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TRANSIENT THERMAL STRESSES IN A LAMINATED SPHERICAL SHELL
OF THERMOELECTRIC MATERIALS

YUE LIU, KAIFA WANG AND BAOLIN WANG

Thermoelectric materials have many potential applications in engineering such as in thermoelectric gen-
erators, waste heat recovery industry, thermoelectric cooling devices. They can also be used in thermal
protection system of supersonic space shuttles to reduce their surface temperatures. On the other hand,
multilayered spherical shell structures are important structure type for thermoelectric material applica-
tions. This paper presents a transient analysis model to predict the temperature field and the associate
thermal stresses in a laminated thermoelectric spherical shell subjected to a sudden temperature increase
on its outer surface. The effects of applied electric current density, thermal conductivity and thickness
of laminated shells on the temperature and thermal stress distributions have been obtained and shown
graphically. Numerical results show that the maximum tensile hoop stress in the laminated shells can
be reduced significantly at a specific applied electric current density. The thermal conductivity ratio of
laminated shells has significant impact on the maximum stress level in the shells. When the thermal con-
ductivity ratio of the inner layer to the outer layer increases, the maximum tensile hoop stress increases
but the maximum compressive hoop stress decreases.

1. Introduction

Thermoelectric materials can achieve energy conversion between electricity and heat and are widely
applied to engineering applications [Riffat and Ma 2003]. For example, thermoelectric devices can be
used for thermoelectric power generation, refrigeration and thermal protection system [Chowdhury et al.
2009; DiSalvo 1999; Zhang et al. 2016; Han et al. 2014; O’Brien et al. 2008; Li et al. 2005]. They
also have potential applications in high-temperature superconductor cables in space solar energy stations.
Applications of the thermoelectric conversion technology is calling for high efficiency thermoelectric ma-
terials [Huang and Duang 2000; Tian et al. 2015]. Thus thermoelectric materials have attracted attentions
in the field of materials science. Zhang et al. [2018b] successfully realized n-type BiCuSeO and Seebeck
coefficient of BiCuSeO was improved through introducing extra Bi/Cu to fill the Bi/Cu vacancies. Pothin
et al. [2018] finished theoretical and experimental work on the tellurium doping of thermoelectric ZnSb
and investigated the influence of tellurium on the phase stabilities. In addition, the requirements of
structural strength and reliability of the thermoelectric intelligent devices call for a better understanding
of the mechanics properties. Thus stress analysis of thermoelectric materials has attracted more and more
attentions. A theoretical model to analyze the thermoelectric conversion efficiency of a cracked material
provided by Zhang et al. [2017a]. Later, they also studied the effect of cracking on the thermoelectric
properties under combined electrical and temperature loadings [2017b]. Song et al. [2018] analyzed
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the thermoelectric field near an elliptic inhomogeneity in an open circuit by using the complex-variable
method. Wang [2015] studied effective material properties of thermoelectric composite materials with
elliptical fibers. Liu et al. [2017a] provided a mechanical model of a thermoelectric thin film bonded
to an elastic substrate. Applications of the thermoelectric conversion techniques in spacecraft have also
attracted more and more attentions. The reason is that when the spacecraft cruise at high velocity, there
is a severe heating on their outer surface. However, for safe operation, the temperature on the interior
of the spacecraft should not be too high. As a result, there is the large temperature difference between
the in-wall and the outer surface of spacecraft. It is the prerequisite of the use of the thermoelectric
conversion techniques. In addition, the features of thermoelectric materials and devices make them very
attractive for meeting the need of the thermal protection system of spacecraft. For example, the features
of them include large operating temperature range, easy to control, reliable operation, layout flexibility,
adaptability.

Thermoelectric cylindrical and spherical shells are more and more applied to the thermoelectric devices
and many researchers studied them in recent years. Yang et al. [2014] obtained thermoelectric field distri-
butions in both homogeneous shell and core-shell composites and analyzed the effective thermoelectric
properties of the core-shell composites. Zhang et al. [2018a] studied the effects of interface layers on
the performance of annular thermoelectric generators. Liu et al. [2018] presented a transient model to
investigate the dynamic characteristics of laminated thermoelectric cylindrical shells and studied the tran-
sient thermal stress fields. In engineering practice, the temperature at the outer surface of thermoelectric
spherical shell may be suddenly increased, such as for thermal protection system [Hegde et al. 2012; Lu
and Liu 2012]. In order to make the design of thermoelectric devices satisfy the requirements of structural
strength, dynamic characteristics of thermoelectric spherical shell should be studied. Suggested by the
previous studies [Ching and Chen 2007; Frostig and Thomsen 2007; Qin 2005; Qiu et al. 2018; Wu et al.
2016], the transient thermal stress in the thermoelectric shell structures should be researched. In addition,
laminated thermoelectric shells attract more and more attention [Liu et al. 2018; Yang et al. 2014]. The
dynamic characteristics of laminated spherical shells of thermoelectric materials should be also studied.
To our best knowledge, investigation of transient characteristics of homogeneous thermoelectric spherical
shell and laminated thermoelectric spherical shells is very limited.

The aim of current paper is to propose a transient model to study the transient temperature and thermal
stress fields in both homogeneous and laminated thermoelectric spherical shells. By using the technique
of separation of variables, we obtain the solutions for temperatures at the steady-state and the transient-
state. Some numerical calculations are performed to study the transient characteristics of spherical shell.
The influences of applied electric current density, thermal conductivity and the thickness of laminated
spherical shells on the temperature field and thermal stress filed are investigated. This research can
provide some guidelines for the design and optimization of thermoelectric shell devices.

2. Transient model of the homogeneous thermoelectric spherical shell

Figure 1 shows a homogeneous thermoelectric spherical shell, where r is the radial coordinate (radius),
r1 is the internal radius and r2 is the external radius of thermoelectric shell. Note that t denotes time.
Assume that thermoelectric shell is at an initial constant temperature T1. For time t > 0, the temperature
of external surface (r = r2) is changed to T2 and kept at T2. For thermoelectric materials, the basic
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governing equations in transient state can be expressed as [Wang 2017]

∇ · j = 0, (1)

−∇ · q− j · ∇V = ρc∂T
∂t
, (2)

j =−σ∇V − σ s∇T, (3)

q =−σ sT∇T − (κ + σ s2T )∇T, (4)

where T and V are, respectively, temperature and electric potential; j and q are, respectively, electric
current density and heat flux vector; σ , κ , s, ρ and c are, respectively, electric conductivity, thermal
conductivity, Seebeck coefficient, mass density and specific heat. In this work, the symmetric problem
is considered so that temperature, electric potential and electric current density depend only on radial
coordinate r . The governing equation for electric current density is rewritten as d j/dr+2 j/r = 0, where
j is the magnitude of current density. As a result, j can be obtained as j = C/r2. A special case is
considered and applied electric current density is independent on time, therefore C is a constant. From
(1) to (4), the governing equation for transient temperature can be obtained as

∇
2T +

j2

κσ
=
ρc
κ

∂T
∂t
. (5)

For 1-D problem of T (r, t), equation (5) can be rewritten as

1
r
∂2

∂r2 (rT )+
j2

κσ
=
ρc
κ

∂T
∂t
. (6)

The solution to (6) can be expressed as T (r, t) = Ts(r)+ Th(r, t), where Ts(r) is the steady part of
the solution, Th(r, t) is the transient part of the solution. Subscripts s and h denote the steady and the
transient part, respectively. For 1-D problem of Ts(r), the governing equation can be expressed as

1
r

d2

dr2 (rTs)+
j2

κσ
= 0, (7)

and boundary conditions are Ts(r1) = T1 and Ts(r2) = T2. For 1-D problem of Th(r, t), the governing
equation can be expressed as

1
r
∂2

∂r2 (rTh)=
ρc
κ

∂Th

∂t
, (8)

and corresponding boundary conditions are Th(r1, t)= 0 and Th(r2, t)= 0, initial condition is Th(r, 0)=
T1 − Ts(r). New variables Ws(r) and Wh(r, s) are introduced by the transform Ws(r) = rTs(r) and
Wh(r, t)= rTh(r, t). Thus (7) and (8) can be rewritten as

d2Ws

dr2 +
r j2

κσ
= 0, (9)

∂2Wh

∂r2 =
ρc
κ

∂Wh

∂t
. (10)
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Figure 1. The homogeneous thermoelectric spherical shell.

2.1. The temperature field. Substituting the expression of j into (9) gives

Ws =−
C2

2κσ
1
r
+C1r +C2, (11)

where C1 and C2 are unknown constants. From boundary conditions C1 and C2 can be solved as

C1 =
r2T2− r1T1

r2− r1
−

C2

2r1r2 κσ
, C2 = r1T1+

C2

2r1κσ
−C1r1. (12)

The solution to (10) can be expressed as [Hahn and Özişik 2012]

Wh(r, t)=
∞∑

n=1

exp
(
−
κ

ρc
β2

n t
)

2
r2− r1

sin(βnr)
∫ r2

r1

sin(βnr)[rT1−Ws(r)] dr, (13)

where βn =πn/(r2−r1), n= 1, 2, 3, . . . . Thus T (r, t) can be obtained as T (r, t)= [Ws(r)+Wh(r, t)]/r .

2.2. The thermal stress field. In this case, only radial strain εr and hoop strain εθ are nonzero. The
expressions of them are, respectively, εr = du/dr and εθ = u/r , where u is radial displacement. The
equation of stress equilibrium is dσr/dr + 2(σr + σθ )/r = 0. Stress-strain equations are

σr =
E

(1+ν)(1−2ν)
[(1− ν)εr + 2νεθ − (1+ ν) α1T ], (14a)

σθ =
E

(1+ν)(1−2ν)
[εθ + νεr − (1+ ν) α1T ], (14b)

where E , ν and α are Young’s modulus, Poisson’s ratio and thermal expansion coefficient of the ther-
moelectric spherical shell, respectively. Note that 1T is temperature increment measured relative to the
initial temperature, which can be expressed as 1T = T (r, t)− T1 in this case. Substituting (14a), (14b)
and the expressions of εr and εθ into equilibrium equation gives

d
dr

[ 1
r2

d
dr
(r2u)

]
=

1+ν
1−ν

α
d
dr
(1T ). (15)

The solution to (15) is

u =
1+ ν
1− ν

α

r2

∫ r

r1

1T r2dr + ar + b
r2 . (16)
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Figure 2. The laminated thermoelectric spherical shells.

Thus (14a) and (14b) can be rewritten as

σr =−
2αE
1− ν

1
r3

∫ r

r1

1T r2dr +
Ea

1− 2ν
−

1
r3

2Eb
1+ ν

, (17a)

σθ =
αE

1− ν
1
r3

∫ r

r1

1T r2dr +
Ea

1− 2ν
+

1
r3

Ea
1+ ν

−
αE1T
1− ν

, (17b)

where a and b are constants. When internal and external surfaces of the shell are stress free, a and b can
be obtained as

a =
2(1− 2ν)b
r3

1 (1+ ν)
, b =

α(1+ ν)
1− ν

r3
1

r3
2 − r3

1

∫ r2

r1

1T r2dr. (18a)

When internal surface of shell is fixed and external surface is stress free, a and b can be obtained as

a =−
b
r3

1

, b =−
2α

1− ν
(1− 2ν)(1+ ν)r3

1

[r3
2 (1+ ν)+ 2(1− 2ν)r3

1 ]

∫ r2

r1

1T r2dr. (18b)

When both internal and external surfaces of shell are fixed, a and b can be obtained as

a =−
b
r3

1

, b =−
1+ ν
1− ν

r3
1α

r3
1 − r3

2

∫ r2

r1

1T r2dr. (18c)

3. The transient model of the laminated thermoelectric spherical shell

As shown in Figure 2, laminated thermoelectric spherical shell is considered which consists of two
homogeneous thermoelectric shells, A and B. The interface of the two shells is at ri . Note that r1 and r2

express, respectively, the internal radius of spherical shell A and the external radius of spherical shell B.
Assume that initially the laminated thermoelectric spherical shell is at a constant temperature T1. For
time t > 0, temperature of the external surface of shell B (r = r2) is changed to T2 and kept at T2.
Similar to the method in Section 2, the temperature field of shell A is TA(r, t)= TAs(r)+ TAh(r, t) and
temperature field of shell B is TB(r, t)= TBs(r)+ TBh(r, t). The subscripts A and B denote, respectively,
the shell A and shell B.

3.1. The temperature field. Similar to the method in Section 2, new variables WAs(r), WBs(r) are intro-
duced by the transform WAs(r)= rTAs(r) and WBs(r)= rTBs(r). These new variables should satisfy (9).
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The expressions of them can be obtained as

WAs =−
C2

A

2κAσA

1
r
+CA1r +CA2, WBs =−

C2
B

2κBσB

1
r
+CB1r +CB2, (19)

where CA1, CA2, CB1 and CB2 are constants; σA, κA, sA, are, respectively, electric conductivity, thermal
conductivity and Seebeck coefficient of spherical shell A, and σB, κB, sB, are, respectively, electric con-
ductivity, thermal conductivity and Seebeck coefficient of spherical shell B. From boundary conditions
we have the equations as

r1T1 =−
C2

2κAσA

1
r1
+CA1r1+CA2, r2T2 =−

C2

2κBσB

1
r2
+CB1r2+CB2. (20a)

In addition, temperature, electric current density and heat flux are continuous at the interface [Yang et al.
2014], we have the equation as

−
C2

A

2κAσA

1
ri
+CA1ri +CA2 =−

C2
B

2κBσB

1
ri
+CB1ri +CB2, (20b)

CA = CB = C, (20c)

(sATAs jA− κA∇TAs)|r=ri= (sBTBs jB− κB∇TBs)|r=ri . (20d)

From (20a) to (20d), CA1, CA2, CB1 and CB2 can be obtained as

CA1 =−
(κBr2

i 01+03)(ri − r2)

02(ri − r2)+ (ri − r1)κBr2
i
, CA2 = r1T1+

C2

2r1κAσA
−CA1r1, (21a)

CB1 = 01+CA1
ri − r1

ri − r2
, CB2 = r2T2+

C2

2r2κBσB
−CB1r2, (21b)

where

01=
r1T1− r2T2

ri − r2
+

(
ri − r1

r1κAσA
+

r2− ri

r2κBσB

)
C2

2ri (ri − r2)
, 02=C(sA−sB)(ri−r1)−[(κA−κB)r1+κBri ]ri ,

03 =
(σA− σB)C2

2σAσB
+
(ri − r1)C2

2r1riκAσA
[C(sA− sB)+ ri (κA− κB)] + r1T1[C(sA− sB)+ ri (κA− κB)].

Similar to Section 2.1, TAh(r, t) and TBh(r, t) should satisfy (8). The boundary conditions and contin-
uous conditions are

TAh(r1, t > 0)= 0, (22a)

TAh(ri , t > 0)= TBh(ri , t > 0), (22b)

κA
∂TAh(r, t)

∂r
= κB

∂TBh(r, t)
∂r

, r = ri , t > 0, (22c)

TBh(r2, t > 0)= 0. (22d)

The initial conditions for TAh(r, t) and TBh(r, t) are

TAh(r, 0)= T1− TAs(r), TBh(r, 0)= T1− TBs(r). (23)
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TAh(r, t) and TBh(r, t) are [Hahn and Özişik 2012]

TAh(r, t)=
∞∑

n=1

exp(−β2
n t)

1
Nn
ϕAn(r)

×

{
ρAcA

∫ ri

r1

r2ϕAn(r)[T1− TAs(r)] dr + ρBcB

∫ r2

ri

r2ϕBn(r)[T1− TBs(r)] dr
}
, (24a)

TBh(r, t)=
∞∑

n=1

exp(−β2
n t)

1
Nn
ϕBn(r)

×

{
ρAcA

∫ ri

r1

r2ϕAn(r)[T1− TAs(r)] dr + ρBcB

∫ r2

ri

r2ϕBn(r)[T1− TBs(r)] dr
}
, (24b)

where ρA, cA are, respectively, mass density and specific heat of spherical shell A, ρB, cB are, respectively,
mass density and specific heat of spherical shell B, and

Nn = ρAcA

∫ ri

r1

r2ϕ2
An(r)dr + ρBcB

∫ r2

ri

r2φ2
Bn(r)dr,

ϕAn = A1n
1
r

sin
(
βn
√
ωA

r
)
+ B1n

1
r

cos
(
βn
√
ωA

r
)
, ϕBn = A2n

1
r

sin
(
βn
√
ωB

r
)
+ B2n

1
r

cos
(
βn
√
ωB

r
)
,

where A1n , B1n , A2n , B2n , βn are the unknown constants and ωA = κA/(ρAcA), ωB = κB/(ρBcB). A1n ,
B1n , A2n , B2n and βn are listed in Appendix A. Thus TA(r, t) and TB(r, t) can be obtained as TA(r, t)=
WAs(r)/r + TAh(r, t) and TB(r, t)=WBs(r)/r + TBh(r, t).

3.2. The thermal stress field. Similar to the method in Section 2.2, displacement and stresses in ther-
moelectric spherical shell A and B can be obtained as

uA =
1+ νA

1− νA

αA

r2

∫ r

r1

1TAr2 dr + a11r +
b12

r2 , (25a)

σAr =−
2αA EA

1− νA

1
r3

∫ r

r1

1TAr2 dr +
EA a11

1− 2νA
−

1
r3

2EA b12

1+ νA
, (25b)

σAθ =
αA EA

1− νA

1
r3

∫ r

r1

1TAr2 dr +
EA a11

1− 2νA
+

1
r3

EA b12

1+ νA
−
αA EA1TA

1− νA
, (25c)

uB =
1+ νB

1− νB

αB

r2

∫ r

ri

1TBr2 dr + a21r +
b22

r2 , (26a)

σBr =−
2αB EB

1− νB

1
r3

∫ r

ri

1TBr2 dr +
EB a21

1− 2νB
−

1
r3

2EB b22

1+ νB
, (26b)

σBθ =
αB EB

1− νB

1
r3

∫ r

ri

1TBr2 dr +
EB a21

1− 2νB
+

1
r3

EB b22

1+ νB
−
αB EB1TB

1− νB
, (26c)

where a11, b12, a21 and b22 are unknown constants; EA, νA and αA are, respectively, Young’s modulus,
Poisson’s ratio and thermal expansion coefficient of spherical shell A, and EB, νB and αB are, respectively,
Young’s modulus, Poisson’s ratio and thermal expansion coefficient of spherical shell B. Assumed that
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s (VK−1) σ (Sm−1) κ (Wm−1K−1) ρ (kgm−3) c (Jkg−1K−1) α (K−1) E (GPa) ν

×10−6
×103

×10−5

Shell A 200 110 1.6 7740 154.4 1.68 47 0.3
Shell B 233 47.2 1.22 6760 190 0.42 160 0.4

Table 1. Thermoelectric properties of thermoelectric spherical shells A and B
[Antonova and Looman 2005; Clin et al. 2009; Gao et al. 2011; Jin 2013; Yang et al.
2014].

radial displacement and radial stress of spherical shell A and B are continuous at the interface. It means
uA(ri )= uB(ri ) and σAr (ri )= σBr (ri ). a11, b12, a21 and b22 are listed in Appendix B.

4. Numerical examples and discussions

The internal and external radii of thermoelectric spherical shell are, respectively, assumed as r1 = 0.05 m
and r2 = 0.055 m, as shown in Figure 1. For laminated spherical shells, the internal and external radii
are, respectively, assumed as r1 = 0.05 m and r2 = 0.055 m as shown in Figure 2. The material properties
of thermoelectric spherical shell A and shell B are listed in Table 1 [Antonova and Looman 2005; Clin
et al. 2009; Gao et al. 2011; Jin 2013; Liu et al. 2017b; Yang et al. 2014]. In addition, assume that
material properties of homogeneous thermoelectric spherical shell are the same as thermoelectric shell A
in Table 1. Assume that temperature applied on internal surface T1 is equal to 300 K and temperature
applied on the external surface T2 is equal to 1300 K. In addition, V1 is applied electric potential on
internal surface and value of V1 is assumed to be zero. A typical value of the electric current density
j0= 3×106 A m−2 [Wang 2017] is used as the reference value. Assume that the reference electric current
density is applied on internal surface of spherical shell. Thus the value of reference constant C0 is equal
to 7500.

4.1. The transient temperature field. Figure 3 shows the temperature profile of homogeneous thermo-
electric spherical shell. It is noted that in Figure 3 the normalized current density j/j0 is assumed to
be 1. It shows that temperatures gradually increase with time and become almost steady as time exceeds
20 s in current case. The distribution of temperature is nonlinear, due to Joule heating. Figure 4 shows
the influence of applied electric current density on steady-state temperature field of homogeneous ther-
moelectric spherical shell. Clearly, temperature profiles for positive electric current and negative electric
current are almost coincident. This means that direction of applied electric current density does not
affect the temperature distribution. The reason is that temperature field of homogeneous thermoelectric
spherical shell is affected by the square of applied electric current density j , which can be found from
the equation (11).

Figure 5 shows the temperature profile of laminated thermoelectric spherical shells. The normalized
electric current density j/j0 is assumed to be 1. In this case, temperature increases with time and finally
approaches the steady state when time exceeds 20 s. Figure 6 shows the effect of electric current density
on steady-state temperature field of laminated thermoelectric spherical shell. Due to thermoelectric effect,
heat flux in thermoelectric material is obtained as q = sT j − κ∇T , which is affected by electric current
density j . For laminated thermoelectric spherical shells, continuous condition of heat flux is that qA = qB
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Figure 3. Distribution of transient temperature in homogeneous thermoelectric spheri-
cal shell for j/j0 = 1.

at interface. On the other hand, temperature field is affected by the square of electric current density j
which can be found from governing equation (9). Thus temperature field of laminated spherical shells

1300

1200

1100

1000

900

800

700

600

500

400

300
0.050 0.051 0.052 0.053 0.054 0.055

T
 (

r, 
t)

  [
K

]

r  [m]

j j0/ = 1

j j0/ =  0

j j0/ =  0.5

j j0/ = −1

j j0/ = − 0.5

Figure 4. The influence of applied current density on the temperature field of homoge-
neous thermoelectric spherical shell under steady state.
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Figure 5. Distribution of transient temperature in laminated thermoelectric spherical
shell for j/j0 = 1.

is dependent on the first and second power of electric current density. Both direction and magnitude
of applied current density can affect temperature distribution. If Seebeck coefficient s is equal to zero
(ignore thermoelectric effect), heat flux will be independent of j and temperature field will be affected
only by the second power of electric current density.

4.2. The transient thermal stress field. Considering the most common practical situation, the radial
stresses at the both internal and external surfaces are assumed to be zero in this subsection. Since the
maximum hoop stress is higher than that of radial stress in this case, only distributions of hoop stress are
given. As mentioned above, temperature field keep almost steady state as time is greater than 20 s. In
addition, the change of temperature field is obvious with time t varying from 0 s to 10 s and when time t
varying from 10 s to 20 s, the change of temperature field is not obvious. Thus the dynamic variations of
hoop stress from 0 s to 10 s are given in this subsection.

Figure 7 shows dynamic hoop stress variations at internal and external surfaces of the homogeneous
thermoelectric spherical shell. Since temperature applied on external surface T2 is higher than initial
temperature (hot shock), the region near external surface (r2) is in compressive, whereas a tensile zone
is developed at internal surface (r1). Before temperature of spherical shell reaches the steady-state, hoop
stress at external surface decreases with time and hoop stress at internal surface increases with time. The
transient thermal stress field for positive current density is the same as that for the negative current density.
In current case, the maximum compressive stress is at r2 when time is equal to zero and the maximum
tensile stress is at r1 when the stress field reaches steady state. Figure 8 shows dynamic hoop stress
variations at interface, internal and external surfaces of laminated thermoelectric spherical shells. When
temperature on external surface (r2) is changed to T2 (T2 > initial temperature), the region near external
surface of shell B (r2) is in compressive, whereas a tensile zone is developed at interface of shell B (ri ).
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Figure 6. The influence of applied current density on the temperature field of laminated
thermoelectric spherical shell under steady state.

Due to continuous condition at interface, interface of shell A (ri ) is in tensile in a short time after hot
shock (t < 0.5 s). When temperature of laminated spherical shells reaches the steady-state, shell A and
shell B at interface have the same temperature. In current case, thermal expansion coefficient of shell A
is bigger than that of shell B. Thus interface surface of shell A is in compressive at steady-state. Hoop
stress at interface σAθ (ri , t) therefore is tensile at the beginning and finally is compressive. Temperature
distribution is dependent on both direction and magnitude of applied current density. Thus the transient
thermal stress profiles for positive current density is different from that for negative electric current, as
shown in Figure 8. In this case, the maximum compressive stress is at external surface of shell B (r2)

when time is equal to zero and the maximum tensile stress is at interface of shell B (ri ) when the stress
field reaches steady state.

4.3. The influences of thermal conductivity. Many studies show that reducing the thermal conductivity
can improve the thermoelectric figure of merit (Z T ) but it can also cause thermomechanical issues [Kim
et al. 2016]. Thus the influence of thermal conductivity on the thermal stress field should be studied.
Figure 9 shows the influence of thermal conductivity on the maximum compressive and tensile hoop
stresses. Note that in Figure 9, σθ (r2, 0) and sθs(r1) are the maximum compressive hoop stress and
maximum tensile hoop stress in the shells, respectively. It can be seen that if applied electric current
density increases and thermal conductivity decreases, the maximum compressive stress decreases but
the maximum tensile stress increases. Influence of thermal conductivity on the maximum tensile stress
is more significant than that on the maximum compressive stress. This means that even though lowing
thermal conductivity can enhance the thermoelectric figure of merit (Z T ), it is also likely to cause
the structural reliability concerns. Therefore, when we design thermoelectric spherical shell devices, a
balance between the thermoelectric performance and structural reliability issue should be made.
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Figures 10 and 11 show the influence of thermal conductivity on maximum tensile hoop stress and
maximum compressive hoop stress of laminated spherical shells, respectively. Note that σBθs(ri ) is the
maximum tensile hoop stress of laminated shells in Figure 10 and σBθ (r2, 0) is the maximum compressive
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hoop stress of laminated shells in Figure 11. For laminated thermoelectric spherical shells, temperature
is a function of the first and second power of electric current density j . In current case, maximum
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tensile hoop stress reaches the lowest value when the value of j/j0 is around 0.2. When the thermal
conductivity ratio of shell A to shell B increases, the maximum tensile hoop stress increases and the
maximum compressive hoop stress decreases.

4.4. The influences of the thickness of laminated shells. Figures 12 and 13 show, respectively, influ-
ence of the thickness of laminated shells on the maximum tensile and compressive hoop stresses. When
the laminated thermoelectric spherical shells are used in thermal protection system of supersonic space
shuttles, there is the large temperature difference between external surface and internal surface. Thus
assumed that T2 is equal to 1300 K and 1600 K and T1 is equal to 300 K in this subsection. As mentioned
above, σBθs(ri ) and σBθ (r2, 0) are, respectively, the maximum tensile and compressive hoop stresses of
laminated shells in Figures 12 and 13. It is noted that increasing ri means that the radial thickness of
shell B becomes thinner and that of shell A becomes thicker when the radii of internal and external
surfaces keep constant. The value of maximum tensile stress is the lowest when the interface is on the
middle of laminated shell. It is noted that these lines do not intersect at one point for T2 = 1300 K or
1600 K, as shown in Figure 13.

5. Conclusion

This work constructs a transient mechanical model for laminated thermoelectric spherical shells, con-
sidering the coupling of the heat transfer and electric conduction. Notably, a computational code with
good human-machine dialogue interface was developed. The code allows us to graphically input data
and output the results. The models can evaluate the thermal and mechanical characteristics of materials



THERMAL STRESSES IN A THERMOELECTRIC SPHERICAL SHELL 337

600

550

500

450

400

350

300

250
− 1.0 − 0.8 − 0.6 − 0.4 − 0.2 0 0.2 0.4 0.6 0.8 1.0

j j0/

[M
P

a]
(r

  )
σ
  

  θ
B

s
i

broken lines:

solid lines: ri = 0.0530 m

ri = 0.0525 m

ri = 0.0520 mdash-dotted lines:

T = 1600K2

T = 1300K2

Figure 12. The influence of the thickness of laminated shells on the maximum tensile
hoop stress in the thermoelectric spherical shell ( j0 = C0/r2 where C0 = 7500, r1 =

0.05 m, r2 = 0.055 m, T1 = 300 K).

��1.0 ��0.8 ��0.6 ��0.4 ��0.2 0 0.2 0.4 0.6 0.8 1.0

j j0/

broken lines:

solid lines: r
i
= 0.0530 m

r
i
= 0.0525 m

r
i
= 0.0520 mdash-dotted lines:

T = 1300K2

T = 1600K2

������

������

������

������

������

������

������

[M
P

a]
(r

  
,0

)
�
P 

  �
B

2

������

������

������� �������

��������

��������

�������� ��������

Figure 13. The influence of the thickness of laminated shells on the maximum com-
pressive hoop stress in the thermoelectric spherical shell ( j0 = C0/r2 where C0 = 7500,
r1 = 0.05 m, r2 = 0.055 m, T1 = 300 K).



338 YUE LIU, KAIFA WANG AND BAOLIN WANG

for temperatures higher than 1300 K, which are very possibly happen thermal protection system of future
supersonic space shuttle, and for temperatures as low as 77 K that is possible for high-temperature su-
perconductors in space solar energy station. Numerical results show that specifying the applied electric
current density may reduce the maximum tensile stress in the laminated shells. For laminated spherical
shells, additional attention for the thermal conductivity ratio of shell A to shell B should be paid. If the
thermal conductivity ratio of laminated shells increases, the maximum tensile hoop stress increases but
the maximum compressive hoop stress decreases.

Appendix A

First, ϕAn and ϕBn should satisfy the following equations [Hahn and Özişik 2012]

ϕAn(r1)= 0, (A1)

ϕAn(ri )= ϕBn(ri ), (A2)

κA
dϕAn(r)

dr
= κB

dϕBn(r)
dr

, r = ri , (A3)

ϕBn(r2)= 0. (A4)

Substituting ϕAn(r) and ϕBn(r) into (A1) to (A4) gives

0= A1n
1
r1

sin
(
βn
√
ωA

r1

)
+ B1n

1
r1

cos
(
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√
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)
, (A5)
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√
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√
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√
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1
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0= A2n
1
r2

sin
(
βn
√
ωB

r2

)
+ B2n

1
r2

cos
(
βn
√
ωB

r2

)
. (A8)

Without loss of generality, we choose A1n = 1 [Hahn and Özişik 2012] and A1n , B1n , A2n and B2n can
be obtained as

A1n = 1, (A9)

B1n =− tan
(
βn
√
ωA

r1

)
, (A10)
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A2n =
cos(βn/

√
ωA ri ) tan(βn/

√
ωA r1)− sin(βn/

√
ωA ri )

cos(βn/
√
ωB ri ) tan(βn/

√
ωB r2)− sin(βn/

√
ωB ri )

, (A11)

B2n =−A2n tan
(
βn
√
ωB

r2

)
. (A12)

Equations (A5), (A6), (A7) and (A8) can be expressed in the matrix form. From the requirement that
determinant of the coefficients in the matrix should be zero, values of βn can be obtained.

Appendix B

Three different boundary conditions are considered: Case 1, both internal and external surfaces of lami-
nated thermoelectric spherical shell are stress free; Case 2, internal surface of shell is fixed, and external
surface is stress free; Case 3, both internal and external surfaces of shell are fixed. a11, b12, a21 and b22

are

a11 =�1b12, (B1)
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ri�3−35

31
+
32

31
b22, (B2)

a21 =�3+�2 b22, (B3)
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3134−3233
, (B4)
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