickness square
inclusion phase and a matrix phase: the composite plate structure (left) and the unit cell
(right).

the equation of motion for a Kirchhoff plate resting on the Winkler–Pasternak elastic foundation based
on classical elasticity.

Consider a periodic two-phase composite plate structure containing through-thickness square inclu-
sions (as Phase I ) embedded periodically in a host matrix (as Phase I I ), as shown in Figure 2. The
periodic composite structure is infinitely large in the xy-plane. The unit cell for this periodic composite
plate structure with a uniform thickness h is taken to be a square (with edge length a) containing a square
inclusion (with edge length d) at its center, as displayed in Figure 3. The corresponding irreducible first
Brillouin zone is also shown in Figure 3.

For the current periodic composite plate structure, the plane wave expansion method (e.g., Sigalas
1997) and Bloch’s theorem for periodic media (e.g., Kittel 1986) can be applied. Accordingly, the
deflection w can be expanded in a Fourier series as (e.g., Zhang et al. 2018b; Zhang and Gao 2018):

w(r, t)= ei k·r
( ∑

G′(m,n)

wG′(m,n) ei G′(m,n)·r
)

e−iωt , (3)

Figure 3. Left: unit cell of the periodic composite plate with a square inclusion (phase I ).
Right: the irreducible first Brillouin zone in the reciprocal lattice.
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where wG′(m,n) is the Fourier coefficient, r = (x, y) is the position vector, k = (kx , ky) is the Bloch wave
vector, G′(m,n) = (2πm/a, 2πn/a)= (G ′x ,G ′y) is the reciprocal lattice vector for a square lattice, ω is the
angular frequency, i is the imaginary unit satisfying i2

=−1, m and n are integers ranging from −∞ to
+∞, and a is the lattice constant that is equal to the unit cell edge length (see Figure 3).

In addition, based on the periodicity of the composite plate structure, D(r), C(r), B(r), S(r), P1(r),
P2(r), kw(r) and kp(r), which are material parameters involved in the wave equation in (1b), can each
be written as a Fourier series:

α(r)=
∑

G(M,N )

αG(M,N )
ei G(M,N )·r , (4)

where α denotes D, C , B, S, P1, P2, kw or kp, G(M,N ) = (2πM/a, 2πN/a)= (Gx ,Gy) is the reciprocal
lattice vector in which the integers M and N range from −∞ to +∞, and αG is the Fourier coefficient
satisfying

αG(M,N )
=

1
A

∫∫
�

α(r) e−i G(M,N )·rd r, (5)

where � is the square domain on the plate mid-plane in the unit cell, and A is the area of �. It can be
readily shown that for a two-phase composite, αG is given by

αG =

{
V (I )

f αI + (1− V (I )
f ) αII when G(M,N ) = 0,

(αI −αII )F(G(M,N )) when G(M,N ) 6= 0,
(6)

where αI and αII are respective property values for materials I and I I , V (I )
f is the volume fraction of the

inclusion phase (material I ) given by V (I )
f = A(I )/A (with A(I ) being the mid-plane area of material I

in the unit cell), and F(G(M,N )) is the shape function defined by

F(G(M,N ))=
1
A

∫∫
�1

e−i G(M,N )·rd r, (7)

where �I is the mid-plane domain occupied by material I in the unit cell.
For a square inclusion occupying the domain �I (see Figure 3, left), F(G(M,N )) is given by (e.g.,

Susa 2002):

F(G(M,N ))=



2d
a2Gx

sin Gx d
2

for Gx 6= 0, Gy = 0,

2d
a2Gy

sin
Gyd

2
for Gx = 0, Gy 6= 0,

4
a2Gx Gy

sin Gx d
2

sin
Gyd

2
for Gx 6= 0, Gy 6= 0,

(8)

where d and a are, respectively, the edge lengths of the square inclusion �I and unit cell � shown in
Figure 3 (left).

Using (3) and (4) in (1b) (with fz = cx = cy = 0) yields

(M)G(M,N )−G′(m,n) wG′(m,n) = ω
2(R)G(M,N )−G′(m,n) wG′(m,n), (9)
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where

(M)G(M,N )−G′(m,n) = DG−G′(kx +Gx)
2(kx +G ′x)

2
+CG−G′(kx +Gx)

2(ky +G ′y)
2

+ DG−G′(ky +Gy)
2(ky +G ′y)

2
+CG−G′(ky +Gy)

2(kx +G ′x)
2

+ BG−G′(kx +Gx)(ky +Gy)(kx +G ′x)(ky +G ′y)

+ SG−G′(kx +Gx)(kx +G ′x)+ SG−G′(ky +Gy)(ky +G ′y)

+ (kw)G−G′ + (kp)G−G′(kx +G ′x)
2
+ (kp)G−G′(ky +G ′y)

2, (10)

(R)G(M,N )−G′(m,n) = (P1)G−G′ + (P2)G−G′ (kx +G ′x)
2
+ (P2)G−G′ (ky +G ′y)

2, (11)

wG′(m,n) =
1
A

∫∫
�

we−i(G′(m,n)+k)·rd r, (12)

in which

αG−G′ =
1
A

∫∫
�

αe−i(G(M,N )−G′(m,n))·rd r, (13)

where αG−G′ represents DG−G′ , CG−G′ , BG−G′ , SG−G′ , (P1)G−G′ , (P2)G−G′ , (kw)G−G′ or (kp)G−G′ .
Note that in reaching (9), use has been made of Laurent’s rule for finding the Fourier coefficients of a
product of two periodic functions (e.g., Li 1996; Cao et al. 2004).

When each of the integers m, n, M , and N in the Fourier series expansions for w and α (representing
D, C , B, S, P1, P2, kw or kp) given in (3) and (4) is set to range from −L to L , equation (9) leads to
(2L + 1)2 equations, which can be written as

[(M)G−G′]{wG′} = ω
2
[(R)G−G′]{wG′}, (14)

where
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are two (2L+1)2× (2L+1)2 matrices, and
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is a (2L+1)2× 1 matrix.
For the linear system of equations in (14) to have a nontrivial solution of wG′(m,n) 6= 0, the determinant

of the coefficient matrix must vanish, which gives

|[T ] −ω2
[I]| = 0, (18)

as the characteristic equation of the eigenvalue problem defined in (14), where

[T ] = [(R)G−G′]
−1
[(M)G−G′], (19)

and I is the (2L + 1)2× (2L + 1)2 identity matrix. Equation (18) is a polynomial equation of degree
(2L+1)2 for ω2. The roots of (18) gives the eigen-frequencies ω for a specified wave vector k= (kx , ky)

in the first Brillouin zone (see Figure 3). The ranges of ω over which no real-valued wave vector k exists
are known as band gaps. It is seen from (19), (18), (16), (15), (13), (11), (10), (8), (6) and (2) that the
value of ω depends on the material constants λ, µ, l, λ0, µ0, τ0 and ρ, the foundation moduli kw and kp,
and the geometrical parameters a, d and h.

The classical elasticity-based band gaps for flexural elastic wave propagation in the periodic composite
plate structure resting on the Winkler–Pasternak elastic foundation can be obtained as a special case by
setting l = 0 and λ0 = µ0 = τ0 = 0 in (19).

3. Numerical results

To demonstrate the new model formulated in Section 2, sample cases are quantitatively studied here. In
obtaining the numerical results presented in this section, Material I is chosen to be iron, whose properties
are as follows (e.g., Gurtin and Murdoch 1978): for the bulk, Young’s modulus E (I ) = 177.33 GPa,
Poisson’s ratio ν(I ) = 0.27, l(I ) = 6.76µm, ρ = 7 g/cm3; for the surface layer, µ(I )0 = 2.5 N/m, λ(I )0 =

−8 N/m, τ (I )0 = 1.7 N/m. The value of l(I ) above is determined from l = bh/
√

3(1− ν) (e.g., Lam
et al. 2003; Park and Gao 2006) with ν(I ) = 0.27 and b(I )h = 10µm (e.g., Wang 2010). Material I I is
taken to be epoxy with the following properties [Chen and Wang 2014]: E (II )

= 3.3 GPa, ν(II )
= 0.33,

l(II )
= 16.93µm, ρ(II )

= 1.18 g/cm3 for the bulk, and µ(II )
0 = 0.12406 N/m, λ(II )

0 = 0.16376 N/m, τ (II )
0 =

0.045 N/m for the surface layer. The value of l(II ) given here is also calculated from l = bh/
√

3(1− ν)
but with ν(II )

= 0.33 and b(II )
h = 24µm (e.g., Lam et al. 2003). The values of the surface elastic constants

µ
(II )
0 and λ(II )

0 listed above are estimated using µ(II )
0 = µ(II )hS and λ(II )

0 = 2λ(II )µ(II )hS/(λ(II )
+µ(II ))

[Sharma and Ganti 2004], where hS is the thickness of transition zone between the surface and bulk
material and is taken to be 1 angstrom (e.g., Miller and Shenoy 2000), and λ(II ) and µ(II ) are the Lamé
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constants of the bulk epoxy given by λ(II )
= E (II )ν(II )/[(1+ν(II ))(1−2ν(II ))], µ(II )

= E (II )/[2(1+ν(II ))].
In addition, τ (II )

0 is the surface tension for epoxy having a value of 45 mN/m (e.g., George 1993; Lewin
et al. 2005). The foundation moduli kw and kp are non-dimensionalized to obtain Kw ≡ kw a4/D(I )

C ,
Kp ≡ kp a2/D(I )

C , with D(I )
C = E (I )h3/{12[1− (ν(I ))2]} being the plate flexural rigidity of material I .

Moreover, the edge length of the square inclusion is taken to be d = 0.4a (i.e., V I
f = d2/a2

= 0.16) in
all the calculations for simplicity. In Figures 4–7, the blue dot lines represent the wave frequency curves
obtained from solving (18). It has been found that a convergent solution is attained in each case with
L = 7.

In the numerical results provided below, the first band gap in each case is defined to be that between
the fourth and fifth frequency curves, which is first observed for the periodic composite plate structure
without the elastic foundation (see Figure 4, left). This corresponds to the lowest range of ω that prohibits
flexural wave propagation in the periodic composite plate structure without the foundation. In addition,
the first band gap for the composite plate structure with the elastic foundation, called the first foundation
band gap, is identified and discussed.

3.1. Effects of the elastic foundation. Figure 4 (left column, top) illustrates the first band gap frequency
range for the periodic composite plate structure (with a = 1 mm and h = 15µm) predicted by the current
non-classical model without including the foundation effect (i.e., Kw = 0, Kp = 0), which is 175.42 kHz–
190.50 kHz (marked in orange) for the wave frequency f = ω/(2π). Figure 4 (left column, middle and
bottom) displays the first band gap and the first foundation band gap frequency ranges predicted by the
new non-classical model with the foundation treated as a Winkler one (i.e., setting kp = 0): 177.33 kHz–
192.17 kHz and 0 kHz–20.66 kHz for the case with Kw = 10 and Kp = 0; and 193.67 kHz–206.85 kHz
and 0 kHz–62.97 kHz for the case with Kw = 100 and Kp = 0. Figure 4 (right column) shows the
first band gap and the first foundation band gap for the composite plate structure predicted by the current
non-classical model incorporating the Winkler–Pasternak foundation effect: 186.82 kHz–199.32 kHz and
0 kHz–20.69 kHz for the case with Kw = 10 and Kp = 1; 202.33 kHz–213.52 kHz and 0 kHz–63.18 kHz
for the case with Kw = 100 and Kp = 1. For the case with Kw = 100 and Kp = 10, the first foundation
band gap frequency range is 0 kHz–64.17 kHz, but no first band gap exists between the fourth and fifth
frequency curves. However, a band gap is found between the first and second frequency curves, which
is marked in green in Figure 4 (right column, bottom). This is called the second foundation band gap,
which also exists in the cases with Kw = 100 and Kp = 1 and Kw = 100 and Kp = 0, as illustrated in
Figure 4. Figure 4 shows the second foundation band gap frequency ranges predicted by the current non-
classical model: 71.07 kHz–85.92 kHz for the case with Kw = 100 and Kp = 0; 74.68 kHz–89.57 kHz
for the case with Kw = 100 and Kp = 1; and 100.54 kHz–117.30 kHz for the case with Kw = 100 and
Kp = 10. From these frequency ranges, the band gaps can be readily determined, which are listed in
Table 1.

From Figure 4 and Table 1, it is observed that the first band gap size decreases with the increase of
either Kw or Kp. However, the first foundation band gap size increases with these two foundation moduli.
Additionally, Figure 4 shows that the presence of either the Winkler–Pasternak foundation or the Winkler
foundation reduces the first band gap size, and the effect of the former is more significant than that of
the latter.
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Kw = 0, Kp = 0 Kw = 10, Kp = 1

Kw = 10, Kp = 0 Kw = 100, Kp = 1

Kw = 100, Kp = 0 Kw = 100, Kp = 10

Figure 4. Band gaps for the periodic composite plate structure predicted by the current
model. The Bloch wave vector k = (kx , ky) at 0, X and M is, respectively, (0, 0),
(π/a, 0) and (π/a, π/a) (see Figure 3, right).

3.2. Effects of the microstructure and surface energy. Figure 5 displays the band gaps for the peri-
odic composite plate structure predicted by the current model with a = 1 mm, Kw = 10, and Kp = 1.
Figure 5 (left column) shows the first band gap frequency ranges (in orange) and the first foundation band
gap frequency ranges (in grey) predicted by the current non-classical model for different values of the
plate thickness: 186.82 kHz–199.32 kHz and 0 kHz–20.69 kHz for h = 15µm; 322.81 kHz–355.31 kHz
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Figure 5. Band gaps for the periodic composite plate structure (with a= 1 mm, Kw = 10
and Kp = 1) predicted by the current model (left column) and the classical model (right
column). The Bloch wave vector k = (kx , ky) at 0, X and M is, respectively, (0, 0),
(π/a, 0), and (π/a, π/a) (see Figure 3, right).
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Foundation moduli First band gap (kHz) First foundation Second foundation
Kw Kp band gap (kHz) band gap (kHz)

0 0 15.08 NA NA
10 0 14.84 20.66 NA
10 1 12.50 20.69 NA

100 0 13.18 62.97 14.85
100 1 11.19 63.18 14.89
100 10 NA 64.17 16.76

Table 1. Band gaps for the periodic composite plate structure with different values of
the foundation moduli Kw and Kp predicted by the current model (with a = 1 mm,
h = 15µm).

h (µm) Band gap (kHz) Band gap (kHz) Relative difference (%)
Current model Classical model

15 12.50 10.22 22.31
40 32.50 27.22 19.40
80 56.98 54.20 5.13
120 82.58 80.70 2.33

Table 2. First band gaps for the periodic composite plate structure with different values
of the plate thickness h.

and 0 kHz–55 kHz for h = 40µm; 581.07 kHz–638.05 kHz and 0 kHz–109.86 kHz for h = 80µm; and
841.20 kHz–923.78 kHz and 0 kHz–164.73 kHz for h = 120µm.

Figure 5 (right column) illustrates the first band gap frequency ranges (in orange) and the first founda-
tion band gap frequency ranges (in grey) predicted by the classical elasticity-based model for different
values of the plate thickness: 106.28 kHz–116.50 kHz and 0 kHz–20.59 kHz for h = 15µm; 282.65 kHz–
309.87 kHz and 0 kHz–54.9 kHz for h = 40µm; 560.00 kHz–614.20 kHz and 0 kHz–109.8 kHz for
h = 80µm; and 827.20 kHz–907.90 kHz and 0 kHz–164.68 kHz for h = 120µm. These frequency
ranges give the two types of band gaps shown in Tables 2 and 3, respectively. In each case listed in
Tables 2 and 3, the band gap value based on the classical model is used as the base value to compute the
relative difference.

It is observed from Figure 5 and Table 2 that the first band gap size predicted by the current non-
classical model is always larger than that predicted by the classical model. However, the difference
between the two band gap sizes diminishes with the increase of the plate thickness h. When h = 15µm,
the band gap predicted by the current model is 1.22 times as large as that predicted by the classical model
(with a relative difference of 22.31%). When h = 120µm, the former is only 1.02 times of the latter,
giving a relative difference of 2.33%. This shows that the effects of microstructure and surface energy
on the first band gap are significant only for very thin plates.

Figure 5 and Table 3 reveal that the first foundation band gap predicted by the current non-classical
model is always larger than that predicted by the classical model. However, the relative difference
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h (µm) Band gap (kHz) Band gap (kHz) Relative difference (%)
Current model Classical model

15 20.69 20.59 0.49
40 55.00 54.90 0.18
80 109.86 109.80 0.05

120 164.73 164.68 0.03

Table 3. First foundation band gaps for the periodic composite plate structure with dif-
ferent values of the plate thickness h.

a = 20h a = 40h

a = 100h a = 200h

Figure 6. Band gaps for the periodic composite plate structure (with h = 15µm, Kw =

10 and Kp = 1) predicted by the current model. The Bloch wave vector k = (kx , ky) at
0, X and M is, respectively, (0, 0), (π/a, 0), and (π/a, π/a) (see Figure 3, right).

decreases with the increase of the plate thickness h. In addition, this difference is negligibly small
compared to the difference between the two first band gap values. This indicates that the effects of
microstructure and surface energy on the first foundation band gap are insignificant even for very thin
plates.

3.3. Effect of the unit cell length. Figure 6 illustrates the first band gap frequency ranges (in orange)
and the first foundation band gap frequency ranges (in grey) for the periodic composite plate structure
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a First band gap (kHz) First foundation band gap (kHz)

20h 138.7 229.89
40h 34.74 57.48

100h 5.56 9.20
200h 1.38 2.30

Table 4. Band gaps for the periodic composite plate structure with different values of
the unit cell length a predicted by the current model (with h = 15µm, Kw = 10, and
Kp = 1).

a First band gap (Hz) First foundation band gap (Hz)

20h 1700 3431
40h 425.8 857.9

100h 68.15 137.26
200h 17.03 34.32

Table 5. Band gaps for the periodic composite plate structure with different values of
the unit cell length a predicted by the current model (with h = 1 mm, Kw = 10, and
Kp = 1).

predicted by the current model for different values of the unit cell length a. The plate thickness is
h = 15µm, and the elastic foundation moduli are Kw = 10 and Kp = 1 in all cases.

The first band gap frequency range and the first foundation band gap frequency range are, respectively,
2065.9 kHz–2204.6 kHz and 0 kHz–229.89 kHz for the case with a = 20h shown in Figure 6 (left column,
top); 518.45 kHz–553.19 kHz and 0 kHz–57.48 kHz for the case with a = 40h displayed in Figure 6
(right column, top); 83.07 kHz–88.63 kHz and 0 kHz–9.20 kHz for the case with a = 100h depicted in
Figure 6 (left column, bottom); and 20.80 kHz–22.18 kHz and 0 kHz–2.30 kHz for the case with a = 200h
illustrated in Figure 6 (right column, bottom). From these frequency ranges, the band gaps can be readily
obtained, which are given in Table 4.

From Figure 6 and Table 4, it is observed that the frequency for producing the first band gap gets lower
when the unit cell length a becomes larger and the sizes of the first band gap and the first foundation
band gap decrease as a increases. The effect of the unit cell length is further illustrated in Figure 7.

Figure 7 shows the first band gap frequency ranges (in orange) predicted by the current model for
the composite plate structure with h = 1 mm, Kw = 10, Kp = 1 and different values of the unit cell
length: 17639 Hz–19339 Hz for a = 20h, 4426.1 Hz–4851.9 Hz for a = 40h, 708.93 Hz–777.08 Hz for
a = 100h, and 177.27 Hz–194.30 Hz for a = 200h. Also, Figure 7 displays the first foundation band
gap frequency ranges for different values of the unit cell length: 0 kHz–3431 MHz, 0 kHz–857.9 MHz,
0 kHz–137.26 MHz and 0 kHz–34.32 MHz for the cases with a = 20h, 40h, 100h, and 200h, respectively.
From these frequency ranges, the band gaps are computed and given in Table 5.

From Figure 7 and Table 5, it is observed that both the frequency for producing the first band gap
and the sizes of the first band gap and the first foundation band gap in the current cases with h = 1 mm
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a = 20h a = 40h

a = 100h a = 200h

Figure 7. Band gaps for the periodic composite plate structure (with h= 1 mm, Kw = 10
and Kp = 1) predicted by the current model. The Bloch wave vector k = (kx , ky) at 0,
X and M is, respectively, (0, 0), (π/a, 0), and (π/a, π/a) (see Figure 3, right).

decrease as the unit cell length a increases, which is the same trend as that seen from Figure 6 for the
cases with h = 15µm, a much smaller plate thickness. This shows that the effect of the unit cell length
on band gaps exists at different length scales.

3.4. Effects of the volume fraction. The variations of the first band gap and the first foundation band
gap with the volume fraction of material I (the inclusion phase) predicted by the current non-classical
model are displayed in Figures 8 and 9, respectively. For comparison purposes, the variations predicted
by the classical model are also shown in Figures 8 and 9. The numerical values for wave frequency
plotted in Figures 8 and 9 are obtained from solving (18), with the convergent solution attained when
L = 7 in each case. The properties adopted here for materials I and I I are the same as those used to
generate the numerical results displayed in Figures 4–7. In addition, a = 1 mm, h = 15µm, Kw = 10
and Kp = 1 are employed in the calculations here.

From Figure 8, it is observed that the first band gap predicted by the current model starts at V (I )
f = 9.5%

and increases to its maximum of 13.82 kHz at V (I )
f = 20%, after which it decreases with V (I )

f until its
disappearance at V (I )

f = 30%. Also, the first band gap predicted by the classical model increases from
zero to its maximum value 13.31 kHz as V (I )

f goes from 9% to 21%, then it decreases with V (I )
f until

vanishing at V (I )
f = 30%.
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Figure 8. First band gap changing with V (I )
f predicted by the current and classical mod-

els for the periodic composite plate structure (with a = 1 mm, h = 15µm, Kw = 10 and
Kp = 1).

Figure 9. First foundation band gap changing with V (I )
f predicted by the current and

classical models for the periodic composite plate structure (with a = 1 mm, h = 15µm,
Kw = 10, and Kp = 1).

From Figure 9, it is seen that the first foundation band gap predicted by the current non-classical
model or the classical elasticity-based model gradually decreases with the increase of V (I )

f from 0%
to 100%. Also, it is observed that the first foundation band gap values predicted by the current non-
classical model and those predicted by the classical model are very close, thereby indicating that the
effects of microstructure and surface energy on the first foundation band gap are not significant. This
agrees with what is observed from Figure 5 and Table 3.

From Figures 8 and 9, it is clear that the volume fraction does have a significant effect on the first
band gap and the first foundation band gap for the periodic composite plate structure according to both
the current non-classical and the classical models. This shows that large band gaps can be generated by
adjusting the volume fraction of the inclusion phase.
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4. Summary

A new model is provided for determining elastic wave band gaps in a periodic composite plate struc-
ture. It is based on a non-classical Kirchhoff plate model, the plane wave expansion method and the
Bloch theorem. The current non-classical model recovers the classical model as a special case after
neglecting the microstructure and surface energy effects. The new model simultaneously incorporates
the microstructure, surface energy and elastic foundation effects for the first time. In addition, the band
gaps predicted by the current model vary with the unit cell size and volume fraction of the inclusion
phase.

Numerical results show that the first band gap predicted by the current model including the foundation
effect is smaller than that without considering this effect, and the first foundation band gap increases with
the elastic foundation moduli. In addition, the first band gap predicted by the new non-classical model is
seen to be always larger than that based on the classical model, with the difference being significant for
very thin plates. It is also observed that the first band gap frequency and the sizes of the first band gap
and the first foundation band gap decrease with the increase of the unit cell length. Finally, it is found
that the volume fraction has a significant effect on the band gap size, indicating that large band gaps can
be achieved by tailoring the volume fraction.
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DYNAMIC ANALYSIS OF A MASS TRAVELING ON A
SIMPLY SUPPORTED NONHOMOGENEOUS BEAM COMPOSED OF

TRANSVERSELY EMBEDDED PERIODIC ARRAYS

YI-MING WANG AND HUNG-CHIEH LIU

Periodically embedded specified materials and laminas into the beam of a beam-mass system to form
a stiffness-driven nonhomogeneous beam having the potential to shift its specific stiffness to avoid the
happening of large amplitude vibration and resonance is worthy of note. However, if the arrangement
of composed materials and layers of the beam is changed, the developed model generally has to be
reestablished. To propose a model that can be used to analyze beams consisting of different assemblies
of materials and laminas is of great importance. Another point is using specified materials and laminas,
which are periodically embedded into a beam to form transversely periodic arrays, to make the beam
have the capability to change its specific stiffness to satisfy designing requirement. The Fourier-series
based approach is employed to take into account the periodicity of material properties and matching
conditions across laminas’ interfaces. The influence produced by the arrays to the dynamics of the
system is examined.

Result shows that the axial Young’s modulus and density of the proposed beam are biaxial periodic
functions. Different arrangements of embedded arrays bring different stiffness shifting potential of the
beam to reduce the vibration of the system. With proper choice of the stiffness and thickness ratios
between the arrays and basic layers, the growth of small amplitude vibration into large motion regime
can be attenuated. Meanwhile, by changing the thickness ratios in the width and height directions, there
exist seven possible compositions of the beam. It discloses that despite without considering the material
damping, the proposed beam still has good ability to diminish the beam vibration even after the mass left
the beam.

1. Introduction

Stiffness-driven beam-like members have been widely found in civil and mechanical engineering. Due
to high demand of operational safety of structures and mechanical systems, flexible members having
the capability to shift their stiffness-to-weight-ratio to avoid the happening of large amplitude vibration
are of great importance. For a beam-mass system, if the beam has the potential to vary its transverse
frequency, the dynamic response of the system is able to be improved. In other words, short useful life
and failure of structures caused by the occurrence of large amplitude vibration can be attenuated.

Mohebpour et al. [2016] studied the dynamics of a mass riding on an inclined symmetric cross-ply
laminated beam. Based on classical laminated theory and finite element approach, the equations of
motion were derived and solved. Their results indicated that a laminated composite beam had better
bending stiffness than a homogeneous beam. Meanwhile, the orientation of the layer had influential
effect to the bending stiffness of the composite beam.

Keywords: transversely periodic arrays, stiffness-driven beam, Fourier series, thickness ratio.
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Misiurek and Śniady [2013] investigated the dynamics of a force moving at constant speed on a
simply supported sandwich beam. A closed-form solution was obtained by the method of superimposed
deflections. They pointed out that when the speed of a point force was less and larger than the shear
wave velocity of the beam, different forms of the closed-form solutions were presented. Song et al.
[2018] made a parametric study to the dynamics of a sandwich plate subjected to a mass moving with
constant speed. The composite plate was composed of two isotropic face plates and a viscoelastic inner
layer. The effects produced by different boundary constraints were determined. They showed that using
nonhomogeneous structural members improved the dynamic behaviors of structures.

Tao et al. [2016] analyzed the dynamics of a fiber metal laminated beam induced by the motion of a
riding load and the change of environmental temperature. The beam consisted of three symmetric cross-
ply fiber reinforced layers and two metal layers. Their results disclosed that the geometric properties
and environmental temperature played key roles to the mid-span response of the beam. Meanwhile, the
increase of temperature decreased the bending stiffness of the beam.

Wang [2009] considered the dynamics induced by a mass traveling on a beam having periodic arrays
in axial direction. The inhomogeneous beam was assumed to be composed of two different laminas. The
Fourier-series based approach was introduced to take over the axial periodicity of the beam. This is also
one of the bases of this study.

Sayyad and Ghugal [2017] made an excellent review of existing studies on bending, buckling and
free vibration of laminated composite and sandwich beams. They discussed many popular methods
that have been applied on the analysis, e.g., finite element approaches based on classical and refined
theories, displacement fields of various equivalent single layer, layerwise, and zig-zag theories, and
etc. Many other authors used these approaches to study the vibration of laminated composite beams.
For example, Rao et al. [2001] investigated the natural frequencies of a laminated simply supported
beam. Friswell and Lees [2001] discussed the modes of vibration for nonhomogeneous damped beams
composed of two materials with different stiffness, damping and mass properties. Li et al. [2008] studied
the free vibration and buckling activities of laminated composite beams having lay-up in lateral direction
subjected by axially loading. In general, the problems were solved by assuming that the variation of
material properties was piecewise constants and continuity constraints were applied at the interface of
two neighboring segments. As the number of segments increased, a large number of unknowns were
generated and great computational efforts were needed.

Sheng and Wang [2018] investigated the nonlinear phenomena and resonant conditions of functionally
graded (FG) beams when the beams were subjected to parametric and external excitations. They pointed
out that, depending on the values of parameters, e.g., excitation frequency, excitation amplitude, damping,
volume fraction exponent, etc., chaotic response could occur when the magnitude of excitation was
greater than the Euler’s buckling load. Kahya and Turan [2018] analyzed the free vibration and stability of
FG sandwich beams without/with axial forces. Based on shear deformation theory, a finite element model
was obtained to derive the natural frequency and buckling loads of FG sandwich beams. The effects of
slenderness ratio and layer thickness to the fundamental frequency and buckling loads were examined.
Lee and Lee [2017] studied the free vibration of FG beams by using transfer matrix method. They
showed that when the slenderness ratio was not large, the effect produced by the coupling between the
axial and bending displacements to the natural frequency of a beam shouldn’t be ignored. Nevertheless,
the coupling effect becomes tiny when the slenderness ratio is large.
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Şimşek [2010], Şimşek and Kocatürk [2009], and Şimşek et al. [2012] employed Euler–Bernoulli
beam theory combined with numerical integration to study the dynamics of a FG and an axially FG (AFG)
beams with simply supported boundary condition, respectively. For the first two, they assumed that the
variation of material properties of the beam was continuous in thickness direction and could be expressed
by power-law functions. For the latter, the material properties were assumed to vary continuously in the
axial direction. Their results showed that using FG/AFG beams had influential benefits to the dynamics
of a beam-mass system.

Although stiffness-driven beam-like members with or without riding masses had been studied by many
authors, generally, the mathematic model developed was able to be used for the scheme proposed in that
study only. In other words, if the structure of the composite beam is changed, e.g., rearranging the
assembly of composed materials/laminas, the mathematic model may have to be remodeled. Unlike
other papers, in this study, the proposed model can be diversely applied on a composite beam having
different arrangements and compositions of materials and layers. Meanwhile, by transversely applying
specified arrays to form a periodic-array beam, the beam has the capability to shift its specific stiffness
and frequency. This means that the embedded arrays can be treated as tuning parameters to the bending
frequency of the beam. By assuming that all the layers of the periodic arrays are bonded, the periodicity
and matching conditions across the interfaces arrays are taken into account by the Fourier series expan-
sion. The dynamic characteristics induced by the inhomogeneity of materials/laminas of the proposed
beam and the motion of the riding mass are examined.

2. Basic formulas

As shown in Figure 1 (top), a mass traveling on a finite simply supported periodic-array beam with
rectangular cross-section having length `, width W , and thickness H is considered. Here, the occurrence
of delamination due to the interaction between laminas is prevented by the adjacent layers; hence, in the
modeling, the arrays with bonded strips and layers are assumed. The Cartesian coordinate system xyz is
on the inextensible centroidal axis of the beam (y = 0). Prior to the mass being set on motion, the beam
is in straight and in the state of equilibrium. The composite beam is composed of a number of bonded
periodic layers, basic and embedded laminas. The basic layer is a homogeneous lamina with the material
c having the Young’s modulus Ec and density ρc. The embedded lamina consists of periodic strips which
are formed by two different rectangular strips of a and b of length `; the Young’s moduli and densities
of the former and latter are Ea , Eb, ρa , and ρb, respectively. For the embedded lamina, the periodic
arrangement is two strips of b separated by one strip of a; these strips are stacked in a row in the width
(z) direction. For the beam, the periodic pattern is two basic layers separated by one embedded lamina
and they are piled symmetrically in the thickness (y) direction. Hence, unless otherwise specified, the
central ply of the embedded lamina is the strip a and the middle layer of the beam is the embedded lamina.
By assuming that the beam is an inhomogeneous continuum, the two different strips of the embedded
lamina and the two different layers of the beam are accounted for by spatial variation of the moduli of
their phases. Therefore, the Young’s modulus and density of the beam are biaxial periodic functions. It
is known that the Fourier analysis can be applied in a limited range and will converge to that function in
the interval. As a result, the variation of the moduli of the embedded lamina and the beam is expressed
by the Fourier series expansion.
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Figure 1. The schematic diagram of the cross-section of the periodic-array beam (top)
and the Fourier series representation (bottom).

Due to symmetry, the variation of the moduli is assumed to be an even periodic function and is stated as
a series of cosine terms; therefore, the number of strips and layers is odd. Referring to Figure 1 (bottom),
let E z

1, which is a periodic function in the z direction, be the axial Young’s modulus of an embedded
layer and be given by

E z
1(z)= Ea

dz

hz
+ Eb

(
1−

dz

hz

)
+ (Ea − Eb)

∞∑
j=1

2
jπ

sin
(

jπdz

hz

)
cos
(

jπ z
hz

)
≡ E z

10+

∞∑
j=1

E z
1 j cos

(
jπ z
hz

)
, (1a)
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where

E z
1 j =

2
hz

∫ hz

0
E z

1(z) cos
jπ z
hz

dz = (Ea − Eb)
2
jπ

sin
jπdz

hz
.

Here, dz is one-half of the thickness of the strip a; hz is one-half of the distance between the midpoint
of two strips of b separated by one ply of a. Therefore, dz/hz presents the thickness ratio of the strip a
that is present in one period 2hz in the z (width) direction. Similarly, the axial Young’s modulus of the
beam E1(y, z) is also periodic in the y direction. Hence, one has

E1(y, z)= E z
1

(
dy

h y

)
+ Ec

(
1−

dy

h y

)
+ (E z

1− Ec)

∞∑
k=1

2
kπ

sin
(

kπdy

h y

)
cos

kπy
h y

≡ E10+

∞∑
k=1

E1k cos
kπy
h y

, (1b)

where

E1k =
2

h y

∫ h y

0
E1(y, z) cos

kπy
h y

dy = (E z
1− Ec)

2
kπ

sin
kπdy

h y
.

Here, dy is one-half of the thickness of an embedded lamina; h y is one-half of the distance between the
midpoint of two basic layers separated by one embedded lamina; dy/h y denotes the thickness ratio of an
embedded lamina that is present in one period 2h y in the y direction. Hence, there exist seven possible
compositions of the composite beam:

(1) 0 < dz < hz and 0 < dy < h y . The beam consists of embedded and basic laminas. The Young’s
moduli of the embedded lamina and the beam are given by (1a) and (1b).

(2) dz = 0 and 0 < dy < h y . The embedded layer reduces to a homogeneous lamina with the strip b.
The axial Young’s moduli of the embedded layer and the beam become, respectively,

E z
1 = Eb and E1 = E1(y)= E10+

∞∑
k=1

E1k cos
kπy
h y

, (1c)

where

E10 = Eb

(
dy

h y

)
+ Ec

(
1−

dy

h y

)
and E1k = (Eb− Ec)

2
kπ

sin
(

kπdy

h y

)
.

(3) dz = hz and 0< dy < h y . For this condition, one has

E z
1 = Ea and E1 = E1(y)= E10+

∞∑
k=1

E1k cos
kπy
h y

, (1d)

where

E10 = Ea

(
dy

h y

)
+ Ec

(
1−

dy

h y

)
and E1k = (Ea − Ec)

2
kπ

sin
(

kπdy

h y

)
.

(4) dy = 0. This means the vanish of embedded layers; the beam is homogeneous with the material c,
i.e., E1 = Ec.
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(5) 0< dz < hz and dy = h y . The basic layer disappears; the beam is composed of two different kinds
of vertical plies of the materials of a and b. The axial Young’s modulus of the beam then turns into
E1 = E1(z)= E z

1 (1a).

(6) dz = 0 and dy = h y . The beam becomes a homogeneous beam with the material b, i.e., E1 = Eb.

(7) dz = hz and dy = h y . The axial Young’s modulus of the beam reduces to E1 = Ea .

It is seen that the proposed model can be diversely used to simulate the composite beams having different
arrangements of laminas and compositions of materials. Similar to the periodic distribution of Young’s
modulus, the density of the beam has the form

ρ(y, z)=ρz
(

dy

h y

)
+ρc

(
1−

dy

h y

)
+(ρz

−ρc)

∞∑
q=1

2
qπ

sin
(

qπdy

h y

)
cos

qπy
h y
≡ρ0+

∞∑
q=1

ρq cos
qπy
h y

, (2)

where ρz is the density of an embedded lamina and is given by

ρz
= ρz(z)= ρz

0 +

∞∑
p=1

ρz
p cos

(
pπ z
hz

)
,

with

ρz
0 = ρa

dz

hz
+ ρb

(
1−

dz

hz

)
and ρz

p =
2
hz

∫ hz

0
ρz(z) cos

rπ z
hz

dz = (ρa − ρb)
2

pπ
sin

pπdz

hz
.

Therefore, the mass per unit length of the beam can be obtained by

m =
∫ W/2

−W/2

∫ H/2

−H/2
ρ(y, z) dy dz = m0+

∞∑
p=1

m p +

∞∑
q=1

mq +

∞∑
p=1

∞∑
q=1

m pq ≡ mr (m̂0+ m̂ pq), (3)

where mr = ρr WH , r = c, b, a. The selection of the subscript r depends on d̂z and d̂y . For example,
r = c if cases (1)–(4) are considered; r = b if cases (5) and (6) are taken into account; r = a if case (7)
is examined. Other parameters in (3) are given by

m̂0 =
(
ρ̂a d̂z + ρ̂b(1− d̂z)

)
d̂y + ρ̂c(1− d̂y),

with

ρ̂a =
ρa

ρr
, ρ̂b =

ρb

ρr
(1− δra), ρ̂c =

ρcb

ρr
δrc, d̂z =

dz

hz
, d̂y =

dy

h y
,
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m̂ pq =

∞∑
p=1

m̂ p +

∞∑
q=1

m̂q +

∞∑
p=1

∞∑
q=1

m̂ pq ,

m̂ p =
1
2

d̂y ĥz

[
(ρ̂a − ρ̂b)

(
2

pπ

)2

sin(pπ d̂z) sin
pπ

ĥz

]
, with ĥz =

2hz

W
,

m̂q =
1
2

ĥ y
[(
ρ̂a d̂z + ρ̂b(1− d̂z)

)
− ρ̂c

]( 2
qπ

)2

sin(qπ d̂y) sin
qπ

ĥ y
, with ĥ y =

2h y

H
,

m̂ pq =
1
4

ĥz ĥ y

[
(ρ̂a − ρ̂b)

(
2

pπ

)2( 2
qπ

)2

sin
pπ

ĥz
sin(qπ d̂y) sin

qπ

ĥ y

]
,

where ĥz = 2hz/W = the ratio of the distance of the period 2hz to the width of the beam, ĥ y = 2h y/H =
the ratio of the length of the period 2h y to the height of the beam, δr p = the Dirac delta symbol with
p = a, c.

Since the axial Young’s modulus of the beam is also spatial dependence, E1 = E1(y, z), prior to
deriving the equations of motion of the system, the resultant bending moment about the neutral axis of
the cross section of the beam at time t has to be determined and is given by

M̃ = κ
∫ H/2

−H/2

∫ W/2

−W/2
E1(y, z) y2dz dy, (4a)

where κ is the beam curvature; y is the perpendicular distance from the neutral axis to the centroid of
the differential area d A, d A = dy dz. After some manipulations, it yields

M̃ = κ I
[

E10+

∞∑
j=1

E1 j − Îy

( ∞∑
k=1

E1k +

∞∑
j=1

∞∑
k=1

E1 jk

)]
≡ κEr I

(
Ê10+ Ê t

1 jk
)
, (4b)

where I = 1
12 WH 3, Îy = Iy/I = 1

8(ĥ y)
3 with Iy =

1
12 W h3

y ,

Ê10 = [Êa d̂z + Êb(1− d̂z)] d̂y + Êc(1− d̂y), with Êa =
Ea

Er
, Êb =

Eb

Er
(1− δra), Êc =

Ec

Er
δrc,

Ê t
1 jk =

∞∑
j=1

Ê1 j − Îy

( ∞∑
k=1

Ê1k +

∞∑
j=1

∞∑
k=1

Ê1 jk

)
,

Ê1 j =
1
2

d̂y ĥz

[
(Êa − Êb)

(
2
jπ

)2

sin( jπ d̂z) sin
jπ

ĥz

]
,

Ê1k = 6[Êa d̂z + Êb(1− d̂z)− Êc]

(
2

kπ

)4

sin(kπ d̂y) sin
kπ

ĥ y
,

Ê1 jk = 3ĥz

[
(Êa − Êb)

(
2
jπ

)2( 2
kπ

)4

sin( jπ d̂z) sin
jπ

ĥz
sin(kπ d̂y) sin

kπ

ĥ y

]
.

From (3) and (4b), one finds that increasing the number of layers decreases the distance of the period h y .
Therefore, when the beam has a many of layers, the length of h y becomes a tiny value and the terms ĥ y and
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Îy approach to zero such that m̂ pq→
∑
∞

p=1 m̂ p and Ê t
1 jk→

∑
∞

j=1 Ê1 j . This means that as h y decreases,
the Young’s modulus and mass of the composite beam converge to E10+

∑
∞

j=1 E1 j and m0+
∑
∞

p=1 m p,
respectively. Similar phenomenon is also observed when hz and ĥz are taken into account.

As mentioned previously, the number of strips and layers is always odd. The distance of the periods
hz and h y along the width and height can be calculated and yields

hz =
W

2i±2d̂z
, 0< d̂z < 1, i = 2, 3, 4, . . . , (5a)

h y =
H

2 j±2d̂y
, 0< d̂y < 1, j = 2, 3, 4, . . . , (5b)

where i and j are the number of the strips b and the total of basic layers, respectively. The plus and minus
signs used in (5a) are when the number of the strips b is less than and greater than the total of the strips a,
respectively. Therefore, for the plus and minus signs, the number of strips of an embedded lamina is
equal to 5+ 4(i − 1) and 3+ 4(i − 1), i = 1, 2, 3, . . ., respectively. The selection of the plus and minus
signs in (5b) can be done similarly. For example, a sandwich (three horizontal layers) beam is composed
of one embedded lamina (core) and two basic layers. The embedded lamina consists of three strips of a
of equal lateral thickness 2dz and four strips of b of equal lateral thickness 2(hz − dz). The lengths of
hz and h y are given by hz =W/(8− 2d̂z), 0< d̂z < 1, and hz = H/(4− 2d̂y), 0< d̂y < 1, respectively.
Another example is that a composite beam consists of five horizontal layers, three embedded and two
basic laminas. The period h y then is h y = H/(4+ 2d̂y). Note that (5a) and (5b) are not applied to
the cases when d̂z = 0, 1 and d̂y = 0, 1, respectively. For d̂z = 0 and 1, the embedded lamina reduces
to a homogeneous layer having the materials b and a, respectively. For d̂y = 0 and 1, the beam is
homogeneous having the material c and the beam consists of two different vertical layers of a and b,
respectively.

As the structure of the composite beam is established, in the following, the dynamics of a beam-mass
system is considered. From Figure 2, the mechanics of the interface between the mass and beam is
determined by modeling the mass as a rigid body that is rolling on the beam. The equations governing
the motion of the system can be derived from the dynamic equilibrium of forces and momenta and are
given by

F,s + f = mr (m̂0+ m̂ pq) r,t t , 0< s < l, t > 0, (6a)

F = T τ̂ + V n= (T cos θ − V sin θ) i + (T sin θ + V cos θ) j , (6b)

Er (Ê10+ Ê t
1 jk) Iv,sss + V = 0, (6c)

with the inextensibility constraint r,s · r,s = 1. The corresponding boundary conditions for the simply
supported beam are

u(0, t)= v(0, t)= v(`, t)=
∂2v(0, t)
∂s2 =

∂2v(`, t)
∂s2 = 0, (7a)

T (`, t)(1+ u,s)+ Er (Ê10+ Ê t
1 jk) Iv,sss v,s = 0, at s = `, (7b)

where (7b) is obtained when the resultant force in the i direction vanishes at s = `. In above equations,
i, j = the unit vectors in the horizontal and gravitational (transverse) directions, respectively, r(s, t)=
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Figure 2. System configuration (left) and force equilibrium diagram (right).

[x(s)+ u(s, t)]i + v(s, t) j with u(s, t) and v(s, t) being the axial and transverse displacements of the
beam measured from the undeformed state, respectively, n, τ̂ = the unit normal and tangent vectors to
the beam configuration, respectively, T, V, θ = the axial and transverse forces in the beam and the angle
between the neutral axis of the beam and the x-axis, respectively. The subscripts s and t mean the s
and t differentiation. In this study, the slenderness ratio of the beam s = `(

√
I/A)−1 [Han et al. 1999]

selected is a large value such that the Euler–Bernoulli beam theory is applicable to be applied, where A
is the cross-sectional area of the beam. By considering the small deformation theory and applying the
inextensibility constraint r,s · r,s = 1, the axial displacement of the beam is in the second order nonlinearity
and can be neglected. Therefore, r(s, t)= x(s) i + v(s, t) j and τ̂ = i + v,s j . The force f represents the
external forces including the weight and the reactions of the moving mass upon the composite beam and
can be expressed as

f = (N n+µN τ̂ ) δ̄
(
s− s̄(t)

)
, (8)

where N , µ, δ̄[s− s̄(t)], and s̄(t) represent the dynamic interaction force between the mass and beam,
coefficient of friction, Dirac delta function, and the position of mass along the arc of the beam at time t ,
respectively. The equation of motion of the moving mass is given by (Figure 2)

MaM = M d2

dt2

[
r
(
s̄(t), t

)]
= M[r,ss(s̄,t)2+ 2r,st s̄,t + r,s s̄,t t + r,t t ] = M g+ fτ̂ −µN τ̂ − N n, (9)

where aM = the acceleration of the mass, M = total mass of the moving mass, g = g j , fτ̂ = M f τ̂ =
M f (i + v,s j)= tangential propelling thrust with f being a prescribed function of time. Hence, loss of
contact occurs if the interaction force becomes zero. The force N can be obtained by taking the inner
product of (9) with n and is given by

N = [M g−MaM ] · n|s=s̄(t). (10)

To determine the axial force T , one substitutes (6b), (6c), and (8)–(10) into (6a) and assumes that the
variation of axial force remains continuous at the mass. The axial force T can be obtained by taking
the inner product of (6a) by the unit vector i and integrating it from 0 to s = s̄(t) and s = s̄(t) to ` and
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using (7b). Inserting this result into (6a) in the j direction and neglecting nonlinear terms when compare
these terms to the linear term of v(s, t) and unity, the equation of motion of the nonhomogeneous beam
with a riding mass is given by

mr (m̂0+ m̂ pq) v,t t + Er I (Ê10+ Ê t
1 jk) v,ssss + f · j = 0, 0< s < `, t > 0. (11)

The differential equation is linear in the displacement field. Let the variable v(s, t) be of the form

v(s, t)=
n∑

j=1

q̃ j (s) h̃ j (t)≡ q̃(s)T h̃(t), (12)

where h̃(t) is the time dependent vector to be determined; n is a suitably large number to assure conver-
gence. In order that the variable v(s, t) satisfies the boundary condition given by (7a), one represents
q̃(s) as a vector of a continuous function:

q̃(s)=
(

sin πs
`
, sin 2πs

`
, . . . , sin iπs

`
, . . . , sin nπs

`

)T
, 0< s < `, (13)

which satisfies the spatial boundary constraints q̃|s=0,`=
d2 q̃
ds2 |s=0,`= 0.

To obtain the normalized equations of motion of the combined system, one substitutes (8)–(10), (12),
and (13) into (11) and introduces the following nondimensional quantities:

τ =

√
Er I

mr`4 t, M̂ =
M

mr`
, N̂ =

mr`
3

MEr I
N , f̂ =

mr`
3

Er I
f, ĝ =

mr`
3

Er I
g, η =

s
`
, ξ =

s̄
`
. (14)

To eliminate spatial dependence of (11), the Galerkin’s procedure is employed and is done by multiply-
ing (11) by the weighting vector q(η) and integrating (11) w.r.t. to η from 0 to 1. The result yields

(
I +

2M̂
m̂0+ m̂ pq

G1

)
ḧ+

4M̂
m̂0+ m̂ pq

ξ̇G2ḣ+
[ Ê10+ Ê t

1 jk

m̂0+ m̂ pq
�2

h +
2M̂

m̂0+ m̂ pq
(− f̂ G2− ξ̇

2G3)

]
h

+
2M̂

m̂0+ m̂ pq
ξ̈G2h =

2M̂ ĝ
m̂0+ m̂ pq

sξ , 0< ξ < 1, τ > 0, (15a)

where the superposed prime and dot denoting the η and τ differentiation, I = n×n unit matrix, q = q(η),
h = h(τ ), sξ = sξ j with sξ j = sin jπξ when j = 1, 2, . . . , n; G1 =

∫ 1
0 δ(η− ξ)q qTdη, G2 =

∫ 1
0 δ(η−

ξ)q q ′Tdη, G3 =
∫ 1

0 δ(η − ξ)q q ′′Tdη, �2
h = 2

∫ 1
0 qq ′′′′Tdη = diag[(ωh

j )
2
] with ωh

j = ( jπ)2 being the
normalized frequency of the j-th mode vibration of the homogeneous beam. Equations (9) and (10)
become

ξ̈ −µq ′′T h(ξ̇ )2− 2µq ′T ḣξ̇ −µqT ḧ− ĝq ′T h = f̂ −µĝ, η = ξ, τ > 0, (15b)

N̂ = ĝ− [qT ḧ1− 2q ′T ḣ1ξ̇ − q ′′T h1ξ̇
2
], η = ξ, τ > 0. (15c)

The initial conditions are

ξ̇ (0)= ξ̇0, ξ(0)= ξ0, h(0)= ḣ(0)= 0, (16)
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where 0 is n× 1 zero vector; ξ̇0 and ξ0 are the initial speed and the initial position of mass on the beam,
respectively. As shown in (15a), by properly arranging the material and geometric properties of periodic
arrays, the beam frequency is able to be varied. In other words, the proposed beam has the potential
to change its natural frequency to avoid the growth of small amplitude vibration and the occurrence of
resonance. It is mentioned here that (15b) was obtained by eliminating the normal reaction force N of
the beam on the mass between the two equations in directions i and j of (9).

After the mass left the beam, the dynamics of the system becomes the free vibration of the nonhomo-
geneous beam with nonzero initial conditions. In this situation, (15b) and (15c) vanish and (15a) reduces
to

ḧ+
Ê10+ Ê t

1 jk

m̂0+ m̂ pq
�2

h h = 0, τ > τ |ξ=1, (17a)

with the initial conditions

h(0)= h(τ |ξ=1) and ḣ(0)= ḣ(τ |ξ=1), (17b)

where h(τ |ξ=1) and ḣ(τ |ξ=1) denote the amplitude and velocity of response of the beam when the mass
is at the right end.

To verify the existence of solution of the system, a new state vector z is introduced into (15a) and (15b)
to form the integrational scheme. Let z = (ḣT, ξ̇ , hT, ξ)T be a 2n+ 2 vector with the associated initial
condition z(0)= (0T, ξ̇0, 0T, 0)T . The two equations can be written as

Aż+ Bz+ p= 0. (18)

In (18), A and B are (2n+ 2)× (2n+ 2) matrices and p is the (2n+ 2) vector defined by

A=


[I + 2M̂

m̂0+m̂ pq
G1]

2M̂
m̂0+m̂ pq

(G2h) [0] 0

−µqT 1 0T 0
[0] 0 I 0
0T 0 0T 1

 ,

B =


[

4M̂
m̂0+m̂ pq

ξ̇G2] 0 [
Ê10+Ê t

1 jk
m̂0+m̂ pq

�2
h +

2M̂
m̂0+m̂ pq

(− f̄ G2+ ξ̇
2G3)] 0

0T
−µ(ξ̇q ′′T h+ 2q ′T ḣ) −ĝq ′T 0

−I 0 [0] 0
0T

−1 0T 0

 ,

p=
(
−

2M̂ ĝ
m̂0+ m̂ pq

sT
ξ,− ( f̂ −µĝ), 0T, 0

)T

,

where A is a nonsingular matrix and [0] is a n× n zero matrix.

3. Numerical results and discussions

Numerical results refer to an assumed model wherein a mass travels with variable speed on a finite simply
supported beam having transversely periodic arrays. To study the influence produced by the variation of
various parameters to the dynamics of the system, the Runge–Kutta method with sixth order accuracy
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Figure 3. Comparison of the results with those reported in [Mohebpour et al. 2016]
(dashed line, left), [Tao et al. 2016] (dashed line, middle), and [Kahya and Turan 2018]
(symbolized by point symbols©, •, and 1, right).

is employed to numerically integrate (18). The number of terms of the Fourier series in (1) and (2) is
set to be 30 to assure convergence. The convergence of the model is tested by increasing the terms of
approximation. It shows that for n ≥ 10, the difference among the results is negligible. Hence, the
dimension n of z is set to be 15 to retain for sufficient accuracy.

To validate the accuracy of the model, in agreement with previous works is considered. As shown
in Figure 3, the accuracy of the model is verified by numerically integrating (18) and then the solutions
(solid lines) of this study are compared with the results (dashed lines) reported in Figure 3 by Mohebpour
et al. [2016] and in the Figure 2 by Tao et al. [2016]. The parameters selected are the same as those used
in the two papers, respectively, and are given in Table 1. Note that in [Tao et al. 2016], the massless
point force was used; under such condition, (18) reduces to ż+ Bz+ p= 0, where

z = (ḣT , hT )T , B =

[
[0] [

Ê10+Ê t
1 jk

m̂0+m̂ pq
�2

h]

−I [0]

]
, p=

(
−

2P̂
m̂0+ m̂ pq

sT
ξ , 0T

)T

, and P̂ =
`2

Er I
P,

with P being the massless point force. As shown in Figure 3 (left and middle), the solutions derived
from the proposed model nearly coincide with the results obtained by Mohebpour et al. [2016] and Tao
et al. [2016].

In addition to the verification mentioned above, the normalized fundamental frequency (≡ ω1) of the
proposed beam under simply-supported boundary condition is checked and compares it with the first
nondimensional frequency (≡ $1) reported in the Table 3 by [Kahya and Turan 2018]. The relation

[Mohebpour et al. 2016] Stiffness E = 2020.797216 · 108 Pa, density ρ = 15267.2 kg/m3,
length `= 4.352 m, thickness H = 0.072322 m, width W = 0.018113 m
Mass of the traveling mass m = 21.8 kg, mass speed v = 27.49 m/s

[Tao et al. 2016] Stiffness E = 72.4 GPa, density ρ = 2770 kg/m3, length `= 10 m,
thickness H = 0.5 m, width W = 0.4 m
Magnitude of the point force P = 500 kN, force speed v = 40 m/s

Table 1. The properties of the beams and moving masses used in [Mohebpour et al.
2016] and [Tao et al. 2016].
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k = 0 d̂y = 0 (a homogeneous ceramic beam)
k = 1 d̂y = 0.67 (dy = 0.5tm and h y = 0.75tm = 1.5tc),

tc, tm = the thickness of one ceramic lamina and metal core, respectively

k = 2 d̂y = 0.857 (dy = 0.5tm and h y = 0.583tm = 3.5tc)
k = 10 d̂y ≈ 1 (a beam with almost all metal material)

Table 2. The relations between k and the parameters used in Figure 3 (right).

Set 1 The Young’s moduli (GPa) of the strips of a, b, and the material c of the basic layer
Ea = 205 (Êa = 2.05), Eb = 142 (Êb = 1.42), Ec = 100 (Êc = 1)

The densities (103 kg/m3) of the strips of a, b, and the material c of the basic layer
ρa = 7.7 (ρ̂a = 1.1), ρb = 1.6 (ρ̂b = 0.229), ρc = 7 (ρ̂c = 1)

Set 2 Ea = 250 (Êa = 2.5), Eb = 175 (Êb = 1.75), Ec = 100 (Êc = 1)
ρa = 3.5 (ρ̂a = 0.5), ρb = 5.25 (ρ̂b = 0.75), ρc = 7 (ρ̂c = 1)

Table 3. The material properties of the proposed beam for set 1 and set 2.

between these two frequencies $1 and ω1 is $ = (`/Hs)ω1, where s denotes the slenderness ratio s.
For a beam having rectangular cross-section area with height H , the slenderness ratio s equals

√
12 `/H

and hence

$1 =
ωh

1
√

12

√√√√ Ê10+ Ê t
1 jk

m̂0+ m̂ pq
.

Therefore, with the same materials as those used in [Kahya and Turan 2018], the frequency ω1 varies
from 2.849 ($1 = 2.8057), where ω1 = ω

h
1/
√

12 = 2.849 (ωh
1 = π

2, [Han et al. 1999]), to 5.483
($1 = 5.4658). The frequency of the proposed beam under other kinds of boundary conditions can
be obtained by similar ways. For example, the frequency ω1 for clamped-clamped BC is from 6.458
($1 = 6.302), where 6.458= ω1 = ω

h
1/
√

12 (ωh
1 = (4.73)2, [Han et al. 1999]), to 12.42 ($1 = 12.235).

Figure 3 (right) shows the frequency ω1 of the proposed beam versus the thickness ratio d̂y under different
boundary conditions and the results reported in the Table 3 by [Kahya and Turan 2018] (symbolized by
point symbols©, •, and 1) where the face-core-face thickness ratio 1-0-1 is chosen and the power-law
exponent k selected are k = 0, 1, 2, and 10. In this figure, the FG beam is modeled as a sandwich
beam composed of one metal core and two ceramic face layers. The solid, dashed, and central lines
shown denote the results of this study under the simply-supported, clamped-clamped, and clamped-free
boundary conditions, respectively. The relation between the power-law exponent k and the parameters
used in Figure 3 (right) is given in Table 2. It clearly indicates that the solutions derived from the proposed
model are in agreement with the results obtained by Kahya and Turan [2018].

To parametric study the dynamics of a mass traveling on the periodic-array beam, two sets of param-
eters are chosen and given in Table 3. The difference between the two sets is different arrangements
of material properties. The numerical order of the Young’s moduli and densities of materials selected
in set 1 and set 2 is Ea > Eb > Ec, ρa > ρc > ρb and Ea > Eb > Ec, ρc > ρb > ρa , respectively.
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The geometric properties of the beam are: ` = 10 m and W = H = 0.15 m, where the slenderness
ratio s = `(

√
I/A)−1

=
√

12 `/H = 231. The traveling mass has the mass M = 200 kg. Note that in
the following figures, unless otherwise specified, the dashed line without symbol denotes the beam is a
homogeneous beam having the material c. Meanwhile, in Figures 4–8, the mass moves at constant speed
˙̄s(t) = 20 m/s. With the view to illustrating the diversity of the proposed model, firstly the dynamics
of a sandwich beam (having three horizontal layers) with a riding mass is considered and presented in
Figures 4 and 5; the parameter set 1 is chosen. The beam consists of one embedded and two basic
laminas; the core layer consists of three and two strips of a and b, respectively. The hz and h y are given
by hz = 0.15/(4+ 2d̂z), 0< d̂z < 1, and h y = 0.15/(4− 2d̂y), 0< d̂y < 1.

Figure 4 presents the trajectory of mass (mm) versus the position of mass along the beam (m) and the
time history (s) of the midpoint deflection (mm) of the beam, respectively. The thickness ratios d̂y and
d̂z are d̂y = 0.25 and d̂z = 0.1 (symbolized by +), 0.5 (symbolized by �), and 0.9 (symbolized by 1).
Figure 5 presents similar information to that shown in Figure 4, except d̂z = 0.25 and three different
values of d̂y being selected, d̂y = 0.1 (symbolized by +), 0.5 (symbolized by �), and 0.9 (symbolized
by 1). These two figures clearly indicate that different arrangements of the geometric and material
properties of the arrays bring different capabilities of the beam to reduce the amplitude of vibration,
even after the mass left the terminal point. Figure 4 also indicates that the strip a having the largest
density, increasing d̂z increases not only the stiffness but also the mass of the embedded lamina; this
causes that changing d̂z makes a little difference to reduce the amplitude of beam vibration. For the
thickness ratio d̂y , since the embedded layer has greater specific stiffness than the basic layer, as shown
in Figure 5, increasing d̂y has significant potentials to diminish the vibration of the system.

To study the impact arising from different arrangements of the moduli of the arrays, in Figure 6, the
midpoint deflection of the beam (mm) is plotted as a function of the variation of d̂z (Figure 6, left) and d̂y

(Figure 6, right) when the mass reaches the midpoint (ξ = 0.5). The parameter set 1 and the beam having
horizontally three embedded and four basic laminas are chosen. The embedded layer consists of three
and four strips of a and b, respectively. The periods hz and h y are hz = 0.15/(8− 2d̂z) (0 < d̂z < 1)
and h y = 0.15/(8− 2d̂y) (0< d̂y < 1). In Figure 6 (left), d̂y selected are: 0 (dashed line, case (4)), 0.1
(symbolized by +), 0.25 (symbolized by �), 0.5 (symbolized by 1), 0.75 (symbolized by ©), and 1
(symbolized by ⊕, cases (5, 6, 7)). In Figure 6 (right), d̂z used are: 0 (without symbol), 0.1 (symbolized
by +, cases (2, 6)), 0.25 (symbolized by �), 0.5 (symbolized by 1), 0.75 (symbolized by©), and 1.0
(symbolized by ⊕, cases (3, 7)). This figure clearly shows that if the embedded lamina has higher specific
stiffness than the basic layer, the integration of embedded laminas into the beam increases the capability
of the beam to diminish the vibration caused by the motion of riding mass. However, in set 1, the strips
of a and b have the largest and lowest densities, respectively. Hence, when d̂z increases from 0 to 1,
the Young’s modulus ratio is from Êb = 1.42 to Êa = 2.05 and the density ratio is from ρ̂b = 0.229 to
ρ̂a = 1.1. In other words, the increase of d̂y and d̂z increases not only the stiffness but also the mass of
the beam. This implies when d̂y becomes large, the increase of density becomes greater than that of the
Young’s modulus such that greater d̂z has lower potential to reduce the vibration than smaller d̂z .

In order to fully understand the influence produced by the change of the beam properties, the set 2
(Ea > Eb > Ec and ρc > ρb > ρa) is chosen. The speed and mass of the moving mass are the same as
before. Figure 7 presents similar information to that shown in Figure 6. This figure indicates that when
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Figure 4. Trajectory of mass (mm) versus the position of mass along the beam (m) (left)
and the time history (s) of the midpoint deflection (mm) of the beam (right).
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Figure 5. This figure presents similar information to that shown in Figure 4, except that
the thickness ratios used are different with those shown in Figure 4.

the basic layer has lowest Young’s modulus and largest density, increasing the thickness ratios d̂y and d̂z

amplifies the capability of the beam to reduce the vibration of the system. However, if this is not the
case, e.g., as those shown in Figure 6, large d̂z may not have higher potential to diminish the amplitude
of vibration than small d̂z . From Figures 6 and 7, one may conclude that the capability of the beam
to diminish the vibration of the system increases with the stiffness ratio, but decreases with the density
ratio, between the embedded and the basic layers.

Figure 8 presents the effects produced by the change of the number of strips and layers of the beam
for set 1 (shown in dashed lines) and set 2 (shown in solid lines). In this figure, the beam deflection
at mid-span when the mass reaches ξ = 0.5 is plotted as a function of the total of strips (Figure 8,
left) and layers (Figure 8, right). In Figure 8 (left), two different beams are considered, a sandwich
(symbolized by +) and a five-layer (symbolized by 1) beams. The sandwich beam consists of one
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Figure 6. The midpoint deflection of the beam (mm) when the mass reaches the mid-
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Figure 7. This figure presents similar information to that shown in Figure 6, except the
set 2 being selected.

embedded and two basic layers; the five-layer beam is composed of three embedded and two basic
layers. Both of the thickness ratios d̂y and d̂z are set to be 0.5. In Figure 8 (right), the number of strips of
an embedded lamina chosen are 3 (symbolized by +) and 9 (symbolized by 1). The two plots indicate
that the difference due to different numbers of strips and layers converges quickly. Recalling that the
increase of the number of strips and layers decreases the distance of the periods hz and h y , respectively.
Therefore, for example, when the beam has a many of layers, the length of h y becomes a tiny value
and the terms ĥ y and Îy approach to zero such that m̂ pq →

∑
∞

p=1 m̂ p and Ê t
1 jk →

∑
∞

j=1 Ê1 j ((3)
and (4b)). Similar phenomenon is also observed when hz(ĥz) is examined. This means that the midpoint
deflection converges to a specific value as the number of strips and layers increases. From Figures 6–8,
one concludes that with proper choice of the stiffness ratio, density ratio, and thickness ratio between
the embedded and basic laminas of the beam, the growth of small amplitude vibration into large motion
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Figure 8. This figure shows the beam deflection at mid-span when the mass reaches
ξ = 0.5 versus the number of strips of the embedded lamina (left) and the total of layers
of the beam (right).

regime can be attenuated. In other words, because of inhomogeneity of materials, when structures are
subjected to external excitations, structures have the ability to prolong their useful life by adjusting the
arrangement of material and geometric properties between the embedded periodic-array and basic layers.

In the following, the mass slows down during operation being taken into account. Figure 9 illustrates
the trajectory of mass (mm) versus the position of mass along a sandwich beam for different arrangements
of periodic arrays and sets of parameters. The embedded lamina consists of three and two strips of a
and b, respectively. The dashed and solid lines denote the set 1 and set 2, respectively. The thickness
ratios d̂y and d̂z selected are: d̂y = d̂z = 0 (dashed line, without symbol), d̂y = d̂z = 0.5 (symbolized by +),
d̂y = 1 and d̂z = 0.5 (symbolized by �). In Figure 9 (left), the mass travels at constant speed, v = 20 m/s.
In Figure 9 (right), the mass is under deceleration for v0 = 20 m/s (initial speed), µ= 0 (zero friction),
and f = −20 m/s2 (the retard force applied on the mass). Figure 10 presents similar information to
that shown in Figure 9 (right), except that the mass stops before the end support being considered. The
initial speed and retard force applied on the mass are, respectively, v0 = 20 m/s and f =−22 m/s2. The
frictions used in Figure 10 (left) and Figure 10 (right) are µ = 0 and µ = 0.5, respectively. Note that
the friction is served as another braking system and therefore it may not be a small value. These two
figures clearly disclose that the periodic-array composite beam noticeably diminishes the amplitude of
the trajectory of mass. Meanwhile, Figure 10 shows that as the mass is slowing down and stops prior to
the terminal point, acute oscillation of the trace of mass occurs. In addition, when the mass is subjected
to large reverse forces and friction force, the mass may stop away from the end support; under such
situation, as the mass moves along a homogeneous beam (showing as dashed line without symbol) and is
near the halt point, the oscillating amplitude of the trajectory of mass may become large. This condition
can be avoided if the proposed beam is employed.
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Figure 9. This figure illustrates the trajectory of mass (mm) versus the position of mass
along the sandwich beam for different arrangements of periodic arrays. Left: the mass
travels at constant speed. Right: the mass is under deceleration.
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Figure 10. This figure presents similar information to that shown in Figure 9 except
that the mass stops before the end terminal being considered with frictions µ= 0 (left)
and µ= 0.5 (right).

4. Conclusions

In this study, nonhomogeneous beams having transversely periodic arrays and different arrangements of
materials and laminas are considered. The Fourier series with a wavelength equal to the average space
between two different strips and a wavelength equivalent to the average space between embedded and
basic layers are used to take into account the periodicity of the embedded lamina and beam, respectively.
The Young’s modulus and density of the composite beam are biaxial periodic functions. The proposed
passive nonhomogeneous beam is introduced to a beam-mass system to attenuate the likelihood of large-
amplitude vibrations.
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Results show that even if the material damping is not considered, the proposed beam has excellent capa-
bility to reduce the vibration of a beam-mass system after the mass left the beam. Different arrangements
of material and geometric properties of the periodic arrays result in different bending stiffness and mass
distribution of the beam. The vibration of the system can be effectively attenuated by properly choosing
the stiffness and density ratios between the embedded strips/laminas and basic layers. It indicates that the
bending frequency of the nonhomogeneous beam varies with the change of mass ratio, Young’s modulus
ratio, and thickness ratio of the periodic arrays; this is not observed when a homogeneous beam is taken
into account. In addition, the proposed model may be applied to many applications if proper materials
are selected. For example, if the shape-memory-alloy (SMA) is used to replace the strip a, the beam is
capable of having the ability to overcome the influence produced by the change of temperature.
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Table of notations

H : height of the beam (gravitational (y) direction)

W : width of the beam (horizontal (z) direction)

I : the area moment of inertia of the beam

M̃ : the resultant bending moment about the neutral axis of the cross-section of the beam at time t

M , M̂ : the mass and the dimensionless mass of the moving mass

N , N̂ : the dimensional and nondimensional normal reaction force between the beam and the riding mass

T : the axial force in the beam

V : the transverse force in the beam

a, b, c: material symbols of the two different strips used in an embedded lamina and the basic layers,
respectively

f : the thrust applied on the riding mass

m: mass per unit length of the beam

`: length of the beam

Ea , Eb, Ec: the Young’s moduli of the strips a, b, and the basic layer, respectively

E z
1: the axial Young’s modulus of an embedded lamina, a periodic function in z direction

E1(y, z): the axial Young’s modulus of the nonhomogeneous beam, a biaxial periodic function in y and
z directions

dy , d̂y : one-half of the thickness of an embedded lamina and the thickness ratio of an embedded lamina
being present in one period (2h y) in the height direction, d̂y = dy/h y , respectively

dz , d̂z: one-half of the thickness of the strip a and the thickness ratio of the strip a being present in one
period (2hz) in the width direction, d̂z = dz/hz , respectively
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h y , ĥ y: one-half of the distance between the midpoint of two basic layers separated by one embedded
lamina and the ratio of 2h y to the height of the beam, ĥ y = 2h y/H , respectively

hz , ĥz: one-half of the distance between the midpoint of two strips of b separated by one ply of a and
the ratio of 2hz to the width of the beam (ĥz = 2hz/W ), respectively

s, s̄: the arc length and the position of the moving mass along the beam, respectively

u: the axial displacement of the beam measured from the undeformed state

v: the transverse displacement of the beam measured from the undeformed state

ρa , ρb, ρc: densities of the strips a, b, and the basic layer, respectively

ρz: density of an embedded lamina, which is a periodic function in z direction, ρz
= ρz(z)

ρ: density of the nonhomogeneous beam, which is a biaxial periodic function in y and z directions,
ρ = ρ(y, z)

aM : acceleration of the moving mass

f : the external forces including the weight and the reactions of the moving mass upon the composite
beam

g: acceleration due to gravity (= g j)
I : the n× n unit matrix

i : the unit vector in the horizontal direction

j : the unit vector in the gravitational (transverse) direction

n: the unit normal vector to the beam configuration

r: the Cartesian position vector of point s along the beam at time t

τ̂ : the unit tangent vector to the beam configuration

µ: coefficient of friction

ξ : dimensionless position of the moving mass along the beam

ωh
j : the normalized frequency of the j-th mode vibration of the homogeneous beam

δ̄(s− s̄): Dirac delta function

δr p: Dirac delta symbol
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STRESS CONCENTRATION AROUND AN ARBITRARILY-SHAPED HOLE IN
NONLINEAR FULLY COUPLED THERMOELECTRIC MATERIALS

CHUAN-BIN YU, HAI-BING YANG, KUN SONG AND CUN-FA GAO

Using the complex variable method, we study the plane problem of an infinite thermoelectric material
containing an arbitrarily-shaped hole under a uniform remote electric current and a uniform energy flux.
The nonlinear fully coupled thermoelectric constitutive equations are used to account for the large current
or temperature gradient imposed on thermoelectric materials during their engineering service. The hole
surface is assumed to be electrically and thermally insulated and mechanically free. The shape of the
hole is defined by a polynomial conformal mapping. Fourier expansion technique is used to solve the
corresponding boundary value problems. A triangular hole is considered for the purpose of illustration.
The bluntness, hole orientation and the load angle as important parameters are considered. Numerical
results show that the effects of these parameters on stress distribution around the hole are very significant.
By the correct selection of these parameters, the lowest thermal stress concentration can be achieved.

1. Introduction

Thermoelectric materials are widely used in energy conversion: the Seebeck effect allows electricity
generation from a temperature gradient, while the Peltier effect can convert electricity into cooling [Tritt
and Subramanian 2006; Bell 2008; He et al. 2015; He and Tritt 2017]. Thermoelectric solids are typically
brittle semiconductors with low mechanical strength and always subjected to defects and damages, for
example, holes, voids and cracks, during their fabrication and operation [Schmidt et al. 2015; Li et al.
2015]. When the heat flux at a thermoelectric solid is disturbed by the geometric discontinuities brought
by holes/imperfections, thermal stresses are induced. Excessive thermal stresses will cause the prema-
ture failure and thus reduce the useful life of thermoelectric structures and devices. Determining the
amount and location of these stresses is essential to achieve accurate predict and evaluate the reliability
of thermoelectric devices. Consequently, the research on the hole problem of thermoelectric materials is
of great practical importance.

Thermal stress concentration around holes is one of the classical topics in solid mechanics. Ever since
Florence and Goodier [1960] developed the basic theory of thermoelasticity in which complex variable
method for stress analysis of perforated plate was used, the research on thermal stress concentration
problem around holes is ongoing. For instance, using the complex variable theory, Chao and Wang
[1993] predicted the failure initiation and crack trajectory for a plate weakened by an elliptic hole under
thermal or mechanical load based on the strain energy density criterion. The Green’s function for an
infinite isotropic plate with an arbitrary-shaped hole under adiabatic and isothermal boundary conditions
with a heat source was obtained by Yoshikawa and Hasebe [1999]. Based on Green’s function method
and the technique of conformal mapping, a unified solution for a thermopiezoelectric plate with holes

Keywords: thermoelectric materials, conformal mapping, series expansion, arbitrarily-shaped holes, thermal stress.
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of various shapes was obtained analytically by Qin [1999; 2000]. Based on the extended version of
Eshelby–Stroh’s formulation, Gao et al. [2002] studied the generalized plane problem of an elliptical
hole in a thermopiezoelectric medium subjected to uniform heat flow and mechanical-electrical loads at
infinity according to exact boundary conditions at the rim of the hole. The two-dimensional thermoelastic
problems for the perforated plates for different mechanical and thermal boundary conditions were fully
investigated by Hasebe and Wang [2005]. The general solutions for the external force, displacement,
and mixed boundary value problems under both the uniform heat flux and a point heat source were
separately described. Thermoelastic solution to a coated elliptic hole embedded in an infinite plate under
uniform heat flux was investigated by Chen and Chao [2008]. Hasebe and his coworkers analyzed the
Joule heat, temperature and thermal stress induced by an electric current for a thin infinite conductor
containing an elliptical hole, and the similar stress analysis was extended for magnetoelastic materials
[Hasebe et al. 2009; Hasebe 2009]. With using the method of piece-wise homogeneous layers, the non-
axisymmetric two-dimensional problem of thermal stresses in a functionally graded plate having radial
arbitrary elastic properties with a circular hole under remote uniform heat flux is derived by Yang and
Gao [2010]. Lekhnitskii’s complex variable method was developed by Rasouli and Jafari to investigate
the effect of uniform heat flux on a perforated anisotropic plate with an elliptical hole [Rasouli and Jafari
2016]. Additionally, Jafari et al. [2016] studied the effect of rotation angle and bluntness of hole on stress
distribution around an arbitrary-shaped hole in an infinite isotropic plate based on the complex variable
method and conformal mapping technique.

Many of the work done by the various researchers highlight the importance of thermal stress analysis
around holes in thermoelasticity governing by linear equations. However, coupling among different
physical phenomena makes the analysis in nonlinear media considerably more complicated. One such
example is thermoelectricity, wherein the electric and heat transports are nonlinearly coupled. Up to
present, the investigations on the hole problem in thermoelectric materials are restricted to holes with
regular shape (circular and elliptical hole) due to the complicated nonlinear governing equations. For
examples, Zhang and Wang investigated the elliptical hole problem in an infinite thermoelectric medium
when electric current and energy flux loads are perpendicular to the major axis of the elliptical hole
[Zhang and Wang 2016]. The plane problem of an inclined elliptic hole in an infinite thermoelectric
material was studied by Wang and Wang [2017]. Pang et al. [2018] analyzed the temperature, heat flux
and thermal stress induced by an electric current for a thin infinite thermoelectric medium containing a
circular hole with an edge crack. To the best of our knowledge, no study has been completely conducted
to evaluate the thermal stresses in a thermoelectric material containing a hole with irregular shapes. In
fact, holes/imperfections of different shapes are made up due to practical reasons. Stresses concentration
will occur at the contour of the hole and its analysis involves lot of complexity. In the present study, by
using the complex variable method and conformal mapping technique [Muskhelishvili 1975], an attempt
has been made to show the influence of key parameters such as rotation angle and bluntness on the
thermal stress distribution around practical holes with various shapes.

2. Basic equations for thermoelectric materials

2.1. Governing quations. We consider a homogeneous and isotropic thermoelectric medium character-
ized by the electric conductivity δ, thermal conductivity κ and Seebeck coefficient ε. The constitutive
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euqations governing the coupled transports of heat and electricity in such a material can be given by
[Zhang and Wang 2016; Yang et al. 2013]

J =−δ∇φ− δε∇T =−δ∇(φ+ εT ), (1)

Jq =−T εδ∇φ− (T ε2δ+ κ)∇T = εT J − κ∇T, (2)

where ∇ is the Nabla operator, φ is the electric potential, T is the temperature, J and Jq are the elec-
tric current density vector and the thermal flux vector, respectively. Additionally, the thermoelectric
equilibrium equations are expressed by

∇ · J = 0, ∇ · Ju = 0, (3)

where Ju is the energy flux vector defined as

Ju = Jq +φ J, (4)

which indicates that the energy in the medium is transported by both electricity and heat. It is worth
pointing out that the physical meaning of (3) is that both electric charges and energy are conserved in
the considered material.

Obviously, the thermoelectric equations are nonlinear with fully coupled electric current and tem-
perature. From (1), one can see that the Seebeck effect, which generates electric potential difference
from temperature difference, will also produces electric current in the material. On the other hand, the
electric current can cause extra heat flow in thermoelectric material in addition to the temperature gradient.
The ratio of the generated extra heat flux to electric current is related to an intrinsic material property
called Peltier coefficient 5= εT . The uncoupled heat transfer and electric conduction problem, which
renders the Fourier’s law and Ohm’s law, respectively, can be revealed by letting ε = 0. Introduce the
thermoelectric potential function according to H = φ+ εT into (1)–(4), the thermoelectric constitutive
and equilibrium equations can be rewritten as

J =−δ∇H, Ju = H J − κ∇T, (5)

∇
2 H = 0, κ∇2T + δ(∇H)2 = 0. (6)

The nonlinearity of the second in (6) makes the analysis in thermoelectric materials much more difficult.
This will be illustrated below.

2.2. General solutions of thermoelectric field. Consider the generalized plane problem, in which all the
physical quantities are assumed to be dependent on the in-plane coordinates (x, y). Note that the first
in (6) is a Laplace’s equation, the general solution then can be given by [Muskhelishvili 1975]

H = Re f ′(z), (7)

where f ′(z) stands for an unknown potential function of complex variable z = x + iy with i representing
the imaginary unit and “Re” denoting the real part of a complex number. Combining (7) with the first
in (5) gives

Jx − i Jy =−δ f ′′(z). (8)
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On the other hand, inserting (7) into the second of (6) gives rise to

∇
2T =− δ

T
{∇ Re f ′(z)}2 =− δ

κ
f ′′(z) f ′′(z), (9)

where the superimposed bar denotes the complex conjugate. Solution of (9) then can be expressed by
the superposition of a particular solution and the homogenous solution as

T =− δ

4κ
f ′(z) f ′(z)+Re g′(z), (10)

where g′(z) is an analytic complex function. Making use of (7), (8) and (10), the energy flux can be
obtained from the second in (5) as

Jux − i Juy =−
δ

2
f ′′(z) f ′(z)− κg′′(z). (11)

The thermal flux components and electric potential can be obtained, respectively, from (2) and the
identity φ = H − εT together with (7), (8), (10) and (11). Since they will not be used directly in the
analysis, they are not given in detail. The resultant electric current density and energy flux from any
point P1 to P2 on a directed curve denoted by s can be derived from (8) and (11) as∫ P2

P1

Jn(s) ds =− Im δ f ′(z)
∣∣P2

P1
, (12)∫ P2

P1

Jun(s) ds =− Im
[
δ

4
f ′2(z)+ κg′(z)

]∣∣∣P2

P1
, (13)

where the subscript “n” represents the normal component and “Im” stands for the imaginary part of a
complex number.

In this section, the mathematical formulation of the coupled electric and heat conduction problem is
thus completed. Once the two analytic complex functions f ′(z) and g′(z) are obtained from exact electric
and thermal boundary conditions, then all the quantities associated with the electric and temperature field
can be determined.

2.3. General solutions of stress field. In case the temperature on the thermoelectric plane (x, y) is ob-
tained, the thermal stresses caused by the uneven temperature distribution can be determined according
to the Hooke’s law of thermoelasticity. By combining the equilibrium equations, compatibility equations,
thermoelastic stress-strain relationship, one can easily obtain the governing equations in terms of Airy
stress function U as [Hasebe et al. 2009; Wang and Wang 2017]

∇
4U + Eλ∇2T = 0, (14)

where

E =

{
E0,

E0/(1− ν2
0),

λ=

{
λ0, plane stress,

(1+ ν0)λ0, plane strain,

where E0, ν0 and λ0 are the Young’s modulus, Poisson’s ratio and thermal expansion coefficient.
Inserting (9) into (14) yields

∇
4U = kδ

κ
f ′′(z) f ′′(z) ,
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where k = E0λ0 for plane stress and k = E0λ0/(1− ν0) for plane strain. The complete solution of U
includes a particular solution and a homogeneous solution. Using superposition principle, stresses and
displacement can be expressed in terms of f (z) and g(z) together with other two complex potentials
ϕ(z) and ψ(z). Omitting details, the components of stresses and displacement can be given as [Wang
and Wang 2017; Yu et al. 2017]

σyy + σxx =
kδ
4κ

f ′(z) f ′(z)+ 2[ϕ′(z)+ϕ′(z)],

σyy − σxx + 2iσxy =
kδ
4κ

f ′′(z) f (z)+ 2[z̄ϕ′′(z)+ψ ′(z)],
(15)

2µ(ux + iu y)= βϕ(z)− z ϕ′(z)−ψ(z)− kδ
8κ

f ′(z) f (z)+ 2µλg(z), (16)

where µ is the shear modulus and

β =

{ 3−ν0
1+ν0

(plane stress),

3− 4ν0 (plane strain).

Additionally, the resultant forces (Fx , Fy) on a certain directed curve s from any point P1 to P2 can
be expressed by [Wang and Wang 2017; Yu et al. 2017]

i
∫ P2

P1

(Fx + i Fy) ds =
[
ϕ(z)+ z ϕ′(z)+ψ(z)+ kδ

8κ
f ′(z) f (z)

∣∣∣]P2

P1
. (17)

The mathematical formulation of the plane thermoelastic problem in a thermoelectric material is pre-
sented next. Once the thermoelectric fields are obtained, the associated thermal stress field can be solved
by determining the two complex potentials ϕ(z) and ψ(z) with the aid of elastic boundary conditions
given in (16) and (17).

3. Thermoelectric plane with an arbitrarily-shaped hole

3.1. Problem description and boundary condition. As shown in Figure 1, we consider an infinite ther-
moelectric material containing a hole of practically arbitrary shape subjected to a uniform electric current
density J∞ and a uniform energy flux J∞u at infinity, in an arbitrary direction γ with respect to the x-axis.
It is assumed that no far-field mechanical loads are imposed and the medium can expand freely at infinity.
Furthermore, the hole can take arbitrary orientation such that the major axis of the hole is directed at
angle η with respect to horizontal axis. The hole surface is assumed to be electrically impermeable,
thermally insulated and mechanically free. These conditions can be expressed by

Jn = 0

Jqn = Jun = 0

σnn + iσnt = 0

 on L . (18)

It should be mentioned that the thermally insulated boundary condition Jqn = 0 is equivalent to Jun = 0
according to (4) and the first of (18). In what follows, we solve the complex functions f (z) and g(z) to
determine the electric field and temperature field using the first and second conditions given in (18). Then,
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Figure 1. An infinite thermoelectric medium containing an arbitrarily-shaped hole.

the associated thermal stress field is obtainable from determining the complex functions ϕ(z) and ψ(z)
based on the known temperature field and the stress boundary conditions described as the last in (18).

3.2. Series representations. Before embarking on the problem, we first introduce a conformal mapping
of a truncated form, which associates the infinite region outside the hole in the z-plane with the exterior
of the unit circle in the imaginary ξ -plane (see Figure 2), as [Dai et al. 2014]

z = ω(ξ)= R
(
ξ +

M∑
j=1

m j ξ
− j
)

eiη, |ξ | ≥ 1, (19)

where M is a positive integer, the parameter R, m j ( j = 1, 2, . . . ,M) and η controls the overall size, shape
and rotation of the hole. It should be mentioned that although (19) does not accomplish the mapping of
an arbitrarily shaped hole, it can be made to approximate as closely as desired the shape of a wide variety
of boundaries by the simple expedient of increasing the degree of the polynomial [Muskhelishvili 1975;
Dai et al. 2014].

According to the single-value conditions of the thermoelectric potential (see (7)) and the equilibrium
of the normal electric current density on the entire boundary (see the first in (12)), it is concluded that the
derivative of the potential function f ′(z) must be single-valued, but f (z) itself may be multi-valued. In
the context of the mapping (19), one can give the expression of the thermoelectric potential function f (z)
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Figure 2. Conformal mapping.

via a truncated form as

f (z)=
01

2
z2
+ A ln ξ +

N−1∑
j=1

aj ξ
−1, (20)

where 01 is a complex constant to be determined from the remote electric current density. Inserting (20)
into (8) and taking the limit z→∞ leads to

01 =−
J∞ e−iγ

δ
. (21)

A and aj ( j = 1, 2, . . . , N − 1) are unknown complex coefficients to be determined. The chain rule
gives

d
dz
=

d
dξ
·

dξ
dz
=

1
ω′(ξ)

·
d

dξ
, (22)

so the first and second spatial derivatives of f (z) are

f ′(z)= 01z+
1

ω′(ξ)

(
Aξ−1

−

N−1∑
j=1

jajξ
− j−1

)
, (23)

f ′′(z)= 01+

(
−Aξ−2

+
∑N−1

j=1 j ( j + 1)ajξ
− j−2

)
ω′(ξ)−

(
Aξ−1

−
∑N−1

j=1 jajξ
− j−1

)
ω′′(ξ)

ω′(ξ)3
. (24)

The electrically insulated boundary condition on L can be expressed, according to (12), as

f ′(z)= f ′(z), z ∈ L . (25)

By using (23), boundary condition (25) can be rewritten as

01ω(σ)+
1

ω′(σ )

(
Aσ−1

−

N−1∑
j=1

jaj σ
− j−1

)
= 01ω(σ)+

1

ω′(σ )

(
Aσ −

n−1∑
j=1

j aj σ
j+1
)
. (26)
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Then we expand every part of (26) into truncated Fourier series along boundary L:

σ−1

ω′(σ )
=

N∑
k=−N

b(1)k σ k, b(1)k =
1

2π

∫ 2π

0

σ−1

ω′(σ )
· σ−k dθ,

σ

ω′(σ )
=

N∑
k=−N

b(2)k σ k, b(2)k =
1

2π

∫ 2π

0

σ

ω′(σ )
· σ−k dθ,

− jσ− j−1

ω′(σ )
=

N∑
k=−N

b(3)j,k σ
k, b(3)j,k =

1
2π

∫ 2π

0

− jσ− j−1

ω′(σ )
· σ−k dθ,

− jσ j+1

ω′(σ )
=

N∑
k=−N

b(4)j,k σ
k, b(4)j,k =

1
2π

∫ 2π

0

− jσ j+1

ω′(σ )
· σ−k dθ,

(27)

where b(1)k and b(2)k are coefficients independent of j , while b(3)j,k and b(4)j,k are those related to j . These
coefficients can be calculated numerically by Gaussian quadrature. Hence, (26) can be rewritten as

01ω(σ)+ A
N∑

k=−N

b(1)k σ k
+

N∑
k=−N

n−1∑
j=1

aj b(3)j,k σ
k
= 01 ω(σ)+ A

N∑
k=−N

b(2)k σ k
+

N∑
k=−N

N−1∑
j=1

aj b(4)j,k σ
k . (28)

Equating the coefficients of σ j , j = 1, 2, . . . , N , yields N complex equations which are equivalent
to 2N real equations. Clearly, these real equations are linear with respect to the real and imaginary parts
of all the complex coefficients A and aj ( j = 1, 2, . . . , N − 1). Once all the complex coefficients are
determined by solving these linear equations, the thermoelectric potential f (z) can be easily obtained
through (20).

In the same manner, the potential functions g(z) and its derivative should take the following forms:

g(z)=
03

3
z3
+
02

2
z2
+C ln ξ +

2N−1∑
j=1

cj ξ
−1, (29)

g′(z)= 03 z2
+02 z+

1
ω′(ξ)

(
Cξ−1

−

2N−1∑
j=1

jcj ξ
− j−1

)
, (30)

where 02 and 03 are two complex constants to be determined from the remote energy flux condition.
Inserting (20) and (30) into (11) and taking the limit z→∞ gives

02 =−
J∞u e−iγ

κ
, 03 =−

δ

4κ
02

1 =−
J∞2 e−2iγ

4κδ
. (31)

The remaining constant coefficients C and cj , ( j = 1, 2, . . . , 2N − 1) may be determined from the
thermal boundary condition on the hole rim. According to (13) and the second of (18), the thermally
insulated boundary condition on the hole rim L is expressed by

g′(z)+
δ

4κ
f ′(z)2 = g′(z)+

δ

4κ
f ′(z)

2
, z ∈ L . (32)
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From (30), one has

03ω(σ)
2
+02ω(σ)+

1
ω′(σ )

(
Cσ−1

−

2N−1∑
j=1

jcj σ
− j−1

)
+
δ

4κ
f ′2(σ )

= 03 ω(σ)
2
+02 ω(σ)+

1

ω′(σ )

(
Cσ −

2N−1∑
j=1

j cj σ
j+1
)
+
δ

4κ
f ′2(σ ), (33)

where f ′(σ ) represents the boundary value of function f ′(z) on the boundary z = ω(σ) ∈ L . Note that
the thermoelectric potential f ′(z) is determined in the above section as

f ′(σ )= f ′[ω(σ)] = 01ω(σ)+ A
N∑

k=−N

b(1)k σ k
+

N∑
k=−N

N−1∑
j=1

aj b(3)j,k σ
k,

f ′(σ )= f ′[ω(σ)] = 01 ω(σ)+ A
N∑

k=−N

b(2)k σ k
+

N∑
k=−N

N−1∑
j=1

aj b(4)j,k σ
k .

(34)

In what follows, the Fourier series method is also taken to deal with the boundary condition (33)
as what we did on (26). Here we expand both sides of (33) into the Fourier series of σ by numerical
quadrature, respectively, and then equate the coefficients of σ j ( j = 1, 2, . . . , 2N ) on the two sides
of (33), leading to 2N complex equations (equivalent to 4N real equations) which are linear with respect
to the real and imaginary parts of all the complex coefficients C and cj ( j = 1, 2, . . . , 2N − 1). Finally,
all the unknowns are obtained through solving the linear system of equations.

Since no far-field mechanical loads are imposed on the medium and only the electrically and thermally
induced stresses are considered here, the two elastic potentials ϕ(z) and ψ(z) can be expressed in terms
of truncated series as

ϕ(z)= P(ξ) ln ξ +
2N∑
j=1

pj ξ
−1, ψ(z)= Q(ξ) ln ξ +

2N∑
j=1

qj ξ
−1, (35)

where pj and qj are complex coefficients to be determined, and the coefficients P(ξ) and Q(ξ) identifying
the multi-valued terms can be specified, according to the single-value condition of displacement (see (16))
and the vanishing resultant force vector over the entire boundary L (see (17)), as

P(ξ)= P0 =−
2µλC
β + 1

, Q(ξ)= P0+
kδA
8κ

f ′(ξ), (36)

where f ′(ξ) = f ′[ω(ξ)]. According to (17), the traction-free condition on the hole surface (the last
in (18)) can be expressed by

P0 ln σ +
2N∑
j=1

pj σ
−1
+
ω(σ)

ω′(σ )

(
P0 σ −

2N∑
j=1

Pj jσ j+1
)

−

[
P0+

kδA
8κ

f ′(σ )
]

ln σ +
2N∑
j=1

qj σ
j
+

kδ
8κ

f ′(σ ) f (σ )= 0, (37)
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where

f (σ )= f [ω(σ)] =
01

2
ω(σ)2+ A ln σ +

N∑
j=1

aj σ
− j . (38)

In the same manner, the Fourier series method is also taken to deal with the boundary condition (37).
As what we did on (26), here we expand both sides of (37) into the Fourier series of σ by numerical
quadrature, respectively, and then equate the coefficients of σ j (−2N ,−2N + 1, . . . ,−1, 1, 2, . . . , 2N )
on the two sides of (37), leading to 4N complex equations which can be used to determine all the complex
coefficients pj and qj ( j = 1, 2, . . . , 2N ). Once all the complex coefficients are obtained, the complex
potentials ϕ(z) and ψ(z) can be determined by noting (35) and (36), and therefore the stress fields in
the material are obtained. Using the stress transformation formula, stress components in the material in
polar coordinates can be determined by

σnm + σt t = σyy + σxx , σt t − σnm + 2iσnt = e2iα(σyy − σxx + 2iσxy), (39)

where σnn , σt t and σnt are the normal stress, hoop stress and shear stress, respectively, and α is the angle
between the outer normal on L and the positive x-axis in the z-plane, which is determined by

e2iα
=
ξ 2ω′(ξ)

ρ2 ω′(ξ)
. (40)

4. Numerical examples

So far, the analytical solutions for the problem of an arbitrarily-shaped hole have been obtained in the
form of a finite series. To verify the compatibility and the feasibility of our proposed solutions, we
present some examples and compare the results obtained from the presented method with those of the
previous work. Firstly, an electrically and thermally insulated elliptical hole in a thermoelectric medium
under different loading conditions is considered. The mapping function for the elliptical hole is given by

z = ω(ξ)= R
(
ξ +

m
ξ

)
, (41)

where R = (a+ b)/2 and m = (a− b)/(a+ b) with a and b being the semi-major and the semi-minor
axes of the elliptical hole. In the case of a/b = 5, the hoop stress distributions around the elliptical
hole when only the remote electric current load is imposed and only the remote energy flux load is
applied along the positive y-axis are plotted in Figure 3 (top left) and Figure 3 (top right), respectively.
It should be mentioned that the stresses produced by the applied electric current and energy flux loads in
thermoelectric materials are found to be uncoupled according to [Wang and Wang 2017], which enables
us to analyze the effects of the electric current and energy flux loads separately. Furthermore, σe0 =

k J∞2 R2/8δκ and σu0 = 2µλJ∞u R/κ(β + 1), which have the same unit as stresses, are used to normalize
the hoop stresses caused by the far-field electric current and energy flux loads, respectively. It is clearly
seen that the results obtained by our solution agree very well with those given by Wang and Wang [2017]
for an insulated elliptical hole.

To further verify the compatibility of the presented solutions, we consider the generalized thermoe-
lastic problems of a thermally insulated quasi-square hole and a thermally insulated ovaloid hole in
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Figure 3. Comparisons of the present work to the previous work for some special cases.

an infinite elastic matrix subjected to a uniform thermal flux. To this end, the medium in this case is
considered to be electrically insulated, that is, δ = 0. Thus, no electric current exists in the material
and the energy flux is completely equivalent to the heat flux, as seen from (1) and (4). The mapping
functions (19) for the quasi-square hole and the oval hole considered here are given by

z = ω(ξ)= R
(
ξ +

1
8
ξ−3

)
, (Square hole),

z = ω(ξ)= R
(
ξ −

1
5
ξ−1
−

1
20
ξ−3

)
, (Ovaloid hole).

(42)

A comparison between the results of the present study and the results obtained by Kattis [1991] for
a square hole is plotted in Figure 3 (bottom left). Here, σq0 = 2µλJ∞q R/κ(β + 1) is used to normalize
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η = 0, m = 0

m = 0.3, η = 30º m = 0.3, η = 60º m = 0.3, η = 90º m = 0.3, η = 120º

η = 0, m = 0.1 η = 0, m = 0.2 η = 0, m = 0.3

Figure 4. The effect of parameters m and η on the hole shape.

the hoop stresses produced by the far-field thermal flux. In addition, Figure 3 (bottom right) shows the
comparison of our solution with that of Florence and Goodier [1960] for the ovaloid cutout under a
uniform thermal flux applied at infinity. It can be found that the normalized hoop stress around the holes
of given shapes obtained by the presented solution are almost identical to those of the previous work,
which further verifies the validity of the present formulation.

To illustrate the application of the analysis method, the hoop stress around a triangular hole will be
presented below. For the triangular hole, the mapping function (19) can be given as

z = ω(ξ)= R(ξ +mξ−2)eiη. (43)

The conditions 0≤ m < 1/2 ensure that the hole shape does not have loops. The radius of curvature
at the corner of the hole and the orientation of the hole vary by changing the parameters m and η,
respectively, as shown in Figure 4. It can be seen that the corner of the hole becomes sharper with
increasing the parameter m.

The distribution of the electric current on the hole rim when a uniform electric current is solely loaded
along the positive y-axis is plotted in Figure 5. It is found that the electric current around the triangular
hole has a concentration at the corners. As the corner becomes sharper, the electric current concentra-
tion is more obvious. For given load direction (γ = 90◦) and hole orientation (η = 0), the maximum
concentration of the electric current on the hole occurs at θ = 0. Furthermore, the distributions of energy
flux under a uniform energy load is found to be similar with that of the electric current and thus a similar
conclusion could be drawn.

When there is only electric current loaded along the vertical direction (γ = 90◦), the distribution of
the normalized hoop stress around the hole is plotted in Figure 6. Likely, when there is only energy flux
imposed along the vertical direction, the distribution of the normalized hoop stress is plotted in Figure 7.
Here, the hole orientation is set to be zero, namely η = 0. We find that both applied electric current
and energy flux generate thermal stress around hole and thermal stress becomes more concentrated as
the corner becomes sharper. In addition, the maximum stress concentration generated by both electric
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Figure 5. Variation of normalized electric current (energy flux) on the hole rim with θ
when J∞(J∞u ) is solely applied.

current and energy flux occurs at θ = 120◦ and θ = 240◦ in this case. The difference is that the applied
electric current produces thermal stress concentration at the corner of θ = 0◦ but the energy flux load does
not under the same loading condition. Another difference is that the applied energy flux produces the
opposite stress state on any two points symmetric with respect to x-axis, however, the imposed electric
current produces the same stress state.

Figures 8 and 9 show the periodic behavior of the remote electric current and energy flux induced
hoop stress at point θ = 0◦ in terms of load angle γ , respectively. These results have been presented for
the case of η = 0. It can be seen from Figure 8 that hoop stress induced by J∞ varies periodically as the
load angle γ changes (with a period of 180◦). According to Figure 9, the stress induced by J∞u is also a
periodic function of the load angle γ , however, the period becomes to be 360◦. When γ = 90◦ or 270◦,
both the electric current and energy flux induced hoop stresses reach their minimum values.

The interesting results shown in Figures 10 and 11 are that for given load angle γ = 90◦, the maximum
hoop stress induced by J∞ and J∞u varies when the rotation of the hole η is changed. The normalized
hoop stress produced by J∞ obtained its maximum value when the hole oriented at 30◦ and 90◦. On the
other hand, the normalized hoop stress produced by J∞u obtained its maximum value when η = 30◦ and
obtained its minimum value when η= 90◦. It should be mentioned that the maximum normalized stresses
are very important in design and implementation for thermoelectric devices. The maximum normalized
stress might cause damages to thermoelectric structure and thus should be avoided.
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5. Concluding remarks

Stress concentration around the holes is of practical importance in designing of the thermoelectric struc-
tures. The hole shape is one of the important parameters that affects the location and amount of maximum
hoop stress. Based on the complex variable method, a simple analytical solution was presented in this
study. This solution provided a numerical result to obtain the normalized hoop stress for thermoelectric
materials with regular holes with various shapes. Numerical study was conducted to investigate the
effects of different parameters such as the load angle, rotation angle of hole, bluntness on the hoop stress.
The results show that the loading angle and hole orientation have a significant impact in reducing the
normalized stress in addition to increasing the bluntness. By the correct selection of these parameters,
the lowest amount of thermal stress could be achieved.
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THE EFFECT OF VARIABLE THERMAL CONDUCTIVITY
ON AN INFINITE FIBER-REINFORCED THICK PLATE

UNDER INITIAL STRESS

MOHAMED I. A. OTHMAN, AHMED E. ABOUELREGAL AND SAMIA M. SAID

The present paper includes an analytical study of the effect of variable thermal conductivity and initial
stress on a fiber-reinforced transversely isotropic thick plate. The model of the equations of generalized
thermoelasticity with phase lags in an isotropic elastic medium with temperature-dependent mechanical
properties are established. The upper surface of the plate is thermally insulated with prescribed surface
loading while the lower surface of the plate rests on a rigid foundation and temperature. The normal
mode analysis is used to obtain the analytical expressions of the displacement components, force stress
and temperature distribution. Numerical results for the physical quantities are given and illustrated graph-
ically with temperature-dependent and temperature-independent thermal conductivity. A comparison is
made with results obtained with initial stress and without initial stress. Also, a comparison is made with
results obtained with reinforcement and without reinforcement proprieties. It is found from the graphs
that the initial stress, the reinforcement and phase lags have great effects on the distribution of the field
quantities.

1. Introduction

Fiber-reinforced composites are used in a variety of structures due to their low weight and high strength.
The analysis of stress and deformation of fiber-reinforced composite materials has been an important
subject of solid mechanics for last three decades. The mechanical behavior of many fiber-reinforced
composite materials is adequately modeled by the theory of linear elasticity for transversely isotropic
materials, with the preferred direction coinciding with the fiber direction. In such composites the fibers
are usually arranged in parallel straight lines. Other configurations are used. An example is that of
circumferential reinforcement, for which the fibers are arranged in concentric circles, giving strength
and stiffness in the tangential (or hoop) direction. The analysis of stress and deformation of fiber-
reinforced composite materials has been an important subject of solid mechanics for last three decades.
The characteristic property of a reinforced concrete member is that its components, namely concrete and
steel, act together as a single anisotropic unit as long as they remain in the elastic condition, i.e., the two
components are bound together so that there can be no relative displacement between them.

In the past few years, attention had been given to the problems of the generation and propagation
of elastic waves in anisotropic elastic solid or layers of different configurations. The propagation of
elastic waves in anisotropic media is fundamentally different from their propagation in isotropic media.
The information obtained from such studies is important to seismologists and geophysicists to find the

Keywords: dual-phase-lag model, fiber-reinforced, initial stress, normal mode analysis, variable thermal conductivity, thick
plate.

277

http://msp.org/jomms
http://dx.doi.org/10.2140/jomms.2019.14-2
http://dx.doi.org/10.2140/jomms.2019.14.277
http://msp.org


278 MOHAMED I. A. OTHMAN, AHMED E. ABOUELREGAL AND SAMIA M. SAID

location of the earthquakes as well as their energy, mechanism etc. and thereby gives valuable insight
into the global tectonics. Some hard and soft rocks beneath the earth’s surface show the reinforcement
properties, i.e., the different components act as a single anisotropic unit. These rocks when come in
the way of seismic waves do affect their propagation and such seismic signals are always influenced by
the elastic properties of the media through which they travel. Fiber-reinforced composites are used in a
variety of structures due to their low weight and high strength. A continuum model is used to explain the
mechanical properties of such materials. In the case of an elastic solid reinforced by a series of parallel
fibers, it is usual to assume transverse isotropy.

In the linear case, the associated constitutive relations, relating infinitesimal stress and strain compo-
nents, have five materials constants. The idea of introducing a continuous self reinforcement at every
point of an elastic solid was given by Belfield et al. [1983]. The model was later applied to the rotation of
a tube by Verma and Rana [1983]. Sengupta and Nath [2001] discussed the problem of the surface waves
in fiber-reinforced anisotropic elastic media. Hashin and Rosen [1964] gave the elastic moduli for fiber-
reinforced materials. The two-dimensional problems of the generalized magneto-thermoelasticity in a
fiber-reinforced anisotropic half-space was discussed by Abbas et al. [2011]. Othman and Abbas [2011]
discussed the effect of rotation on plane waves at the free surface of a fiber-reinforced thermoelastic
half-space using the finite element method. Ailawalia and Budhiraja [2011] discussed the effect of hy-
drostatic initial stress on fiber-reinforced generalized thermoelastic medium. Abbas and Abd-alla [2011]
studied the effect of initial stress on a fiber-reinforced anisotropic thermoelastic thick plate. Othman
and Said [2012] investigated the effect of rotation on the two-dimensional problem of a fiber-reinforced
thermoelastic with one relaxation time.

The theory of thermoelasticity including the effect of temperature change has been well established.
According to this theory, the temperature field is coupled with the elastic strain field. In thermoelasticity,
classical heat transfer, Fourier’s conduction equation is extensively used in many engineering applica-
tions. The classical theory of thermoelasticity by Nowacki [1975; 1986] rests upon the hypothesis of the
Fourier law of heat conduction, in which the temperature distribution is governed by a parabolic-type
partial differential equation. Consequently, the theory predicts that a thermal signal is felt instantaneously
everywhere in a body. This implies that an infinite speed of propagation of the thermal signal, which
is impractical from the physical point of view, particularly for short-time. Thus, the use of Fourier’s
equation may result in discrepancies under some special conditions, such as low-temperature heat transfer,
high frequency or ultrahigh heat flux heat transfer.

The theory of the classical uncoupled theory of thermoelasticity predicts two phenomena not compati-
ble with physical observations. First, the equation of heat conduction of this theory does not contain any
elastic term contrary to the fact that the elastic changes produce heat effects. Second, the heat equation
is of parabolic type predicting infinite speeds of propagation for heat waves. Biot [1956] introduced the
theory of coupled thermoelasticity to overcome the first shortcoming.

Generalized thermoelasticity theories have been developed with the objective of removing the paradox
of infinite speed of heat propagation inherent in the conventional coupled dynamical theory of thermoelas-
ticity in which the parabolic type heat conduction equation is based on Fourier’s law of heat conduction.

Lord and Shulman [1967] introduced a theory of generalized thermoelasticity with one relaxation time
for an isotropic body. In this theory, a modified law of heat conduction, including both the heat flux and
its time derivatives replaces the conventional Fourier’s law. The heat equation associated with this theory
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is hyperbolic and hence eliminates the paradox of infinite speeds of propagation inherent in both coupled
and uncoupled theories of thermoelasticity. Green and Lindsay [1972] extended the coupled theory of
thermoelasticity by introducing the thermal relaxation times in the constitutive equations. The theory of
thermoelasticity without energy dissipation is another generalized theory and was formulated by Green
and Naghdi [1993]. It includes the “thermal displacement gradient” among its independent constitutive
variables, and differs from the previous theories in that it does not accommodate dissipation of thermal
energy. Tzou [1996; 1995a] proposed the dual-phase-lag DPL model, which describes the interaction
between phonons and electrons on the microscopic level as retarding sources causing a delayed response
on the macroscopic scale. For macroscopic formulation, it would be convenient to use the DPL model
for investigation of the micro-structural effect on the behavior of heat transfer. The DPL proposed by
Chandrasekharaiah [1986] and Tzou [1995b] is such a modification of the classical thermoelastic model
in which the Fourier law is replaced by an approximation to a modified Fourier law with tow different
time translations: a phase lag of the heat flux τq and a phase lag of temperature gradient τθ . A Taylor
series approximation of the modified Fourier law, together with the remaining field equations leads to a
complete system of equations describing a DPL thermoelastic model. The model transmits thermoelastic
disturbance in a wavelike manner if the approximation is linear with respect to τq and τθ , and 0≤ τθ < τq ;
or quadratic in τq and linear in τθ , with τq > 0 and τθ > 0. This theory is developed in a rational way to
produce a fully consistent theory which is able to incorporate thermal pulse transmission in a very logical
manner. It includes the “thermal displacement gradient” among its independent constitutive variables,
and differs from the previous theories in that it does not accommodate dissipation of thermal energy
[Ignaczak and Ostoja-Starzewski 2010]. Said and Othman [2017] studied the effect of mechanical force,
rotation and moving internal heat source on a two-temperature fiber-reinforced thermoelastic medium
with two theories. Abouelregal [2011] applied the DPL heat transfer model for an isotropic solid sphere.

The solution of the problem is carried out when the boundary of the sphere is maintained at constant
heat flux and the displacement of the surface is constrained. Abdallah [2009] used the uncoupled ther-
moelastic model based on the DPL heat conduction equation to investigate the thermoelastic properties
of a semi-infinite medium induced by a homogeneously illuminating ultrashort pulsed laser heating.
Quintanilla and Jordan [2009] present exact solutions of two initial-boundary value problems in the
setting of a recently introduced theory of heat conduction, wherein the two temperature theory of the late
1960s is merged with Tzou’s DPL flux relation.

The development of initial stresses in the medium is due to many reasons, for example, resulting from
differences of temperature, process of quenching, shot pinning and cold working, slow process of creep,
differential external forces, gravity variations, etc. The earth is assumed to be under high initial stresses.
It is, therefore, of much interest to study the influence of these stresses on the propagation of stress waves.
Biot [1965] showed the acoustic propagation under initial stress, which is fundamentally different from
that under a stress-free state. He has obtained the velocities of longitudinal and transverse waves along
the coordinate axis only.

The wave propagation in solids under initial stresses has been studied by many authors for various
models. The study of the effects of gravitational and hydrostatic initial stress on a two-temperature
fiber-reinforced thermoelastic medium for three-phase-lag is due to Said and Othman [2016], Montanaro
[1999] investigated the isotropic linear thermoelasticity with hydrostatic initial stress. Abbas and Othman
[2012], Othman et al. [2013] and Sarkar et al. [2016] studied the effect of the hydrostatic initial stress, the
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gravity and the magnetic field on a fiber-reinforced thermoelastic medium with a fractional derivative
heat transfer. Ailawalia et al. [2009] investigated deformation in a generalized thermoelastic medium
with hydrostatic initial stress.

In this study, the dual phase lag theory is applied to study the two-dimensional problem of generalized
thermoelasticity for a fiber-reinforced thick plate under initial stress and variable thermal conductivity.
The problem is solved numerically using a normal mode analysis method. Numerical results for the
temperature distribution and the displacement and stress components are given and illustrated graphi-
cally. It is found from the graphs that variability thermal conductivity parameter and the initial stress
significantly influences the variations of field quantities. This article is a continuation of the work by
Abbas and Abd-alla [2011] and Othman and Said [2012] to include the effect of reference temperature
on thermal stress distribution.

2. Basic equations

The linear equations governing thermoelastic interactions in a homogeneous transversely isotropic fiber-
reinforced solid without any heat sources or body forces with hydrostatic initial stress in the context of
generalized thermoelasticity with dual phase lags are given now.

The equation of motion in the absence of body forces can be written as

σi j, j +
(
ui,k σ

0
k j
)
, j = ρ

∂2ui

∂t2 , (1)

where σi j are the components of stress, σ 0
k j is the initial stress tensor, ρ is the density, ui are the compo-

nents of displacement vector and i, j, k = 1, 2, 3. The comma denotes space-coordinate differentiation
and the repeated index in the subscript implies summation.

The heat conduction equation corresponding to the DPL model proposed by Tzou [1996] takes the
form (

1+ τθ
∂

∂t

)
(Ki j θ, j ),i =

(
δ+ τq

∂

∂t

)(
ρCE

∂T
∂t
+βi j T0 ui, j

)
, (2)

where Ki j is the thermal conductivity, CE is the specific heat at constant strain, θ = T − T0 is the
temperature increment of the resonator, in which T0 is the environmental temperature, assumed to be
such as |(T − T0)/T | � 1, βi j is the thermal elastic coupling tensor, τq is the phase lag of the heat flux,
τθ is the phase lag of the gradient of temperature where 0≤ τθ < τq .

The constitutive equations for a fiber-reinforced linearly elastic anisotropic medium with respect to
the reinforcement direction b≡ (b1, b2, b3), with b2

1+ b2
2+ b2

3 = 1 are

σi j = λekk δi j + 2µT ei j +α(bkbmekmδi j + bi bj ekk)+ 2(µL −µT )(bkbi ek j + bkbj eki )

+βbkbm ekm bi bj −βi j (T − T0), (3)

where ei j are the components of strain, λ, µT are the elastic constants, α, β, µL−µT are the reinforcement
parameters, and δi j is Kronecker’s delta.

Strain-displacement relations

ei j =
1
2(ui, j + u j,i ). (4)
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Figure 1. Geometry of the problem.

In physics, thermal conductivity is the property of a material’s ability to conduct heat. It appears primarily
in Fourier’s law for heat conduction. Thermal conductivity is measured in watt per Kelvin per meter
(W K−1 m−1) multiplied by a temperature difference and an area, and divided by a thickness, the thermal
conductivity predicts the rate of energy loss through a piece of material. In the window building industry
“thermal conductivity” is expressed as the U-Factor, which measures the rate of heat transfer and tells
you how well the window insulates.

3. Formulation of the problem

In the present paper, we consider an infinite thick plate with traction free surfaces at x =±L (layer of
thickness 2L), which consists of homogeneous, transversely isotropic thermoelastic material. We take
the origin of the coordinate system (x, y, z) on the middle surface of the layer. The x − y plane is chosen
to coincide with the middle surface and y axis normal to it along the thickness. Then the components of
the displacement vector and temperature are independent of z and can be taken in the following forms

u = u(x, y, t), v = v(x, y, t), w = 0, θ = θ(x, y, t). (5)

The constitutive relations and field equations with an initial stress and without body forces and heat
sources in the present case are

σxx = (λ+ 2α+ 4µL − 2µT +β)
∂u
∂x
+ (λ+α)

∂v

∂y
−β11(T − T0), (6)

σyy = (λ+ 2µT )
∂v

∂y
+ (λ+α)

∂u
∂x
−β22(T − T0), (7)

σxy = µL

(
∂v

∂x
+
∂u
∂y

)
, (8)

where b is chosen so that its components are (1, 0, 0).
The equations of motion along x and y directions can be obtained as

[λ+2(α+µT )+4(µL−µT )+β+σ0]
∂2u
∂x2+(σ0+µL)

∂2u
∂y2 +(α+λ+µL)

∂2v

∂x ∂y
−β11

∂T
∂x
= ρ

∂2u
∂t2 , (9)

(λ+2µT+σ0)
∂2v

∂y2+(σ0+µL)
∂2v

∂x2+(α+λ+µL)
∂2u
∂x ∂y

−β22
∂T
∂y
= ρ

∂2v

∂t2 , (10)
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where σ0 is the initial pressure and

β11 = (2λ+ 3α+ 4µL − 2µT +β)α11+ (λ+α)α22, β22 = (2λ+α)α11+ (λ+ 2µT )α22. (11)

The heat equation can be written as(
1+ τθ

∂

∂t

)[
∂

∂x

(
K11

∂θ

∂x

)
+
∂

∂y

(
K22

∂θ

∂y

)]
=

(
δ+ τq

∂

∂t

)[
ρCE

∂θ

∂t
+ T0

∂

∂t

(
β11

∂u
∂x
+β22

∂v

∂y

)]
. (12)

Modern structural elements are often subjected to temperature changes of such magnitude that their
material properties may no longer be regarded as having constant values even in an approximate sense.
The thermal and mechanical properties of materials vary with temperature, so that the temperature de-
pendence of material properties must be taken into consideration in the thermal stress analysis of these
elements. In physics, thermal conductivity is the property of a material to conduct heat. It is evaluated
primarily in terms of Fourier’s law for heat conduction. Heat transfer occurs at a higher rate across
materials of higher thermal conductivity than across materials of low thermal conductivity. Generally,
thermal conductivity of materials is temperature dependent.

Our goal is to investigate the effect of temperature dependency of thermal conductivity keeping the
other elastic and thermal parameter constants; therefore we assume the thermal conductivities and thermal
diffusivity are assumed to vary linearly with temperature according to

K11 = K11(θ)= K01(1+K1θ), K22 = K22(θ)= K02(1+K1θ), ρCE = ρCE(θ)= ρ0CE0(1+K1θ), (13)

where K01, K02, ρ0 and CE0 are considered constants, in case of temperature-independent modulus of
elasticity K1 = 0.

Now, using the mapping [Tzou 1996]:

ψ =

∫ θ

0
(1+ K1ξ)dξ, (14)

where ψ is a new function expressing the heat conduction.
From (14), we get

ψ = θ
(
1+ 1

2 K1θ
)
. (15)

Differentiating (15) with respect to x and y, we obtain

K01
∂ψ

∂x
= K11(θ)

∂θ

∂x
, K02

∂ψ

∂y
= K22(θ)

∂θ

∂y
. (16)

With the same manner, by differentiating the mapping with respect to time t , we have

ρ0CE0
∂ψ

∂t
= ρCE

∂θ

∂t
. (17)

Using (16) and (17), the modified model of heat equation will take the form(
1+ τq

∂

∂t

)[
ρ0CE0

∂ψ

∂t
+ T0

∂

∂t

(
β11

∂u
∂x
+β22

∂v

∂y

)]
=

(
1+ τθ

∂

∂t

)[
K01

∂2ψ

∂x2 + K02
∂2ψ

∂y2

]
. (18)

For simplification, we shall use the following nondimensional variables:



EFFECT OF VARIABLE THERMAL CONDUCTIVITY ON AN INFINITE FIBER-REINFORCED THICK PLATE 283

x ′ = c0ηx, y′ = c0ηy, u′ = c0ηu, v′ = c0ηv, t ′ = c2
0ηt,

σ ′0 =
σ0

ρ0 c2
0
, σ ′i j =

σi j

ρ0 c2
0
, τ ′q = c2

0ητq , τ ′θ = c2
0ητθ , ψ ′ =

β11ψ

ρ0 c2
0
.

(19)

where,

c2
0 =

A11

ρ0
, A11 = λ+ 2(α+µT )+ 4(µL −µT )+β, η =

ρ0 CE0

K01
.

The thermal property variations are assumed to be small and the approximate symmetries of the equa-
tion are calculated. A linear functional variation is assumed for the thermal properties and a similarity
solution is constructed. For linearity, such that |θ/T0| � 1, then equations of motion, with the help
of (16), may be recast into the dimensionless form after suppressing the primes as

(1+ σ0)
∂2u
∂x2 + (σ0+ B4)

∂2u
∂y2 + (B1+ B4)

∂2v

∂x ∂y
−
∂ψ

∂x
=
∂2u
∂t2 , (20)

(B2+ σ0)
∂2v

∂y2 + (σ0+ B4)
∂2v

∂x2 + (B1+ B4)
∂2u
∂x ∂y

− B3
∂ψ

∂y
=
∂2v

∂t2 , (21)(
1+ τθ

∂

∂t

)(
∂2ψ

∂x2 + ε1
∂2ψ

∂y2

)
=

(
δ+ τq

∂

∂t

)[
∂ψ

∂t
+
∂

∂t

(
ε2
∂u
∂x
+ ε3

∂v

∂y

)]
. (22)

The constitutive relations given in (1) in dimensionless forms and for linearity take the form

σxx =
∂u
∂x
+ B1

∂v

∂y
−ψ, (23)

σxy = B4

(
∂u
∂y
+
∂v

∂x

)
, (24)

where

B1 =
A12

A11
, B2 =

A22

A11
, B3 =

β22

β11
, B4 =

µL

A11
, A12 = α+ λ, A22 = λ+ 2µT ,

ε1 =
K02

K01
, ε2 =

β2
11T0

ρ0 CE0 A11
, ε3 =

β11β22T0

ρ0 CE0 A11
.

4. Normal mode analysis

The normal mode analysis gives exact solutions without any assumed restrictions on the temperature,
displacement, and stress distributions. It is applied to a wide range of problems in different branches. It
can be applied to boundary-layer problems, which are described by the linearized Navier–Stokes equa-
tions in electro-hydro-dynamics. The normal mode analysis is, in fact, to look for the solution in the
Fourier transformed domain, assuming that all the field quantities are sufficiently smooth on the real line
so that the normal mode analysis of these functions exists. The normal mode expansion method has been
proposed by Cheng et al. [2000] for modeling the thermoelastic generation process of elastic waveforms
in an isotropic plate.

The solution of the considered physical variable can be decomposed in terms of normal modes as the
following form

[u, v, ψ, σi j ](x, y, t)=
[
u∗, v∗, ψ∗, σ ∗i j

]
(x) eωt+iay, (25)
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where ω is the (complex) frequency constant, i =
√
−1, a is the wave number in the y direction, and

u∗(x), v∗(x), ψ∗(x) and σ ∗i j (x) are the amplitudes of the field quantities.
Using (25), (20)–(24) take the forms(

d2

dx2 − g1

)
u∗+ g2

dv∗

dx
= g3

dψ∗

dx
, (26)(

d2

dx2 − g4

)
v∗+ g5

du∗

dx
= g6ψ

∗, (27)(
d2

dx2 − g7

)
ψ∗ = g8

du∗

dx
+ g9v

∗, (28)

σ ∗xx =
du∗

dx
+ iaB1v

∗
−ψ∗, (29)

σ ∗xy = B4

(
iau∗+

dv∗

dx

)
, (30)

where

g1 =
a2(σ0+B4)

1+σ0
+

ω2

1+σ0
, g2 =

ia(B1+B4)

1+σ0
, g3 =

1
1+σ0

, g4 =
a2(σ0+B2)+ω

2

σ0+B4
,

g5 =
ia(B1+B4)

σ0+B4
, g6 =

iaB3

σ0+B4
, g7 = a2ε1+

ω(δ+τqω)

1+τθω
, g8 =

ε2ω(δ+τqω)

1+τθω
, g9 =

iaε3ω(δ+τqω)

1+τθω
.

Eliminating ψ∗(x) and v∗(x) in (26)–(28), one obtains(
D6
− AD4

+ BD2
−C

)
u∗(x)= 0, (31)

where

D= d
dx
, A = g3 g8+ g2 g5+ g1+ g4+ g7,

B = g2 g5 g7+ g2 g6 g8+ g3 g4 g8+ g1 g4+ g1 g7+ g4 g7− g6 g9+ g3 g5 g9, C = g1 g4 g7− g1 g6 g9.

Equation (31) can be factorized as(
D2
− k2

1
)(

D2
− k2

2
)(

D2
− k2

3
)
u∗(x)= 0, (32)

where k2
n (n = 1, 2, 3) are the roots of the following characteristic equation:

k6
− Ak4

+ Bk2
−C = 0. (33)

The solution of (31), bound at x→∞, is given by

u∗(x)=
3∑

n=1

M1n e−kn x . (34)

In a similar manner, one gets

ψ∗(x)=
3∑

n=1

H1n M1n e−kn x , v∗(x)=
3∑

n=1

H2n M1n e−kn x , (35)



EFFECT OF VARIABLE THERMAL CONDUCTIVITY ON AN INFINITE FIBER-REINFORCED THICK PLATE 285

where

H1n =
(g5 g9+ g4 g8)kn − g8 k3

n

k4
n − (g4+ g7)k2

n + (g4 g7− g6 g9)
, H2n =

g8 kn + (k2
n − g7)H1n

g9
.

Introducing (34)–(35) into (29) and (30), we obtain

σ ∗xx =

3∑
n=1

H3n M1n e−kn x , σ ∗xy =

3∑
n=1

H4n M1n e−kn x , (36)

where H3n =−kn + iaB1 H2n − H1n , H4n = B4(ia− kn H3n).

5. Boundary conditions

In this section we determine the parameters M1n (n = 1, 2, 3). In the physical problem, we should
suppress the positive exponentials that are unbounded at infinity. The constants M11, M12, M13 have to
be chosen such that the boundary conditions on the surface at x = L take the form

σxx(L , y, t)=−P1 f, σxy(L , y, t)= 0, ψ(L , y, t)= P3, (37)

where f is constant, P1 is the magnitude of a hydrostatic initial stress and P3 = P2+
1
2 K1 P2

2 . If P2 = 0,
we obtain the corresponding expressions for normal force applied on the plane surface. If we put P1 = 0,
then the corresponding expressions yield the results for thermal sources.

Substituting the expressions of the variables considered into the above boundary conditions, we obtain

ψ∗|x=L =

3∑
n=1

H1n M1n e−kn x
= P∗3 , (38)

σ ∗xx |x=L =

3∑
n=1

H3n M1n e−kn x
=−P∗1 , (39)

σ ∗xy|x=L =

3∑
n=1

H4n M1n e−kn x
= 0, (40)

where P∗1 = P1 e−(ωt+iay), P∗3 = P3 e−(ωt+iay).
Solving the above system of (38)–(40), we obtain a system of three equations. After applying the

inverse of the matrix method, we have the values of the three constants M1n (n = 1, 2, 3). Hence, we
obtain the expressions for the displacements, the temperature distribution, and other physical quantities:

M11

M12

M13

=
H11 e−k1 L H12 e−k2 L H13 e−k3 L

H31 e−k1 L H32 e−k2 L H33 e−k3 L

H41 e−k1 L H42 e−k2 L H43 e−k3 L

−1 P∗3
−P∗1

0

 . (41)

After obtaining ψ , the temperature increment θ can be obtained by solving (15) to give

θ =
−1+

√
1+ 2K1ψ

K1
. (42)
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6. Particular cases

(1) Generalized thermoelastic medium with hydrostatic initial stress and with temperature-dependent
thermal conductivity from above equations with µL = µT = µ, α = β = 0.

(2) Fiber-reinforced generalized thermoelastic medium without hydrostatic initial stress and with temper-
ature-dependent thermal conductivity from above equations with P1 = σ0 = 0.

(3) Fiber-reinforced generalized thermoelastic medium without temperature-dependent thermal conduc-
tivity from above equations with K1 = 0.

(4) Equation of coupled thermoelasticity (CD theory) when τθ = τq = 0, δ = 1.

(5) Lord–Shulman theory (LS theory) τθ = 0, δ = 1, τq > 0.

(6) Green–Naghdi theory (GN II theory) when τθ = 0, δ = 0, τq = 1.

(7) Equations of generalized thermoelasticity with phase lags (DPL theory) when δ = 1, τq ≥ τθ > 0.

7. Numerical results

In order to illustrate the theoretical results obtained in the preceding section and to compare these in the
context of the DPL model, the CD theory and the LS theory, we now present some numerical results
for the physical constants as λ = 3.76 · 109 N/m2, µT = 1.89 · 1010 N/m2, µL = 2.45 · 1010 N/m2,
α = −1.28 · 1010 N/m2, β = 0.32 · N/m2, τq = 0.95 s, CE0 = 23.1 J/(kg K), ρ0 = 7800 kg/m3, µ =
3.86 · 1010 N/m2, α11 = 1.7 · 10−5 K−1, α22 = 1.5 · 10−5 K−1, τθ = 0.8 s, K01 = 9.21 · 105 J/(ms K),
K02 = 9.63 · 105 J/(ms K), ω = ω0+ iξ , ω0 = 0.6, ξ = 0.2, a = 0.5, P1 = 30, L = 0.1 m, T0 = 293 K,
K1 =−5, f = 1, P2 = 0.5, σ0 = 1.45 · 108 N/m2, αt = 1.78 · 10−5 K−1, P = 0.5.

The computations were carried out for a value of time t = 0.3. The variations of the thermal temper-
ature θ , the horizontal displacement u, and the stress components σxx , σxy with distance x for the value
of y, namely y = 1.5, were substituted in performing the computation. The results are shown in Figures
2–12. The graphs show the six curves predicted by three different theories of thermoelasticity. In these
figures, the solid line represents the solution in the coupled theory, the dotted line represents the solution
in the generalized LS theory, and the dashed line represents the solution derived using the DPL model.
Here all the variables are taken in nondimensional forms and the physical quantities depend not only on
space x and time t , but also on phase lags τθ and τq .

Figures 2–5 show comparisons between the horizontal displacement components u, the thermal tem-
perature θ and the stress components σxx , σxy with temperature-dependent and temperature-independent
thermal conductivity. Figure 2 depicts that the distribution of the horizontal displacement u begins from
positive values. In the context of the three theories, u starts with decreasing, then increases, and again
decreases. The values of u, increasing with the temperature-dependent thermal conductivity in the first
and then, decrease. It is clear from Figure 3 that the thermal temperature θ begins from negative values
with temperature-dependent thermal conductivity, but it begins from positive values with temperature-
independent thermal conductivity and satisfies the boundary condition at x = 0.1. In the context of the
three theories with temperature-dependent thermal conductivity, θ increases in the range 0≤ x ≤ 6, but
with the temperature-independent thermal conductivity, θ decreases in the range 0≤ x ≤ 6. The values
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of θ decrease and then increasing with temperature-dependent thermal conductivity. Therefore, the effect
of temperature-dependent thermal conductivity should be taken into consideration.

Figure 4 displays that the distribution of the stress component σxx begins from negative values and
satisfies the boundary condition at x = 0.1. In the context of the three theories with temperature-dependent
thermal conductivity, σxx starts with increasing, then decreases, and again increases. However, the con-
text of the three theories with temperature-independent thermal conductivity, σxx starts with decreasing to
a minimum value, then increases to a maximum value, and again decreases. The temperature-dependent
thermal conductivity increase, then decrease, and last increase values of σxx . Figure 5 shows the distribu-
tion of the stress component σxy and demonstrates that it reaches a zero value and satisfies the boundary
condition at x = 0.1. In the context of the three theories with temperature-dependent thermal conductivity,
σxy starts with increasing, and then decreases.

However, in the context of the three theories with temperature-independent thermal conductivity, σxy

starts with decreasing to a minimum value, then increase to a maximum value, and again decreases. The
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Figure 5. Distribution of stress component σxy with temperature-dependent and
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values of σxy increase and then, decrease with temperature-dependent thermal conductivity. Figures 2–5
demonstrate that the temperature-dependent thermal conductivity has a significant role on all the physical
quantities. The result provides a motivation to investigate the thermoelastic materials with temperature-
dependent thermal conductivity as a new class of applications thermoelastic materials.

Also, the results obtained in this case should be useful for physicists, researchers in material science,
designers of new materials as well as for those working on the development of thermal stresses and in
practical situations as in optics, geophysics, geomagnetic, acoustics and oil prospecting.

Figures 6–9 show comparisons between the horizontal displacement components u, the thermal tem-
perature θ , and the stress components σxx , σxy with and without the initial stress. Figure 6 depicts that
the distribution of the horizontal displacement u begins from positive values. In the context of the three
theories without initial stress, u decreases in the range 0≤ x ≤ 6. The values of u increase with initial
stress in the first and then decrease. It is clear from Figure 7 that the thermal temperature θ begins
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Figure 7. Thermal temperature distribution θ with initial stress and without initial stress.

from negative values and satisfies the boundary condition at x = 0.1. In the context of the three theories
with without initial stress, θ increases in the range 0 ≤ x ≤ 6. The values of θ decrease with initial
stress. Figure 8 displays that the distribution of the stress component σxx begins from negative values
and satisfies the boundary condition at x = 0.1. In the context of the three theories without initial stress,
σxx starts with decreasing to a minimum value, and then increases. The initial stress, decrease, then
increase, and last decrease values of σxx . Figure 9 shows the distribution of the stress component σxy ,
and demonstrates that it reaches a zero value and satisfies the boundary condition at x = 0.1. In the
context of the three theories without initial stress, σxy starts with decreasing to a minimum value, and
then increases. The initial stress increase and then decrease values of σxy . Figures 6–9 demonstrate that
the initial stress has a significant role on all the physical quantities. Figures 10–12 show that the values of
horizontal displacement components u, and the stress components σxx , σxy increase and then, decrease
with reinforcement.

Due to the presence of reinforcement and initial stress, the magnitude of the thermophysical quantities
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decay, which indicates that initial stress and reinforcement have a tendency in maintaining the smoothness
of the profiles of the thermophysical quantities. So it is more advantageous to consider the effect of initial
stress and reinforcement in such problems of engineering.

In addition, for a fiber-reinforced generalized thermoelastic medium without temperature-dependent
thermal conductivity (K1 = 0) the results agree with the existing literature [Abbas and Abd-alla 2011].

8. Conclusion

In the present study, normal mode analysis is used to study the effect of the initial stress and temperature-
dependent thermal conductivity on fiber-reinforced generalized thermoelastic medium based on the DPL
theory, CD theory and the LS theory. We obtain the following conclusions based on the above analysis:

(1) It is clear that the initial stress, temperature-dependent thermal conductivity, and the reinforcement
play significant roles on all the physical quantities.
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(2) The phase lags τq and τθ has great influence on the distribution of all physical quantities.

(3) The curves in the context of the DPL model, CD theory and the LS theory, decrease exponentially
with increasing x ; this indicates that the thermoelastic waves are unattenuated and nondispersive,
while purely thermoelastic waves undergo both attenuation and dispersion.

(4) Deformation of a generalized thermoelastic medium depends on the nature of the applied force as
well as the type of boundary conditions.

(5) Analytical solutions based upon normal mode analysis of the thermoelastic problem in solids have
been developed and utilized.

The results carried out in this paper can be used to design various fiber reinforced anisotropic media with
initial stress in order to meet special engineering requirements.
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LARGE DEFLECTIONS AND STABILITY OF
SPRING-HINGED CANTILEVER BEAM

MILAN BATISTA

We investigate the influence of spring stiffness on large deflections and the stability of a spring-hinged
cantilever subjected to a conservative tip force. Using the closed-form solution of the equilibrium equa-
tion and the Jacobi accessory equation, we determine the beam equilibrium forms and their stability. The
solution for a spring-hinged cantilever beam subjected to a follower force is provided. The results are
presented in graphical and tabular forms.

1. Introduction

The cantilever beam is one of the most commonly used construction elements for mechanical and civil
engineering applications. In recent decades, it has also been used in robotics and micro- and nanoengi-
neering applications. Therefore, the large deflection and stability of a cantilever beam has attracted con-
siderable attention. Most studies have focused on the clamped cantilever beam (see [Timoshenko 1961;
Frisch-Fay 1962; Ziegler 1977; Popov 1986; Zakharov et al. 2004; Batista 2014; Armanini et al. 2017;
Bigoni 2015; O’Reilly 2017; Zhang and Shan 2008]). The spring-hinged cantilever beam, subjected
to a conservative force, has not been studied extensively. The stability of a spring-hinged cantilever
beam is discussed in the books [Rzhanitsyn 1955; Alfutov 2000], which derive the equation for the
buckling force using Euler’s method. Rao and Raju [1979] analyzed the postbuckling behavior of the
spring-hinged cantilever beam using the finite element method. Ohtsuki and Yasui [1994] solved the
large deflection of the spring-hinged cantilever beam under the inclined force using elliptic integrals.
These authors experimentally verified their calculations through bending tests. Rao and Raju [2002]
calculated the critical load parameter for the cantilever under axial force and distributed load using the
semianalytic Rayleigh–Ritz method. There is a difference in opinion for a follower force that might act
on the cantilever, particularly for a beam under pure compression [Koiter 1996; Antman 2005; Elishakoff
2005]. Large deflections of a spring-supported cantilever subjected to a follower force were considered
using elliptic integrals by Rao et al. [1987]. Rao and Rao [1987] examined the large deflections of a
spring-hinged tapered cantilever beam subjected to a rotational distributed loading using Runge–Kutta
numerical integration. Shvartsman [2007] considered the large bending of a spring-supported cantilever
subjected to a follower force using numerical integration. For the analysis of the stability of the cantilever
beam under a follower force using dynamical methods, we refer to [Bolotin 1963; Bigoni et al. 2018]
and to [Rao and Rao 1975; Kar and Sujata 1990; Guran and Plaut 1993; Sankaran and Rao 1976] in
particular for spring-hinged cantilever beams. For other elastically supported cases of beams, refer to
[Simitses and Hodges 2006; Mahnken 2015; Glavardanov et al. 2017].

Keywords: elastic beams, elastic support, large deformations, stability, Jacobi test.
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Figure 1. Geometry and load of the spring-hinged cantilever beam.

From the available literature, we conclude that the stability of postbuckling forms of the spring-hinged
column beam has not been reported yet. Therefore, in this study, we aim to fill this gap. In the next
section, we derive the governing equations of the problem using the principle of minimum total potential
energy. The Euler equilibrium equation can be obtained using the first variation of this energy, and its
second variation is used to obtain the Jacobi accessory equation [Fox 1954], which is then used to obtain
the equilibrium stability. In Section 3, we provide the solution of these equations in terms of the Jacobi
elliptic function. Then, in Section 4, we provide some numerical examples and discuss the cantilever
under compression in detail. A cantilever subjected to a follower force is discussed in Section 5. Finally,
the results are summarized in the last section.

2. Governing equations

We consider an elastic spring-hinged cantilever beam subjected to a force F . The cantilever length is l,
its flexural rigidity is EI, the rotational spring stiffness is c, and the force inclination angle is α (Figure 1).

The differential equations of the column base curve are

dx
ds
=− cos θ, dy

ds
=− sin θ, (1)

in which 0 ≤ s ≤ ` is the arc length measured from the free end to the fixed end, x and y are the base
curve coordinates, and θ is the tangent angle. The conditions at the fixed end are x(`)= y(`)= 0. Using
this, from (1), we obtain the coordinates x0 ≡ x(0) and y0 ≡ y(0) of the free end as

x0 =

∫ `

0
cos θ ds, y0 =

∫ `

0
sin θ ds. (2)

The expression for the cantilever total potential energy 5 is

5=

∫ 1

0

1
2 EI κ2 ds− F cosα(`− x0)− F sinα y0+

1
2 c θ2

1 , (3)

where θ1 ≡ θ(`), and κ is the base curve curvature given by

κ =−
dθ
ds
. (4)
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For the equilibrium, 5 has to be a minimum [Alfutov 2000]. This means that the first variation of 5
must vanish, and the second variation of 5 must be positive. We derive the governing equations of the
problems through the well-known variational procedure [Fox 1954].

The first variation of 5, from (3) and (2), is

δ5=

∫ `

0
[EI κ δκ − F sin(θ +α)δθ] ds+ cθ1δθ1, (5)

where δθ is the variation of θ , and δκ =−d δθ/ds. After integration by parts and from (4), we obtain

δ5=−EI κ δθ |`0−
∫ `

0

[
EI

d2θ

ds2 + F sin(θ +α)
]
δθ ds+ cθ1δθ1. (6)

Taking δ5= 0, we obtain the differential equation

EI
d2θ

ds2 + F sin(θ +α)= 0, (7)

and the following boundary conditions:

κ(0)= 0, −EI κ(`)+ cθ1 = 0. (8)

Thus, the cantilever equilibrium forms are solutions of the second-order ordinary differential equation
(7) subject to boundary conditions (8).

The second variation of 5 as given by (3) is

δ25=−EIδκ δθ |`0−
∫ `

0

[
EI

d2δθ

ds2 + F cos(θ +α)δθ
]
δθ ds+ c(δθ1)

2. (9)

Taking δ25= 0, we obtain the Jacobi accessory equation

EI
d2δθ

ds2 + F cos(θ +α)δθ = 0, (10)

and the following boundary conditions, which are consistent with (8):

δκ0 = 0, −EIδκ(`)+ c δθ(`)= 0. (11)

We recall that by the Jacobi test, the equilibrium shape of the beam is unstable if any nontrivial solution
of (10) under the boundary conditions (11) has a solution (conjugate points) for 0< s ≤ `.

3. Solution

In the following, we will use the Jacobian elliptic functions sn(x, k), cn(x, k), dn(x, k), Jacobi’s epsilon
function ε(x, k) ≡

∫ x
0 dn2(t, k)dt , and complete elliptic integral of the first kind K (k). Further, we

will use the following derived Jacobian elliptic function: sd(x, k) ≡ sn(x, k)/dn(x, k) and cd(x, k) ≡
cn(x, k)/dn(x, k) [Reinhardt and Walker 2010].
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3.1. Equilibrium. We introduce the nondimensional parameters

ω2
≡

F`2

EI
, β2

≡
c`
EI
. (12)

Hereinafter, we use ` as a unit of length, so we have 0≤ s ≤ 1. Note that ω2 represents nondimensional
force. However, in figures and tables, we use the normalized force

F
FE
=
ω2

π2 , (13)

where FE ≡ π
2(EI/`2) is the Euler critical force for the buckling of a pin-ended column.

Using (12), equations (7) and (8) can be written as

d2θ

ds2 +ω
2 sin(θ +α)= 0, (14)

κ(0)= 0, −`κ(1)+β2θ1 = 0. (15)

The solution of (14) is [Batista 2014; 2016; Love 1944; Goss 2003]

θ =−α+ 2 sin−1
[k sn(ωs+C, k)], (16)

where C is a constant of integration, and k is the elliptic modulus. The base curve curvature is determined
from (4) as

`κ =−2κω cn(ωs+C, k). (17)

From (17), (16), and (15), we obtain the relations

cn(C, k)= 0, (18)

−
1
2α+ sin−1

[k sn(ω+C, k)] + κω
β2 cn(ω+C, k)= 0. (19)

From these we obtain

C = K (κ), (20)

−
1
2α+ sin−1

[k cd(ω, k)] − k
√

1−k2ω

β2 sd(ω, k)= 0. (21)

In this manner, we reduce the problem to solving (21) for an unknown k; the equation can be solved
numerically. Finally, substituting (16) in (1) and by integrating the equation, we obtain the coordinates
of the points of the beam base curve

x = ξ cosα+ η sinα, y =−ξ sinα+ η cosα, (22)

where

ξ =
2
ω
[ε(ω+C, k)− ε(ωs+C, k)] − (1− s), (23)

η =
2k
ω
[cn(ωs+C, k)− cn(ω+C, k)]. (24)
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3.2. Stability. Using (12), from (10) and (11) we obtain the Jacobi accessory equation in the following
form [Fox 1954]:

d2ϑ

ds2 +ω
2 cos(θ +α)ϑ = 0, (25)

where ϑ ≡ δθ . The corresponding boundary conditions (11) can be written as

dϑ
ds
(0)= 0,

(dϑ
ds
+β2ϑ

)
(sc)= 0, (26)

where sc is an unknown upper value of the normalized arc parameter. The solution of (25) can be
expressed as [Batista 2015a]

ϑ(s)= C1ϑ1(s)+C2ϑ2(s), (27)

where C1, C2 are the constants of integration and

ϑ1 ≡
∂θ

∂C
= 2k cn(ωs+C, k), (28)

ϑ2 ≡
∂θ

∂k
=

2
1−k2

{
sn(ωs+C, k) dn(ωs+C, k)−[ε(ωs+C, k)−(1−k2)(ωs+C)] cn(ωs+C, k)

}
. (29)

Substituting (27) in the boundary conditions (26), we obtain a homogeneous system of equations for C1

and C2, which has a nontrivial solution if its determinate vanishes. This condition leads to the following
equation for sc:

[ε(ωsc, k)− (1− k2)ωsc]

[
sn(ωsc, k)+

ω

β2 cd(ωsc, k)
]

+ cn(ωsc, k) dn(ωsc, k)− (1− k2)
ω

β2 sn(ωsc, k)= 0, (30)

where we omit the factor kω. By Jacobi’s test [Fox 1954], the necessary condition for δ25> 0 is that
the smallest root of this equation is sc > 1. Therefore, if 0< sc ≤ 1, the beam shape is unstable. From
the stability analysis, we note that α is not included. This should be clear from the expressions of the
beam coordinates (22); α only affects the rod position and not its shape.

To verify the above equations, we consider the case β2
=∞ (clamped cantilever). In this case, (21) is

reduced to the well-known expression cn(ω, k)= 0; therefore, ω = (2n− 1)K (k), where n is an integer.
In addition, (30) becomes the equation for the cantilever [Batista 2015a, Equation 21] (with the first “−”
sign corrected to “+”).

4. Examples

Using the above solution, we can easily construct various bifurcation diagrams and load-deflection dia-
grams. Further, we can calculate a deformed beam shape. The stability of the beam shapes can be treated
by a numerical solution of (30) through the procedure described by Batista [2015b]. For all numerical
calculations with elliptic functions, we use Elfun18 library [Batista 2018].

To verify the present solution, we compare our calculations for the beam’s free end coordinates and
the tangent angle at the beam ends with those of Ohtsuki and Yasui [1994]. The results are summarized
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Figure 2. Free end tangent angle as a function of normalized force. Dotted line rep-
resents an unstable solution branch. Bright dots indicate values from [Ohtsuki and
Yasui 1994]. Critical normalized force is 5.6071, corresponding free end −130.012◦,
represented by the black dot.

in Figure 3, bottom; the values have an acceptable difference of 10% for all cases, except for ω2
= 1,

where the difference is up to 20%. The comparison is also shown in Figure 2.
As an example of the application of the present solution, we consider the case β2

=
1
2π

2 and α = 1
4π .

The bifurcation diagram for this case is shown in Figure 3. Each branch starts where dk/dω = 0. Using
(21), (

1+
1
β2

)
sn(ω, k)+

ω

β2 cd(ω, k)= 0. (31)

Thus, the start point of the branch is the solution of the system of equations (21) and (31). For each
branch, we have two solutions, i.e., each branch is split into two, k > 0 (upper) and k < 0 (lower). From
the figure, we see that only the first branch can be stable; all other branches are unstable. The upper part
of the first branch that emerges from the initial beam is completely stable (Figure 4, left). The lower
part can only be attained by applying a force greater than the critical force to some predeformed shape
(Figure 4, right). Note that this part is unstable from point A to B (see Figure 3). The stationary point of
the lower part is at dω/dk = 0. For this condition, using (21), we obtain an equation, which is the same
as (30) for sc = 1, i.e., the stationary point lies on the boundary of the stable region. Thus, we obtain the
critical value of ω and k by a solution of the system of equations (21) and (30).

We observe similar behavior for other values of β2 and α. For β2
=∞, we obtain the solution for the

clamped beam, which is discussed by Batista [2015b]. Thus, we conclude that, in general, only the first
branch of the spring-hinged cantilever beam can be stable; all other branches are unstable.
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[Ohtsuki and Yasui 1994] present relative difference %F`2

EI x0/` y0/` θ◦0 θ◦1 x0/` y0/` θ◦0 θ◦1 x0/` y0/` θ◦0 θ◦1

1 0.951 0.258 25.1 1.2 0.93611 0.32338 28.013 1.471 1.6 −20.2 −10.4 −18.4
2 0.750 0.601 59.5 3.0 0.72701 0.62366 59.184 3.155 3.2 −3.6 0.5 −4.9
2.9 0.561 0.752 84.0 4.8 0.53216 0.75927 78.919 4.374 5.4 −1.0 6.4 9.7
6.8 0.099 0.856 114.8 7.5 0.09051 0.86115 113.691 7.558 9.4 −0.6 1.0 −0.8

11.2 −0.105 0.842 126.6 10.2 −0.10100 0.84792 125.142 9.770 4.0 −0.7 1.2 4.4

Figure 3. Top: bifurcation diagram with two solution branches. Dotted lines indicate
the clamped cantilever beam. Start point A of the lower part of the first branch is at
(0.88888,−0.33870). This part of the branch becomes stable after passing point B,
which is at (0.63713,−0.66276). Bottom: numerical values for column shapes shown
in top graph: β2

= 34.69, α = 1
4π .

For the last example, we consider the spring-hinged cantilever beam under pure compression. From
the graph of critical force in Figure 5, we see that the effect of the spring is relatively small for β2 > 40
wherever it is less than 5% of critical force for the clamped beam. From the graph in Figure 6, we can see
that after buckling, the beam continues to support the load, i.e., the force still increases with an increase
in the deflection. From the bifurcation diagram in Figure 7, we see that only the first buckled form is
stable; all other shapes are unstable. Some stable shapes are shown in Figure 8.

We demonstrate the stability of the beam with the graphs; however, two cases can be treated analyti-
cally. The first case is a straight beam, and the second case considers a beam with small deflections.

The solution of (21) corresponding to the straight form is k = 0. In this case, from (16), (17), (23),
and (24), we obtain

θ = 0, κ = 0, x = 1− s, y = 0. (32)
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Figure 4. Top: stable equilibrium shapes for various values of F/FE . Dotted lines
indicate the shapes (left) and forms (right) for the clamped cantilever. Middle: numerical
values for the beam shapes shown in top-left graph. Bottom: Numerical values for
column shapes shown in top-right graph. Bold indicates the critical force. β2

=
1
2π

2

and α = 1
4π for both graphs.

To determine straight-form stability, we consider (30), which for k = 0 reduces to

−
ω

β2 sin(ωsc)+ cos(ωsc)= 0. (33)

The solution to this equation is sc = (1/ω) tan−1(β2/ω). For sc = 1, it becomes the well-known charac-
teristic equation for the critical value ωc of ω [Alfutov 2000]:

β2
= ωc tanωc. (34)

Thus, the straight beam is stable for ω < ωc. In particular, if β2
= 0 (no spring), ωc = 0, i.e., the straight

beam is unstable. If β2
=∞ (clamped end), ωc =

1
2π . The graph from (34) is shown in Figure 6.
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Figure 6. Load-deflection diagram for beam under compression for various values of
normalized spring stiffness β2.

For a small k, i.e., a small deflection, from (20) and (21), we obtain

C = 1
2π + O(k2), (35)

ω

ω0
= 1+ 1

12ω2 k2
+ O(k4), (36)
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= π2.

where

ω2 =
3ω4

0+ (5+ 6β2)β2ω2
0+ 3β6(1+β2)

(ω2
0+β

4)(ω2
0+β

4+β2)
, (37)

and ω0 is the solution of

−
ω0

β0
sinω0+ cosω0 = 0. (38)
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From (16), (17), (23), and (24) we have

θ = 2k cos(ω0s)+ O(k3), (39)

κ = 2kω0 sin(ω0s)+ O(k3), (40)

x = 1− s+ O(k2), (41)

y = 2k
ω0
[sinω0− sin(ω0s)] + O(k3). (42)

To assess the stability of a small deflection, we substitute sc = 1 in (30) and express the equation as a
power series of k. In this manner, we obtain

ωc

ω0
= 1+ 1

4ω2 k2
+ O(k4). (43)

Comparing (36) and (43), we find that ω < ωc, i.e., the initial deflected form is stable.

5. Follower force

We obtain a solution for a large deflection of the rod under a follower force by setting [Antman 2005]

α = γ − θ0, (44)

where θ0 is the free-end tangent angle, and γ is the angle between the force and the base curve tangent
at the free end. Substituting this in (16) and setting s = 0, we obtain

k = sin 1
2γ . (45)

Substituting (44) into the characteristic equation (21), we obtain the following equation for the tangent
angle at the free end:

θ0 = γ − 2 sin−1
[k cd(ω, k)] +

2k
√

1− k2ω

β2 sd(ω, k). (46)

Thus, for each ω and γ , we can calculate k from (45), θ0 from (46), and α from (44). In other words, the
problem has a unique solution, i.e., an equilibrium form of the spring-hinged cantilever under a follow
force is unique. This generalizes the results of Antman [2005], where β2

=∞ and γ = 0.
The angle θ0 is constant when dθ0/dω = 0. From this condition, we deduce the following equation:

sd(ω, k)+ω cd(ω, k)+β2 sn(ω, k)= 0. (47)

For example, when β2
=∞, Equation (47) reduces to sn(ω, k)= 0. The smallest positive root of this

equation is ω = 2K (k). For γ = 1
2π , we obtain ω = 3.70815 or Fc = 13.75037. The difference between

this value and that of Shvartsman [2007] is less than 0.3%. Note that when ω = 2K (k), cn(ω, k)=−1,
and dn(ω, k)= 1; therefore, (46) reduces to θ0 = 2γ , i.e., it is independent of β2. This can be observed
in Figure 9. To obtain the value of β2 for which θ0,max = 2π , we substitute β2 from (47) into (46). We
get ω = 2.52909 as a solution of the resulting equation; thus, β2

= 0.74324.
Because the follower problem has a unique solution, we may assume that the cantilever beam sub-

jected to a static tangential follower force cannot lose stability simply because there are no neighboring
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equilibrium shapes. However, it is well-known that the uniqueness of the solution does not imply stability
[Antman 2005; Bolotin 1963]. Thus, it is widely accepted that for a follower force, a loss of stability is
dynamic; therefore, its stability conditions should be determined by considering small oscillations about
the equilibrium state [Elishakoff 2005].

6. Conclusions

For the spring-hinged cantilever beam under pure compression, we prove that the first buckled mode
is unconditionally stable, i.e., the beam retains its loading capacity after buckling; all higher buckling
modes are unstable. The spring-hinged cantilever beam under an inclined force has two stable equilibrium
solutions. A completely stable solution is obtained for the initial state, and a partly stable solution is
obtained for a predeformed state. We also provide an analytical solution for a cantilever subjected to a
follower force.

Finally, we note that, for a closed form analytical solution, we have an entire phase plane, from which
we can easily determine the equilibrium conditions and their stability.

References

[Alfutov 2000] N. A. Alfutov, Stability of elastic structures, Springer, Berlin, 2000.

[Antman 2005] S. S. Antman, Nonlinear problems of elasticity, 2nd ed., Springer, New York, 2005.

[Armanini et al. 2017] C. Armanini, F. D. Corso, D. Misseroni, and D. Bigoni, “From the elastica compass to the elastica
catapult: an essay on the mechanics of soft robot arm”, Proc. Royal Soc. A 473:2198 (2017), art. id. 20160870.

[Batista 2014] M. Batista, “Analytical treatment of equilibrium configurations of cantilever under terminal loads using Jacobi
elliptical functions”, Int. J. Solids Struct. 51:13 (2014), 2308–2326.

[Batista 2015a] M. Batista, “A simplified method to investigate the stability of cantilever rod equilibrium forms”, Mech. Res.
Commun. 67 (2015), 13–17.

[Batista 2015b] M. Batista, “On stability of elastic rod planar equilibrium configurations”, Int. J. Solids Struct. 72 (2015),
144–152.

[Batista 2016] M. Batista, “A closed-form solution for Reissner planar finite-strain beam using Jacobi elliptic functions”, Int. J.
Solids Struct. 87 (2016), 153–166.

[Batista 2018] M. Batista, “Elfun18 — a collection of Matlab functions for the computation of elliptical integrals and Jacobian
elliptic functions of real arguments”, preprint, 2018. arXiv

[Bigoni 2015] D. Bigoni (editor), Extremely deformable structures, Springer, Wien, 2015.

[Bigoni et al. 2018] D. Bigoni, O. N. Kirillov, D. Misseroni, G. Noselli, and M. Tommasini, “Flutter and divergence instability
in the Pflüger column: experimental evidence of the Ziegler destabilization paradox”, J. Mech. Phys. Solids 116 (2018), 99–
116.

[Bolotin 1963] V. V. Bolotin, Nonconservative problems of the theory of elastic stability, Pergamon, Oxford, 1963.

[Elishakoff 2005] I. Elishakoff, “Controversy associated with the so-called “follower forces”: critical overview”, Appl. Mech.
Rev. (ASME) 58:2 (2005), 117–142.

[Fox 1954] C. Fox, An introduction to the calculus of variations, Oxford University Press, 1954.

[Frisch-Fay 1962] R. Frisch-Fay, Flexible bars, Butterworths, London, 1962.

[Glavardanov et al. 2017] V. B. Glavardanov, R. B. Maretic, M. M. Zigic, and N. M. Grahovac, “Secondary bifurcation of a
shearable rod with nonlinear spring supports”, Eur. J. Mech. A Solids 66 (2017), 433–445.

[Goss 2003] V. G. A. Goss, Snap buckling, writhing and loop formation in twisted rods, Ph.D. thesis, University Collage
London, 2003, Available at https://tinyurl.com/Goss-thesis.

http://dx.doi.org/10.1016/j.ijsolstr.2014.02.036
http://dx.doi.org/10.1016/j.ijsolstr.2014.02.036
http://dx.doi.org/10.1016/j.mechrescom.2015.04.009
http://dx.doi.org/10.1016/j.ijsolstr.2015.07.024
http://dx.doi.org/10.1016/j.ijsolstr.2016.02.020
http://msp.org/idx/arx/arXiv:1806.10469
http://dx.doi.org/10.1016/j.jmps.2018.03.024
http://dx.doi.org/10.1016/j.jmps.2018.03.024
http://dx.doi.org/10.1115/1.1849170
http://dx.doi.org/10.1016/j.euromechsol.2017.08.007
http://dx.doi.org/10.1016/j.euromechsol.2017.08.007
https://tinyurl.com/Goss-thesis


308 MILAN BATISTA

[Guran and Plaut 1993] A. Guran and R. H. Plaut, “Stability of a column with a follower load and a load-dependent elastic
support”, Acta Mech. 97:3-4 (1993), 205–214.

[Kar and Sujata 1990] R. C. Kar and T. Sujata, “Parametric instability of an elastically restrained cantilever beam”, Comput.
Struct. 34:3 (1990), 469–475.

[Koiter 1996] W. T. Koiter, “Unrealistic follower forces”, J. Sound Vib. 194:4 (1996), 636.

[Love 1944] A. E. H. Love, A treatise on the mathematical theory of elasticity, 4th ed., Dover Publications, New York, 1944.

[Mahnken 2015] R. Mahnken, Lehrbuch der Technischen Mechanik — Elastostatik Mit einer Einführung in Hybridstrukturen,
Springer, Berlin, 2015.

[Ohtsuki and Yasui 1994] A. Ohtsuki and T. Yasui, “Analysis of large deflections in ppring-hinged cantilever beam under
inclined tip load”, Trans. Japan Soc. Mech. Eng. A 60:577 (1994), 2100–2106.

[O’Reilly 2017] O. M. O’Reilly, Modeling nonlinear problems in the mechanics of strings and rods: the role of the balance
laws, Springer, 2017.

[Popov 1986] E. P. Popov, Theory and calculation of flexible elastic rods, Moscow, 1986. In Russian.

[Rao and Raju 1979] G. V. Rao and P. C. Raju, “Post-buckling analysis of spring-hinged cantilever columns”, Comput. Struct.
10:3 (1979), 495–497.

[Rao and Raju 2002] G. V. Rao and K. K. Raju, “Stability of spring-hinged cantilever column under combined concentrated
and distributed loads”, AIAA J. 40:8 (2002), 1687–1689.

[Rao and Rao 1975] G. V. Rao and R. V. N. Rao, “Stability of spring-hinged cantilever columns subjected to follower forces —
a galerkin finite element solution”, Comput. Struct. 5:4 (1975), 261–262.

[Rao and Rao 1987] B. N. Rao and G. V. Rao, “Large deflections of a spring-hinged tapered cantilever beam with a rotational
distributed loading”, Aeronaut. J. 91:909 (1987), 429–437.

[Rao et al. 1987] B. N. Rao, G. L. N. Babu, and G. V. Rao, “Large deflection analysis of a spring hinged cantilever beam
subjected to a tip concentrated rational load”, Z. Angew. Math. Mech. 67:10 (1987), 519–520.

[Reinhardt and Walker 2010] W. P. Reinhardt and P. L. Walker, “Jacobian Elliptic Functions”, in NIST handbook of mathemat-
ical functions, edited by F. W. J. Olver et al., Cambridge University Press, New York, 2010.

[Rzhanitsyn 1955] A. R. Rzhanitsyn, Stability of equilibrium of elastic systems, State publishing house of technical-theoretical
literature, Moscow, 1955. In Russian.

[Sankaran and Rao 1976] G. V. Sankaran and G. V. Rao, “Stability of tapered cantilever columns subjected to follower forces”,
Comput. Struct. 6:3 (1976), 217–220.

[Shvartsman 2007] B. S. Shvartsman, “Large deflections of a cantilever beam subjected to a follower force”, J. Sound Vib.
204:3-5 (2007), 969–973.

[Simitses and Hodges 2006] G. J. Simitses and D. H. Hodges, Fundamentals of structural stability, Elsevier, Amsterdam, 2006.

[Timoshenko 1961] S. Timoshenko, Theory of elastic stability, 2nd ed., McGraw-Hill, New York, 1961.

[Zakharov et al. 2004] Y. V. Zakharov, K. G. Okhotkin, and A. D. Skorobogatov, “Bending of bars under a follower load”, J.
Appl. Mech. Tech. Phys. 45:5 (2004), 756–763.

[Zhang and Shan 2008] N.-H. Zhang and J.-Y. Shan, “An energy model for nanomechanical deflection of cantilever-DNA chip”,
J. Mech. Phys. Solids 56:6 (2008), 2328–2337.

[Ziegler 1977] H. Ziegler, Principles of structural stability, 2nd ed., Birkhäuser, Basel, Stuttgart, 1977.

Received 7 Jan 2019. Revised 4 Apr 2019. Accepted 8 Apr 2019.

MILAN BATISTA: milan.batista@fpp.uni-lj.si
Faculty of Maritime Studies, University of Ljubljana, Slovenia

mathematical sciences publishers msp

http://dx.doi.org/10.1007/BF01176526
http://dx.doi.org/10.1007/BF01176526
http://dx.doi.org/10.1016/0045-7949(90)90271-3
http://dx.doi.org/10.1006/jsvi.1996.0383
http://dx.doi.org/10.1299/kikaia.60.2100
http://dx.doi.org/10.1299/kikaia.60.2100
https://www.springer.com/us/book/9783319505961
https://www.springer.com/us/book/9783319505961
http://dx.doi.org/10.1016/0045-7949(79)90024-5
http://dx.doi.org/10.2514/2.1843
http://dx.doi.org/10.2514/2.1843
http://dx.doi.org/10.1016/0045-7949(75)90029-2
http://dx.doi.org/10.1016/0045-7949(75)90029-2
http://dx.doi.org/10.1017/S0001924000021667
http://dx.doi.org/10.1017/S0001924000021667
http://dx.doi.org/10.1002/zamm.19870671009
http://dx.doi.org/10.1002/zamm.19870671009
http://dx.doi.org/10.1016/0045-7949(76)90033-X
http://dx.doi.org/10.1023/B:JAMT.0000037975.91152.01
http://dx.doi.org/10.1016/j.jmps.2007.12.003
mailto:milan.batista@fpp.uni-lj.si
http://msp.org


SUBMISSION GUIDELINES

ORIGINALITY

Authors may submit manuscripts in PDF format online at the Submissions page. Submission of a manuscript ac-
knowledges that the manuscript is original and has neither previously, nor simultaneously, in whole or in part, been
submitted elsewhere. Information regarding the preparation of manuscripts is provided below. Correspondence by
email is requested for convenience and speed. For further information, write to contact@msp.org.

LANGUAGE

Manuscripts must be in English. A brief abstract of about 150 words or less must be included. The abstract should be
self-contained and not make any reference to the bibliography. Also required are keywords and subject classification
for the article, and, for each author, postal address, affiliation (if appropriate), and email address if available. A
home-page URL is optional.

FORMAT

Authors can use their preferred manuscript-preparation software, including for example Microsoft Word or any
variant of TEX. The journal itself is produced in LATEX, so accepted articles prepared using other software will be
converted to LATEX at production time. Authors wishing to prepare their document in LATEX can follow the example
file at www.jomms.net (but the use of other class files is acceptable). At submission time only a PDF file is required.
After acceptance, authors must submit all source material (see especially Figures below).

REFERENCES

Bibliographical references should be complete, including article titles and page ranges. All references in the bibli-
ography should be cited in the text. The use of BibTEX is preferred but not required. Tags will be converted to the
house format (see a current issue for examples); however, for submission you may use the format of your choice.
Links will be provided to all literature with known web locations; authors can supply their own links in addition to
those provided by the editorial process.

FIGURES

Figures must be of publication quality. After acceptance, you will need to submit the original source files in vector
format for all diagrams and graphs in your manuscript: vector EPS or vector PDF files are the most useful. (EPS
stands for Encapsulated PostScript.)

Most drawing and graphing packages—Mathematica, Adobe Illustrator, Corel Draw, MATLAB, etc.—allow the
user to save files in one of these formats. Make sure that what you’re saving is vector graphics and not a bitmap.
If you need help, please write to graphics@msp.org with as many details as you can about how your graphics were
generated.

Please also include the original data for any plots. This is particularly important if you are unable to save Excel-
generated plots in vector format. Saving them as bitmaps is not useful; please send the Excel (.xls) spreadsheets
instead. Bundle your figure files into a single archive (using zip, tar, rar or other format of your choice) and upload
on the link you been given at acceptance time.

Each figure should be captioned and numbered so that it can float. Small figures occupying no more than three lines
of vertical space can be kept in the text (“the curve looks like this:”). It is acceptable to submit a manuscript with
all figures at the end, if their placement is specified in the text by means of comments such as “Place Figure 1 here”.
The same considerations apply to tables.

WHITE SPACE

Forced line breaks or page breaks should not be inserted in the document. There is no point in your trying to optimize
line and page breaks in the original manuscript. The manuscript will be reformatted to use the journal’s preferred
fonts and layout.

PROOFS

Page proofs will be made available to authors (or to the designated corresponding author) at a Web site in PDF
format. Failure to acknowledge the receipt of proofs or to return corrections within the requested deadline may
cause publication to be postponed.

mailto:contact@msp.org
http://www.jomms.net
mailto:graphics@msp.org


Journal of Mechanics of Materials and Structures
Volume 14, No. 2 March 2019

A mode-dependent energy-based damage model for peridynamics and its
implementation
CHRISTIAN WILLBERG, LASSE WIEDEMANN and MARTIN RÄDEL 193

Elastic wave propagation in a periodic composite plate structure: band gaps
incorporating microstructure, surface energy and foundation effects
GONGYE ZHANG and XIN-LIN GAO 219

Dynamic analysis of a mass traveling on a simply supported nonhomogeneous
beam composed of transversely embedded periodic arrays
YI-MING WANG and HUNG-CHIEH LIU 237

Stress concentration around an arbitrarily-shaped hole in nonlinear fully coupled
thermoelectric materials
CHUAN-BIN YU, HAI-BING YANG, KUN SONG and CUN-FA GAO 259

The effect of variable thermal conductivity on an infinite fiber-reinforced thick
plate under initial stress
MOHAMED I. A. OTHMAN, AHMED E. ABOUELREGAL and SAMIA M. SAID 277

Large deflections and stability of spring-hinged cantilever beam MILAN BATISTA 295

JournalofM
echanics

ofM
aterials

and
Structures

2019
V

ol.14,N
o.2


	 vol. 14, no. 2, 2019
	Masthead and Copyright
	Christian Willberg and Lasse Wiedemann and Martin Rädel
	1. Introduction
	2. Theoretical background
	3. Damage model
	4. Implementation
	5. Verification
	5A. Double cantilever beam
	5B. Double cantilever beam: convergence
	5C. Plate with hole

	6. Composite modeling
	7. Conclusion
	List of symbols (continues on next page)
	List of symbols (continued)
	References

	Gongye Zhang and Xin-Lin Gao
	1. Introduction
	2. Formulation
	3. Numerical results
	3.1. Effects of the elastic foundation
	3.2. Effects of the microstructure and surface energy
	3.3. Effect of the unit cell length
	3.4. Effects of the volume fraction

	4. Summary
	References

	Yi-Ming Wang and Hung-Chieh Liu
	1. Introduction
	2. Basic formulas
	3. Numerical results and discussions
	4. Conclusions
	Acknowledgements
	Table of notations
	References

	Chuan-bin Yu and Hai-Bing Yang and Kun Song and Cun-Fa Gao
	1. Introduction
	2. Basic equations for thermoelectric materials
	2.1. Governing quations
	2.2. General solutions of thermoelectric field
	2.3. General solutions of stress field

	3. Thermoelectric plane with an arbitrarily-shaped hole
	3.1. Problem description and boundary condition
	3.2. Series representations

	4. Numerical examples
	5. Concluding remarks
	Acknowledgements
	References

	Mohamed I. A. Othman and Ahmed E. Abouelregal and Samia M. Said
	1. Introduction
	2. Basic equations
	3. Formulation of the problem
	4. Normal mode analysis
	5. Boundary conditions
	6. Particular cases
	7. Numerical results
	8. Conclusion
	References

	Milan Batista
	1. Introduction
	2. Governing equations
	3. Solution
	3.1. Equilibrium
	3.2. Stability

	4. Examples
	5. Follower force
	6. Conclusions
	References

	Guidelines for Authors
	Table of Contents

