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EXPERIMENTAL AND NUMERICAL ENERGY ABSORPTION STUDY
OF ALUMINUM HONEYCOMB STRUCTURE FILLED WITH

GRADED AND NONGRADED POLYURETHANE FOAM
UNDER IN-PLANE AND OUT-OF-PLANE LOADING

ALIREZA MOLAIEE AND SEYED ALI GALEHDARI

This study aims to investigate the effect of honeycomb structure filled with graded and nongraded
polyurethane foam on reaction force during energy absorption under in-plane and out-of-plane load-
ings. Three types of aluminum AL5052 honeycomb structures without filling, with graded filling and
with nongraded filling were manufactured and subjected to quasistatic compression loading. In order to
investigate the effect of reaction force and energy absorption capacity, honeycomb cores with different
densities were selected. Afterward, the behavior of honeycomb structures was numerically simulated in
the ABAQUS software. The results of finite element analysis show that using foam filling in honeycomb
structures increases energy absorption. The structures filled with graded foam, shows better performance
with the rate of stiffness reduction from impact location compared to those filled with nongraded foam.
Energy absorption for graded foam structure occurs at a longer time period comparing to nongraded one.
The energy absorption capacity of the structure under out-of-plane loading is much higher than in-plane
loading, but its reaction force is very high. The results of empirical tests are greatly similar to that of
numerical studies. Therefore, it is possible to use simulation in ABAQUS environment for solving more
complex problems.

A list of symbols can be found on page 321.

1. Introduction

In the recent years according to the importance of energy absorption in different industries, impact
absorbers, especially honeycomb structures have gained increased attention. Inspired from natural struc-
tures, it is possible to create optimized structures with higher energy absorption capabilities. Human
and bird bone structures are among the most efficient natural impact absorbers. In bones, sponge-like
structure leads to impact absorption and the damage lessening to joints [Koch 1917]. Another natural
example of impact absorption is the banana structure and its peal which protects the soft core of the fruit
from outside forces [Ali et al. 2008]. Due to the high strength to weight ratio and high energy absorption
up to 70% of the initial height, honeycomb structures have gained increased importance in various in-
dustries, especially in the aerospace industry [Bitzer 1997]. Various structures and materials are used to
manufacture honeycomb structures. The most common honeycomb structures are hexagonal structures
made from aluminum and filled polymer foams. Polymer foams are among the cheapest materials and
have characteristics such as heat resistance, waterproofing and soundproofing and are also cost-efficient.

Keywords: honeycomb structure, energy absorption, in-plane loading, out-of-plane loading, graded foam, ABAQUS,
experimental test.
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Some of the recent studies have investigated the mechanical properties of polymer foams. Various
types of polymer foams have been investigated but polyurethane foams are less frequency used. Desh-
pande and Fleck [2001] investigated the behaviors of two types of PVC (polyvinyl chloride) foams for
a wide range of tensile and compression strains. Seo et al. [2004] studied the effects of compression on
small packages of hard polyurethane and polystyrene foams. They investigated foam characteristics at
different densities using compression test and calculated stress-strain charts, Young modulus and Poisson
coefficient of foams based on their density.

Some studies have investigated the filling of honeycomb structures with polymer foams. Akay and
Hanna [1990] studied the behaviors of honeycomb structures and sandwich panels filled with foam us-
ing force-bending equipment and scanned foam samples using ultrasonic waves. Hanssen et al. [2000]
created a program made from 96 tests for axial deformation and investigated the effects of foam density
on energy absorption of structures with thin walls filled with aluminum foam. Suvorov and Dvorak
[2005] investigated general deformation of sandwich structures under average impact speeds of 10 m/s
and 20 m/s caused by the impact between boat and docks. They selected carbon-vinyl ester plates and
used foam nucleus made from PVC H100 and flexible polyurethane foam between carbon-vinyl ester
plates. They concluded that energy absorption is directly related to distance and initial velocity of a
projectile. Song et al. [2010] investigated the dynamic compression behavior of three-dimensional foam
structures with Voroni geometry using finite element analysis and empirical tests. They also investigated
the effects of irregularities in cell structure, impact loading, relative compression and hardness strain
on deformation of the structure. Galehdari et al. [2015] proposed an analytical equation for plateau
stress using exponential hardening model in honeycomb structures. They also extracted the equation for
specific energy absorption of honeycomb structures using locking strain and strain energy. In order to
validate these equations, they simulated five different aluminum types with exponential hardening model
in ABAQUS software. They also carried out an impact test on a graded honeycomb structure in order
to validate the results of the numerical analysis. A comparison showed a good agreement between their
numerical and empirical results. Also, Galehdari and Khodarahmi [2016] designed a graded honeycomb
structure for shock absorption in helicopter seats during a crash-landing. They simulated this structure
in ABAQUS environment. Alavi Nia and Sadeghi [2010] carried out an empirical study for investigating
the response of empty and filled honeycomb structures under quasistatic loadings. They used five dif-
ferent empty and foam-filled honeycomb structures made from Al-5052-H39 alloy and concluded that
use of foam filling can increase energy absorption up to 300%. Zarei Mahmoudabadi and Sadighi [2011]
carried out an empirical investigation about the effect of filling honeycomb structures with polyurethane
under out-of-plane conditions. They reported that increasing loading speed from quasistatic to dynamic
increases stress level in the stress-strain chart of both empty and foam-filled honeycomb structures
while filling under out-of-plane conditions has no significant effects on energy absorption. Mozafari
et al. [2016] investigated foam-filled honeycomb sandwich panels under in-plane impact loading and
analysed them by numerical methods. They used three different aluminum honeycombs filled with three
different polyurethane foam and studied their energy absorption capacity by quasistatic compression test.
Ebrahimi et al. [2018] have studied the energy absorption characterization of functionally graded foam
(FGF) filled tubes under axial loading experimentally. The FGF tubes are filled axially by gradient layers
of polyurethane foams of different densities. Finally, the results of experimental test show that an FGF
filled tube has excellent energy absorption capacity compared to the ordinary uniform foam-filled with
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the same weight. Shahravi et al. [2019] have designed a polyurethane foam-filled thin-walled aluminum
grooved circular tubes. The tubes are shaped with the inner and the outer circular grooves at different
positions along the axis. They investigated the effects of the grooves distance, tube diameter, grooves
depth, foam density, and tube thickness on the crashworthiness parameters of grooved circular tubes.
Also, Yu et al. [2018] studied static axial crushing and energy absorption of density-graded aluminum
foam-filled square metal columns experimentally and theoretically. It was shown that the density-graded
aluminum foam-filled square metal column is a novel topological structure with higher energy absorption,
higher load-carrying capacity and much higher crushing force efficiency.

Regarding the above-mentioned researches, except for tubes, the graded foam has not been used
in honeycomb structures under in-plane or out-of-plane loading in honeycomb energy absorbers. The
current study aims to investigate aluminum honeycomb structures filled with graded and nongraded
polyurethane foams.

2. Problem definition

Honeycomb structures have better performance when they are subjected to out-of-plane loading direction.
In some cases, such as impact absorbers for protecting an occupant against the crash, impacts might occur
from in-plane direction. Therefore, it is important to investigate the behavior of honeycomb structures
for in-plane loading. Two types of loading are shown in Figure 1.

The utilized honeycomb structure is made from 16 separate rows with 10 cells in each row. The
dimensions of the aluminum honeycomb structure are determined based on the MIL-C-7438G standard
(Table 1).

The polyurethane is a closed-cell material created from isocyanate and polyol. This foam has different
densities depending on the ratio of isocyanate and polyol which are mixed together under pressure and
heat. The mixture then shows a volume increase of 20 to 30 times in a few seconds creating a compact,
uniform foam structure with any desirable thickness (Figure 2, left).

Figure 1. Loading conditions: out-of-plane (left) and in-plane (right).

Foil thickness (mm) Cell size (mm) Height (mm) Width (mm) Length (mm)

0.018 3.175 12.7 50 50

Table 1. Aluminum honeycomb structure dimensions.
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Fig. Figure 2. Left: polyol and isocyanate combined for the production of polyurethane
foam. Right: Santam test machine.

Polyol weight Isocyanate weight Polyol to isocyanate weight Density
(g) (g) composition ratio (kg/m3)

11 11 1 70
9 13 0.69 80
7 14 0.5 90
5 15 0.33 100

Table 2. The weight of ingredients combined with polyurethane foam.

In order to determine the mechanical behavior of foams used to fill the structures, these foams were
subjected to compression test. The Santam (STM-150) equipment was used for compression test of
polyurethane foams (Figure 2, right).

To this end, foams were cut with dimensions of 24.5 mm× 70 mm× 70 mm in accordance with the
ASTM C365 standard. The polyol and isocyanate parts were mixed with ratios presented in Table 2 to
produce foam with densities of 70 kg/m3, 80 kg/m3, 90 kg/m3 and 100 kg/m3. The density of the foam
increases with increase in the ratio of isocyanate to polyol. For example, a ratio of 1 : 1 (isocyanate :
polyol) has a density of 70 kg/m3 while a ratio of 2 : 1 has a density of 90 kg/m3 and a ratio of 3 : 1
leads to a density of 100 kg/m3.

3. Numerical simulation

In order to investigate the energy absorption of different honeycomb structures, a finite element simu-
lation was performed in ABAQUS software. The rows in the structure are made from Al 5052-O alloy
with a density of 2680 kg/m3, elasticity modulus of 70.3 GPa and the Poisson ratio of 0.33. Mechanical
properties of Al 5052-O alloy are determined using the ASTM B209M standard in which yield and
ultimate strength are equal to 65 MPa and (170∼215) MPa respectively. A finite element model of the
structure under in-plane loading is shown in Figure 3.
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ent inFigure 3. Finite element model of the structure under in-plane loading.

Movement is applied through a rigid plate placed above the honeycomb structure. This structure is
attached to another rigid plate on the bottom side. The force is applied at the reference point of the rigid
plate and all degrees of freedom of this plate except in moving direction are the constraint. All degrees
of freedom of the lower rigid plate are also fixed. A four-node shell S4R element was used for meshing
of honeycomb structure while two-line, four-node R3D4 element was used for meshing of the above and
below rigid plate plates. For the S4R element, shear strain is assumed to be constant along the thickness.
Since the structure has regular geometry and is made from thin metal sheets, a four-node shell element
is used. Kinematic and penalty surfaces to surface interaction were used for contact between the upper
plate and lower one and the structure, respectively.

In order to investigate the effects of filling honeycomb structure with foam, light-weight polyurethane
foam was used as the filling phase. Material properties including density, elastic behavior, and crushable
foam were defined in the material properties module. Foam with a density of 100 kg/m3, elasticity
modulus of 10.1 MPa and Poisson coefficient of zero was selected as nongraded foam. To model the
foam crushable in ABAQUS environment, h and νρ parameters must be defined. The first parameter, h,
is the ratio of initial Mises to initial hydrostatic compression while the second parameter, νρ , is the plastic
Poisson coefficient. The final value of the compression yield stress ratio was equal to 1 while the plastic
Poisson’s ratio was 0. The assumption of full adhesion was used for determining the contact between
foam and honeycomb structure. A linear, six-node C3D8R element was used for meshing of foams.

In order to investigate the structures with graded foams, different foam densities with properties shown
in Table 2 were used. The order of graded foam in the structure is shown in Figure 4.

For out-of-plane loading on the aluminum honeycomb structure, the in-plane model was rotated for
90 degrees (Figure 5).

4. Experimental tests

In order to carry out an empirical investigation on the behavior of honeycomb structures, some test
specimens were prepared for each of the five models. Al-5052-O aluminum honeycomb sample was
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Figure 5. Out-of-plane loading on honeycomb structure model.

purchased from Hexcel Co. with dimensions of 50 mm× 50 mm (specifications are shown in Table 1).
Then, this structure was used to prepare three types of structures without foam (empty structures), a
structure filled with nongraded foam and a structure filled with graded foam. Names of test specimen
which are subjected under quasistatic loadings are listed in Table 3.

The test specimens were subjected to compression test with the loading rate 2 mm/min using Santam
machine.
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Loading type Sample type Sample name

Without foam H-NF-I-S
In-plane With nongraded foam H-FN-I-S

With graded foam H-FG-I-S

Out-of-plane Without foam H-NF-O-S
With nongraded foam H-FN-O-S

Table 3. Names of the test specimen.

5. Results and discussion

The stress-strain graph of polyurethane foams resulted from compression tests for different densities is
shown in Figure 6. Based on the compression test results, mechanical properties of polyurethane foam
are presented in Table 4.

5.1. Numerical results. Numerical analyses were carried out using Dynamic/Explicit solver and results
were presented in various graphs. One of the important parameters in energy absorbers is the magnitude
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Figure 6. Stress-strain graph of polyurethane foam for different densities.

Elasticity Module, E (MPa) Yield Stress, σy (MPa) Density, ρ (kg/m3)

3.3 0.21 70
5.1 0.5 80
5.5 0.7 90

10.1 0.9 100

Table 4. Mechanical echanical properties of the polyurethane foam.
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of the structure’s reaction force, as well as magnitude and duration of energy absorption. A suitable
absorber needs to absorb the maximum amount of energy during the highest possible time with the
minimum reaction force. Kinetic energy applied to the structure is transformed into its internal energy
which is the sum of strain energy and plastic deformation energy. In order to achieve more accurate
numerical results, mesh dependency is checked for all numerical simulations. As a sample, the load-
displacement graph of nongraded foam filled honeycomb structure under in-plane quasistatic loading for
different element sizes is shown in Figure 7.

According to Figure 7, the results have proper convergence for three sizes of element. So, 0.003 m
element size is selected for numerical analysis. The displacement contours for in-plane quasi-loading of
different structures are shown in Figure 8.

The deformation pattern of all three structures is X-mode. However, the X-mode deformation is wider
for empty structure and its center is located at the structure’s center of mass. However, in the nongraded
foam-filled structure, the center of X is located higher than the structure’s center and is again further
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Figure 7. Load-displacement graph of nongraded foam-filled honeycomb structure un-
der in-plane quasistatic loading for different element sizes.
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away from the structure’s center in graded foam-filled structure. Deformation contours acquired from
the out-of-plane quasistatic simulation for both structures are presented in Figure 9.

The results of numerical simulation for five models (Table 3) under quasistatic static loads are shown in
different graphs. In these graphs, the reaction on force is measured at the lower plate and displacement is
measured at the upper plate. The force-displacement graph for in-plane quasistatic simulation is presented
in Figure 10 (left).

For in-plane quasistatic loadings of the empty structure, force increases in a smooth pattern while
this increase in the nongraded foam-filled structure is irregular and step by step and shows a larger
increase. On the other hand, this increase in the graded foam-filled structure shows smaller variations.
In quasistatic, in-plane loading, the behaviors of all three structures are close to one another but the
foam-filled structures absorb more energy and have a higher reaction force. The area under the graph
for the graded foam-filled structure is also lower than nongraded structure. Force-displacement graph
for quasistatic simulation in out-of-plane conditions is shown in Figure 10 (right).

       

of

for

s, 

upper

.

lane 

 

foam

hand, 

plane 

structu

the 

for

       

of

for five

s, 

upper

.

lane quasi

 

foam

hand, this

plane 

structu

 gr

for

U

+3e–3

+2e–3

+1e–3

+8e–4

       

of

for

s, 

upper

.

lane 

 

foam

hand, 

plane 

structu

the 

for

  

of oam

ls (  ar

s,  plate

upper plane

.

uasi

 smooth

foam  and show

in structur

plane structures a

more er 

aded lower than non

asi conditions

oam

are

plate

plane

smooth 

and show

structure

 are

r r

lower than non

conditions

U

+3e–3

+2e–3

+1e–3

+7e–4

Figure 9. Structure’s deformation contour for out-of-plane quasistatic loading for with-
out foam (left) and nongraded foam models (right).
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For out-of-plane quasistatic loading, the empty structure shows a sudden increase in force and small
oscillations at the end. The nongraded foam-filled structure also shows a sudden increase in force but
experiences larger oscillations at the end. For this case, behaviors of both structures are close to one
another but the foam-filled structure causes higher reaction forces.

5.2. Experimental results. The final deformation modes of three structures for in-plane quasistatic tests
are shown in Figure 11.

The empty structure shows X-shaped deformation mode under in-plane quasistatic loads while the
nongraded foam-filled structure shows uniform deformation and the graded foam-filled structure has
only expanded on the lower side which shows a distribution of lower force toward the lower surface.
This can be one of the advantages of this structure. The final deformation modes of structures for out-of-
plane quasistatic tests are shown in Figure 12.

It can be seen that empty structure has wrinkled under out-of-plane loadings while the nongraded
foam-filled structure shows uniform deformation. Force-displacement graph of in-plane quasistatic test
for different structures is presented in Figure 13 (left).

The applied force in quasistatic loading for empty structure increases irregularly and step by step. This
increase in the nongraded foam-filled structure is around 36 times higher and shows a harmonic increase
but with a sharp slope. In graded form-filled structure, this value is almost half of nongraded structure
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and this increase is significantly slower and occurs in four steps. This is due to using four different foams
in this structure. Reaction force in the nongraded foam-filled structure is the largest and the force for the
structure with graded foam is around half of the nongraded structure. However, the increase in the graded
structure is slower which is one of the advantages of this structure. Force-displacement displacement
graph for the out-of-plane quasistatic static test for different structures is shown in Figure 13 (right).

The force applied during quasistatic static loading for empty structure shows a 250 times increase
compared to in-plane conditions and then continues with an attenuating peak. In the structure with
nongraded foam filling, this increase is 3 times of empty structure but this increase had a lower slope.
The force transferred in structure with nongraded foam is significantly higher and increases with a lower
slope. This means that the foam-filled structure not only absorbs more energy but also transfers a lower
amount of force.

5.3. Comparison between numerical and experimental results. Figure 14 shows a comparison between
force-displacement results of in-plane quasistatic tests and the results of numerical simulation for differ-
ent models.

The empirical and numerical results for the empty structure are almost similar to one another. The
difference between results in the nongraded foam-filled structure is even smaller. The difference between
empirical and numerical results for the graded foam-filled structure is also small. In general, the results
of numerical and empirical studies show good agreement with each other. So, the numerical simulation
method is verified and applicable to other models. The comparison between out-of-plane quasistatic
empirical tests and numerical results for different models are presented in Figure 15.

These results are almost identical for empty structure. Addition of foam filling causes a small differ-
ence between numerical and empirical results. However, the results still have good agreement with one
another.

5.4. Comparison between in-plane and out-of-plane loadings. The results of in-plane and out-of-plane
plane loadings for different models are compared as shown in Figure 16.
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In the out-of-plane loading, hallow structure applies a significantly higher force but shows a very high
reaction force at the initial impact time while the nongraded foam-filled structure applies a force three
times higher than the empty structure but reaction force reaches maximum magnitude at the later time.
For the in-plane conditions, despite the fact that structure applies a significantly smaller force, this force
decreases slowly overtime. This is more obvious in nongraded graded, foam-filled structure.

6. Conclusion

For in-plane loading, filling the structure with foam means that structure can absorb a higher amount
of energy but simultaneously show a higher reaction force. Using graded filling in a way that structure
stiffness increases downward and away from the location of the applied force increases energy absorption
time and force transfer. This means that compared to structures with nongraded foam filling, graded
structures absorb a lower amount of energy but this energy is absorbed with high reaction force during
a longer time. The variation of the foam density is very important in energy absorption. It’s better
to increase the density of foam from the place of the impact load through the outer side of the energy
absorber. For the structures with graded foam, the injury will be less regarding the structure with uniform
density. When the energy absorber is used to protect a human, uniform reaction force and its transfer
time are more important than the amount of absorbed energy. Therefore the application of honeycomb
structures filled with graded foam is recommended. In out-of-plane loading, a foam-filled structure
absorbs a higher amount of energy and also shows a milder reaction force.

In general, the results of the numerical simulation are close to that of empirical tests except in some
parts of various graphs which require further investigation. The reasons for differences between numer-
ical and empirical results can be manufacturing conditions and environmental factors. This means that
numerical simulation results for behaviors of all five structures were validated using empirical tests. So,
the numerical simulation method in ABAQUS software can be used to simulate the energy absorption of
different honeycomb structures.

List of symbols

F force (N)
FG graded foam-filled structure
FN nongraded foam-filled structure
NF empty structure

U displacement (mm)
ε strain
ρ density (kg/m3)
σ stress (MPa)
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TRANSIENT THERMAL STRESSES IN A LAMINATED SPHERICAL SHELL
OF THERMOELECTRIC MATERIALS

YUE LIU, KAIFA WANG AND BAOLIN WANG

Thermoelectric materials have many potential applications in engineering such as in thermoelectric gen-
erators, waste heat recovery industry, thermoelectric cooling devices. They can also be used in thermal
protection system of supersonic space shuttles to reduce their surface temperatures. On the other hand,
multilayered spherical shell structures are important structure type for thermoelectric material applica-
tions. This paper presents a transient analysis model to predict the temperature field and the associate
thermal stresses in a laminated thermoelectric spherical shell subjected to a sudden temperature increase
on its outer surface. The effects of applied electric current density, thermal conductivity and thickness
of laminated shells on the temperature and thermal stress distributions have been obtained and shown
graphically. Numerical results show that the maximum tensile hoop stress in the laminated shells can
be reduced significantly at a specific applied electric current density. The thermal conductivity ratio of
laminated shells has significant impact on the maximum stress level in the shells. When the thermal con-
ductivity ratio of the inner layer to the outer layer increases, the maximum tensile hoop stress increases
but the maximum compressive hoop stress decreases.

1. Introduction

Thermoelectric materials can achieve energy conversion between electricity and heat and are widely
applied to engineering applications [Riffat and Ma 2003]. For example, thermoelectric devices can be
used for thermoelectric power generation, refrigeration and thermal protection system [Chowdhury et al.
2009; DiSalvo 1999; Zhang et al. 2016; Han et al. 2014; O’Brien et al. 2008; Li et al. 2005]. They
also have potential applications in high-temperature superconductor cables in space solar energy stations.
Applications of the thermoelectric conversion technology is calling for high efficiency thermoelectric ma-
terials [Huang and Duang 2000; Tian et al. 2015]. Thus thermoelectric materials have attracted attentions
in the field of materials science. Zhang et al. [2018b] successfully realized n-type BiCuSeO and Seebeck
coefficient of BiCuSeO was improved through introducing extra Bi/Cu to fill the Bi/Cu vacancies. Pothin
et al. [2018] finished theoretical and experimental work on the tellurium doping of thermoelectric ZnSb
and investigated the influence of tellurium on the phase stabilities. In addition, the requirements of
structural strength and reliability of the thermoelectric intelligent devices call for a better understanding
of the mechanics properties. Thus stress analysis of thermoelectric materials has attracted more and more
attentions. A theoretical model to analyze the thermoelectric conversion efficiency of a cracked material
provided by Zhang et al. [2017a]. Later, they also studied the effect of cracking on the thermoelectric
properties under combined electrical and temperature loadings [2017b]. Song et al. [2018] analyzed

Keywords: thermoelectric material, laminated structure, superconductor cable, high temperature, thermal stress, thermal
protection system.
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the thermoelectric field near an elliptic inhomogeneity in an open circuit by using the complex-variable
method. Wang [2015] studied effective material properties of thermoelectric composite materials with
elliptical fibers. Liu et al. [2017a] provided a mechanical model of a thermoelectric thin film bonded
to an elastic substrate. Applications of the thermoelectric conversion techniques in spacecraft have also
attracted more and more attentions. The reason is that when the spacecraft cruise at high velocity, there
is a severe heating on their outer surface. However, for safe operation, the temperature on the interior
of the spacecraft should not be too high. As a result, there is the large temperature difference between
the in-wall and the outer surface of spacecraft. It is the prerequisite of the use of the thermoelectric
conversion techniques. In addition, the features of thermoelectric materials and devices make them very
attractive for meeting the need of the thermal protection system of spacecraft. For example, the features
of them include large operating temperature range, easy to control, reliable operation, layout flexibility,
adaptability.

Thermoelectric cylindrical and spherical shells are more and more applied to the thermoelectric devices
and many researchers studied them in recent years. Yang et al. [2014] obtained thermoelectric field distri-
butions in both homogeneous shell and core-shell composites and analyzed the effective thermoelectric
properties of the core-shell composites. Zhang et al. [2018a] studied the effects of interface layers on
the performance of annular thermoelectric generators. Liu et al. [2018] presented a transient model to
investigate the dynamic characteristics of laminated thermoelectric cylindrical shells and studied the tran-
sient thermal stress fields. In engineering practice, the temperature at the outer surface of thermoelectric
spherical shell may be suddenly increased, such as for thermal protection system [Hegde et al. 2012; Lu
and Liu 2012]. In order to make the design of thermoelectric devices satisfy the requirements of structural
strength, dynamic characteristics of thermoelectric spherical shell should be studied. Suggested by the
previous studies [Ching and Chen 2007; Frostig and Thomsen 2007; Qin 2005; Qiu et al. 2018; Wu et al.
2016], the transient thermal stress in the thermoelectric shell structures should be researched. In addition,
laminated thermoelectric shells attract more and more attention [Liu et al. 2018; Yang et al. 2014]. The
dynamic characteristics of laminated spherical shells of thermoelectric materials should be also studied.
To our best knowledge, investigation of transient characteristics of homogeneous thermoelectric spherical
shell and laminated thermoelectric spherical shells is very limited.

The aim of current paper is to propose a transient model to study the transient temperature and thermal
stress fields in both homogeneous and laminated thermoelectric spherical shells. By using the technique
of separation of variables, we obtain the solutions for temperatures at the steady-state and the transient-
state. Some numerical calculations are performed to study the transient characteristics of spherical shell.
The influences of applied electric current density, thermal conductivity and the thickness of laminated
spherical shells on the temperature field and thermal stress filed are investigated. This research can
provide some guidelines for the design and optimization of thermoelectric shell devices.

2. Transient model of the homogeneous thermoelectric spherical shell

Figure 1 shows a homogeneous thermoelectric spherical shell, where r is the radial coordinate (radius),
r1 is the internal radius and r2 is the external radius of thermoelectric shell. Note that t denotes time.
Assume that thermoelectric shell is at an initial constant temperature T1. For time t > 0, the temperature
of external surface (r = r2) is changed to T2 and kept at T2. For thermoelectric materials, the basic
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governing equations in transient state can be expressed as [Wang 2017]

∇ · j = 0, (1)

−∇ · q− j · ∇V = ρc∂T
∂t
, (2)

j =−σ∇V − σ s∇T, (3)

q =−σ sT∇T − (κ + σ s2T )∇T, (4)

where T and V are, respectively, temperature and electric potential; j and q are, respectively, electric
current density and heat flux vector; σ , κ , s, ρ and c are, respectively, electric conductivity, thermal
conductivity, Seebeck coefficient, mass density and specific heat. In this work, the symmetric problem
is considered so that temperature, electric potential and electric current density depend only on radial
coordinate r . The governing equation for electric current density is rewritten as d j/dr+2 j/r = 0, where
j is the magnitude of current density. As a result, j can be obtained as j = C/r2. A special case is
considered and applied electric current density is independent on time, therefore C is a constant. From
(1) to (4), the governing equation for transient temperature can be obtained as

∇
2T +

j2

κσ
=
ρc
κ

∂T
∂t
. (5)

For 1-D problem of T (r, t), equation (5) can be rewritten as

1
r
∂2

∂r2 (rT )+
j2

κσ
=
ρc
κ

∂T
∂t
. (6)

The solution to (6) can be expressed as T (r, t) = Ts(r)+ Th(r, t), where Ts(r) is the steady part of
the solution, Th(r, t) is the transient part of the solution. Subscripts s and h denote the steady and the
transient part, respectively. For 1-D problem of Ts(r), the governing equation can be expressed as

1
r

d2

dr2 (rTs)+
j2

κσ
= 0, (7)

and boundary conditions are Ts(r1) = T1 and Ts(r2) = T2. For 1-D problem of Th(r, t), the governing
equation can be expressed as

1
r
∂2

∂r2 (rTh)=
ρc
κ

∂Th

∂t
, (8)

and corresponding boundary conditions are Th(r1, t)= 0 and Th(r2, t)= 0, initial condition is Th(r, 0)=
T1 − Ts(r). New variables Ws(r) and Wh(r, s) are introduced by the transform Ws(r) = rTs(r) and
Wh(r, t)= rTh(r, t). Thus (7) and (8) can be rewritten as

d2Ws

dr2 +
r j2

κσ
= 0, (9)

∂2Wh

∂r2 =
ρc
κ

∂Wh

∂t
. (10)
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Figure 1. The homogeneous thermoelectric spherical shell.

2.1. The temperature field. Substituting the expression of j into (9) gives

Ws =−
C2

2κσ
1
r
+C1r +C2, (11)

where C1 and C2 are unknown constants. From boundary conditions C1 and C2 can be solved as

C1 =
r2T2− r1T1

r2− r1
−

C2

2r1r2 κσ
, C2 = r1T1+

C2

2r1κσ
−C1r1. (12)

The solution to (10) can be expressed as [Hahn and Özişik 2012]

Wh(r, t)=
∞∑

n=1

exp
(
−
κ

ρc
β2

n t
)

2
r2− r1

sin(βnr)
∫ r2

r1

sin(βnr)[rT1−Ws(r)] dr, (13)

where βn =πn/(r2−r1), n= 1, 2, 3, . . . . Thus T (r, t) can be obtained as T (r, t)= [Ws(r)+Wh(r, t)]/r .

2.2. The thermal stress field. In this case, only radial strain εr and hoop strain εθ are nonzero. The
expressions of them are, respectively, εr = du/dr and εθ = u/r , where u is radial displacement. The
equation of stress equilibrium is dσr/dr + 2(σr + σθ )/r = 0. Stress-strain equations are

σr =
E

(1+ν)(1−2ν)
[(1− ν)εr + 2νεθ − (1+ ν) α1T ], (14a)

σθ =
E

(1+ν)(1−2ν)
[εθ + νεr − (1+ ν) α1T ], (14b)

where E , ν and α are Young’s modulus, Poisson’s ratio and thermal expansion coefficient of the ther-
moelectric spherical shell, respectively. Note that 1T is temperature increment measured relative to the
initial temperature, which can be expressed as 1T = T (r, t)− T1 in this case. Substituting (14a), (14b)
and the expressions of εr and εθ into equilibrium equation gives

d
dr

[ 1
r2

d
dr
(r2u)

]
=

1+ν
1−ν

α
d
dr
(1T ). (15)

The solution to (15) is

u =
1+ ν
1− ν

α

r2

∫ r

r1

1T r2dr + ar + b
r2 . (16)
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Figure 2. The laminated thermoelectric spherical shells.

Thus (14a) and (14b) can be rewritten as

σr =−
2αE
1− ν

1
r3

∫ r

r1

1T r2dr +
Ea

1− 2ν
−

1
r3

2Eb
1+ ν

, (17a)

σθ =
αE

1− ν
1
r3

∫ r

r1

1T r2dr +
Ea

1− 2ν
+

1
r3

Ea
1+ ν

−
αE1T
1− ν

, (17b)

where a and b are constants. When internal and external surfaces of the shell are stress free, a and b can
be obtained as

a =
2(1− 2ν)b
r3

1 (1+ ν)
, b =

α(1+ ν)
1− ν

r3
1

r3
2 − r3

1

∫ r2

r1

1T r2dr. (18a)

When internal surface of shell is fixed and external surface is stress free, a and b can be obtained as

a =−
b
r3

1

, b =−
2α

1− ν
(1− 2ν)(1+ ν)r3

1

[r3
2 (1+ ν)+ 2(1− 2ν)r3

1 ]

∫ r2

r1

1T r2dr. (18b)

When both internal and external surfaces of shell are fixed, a and b can be obtained as

a =−
b
r3

1

, b =−
1+ ν
1− ν

r3
1α

r3
1 − r3

2

∫ r2

r1

1T r2dr. (18c)

3. The transient model of the laminated thermoelectric spherical shell

As shown in Figure 2, laminated thermoelectric spherical shell is considered which consists of two
homogeneous thermoelectric shells, A and B. The interface of the two shells is at ri . Note that r1 and r2

express, respectively, the internal radius of spherical shell A and the external radius of spherical shell B.
Assume that initially the laminated thermoelectric spherical shell is at a constant temperature T1. For
time t > 0, temperature of the external surface of shell B (r = r2) is changed to T2 and kept at T2.
Similar to the method in Section 2, the temperature field of shell A is TA(r, t)= TAs(r)+ TAh(r, t) and
temperature field of shell B is TB(r, t)= TBs(r)+ TBh(r, t). The subscripts A and B denote, respectively,
the shell A and shell B.

3.1. The temperature field. Similar to the method in Section 2, new variables WAs(r), WBs(r) are intro-
duced by the transform WAs(r)= rTAs(r) and WBs(r)= rTBs(r). These new variables should satisfy (9).
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The expressions of them can be obtained as

WAs =−
C2

A

2κAσA

1
r
+CA1r +CA2, WBs =−

C2
B

2κBσB

1
r
+CB1r +CB2, (19)

where CA1, CA2, CB1 and CB2 are constants; σA, κA, sA, are, respectively, electric conductivity, thermal
conductivity and Seebeck coefficient of spherical shell A, and σB, κB, sB, are, respectively, electric con-
ductivity, thermal conductivity and Seebeck coefficient of spherical shell B. From boundary conditions
we have the equations as

r1T1 =−
C2

2κAσA

1
r1
+CA1r1+CA2, r2T2 =−

C2

2κBσB

1
r2
+CB1r2+CB2. (20a)

In addition, temperature, electric current density and heat flux are continuous at the interface [Yang et al.
2014], we have the equation as

−
C2

A

2κAσA

1
ri
+CA1ri +CA2 =−

C2
B

2κBσB

1
ri
+CB1ri +CB2, (20b)

CA = CB = C, (20c)

(sATAs jA− κA∇TAs)|r=ri= (sBTBs jB− κB∇TBs)|r=ri . (20d)

From (20a) to (20d), CA1, CA2, CB1 and CB2 can be obtained as

CA1 =−
(κBr2

i 01+03)(ri − r2)

02(ri − r2)+ (ri − r1)κBr2
i
, CA2 = r1T1+

C2

2r1κAσA
−CA1r1, (21a)

CB1 = 01+CA1
ri − r1

ri − r2
, CB2 = r2T2+

C2

2r2κBσB
−CB1r2, (21b)

where

01=
r1T1− r2T2

ri − r2
+

(
ri − r1

r1κAσA
+

r2− ri

r2κBσB

)
C2

2ri (ri − r2)
, 02=C(sA−sB)(ri−r1)−[(κA−κB)r1+κBri ]ri ,

03 =
(σA− σB)C2

2σAσB
+
(ri − r1)C2

2r1riκAσA
[C(sA− sB)+ ri (κA− κB)] + r1T1[C(sA− sB)+ ri (κA− κB)].

Similar to Section 2.1, TAh(r, t) and TBh(r, t) should satisfy (8). The boundary conditions and contin-
uous conditions are

TAh(r1, t > 0)= 0, (22a)

TAh(ri , t > 0)= TBh(ri , t > 0), (22b)

κA
∂TAh(r, t)

∂r
= κB

∂TBh(r, t)
∂r

, r = ri , t > 0, (22c)

TBh(r2, t > 0)= 0. (22d)

The initial conditions for TAh(r, t) and TBh(r, t) are

TAh(r, 0)= T1− TAs(r), TBh(r, 0)= T1− TBs(r). (23)
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TAh(r, t) and TBh(r, t) are [Hahn and Özişik 2012]

TAh(r, t)=
∞∑

n=1

exp(−β2
n t)

1
Nn
ϕAn(r)

×

{
ρAcA

∫ ri

r1

r2ϕAn(r)[T1− TAs(r)] dr + ρBcB

∫ r2

ri

r2ϕBn(r)[T1− TBs(r)] dr
}
, (24a)

TBh(r, t)=
∞∑

n=1

exp(−β2
n t)

1
Nn
ϕBn(r)

×

{
ρAcA

∫ ri

r1

r2ϕAn(r)[T1− TAs(r)] dr + ρBcB

∫ r2

ri

r2ϕBn(r)[T1− TBs(r)] dr
}
, (24b)

where ρA, cA are, respectively, mass density and specific heat of spherical shell A, ρB, cB are, respectively,
mass density and specific heat of spherical shell B, and

Nn = ρAcA

∫ ri

r1

r2ϕ2
An(r)dr + ρBcB

∫ r2

ri

r2φ2
Bn(r)dr,

ϕAn = A1n
1
r

sin
(
βn
√
ωA

r
)
+ B1n

1
r

cos
(
βn
√
ωA

r
)
, ϕBn = A2n

1
r

sin
(
βn
√
ωB

r
)
+ B2n

1
r

cos
(
βn
√
ωB

r
)
,

where A1n , B1n , A2n , B2n , βn are the unknown constants and ωA = κA/(ρAcA), ωB = κB/(ρBcB). A1n ,
B1n , A2n , B2n and βn are listed in Appendix A. Thus TA(r, t) and TB(r, t) can be obtained as TA(r, t)=
WAs(r)/r + TAh(r, t) and TB(r, t)=WBs(r)/r + TBh(r, t).

3.2. The thermal stress field. Similar to the method in Section 2.2, displacement and stresses in ther-
moelectric spherical shell A and B can be obtained as

uA =
1+ νA

1− νA

αA

r2

∫ r

r1

1TAr2 dr + a11r +
b12

r2 , (25a)

σAr =−
2αA EA

1− νA

1
r3

∫ r

r1

1TAr2 dr +
EA a11

1− 2νA
−

1
r3

2EA b12

1+ νA
, (25b)

σAθ =
αA EA

1− νA

1
r3

∫ r

r1

1TAr2 dr +
EA a11

1− 2νA
+

1
r3

EA b12

1+ νA
−
αA EA1TA

1− νA
, (25c)

uB =
1+ νB

1− νB

αB

r2

∫ r

ri

1TBr2 dr + a21r +
b22

r2 , (26a)

σBr =−
2αB EB

1− νB

1
r3

∫ r

ri

1TBr2 dr +
EB a21

1− 2νB
−

1
r3

2EB b22

1+ νB
, (26b)

σBθ =
αB EB

1− νB

1
r3

∫ r

ri

1TBr2 dr +
EB a21

1− 2νB
+

1
r3

EB b22

1+ νB
−
αB EB1TB

1− νB
, (26c)

where a11, b12, a21 and b22 are unknown constants; EA, νA and αA are, respectively, Young’s modulus,
Poisson’s ratio and thermal expansion coefficient of spherical shell A, and EB, νB and αB are, respectively,
Young’s modulus, Poisson’s ratio and thermal expansion coefficient of spherical shell B. Assumed that
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s (VK−1) σ (Sm−1) κ (Wm−1K−1) ρ (kgm−3) c (Jkg−1K−1) α (K−1) E (GPa) ν

×10−6
×103

×10−5

Shell A 200 110 1.6 7740 154.4 1.68 47 0.3
Shell B 233 47.2 1.22 6760 190 0.42 160 0.4

Table 1. Thermoelectric properties of thermoelectric spherical shells A and B
[Antonova and Looman 2005; Clin et al. 2009; Gao et al. 2011; Jin 2013; Yang et al.
2014].

radial displacement and radial stress of spherical shell A and B are continuous at the interface. It means
uA(ri )= uB(ri ) and σAr (ri )= σBr (ri ). a11, b12, a21 and b22 are listed in Appendix B.

4. Numerical examples and discussions

The internal and external radii of thermoelectric spherical shell are, respectively, assumed as r1 = 0.05 m
and r2 = 0.055 m, as shown in Figure 1. For laminated spherical shells, the internal and external radii
are, respectively, assumed as r1 = 0.05 m and r2 = 0.055 m as shown in Figure 2. The material properties
of thermoelectric spherical shell A and shell B are listed in Table 1 [Antonova and Looman 2005; Clin
et al. 2009; Gao et al. 2011; Jin 2013; Liu et al. 2017b; Yang et al. 2014]. In addition, assume that
material properties of homogeneous thermoelectric spherical shell are the same as thermoelectric shell A
in Table 1. Assume that temperature applied on internal surface T1 is equal to 300 K and temperature
applied on the external surface T2 is equal to 1300 K. In addition, V1 is applied electric potential on
internal surface and value of V1 is assumed to be zero. A typical value of the electric current density
j0= 3×106 A m−2 [Wang 2017] is used as the reference value. Assume that the reference electric current
density is applied on internal surface of spherical shell. Thus the value of reference constant C0 is equal
to 7500.

4.1. The transient temperature field. Figure 3 shows the temperature profile of homogeneous thermo-
electric spherical shell. It is noted that in Figure 3 the normalized current density j/j0 is assumed to
be 1. It shows that temperatures gradually increase with time and become almost steady as time exceeds
20 s in current case. The distribution of temperature is nonlinear, due to Joule heating. Figure 4 shows
the influence of applied electric current density on steady-state temperature field of homogeneous ther-
moelectric spherical shell. Clearly, temperature profiles for positive electric current and negative electric
current are almost coincident. This means that direction of applied electric current density does not
affect the temperature distribution. The reason is that temperature field of homogeneous thermoelectric
spherical shell is affected by the square of applied electric current density j , which can be found from
the equation (11).

Figure 5 shows the temperature profile of laminated thermoelectric spherical shells. The normalized
electric current density j/j0 is assumed to be 1. In this case, temperature increases with time and finally
approaches the steady state when time exceeds 20 s. Figure 6 shows the effect of electric current density
on steady-state temperature field of laminated thermoelectric spherical shell. Due to thermoelectric effect,
heat flux in thermoelectric material is obtained as q = sT j − κ∇T , which is affected by electric current
density j . For laminated thermoelectric spherical shells, continuous condition of heat flux is that qA = qB
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Figure 3. Distribution of transient temperature in homogeneous thermoelectric spheri-
cal shell for j/j0 = 1.

at interface. On the other hand, temperature field is affected by the square of electric current density j
which can be found from governing equation (9). Thus temperature field of laminated spherical shells
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Figure 4. The influence of applied current density on the temperature field of homoge-
neous thermoelectric spherical shell under steady state.
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Figure 5. Distribution of transient temperature in laminated thermoelectric spherical
shell for j/j0 = 1.

is dependent on the first and second power of electric current density. Both direction and magnitude
of applied current density can affect temperature distribution. If Seebeck coefficient s is equal to zero
(ignore thermoelectric effect), heat flux will be independent of j and temperature field will be affected
only by the second power of electric current density.

4.2. The transient thermal stress field. Considering the most common practical situation, the radial
stresses at the both internal and external surfaces are assumed to be zero in this subsection. Since the
maximum hoop stress is higher than that of radial stress in this case, only distributions of hoop stress are
given. As mentioned above, temperature field keep almost steady state as time is greater than 20 s. In
addition, the change of temperature field is obvious with time t varying from 0 s to 10 s and when time t
varying from 10 s to 20 s, the change of temperature field is not obvious. Thus the dynamic variations of
hoop stress from 0 s to 10 s are given in this subsection.

Figure 7 shows dynamic hoop stress variations at internal and external surfaces of the homogeneous
thermoelectric spherical shell. Since temperature applied on external surface T2 is higher than initial
temperature (hot shock), the region near external surface (r2) is in compressive, whereas a tensile zone
is developed at internal surface (r1). Before temperature of spherical shell reaches the steady-state, hoop
stress at external surface decreases with time and hoop stress at internal surface increases with time. The
transient thermal stress field for positive current density is the same as that for the negative current density.
In current case, the maximum compressive stress is at r2 when time is equal to zero and the maximum
tensile stress is at r1 when the stress field reaches steady state. Figure 8 shows dynamic hoop stress
variations at interface, internal and external surfaces of laminated thermoelectric spherical shells. When
temperature on external surface (r2) is changed to T2 (T2 > initial temperature), the region near external
surface of shell B (r2) is in compressive, whereas a tensile zone is developed at interface of shell B (ri ).
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Figure 6. The influence of applied current density on the temperature field of laminated
thermoelectric spherical shell under steady state.

Due to continuous condition at interface, interface of shell A (ri ) is in tensile in a short time after hot
shock (t < 0.5 s). When temperature of laminated spherical shells reaches the steady-state, shell A and
shell B at interface have the same temperature. In current case, thermal expansion coefficient of shell A
is bigger than that of shell B. Thus interface surface of shell A is in compressive at steady-state. Hoop
stress at interface σAθ (ri , t) therefore is tensile at the beginning and finally is compressive. Temperature
distribution is dependent on both direction and magnitude of applied current density. Thus the transient
thermal stress profiles for positive current density is different from that for negative electric current, as
shown in Figure 8. In this case, the maximum compressive stress is at external surface of shell B (r2)

when time is equal to zero and the maximum tensile stress is at interface of shell B (ri ) when the stress
field reaches steady state.

4.3. The influences of thermal conductivity. Many studies show that reducing the thermal conductivity
can improve the thermoelectric figure of merit (Z T ) but it can also cause thermomechanical issues [Kim
et al. 2016]. Thus the influence of thermal conductivity on the thermal stress field should be studied.
Figure 9 shows the influence of thermal conductivity on the maximum compressive and tensile hoop
stresses. Note that in Figure 9, σθ (r2, 0) and sθs(r1) are the maximum compressive hoop stress and
maximum tensile hoop stress in the shells, respectively. It can be seen that if applied electric current
density increases and thermal conductivity decreases, the maximum compressive stress decreases but
the maximum tensile stress increases. Influence of thermal conductivity on the maximum tensile stress
is more significant than that on the maximum compressive stress. This means that even though lowing
thermal conductivity can enhance the thermoelectric figure of merit (Z T ), it is also likely to cause
the structural reliability concerns. Therefore, when we design thermoelectric spherical shell devices, a
balance between the thermoelectric performance and structural reliability issue should be made.
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Figures 10 and 11 show the influence of thermal conductivity on maximum tensile hoop stress and
maximum compressive hoop stress of laminated spherical shells, respectively. Note that σBθs(ri ) is the
maximum tensile hoop stress of laminated shells in Figure 10 and σBθ (r2, 0) is the maximum compressive
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tensile hoop stress reaches the lowest value when the value of j/j0 is around 0.2. When the thermal
conductivity ratio of shell A to shell B increases, the maximum tensile hoop stress increases and the
maximum compressive hoop stress decreases.

4.4. The influences of the thickness of laminated shells. Figures 12 and 13 show, respectively, influ-
ence of the thickness of laminated shells on the maximum tensile and compressive hoop stresses. When
the laminated thermoelectric spherical shells are used in thermal protection system of supersonic space
shuttles, there is the large temperature difference between external surface and internal surface. Thus
assumed that T2 is equal to 1300 K and 1600 K and T1 is equal to 300 K in this subsection. As mentioned
above, σBθs(ri ) and σBθ (r2, 0) are, respectively, the maximum tensile and compressive hoop stresses of
laminated shells in Figures 12 and 13. It is noted that increasing ri means that the radial thickness of
shell B becomes thinner and that of shell A becomes thicker when the radii of internal and external
surfaces keep constant. The value of maximum tensile stress is the lowest when the interface is on the
middle of laminated shell. It is noted that these lines do not intersect at one point for T2 = 1300 K or
1600 K, as shown in Figure 13.

5. Conclusion

This work constructs a transient mechanical model for laminated thermoelectric spherical shells, con-
sidering the coupling of the heat transfer and electric conduction. Notably, a computational code with
good human-machine dialogue interface was developed. The code allows us to graphically input data
and output the results. The models can evaluate the thermal and mechanical characteristics of materials
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for temperatures higher than 1300 K, which are very possibly happen thermal protection system of future
supersonic space shuttle, and for temperatures as low as 77 K that is possible for high-temperature su-
perconductors in space solar energy station. Numerical results show that specifying the applied electric
current density may reduce the maximum tensile stress in the laminated shells. For laminated spherical
shells, additional attention for the thermal conductivity ratio of shell A to shell B should be paid. If the
thermal conductivity ratio of laminated shells increases, the maximum tensile hoop stress increases but
the maximum compressive hoop stress decreases.

Appendix A

First, ϕAn and ϕBn should satisfy the following equations [Hahn and Özişik 2012]

ϕAn(r1)= 0, (A1)

ϕAn(ri )= ϕBn(ri ), (A2)

κA
dϕAn(r)

dr
= κB

dϕBn(r)
dr

, r = ri , (A3)

ϕBn(r2)= 0. (A4)

Substituting ϕAn(r) and ϕBn(r) into (A1) to (A4) gives

0= A1n
1
r1

sin
(
βn
√
ωA

r1

)
+ B1n

1
r1

cos
(
βn
√
ωA

r1

)
, (A5)

A1n
1
ri

sin
(
βn
√
ωA

ri

)
+ B1n

1
ri

cos
(
βn
√
ωA

ri

)
= A2n

1
ri

sin
(
βn
√
ωB

ri

)
+ B2n

1
ri

cos
(
βn
√
ωB

ri

)
, (A6)

κA

κB
A1n

[
βn
√
ωA

cos
(
βn
√
ωA

ri

)
−

1
ri

sin
(
βn
√
ωA

ri

)]
−
κA

κB
B1n

[
1
ri

cos
(
βn
√
ωA

ri

)
+

βn
√
ωA

sin
(
βn
√
ωA

ri

)]
= A2n

[
βn
√
ωB

cos
(
βn
√
ωB
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)
−

1
ri

sin
(
βn
√
ωB
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)]
− B2n

[
1
ri

cos
(
βn
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ωB
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)
+
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√
ωB

sin
(
βn
√
ωB

ri

)]
, (A7)

0= A2n
1
r2

sin
(
βn
√
ωB

r2

)
+ B2n

1
r2

cos
(
βn
√
ωB

r2

)
. (A8)

Without loss of generality, we choose A1n = 1 [Hahn and Özişik 2012] and A1n , B1n , A2n and B2n can
be obtained as

A1n = 1, (A9)

B1n =− tan
(
βn
√
ωA

r1

)
, (A10)
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A2n =
cos(βn/

√
ωA ri ) tan(βn/

√
ωA r1)− sin(βn/

√
ωA ri )

cos(βn/
√
ωB ri ) tan(βn/

√
ωB r2)− sin(βn/

√
ωB ri )

, (A11)

B2n =−A2n tan
(
βn
√
ωB

r2

)
. (A12)

Equations (A5), (A6), (A7) and (A8) can be expressed in the matrix form. From the requirement that
determinant of the coefficients in the matrix should be zero, values of βn can be obtained.

Appendix B

Three different boundary conditions are considered: Case 1, both internal and external surfaces of lami-
nated thermoelectric spherical shell are stress free; Case 2, internal surface of shell is fixed, and external
surface is stress free; Case 3, both internal and external surfaces of shell are fixed. a11, b12, a21 and b22

are

a11 =�1b12, (B1)

b12 =
ri�3−35

31
+
32

31
b22, (B2)

a21 =�3+�2 b22, (B3)

b22 =
3136+33(ri�3−35)−�33137

3134−3233
, (B4)

where

31 = ri�1+
1
r2

i
, 32 = ri�2+

1
r2

i
, 33 =

EA�1

1− 2νA
−

1
r3

i

2EA
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EB�2

1− 2νB
−

1
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i

2EB
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,

35 =
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αA

r2
i
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1TAr2 dr, 36 =−
2αA EA
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1
r3

i
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−
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1
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r3
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1
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�3 =


2αB(1−2νB)

1−νB

1
r3
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TUNING THE PROPAGATION CHARACTERISTICS OF THE TRAPPED
AND RELEASED STRONGLY NONLINEAR SOLITARY WAVES

IN 1-D COMPOSITE GRANULAR CHAIN OF SPHERES

BIN WU, HEYING WANG, XIUCHENG LIU, MINGZHI LI, ZONGFA LIU AND CUNFU HE

After a chain composed of light particles is inserted into a one-dimensional heavy granular chain of
spheres, the formed composite chain can trap strongly nonlinear solitary waves (SNSWs) in a light
sectional chain. The light sectional chain can reduce the peak amplitude of pulse waves imposed on the
objects contacting with the end particle of the chain. However, the effects of the light sectional chain’s
properties on the propagation velocity and amplitude of both the trapped and output pulse waves are
unclear. In this study, finite element models with optimal parameters were established to investigate
the multireflection behaviors of the output pulse waves. Both the simulation and experimental results
demonstrated that the light sectional chain could act as a physical regulator to tune the properties of
the output pulse waves in the composite chain. When the material of the light particle was fixed, both
the propagation velocity and amplitude of the output pulse waves exhibited the exponentially downward
trend as the number of light particles increased. Compared to the light sectional chain of Brass, the PTFE
chain could cause more serious attenuation on the amplitude of the pulse waves and reduce the propaga-
tion velocity of the output pulse waves. Similar phenomena had been reported in simulation results only
at the nanoscale. Even at the macroscale, the investigated composite chain could quantitatively tune the
propagation characteristics of the trapped and output pulse waves by adjusting the material and number
of light particles.

1. Introduction

Strongly nonlinear solitary waves (SNSWs), which are derived from the nonlinearity of the Hertzian
contact interactions between spherical particles, in one-dimensional granular chains have been widely ex-
plored due to the unique properties [Nesterenko 1983; Daraio et al. 2006a; Potekin et al. 2013; Nesterenko
et al. 2005], such as independence of their width on amplitude and strong dependence of speed on
amplitude. Wave dynamics in one-dimensional granular chains have been extensively investigated in the
last twenty years to reveal the behavior of wave propagation in the granular chains and various potential
applications have been reported, such as the design of metamaterials and metadevices [Gantzounis et al.
2013; Kim et al. 2017; Xu and Nesterenko 2017; Raney et al. 2016], nondestructive material evaluations
[Rizzo et al. 2015], energy harvesting [Li and Rizzo 2015a; 2015b; Rizzo and Li 2017], and even medical
hyperthermia [Spadoni and Daraio 2010]. The effects of particle material properties and impact condition
on the formation and propagation velocity of SNSWs supported by 1-D chain of homogeneous elastic
spherical particles have been reported [Meidani et al. 2015; Ngo et al. 2011; 2013; Khatri et al. 2012].

Keywords: 1-D composite granular chain, strongly nonlinear solitary waves, propagation characteristics tuning, energy
trapping.
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To reveal the wave propagation behavior in granular chains subjected to external impact, Nguyen and
Brogliato [2014] and Brogliato [2016] published monographs to introduce and summarize the available
theoretical approaches and computation tools. Theoretical expression about the energetical coefficient
of restitution related with plastic (residual) indentation are first given in [Nguyen and Brogliato 2014].
Further study was reported by Zhao et al. [2008] to clarify the wave behavior in a column of beads
colliding against a wall through adjusting the energetical restitution coefficient of a bistiffness compliant
contact model. Falcon et al. [1998] found that spheres could be modelled as rigid bodies with localized
deformation based on the Hertz’ elasticity at the contact points. Kuninaka and Hayakawa [2009] par-
tially determined dissipation during binary collision of nanoparticles through molecular dynamics and
macroscopic collision model. Takato et al. [2018] obtained inelastic contact force between nanoparticles
based on Hertz contact mechanics by molecular dynamics model. Many finite element methods had been
developed to simulate the propagation properties of waves in one-dimensional particle chains [Musson
and Carlson 2014; 2016; Ngo et al. 2011; Kim et al. 2015] since the attenuation caused by the plastic
deformation generated between contacting particles could be calculated more accurately [Musson and
Carlson 2014; 2016].

The composite granular chain with multisectional chains of spherical particles endows pulse waves
with certain propagation characteristics [Przedborski et al. 2015; Vergara 2005; Hong and Xu 2002] and
can act as a container to trap the energy of pulse waves in a particular section of chain [Nesterenko et al.
1995; Daraio et al. 2006b; Sen et al. 2008; Carretero-González et al. 2009]. In a composite granular
chain of spherical particles, which is divided into two heavy sections and one light section, the leakage
of trapped energy demonstrates a power-law behavior over time [Hong 2005; Wang et al. 2007; Xu and
Zheng 2017]. The power-law behavior of the trapped energy release is attributed to the back-and-forth
reflection of the sequence of pulse waves bouncing between the heavy-light and light-heavy interfaces.
The bouncing behavior of the output pulse waves predicted by the theoretical model [Xu and Zheng
2017; Khatri 2012] was not confirmed or discussed by experimental tools yet. In addition, no dissipation
on collisions is taken into account, so it is predicted that the output pulse waves move freely in the light
section of chain without energy dissipation. The prediction remains to be experimentally explored.

Daraio et al. [2006b] experimentally investigated the reflection and transmission behaviors of pulse
waves at the interface between steel particle and PTFE particle in composite granular chains. When
pulse waves passed through heavy steel particles and entered the light PTFE section of chain, pulse
waves decompose into a sequence of solitary waves with slower velocity and lower amplitude than that
of incident pulse waves. In the design of a fine granular protector, the amplitude of the final output
pulse waves of the composite granular chain is more concerned, but the energy dissipation and velocity
variation of pulse waves in the light chain are seldom considered [Daraio et al. 2006b]. The effect of the
number of particles in the light chain on the features of output pulse waves is still unknown.

The behavior of solitary waves propagating along the light section of chain in 1-D composite granular
chain constructed by inserting a series of short single-walled carbon nanotubes into C60 system was
simulated at the nanoscale [Xu and Zheng 2017]. A concept of energy tunnel was proposed based on
the truth that both the propagation velocity and the energy carried by the solitary waves continuously
decayed as the number of the carbon nanotubes increased. The interesting phenomenon of energy tunnel
arose from the increase in the internal energy in carbon nanotubes with the consumption of the energy
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of solitary waves passing through carbon nanotubes, but the phenomenon had not been verified at the
macroscale [Xu and Zheng 2017].

Therefore, in this study, it is hypothesized that the energy tunnel phenomenon occurs in 1-D composite
granular chain of particles at the macroscale. Both the finite element simulation and proof-of-concept
experiments were performed to investigate the propagation characteristics of the trapped and output pulse
waves in 1-D composite granular chain of particles. The simulation and experimental results confirmed
the hypothesis. During the propagation of output pulse waves in the light sectional chain, the propagation
velocity of pulse waves successively decreased due to the accumulation effect of the deformation energy
storage. As the number of light particles increased, both the propagation velocity and amplitude of the
output pulse waves in the end heavy chain demonstrated the exponentially downward trend.

This paper is organized as follows. In Section 2, based on Hertzian contact theory, the pulse waves in
1-D composite granular chain of spheres as well as the reflections of the output pulse waves are introduced.
In Section 3, finite element models are established and the parameters of the models are optimized.
The propagation characteristics of the trapped and output pulse waves is numerically investigated and
discussed. In Section 4, the experimental setup is presented and simulation results are compared with
experimental results. Finally, the conclusion is drawn in Section 5.

2. Fundamental theory

One-dimensional granular chain is a collection of macroscopic discrete particles whose dimensions are
comparable to those of the overall system and so large that the thermal motion of particles may be ignored
[Nesterenko 1983]. In a monatomic granular chain composed of N spherical particles shown in Figure 1
(top), the applied static force F0 results in a small deformation at the contact area of adjacent particles
and a relative displacement of δ0 between the centers of two adjacent particles is generated. Under the
action of an external impact Fd imposed along the particle alignment direction, the displacement of the
center of individual particle is un (n = 1, 2, . . . , N ). If the chain is uncompressed (F0 = 0) or weakly
precompressed (F0� Fd , resulting in |un+1− un|/δ0� 1), the formation of strongly nonlinear solitary
waves (SNSWs) in the chain is dominated by Hertzian contact law due to the balance of dispersion and
interparticle nonlinearity. The contact force F between two adjacent particles is expressed as [Hertz
1881; Nesterenko 2001]

F(δ)=

{
Aδ3/2, δ > 0

0, δ < 0,
(1)

where δ represents the relative displacement of the centers of two adjacent particles. The contact stiff-
ness A during compression can be calculated as [Nesterenko 2001]

A =
4E1 E2(1/R1+ 1/R2)

−1/2

3[E2(1− ν2
1)+ E1(1− ν2

2)]
,

where R1 and R2 are the radii of the particles, and E1, E2, ν1, and ν2 are Young’s modulus and Poisson’s
ratio of the two particles’ material, respectively. The motion equation for each particle is

ün = A(δ0− un + un−1)
3/2
− A(δ0− un+1+ un)

3/2. (2)
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Figure 1. One-dimensional diagram of uniform granular chain (top) and composite
granular chain for supporting strongly nonlinear solitary waves (bottom).

In a 1-D chain composed of identical spherical particles, the propagation velocity of SNSWs Vs can
be expressed as a function of the ratio of static and the maximum dynamic force fr = Fm/F0, where Fm

includes static precompression force F0 [Nesterenko 2001]:

Vs = 0.9314
(

4E2 F0

a2ρ3(1− ν2)2

)1/6 1

( f 2/3
r − 1)

{ 4
15
[
3+ 2 f 5/3

r − 5 f 2/3
r
]}1/2

. (3)

When the chain is uncompressed, equation (3) can be simplified as

Vs = 0.6802
(

2E
aρ3/2(1− ν2)

)1/3

F1/6
d . (4)

The maximum contact force Fm among the particles during the propagation of solitary waves remains
constant in nondissipative systems [Nesterenko 2001]. In reality, energy dissipation is unavoidable. How-
ever, it is still difficult to accurately predict energy dissipation of SNSWs along its propagation due to
the factors of contact plasticity, inelastic restitution of the particles, reflection at interface, and friction
between the chain and its holder [Wang and Nesterenko 2015; Rosas and Lindenberg 2003; Rosas et al.
2008]. Therefore, in the subsequent finite element simulation, the propagation behavior of pulse waves in
1-D granular chain was only investigated for nondissipative systems. Energy attenuation of pulse waves
along its propagation in the composite chain was evaluated by experimental tools.
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In the case, the composite granular chain is composed of a total of 40 spherical particles which have
the identical diameter of 10 mm and can be divided into three sections. Seven steel particles are placed
in the first section of the chain (referred to heavy section) to generate a pulse close to steady strongly
nonlinear solitary wave when impact force applied on the first particle is of significantly short duration or
due to impact by striker with mass equal or less than mass of particles in the chain. The second section of
the chain includes a certain amount (varying in the range of 3–24) of particles of lower Young’s modulus
and density (referred as light section) compared to steel particles. The third section of the chain (heavy
section) is also composed of steel particles and its last particle directly contacts with a steel bar.

The propagation of the pulse waves along the composite granular chain is more complex than that in
a chain composed of identical particles. It is already known that the incident SNSWs from the heavy
sectional chain are transformed into an oscillatory pulse which on later stage is split into a sequence of
strongly nonlinear solitary waves [Nesterenko et al. 1995; Daraio et al. 2006b; Sen et al. 2008]. Energy
reflections do not occur unless pulse waves travel from the light section to the heavy section. As a
result, the sequence of pulse waves propagating along the light section bounce back and forth between
the light-heavy and heavy-light interfaces (Figure 1, bottom), as suggested by the reported interesting
energy trapping behavior [Wang et al. 2007]. Due to the energy trapping effect, the peak amplitude of
the output pulse waves transmitted into the third sectional chain is lower than that of the impact applied
on the first sectional chain. Therefore, the composite granular chain can work as a protector to mitigate
the strength of external impact applied on the steel bar.

For the composite granular chain shown in Figure 1 (bottom), the energy of pulse waves transmitted
into the third section of the chain can be tunable by employing particles of different materials. To improve
the performance of the protector, soft materials with a small Young’s modulus and density are generally
recommended for the light sectional chain. However, the effect of the length of the light section on the
quantity of energy transmitted into the third section of the chain has not been reported yet. In addition,
the reflection behavior of the trapped sequence of pulse waves at the light-heavy interface was also not
experimentally observed or discussed.

3. Numerical modeling

3.1. Descriptions of the FE model. To simulate the propagation of pulse waves in the composite granu-
lar chain, inspired by the report in [Musson and Carlson 2014], finite element models were developed in
COMSOL. The penalty function was employed to solve the contact problem among the particles in 1-D
granular chain of spherical particles. First, a 1-D chain composed of identical elastic spherical particles
was modeled to optimize the mesh size, penalty factor, and solver by comparing the simulated results
with that predicted with (4). Second, a 1-D composite granular chain shown in Figure 1 (bottom) was
modeled with the optimal numerical scheme to investigate the propagation characteristics of the trapped
and output pulses.

Two-dimensional axial symmetry operation was applied in the model shown in Figure 2 (top left) to
obtain a 1-D chain composed of fifteen stainless steel particles. The properties of the stainless steel are
listed in Table 1. To save computational resources, the diameter of the particles was selected as 4.76 mm,
which was smaller than that of the particles in the composite granular chain. The last particle at the
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bottom of the chain contacted with a stainless steel cylinder, whose diameter and height were about
20 mm and 10 mm, respectively.

Starting from the contact point between two adjacent particles, the arc with the length of π/18 is
defined as the contact boundary. A contact pair shown in Figure 2 (top right) consists of a source and
destination contact boundary. The contact force was transferred from the source contact boundary to the
destination contact boundary. The displacements of the centers of all the particles were fixed as zero in
r direction to limit the rotation and translation. The fixed constraint was applied to the bottom surface
of the cylinder and the remaining surfaces of the entire model had free boundaries.
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Figure 2. Finite element simulation model of 1-D granular chain. Top: geometrical
configuration of the entire model (left) and the contact pair (right). Bottom: meshing
results of the contact area between two adjacent particles (left) and between the last
particle of the chain and the bottom cylinder (right).

materials density (g/m3) Young’s modulus (GPa) Poisson’s ratio

stainless steel 7925 209 0.28
Brass 8398 103 0.34
PTFE 1870 1.46 0.46

Table 1. Properties of granular materials.
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The contact pair was discretized with free three-noded elements and then the particles were meshed
with free triangular nodes by the automatic generation algorithm. To achieve the more accurate solution,
the destination contact boundary employed the finer mesh than that of the source contact boundary
after repeated trials. The meshing operation of the cylinder was performed according to the procedures
recommended by the case of Cylinder Roller Contact in COMSOL. In the cylinder, the mesh size near
the contact area between the particle and the top surface of the cylinder was much smaller than that of
the region far away from the contact area.

The top stainless steel particle of the chain acted as a striker with an initial speed of 0.626 m/s and then
the propagation of SNSWs in the chain was simulated in the finite element models established above.
The mesh size and the penalty factor, which determined the performance of the penalty function on
solving the contact problem, were optimized with the single factor analysis method. The relative errors
between the simulated velocities of the SNSWs and the results predicted by the Hertzian contact theory
were used as a criterion for evaluating the effects of the mesh size and penalty factor on the computation
accuracy of the FE model.

3.2. Parameter optimization.

3.2.1. Mesh size. The penalty factor was fixed as a constant with a value of η = 1 and constant solver
was employed to give the solutions of the solitary wave propagation. The profile of the contact force at
the interaction zone between two adjacent particles was extracted from the simulation results when the
minimal mesh size (β) of the model was gradually reduced from 0.2 mm to 0.01 mm.

The contact force profiles corresponding to the contact pair of the 5th and 6th particles and the contact
pair of the tenth and eleventh particles are plotted in Figure 3. The time interval between the two peaks
of the contact force profiles is divided by the distance of five-time diameters of the particle to estimate
the propagation velocity (Vsw) of the solitary wave.
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Figure 3. Profiles of contact force obtained from the model with different mesh sizes.
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model no. mesh size (mm) contact force (N) velocity of SNSWs time consumption
value (m/s) error (%)

1 0.2–0.4 7.92 590 20.00 9 min 24 s
2 0.1–0.2 21.71 569 2.14 18 min 49 s
3 0.05–0.1 24.55 566 4.63 31 min 16 s
4 0.025–0.05 26.62 586 2.58 1 h 9 min
5 0.01–0.02 27.17 599 0.76 3 h 21 min 3 s

Table 2. Performances of the models with different mesh sizes.

As indicated in (4), for the granular chain of a given material, the velocity of the SNSWs is proportional
to the value of F1/6

m . When the minimal mesh size of 0.2 mm was selected in the model, the obtained
maximum contact force was significantly lower than that of other cases and a relative error between the
simulated value of Vsw and the theoretical velocity of SNSWs was 20.00%. When the minimal mesh size
decreased from 0.2 mm to 0.1 mm, the maximum contact force in the simulation substantially increased
from 7.92 N to 21.71 N and the obtained relative error of the velocity was decreased to 2.14%. However,
the profile of the contact force was not smooth especially in the initial stage of the contact, indicating
that the model could not achieve the high-precision simulation of the propagation of SNSWs.

Therefore, the model utilizing the smaller mesh size was further investigated. When the minimal mesh
size was alternatively selected as 0.05 mm, 0.025 mm, and 0.01 mm, the calculation error of velocity
and simulation time are summarized in Table 2. The FE models are solved by the COMSOL software
which is run in a computer with two processors of Intel Xeon X5650 (RAM: 64 GB, main frequency:
2.66 GHz). In the simulation cases, the minimal calculation error of 0.67% could be realized after the
longest simulation time with the smallest mesh size of 0.01 mm (Case 5). To balance the calculation
error and simulation time, the minimal mesh size was selected as 0.025 mm in the subsequent simulation
even though the calculation error was slightly higher than that in Case 5. The total number of degree of
freedom in the selected model solution is 115634.

3.2.2. Penalty factor and solver. For the purpose of solving some optimization problems, an additional
function (penalty function) should be added to the original objective function in order to obtain an aug-
mented objective function [Greenberg and Pierskalla 1970]. The penalty function is generally used to
transform the constrained optimization problem into an unconstrained optimization problem [Bellmore
et al. 1970; Hinch and Saint-Jean 1999]. The penalty factor η is an important parameter of the penalty
function.

The similar simulation procedure as previously discussed is used to investigate the effect of penalty
factor η in the penalty function on the calculation error of velocity. When the value of η gradually
increases from 1.1 to 1.5 with a step of 0.1, the high-quality contact force profiles can be obtained
with the Constant solver. The simulated values of Fm and velocities are listed in Table 3. The relative
error of velocity continuously decreases from 2.47% to 1.57% as the penalty factor increases from 1.1
to 1.4. As for the case of η = 1.5, the simulation results show that the maximum contact force further
increases compared to the case of η = 1.4, thus leading to an increase in propagation velocity according
to (4). Surprisingly, the velocity estimated from the simulation results is about 590 m/s (Table 3), which
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penalty factor, η contact force, F (N) velocity of solitary wave, Vsw

values (m/s) errors (%)

1.1 26.71 587 2.47
1.2 26.77 590 2.01
1.3 26.81 592 1.70
1.4 26.86 592 1.57

1.5 (constant solver) 27.36 590 2.36
1.5 (automatic solver) 27.22 595 0.40

Table 3. Results obtained from the model with different penalty factors and solvers.
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Figure 4. Gap between two adjacent particles obtained from the model with constant
solver (left) and automatic solver (right).

is slower than that obtained in the case of η = 1.4. As shown in Figure 4, the value of the gap at the
contact point between the 5th and 6th particles remains to be negative due to the compression before
the time of 0.6 ms. Then it has the positive sign, indicating that the separation phenomenon of particles
occurs during the propagation of SNSWs. The similar behavior can also be observed from the results
extracted at the 10th contact pair. The separation phenomenon of the particles may induce the second
impact among the particles [Wang and Nesterenko 2015; Rosas et al. 2008].

To solve the problem of the Constant solver, the Automatic solver was adopted to provide more con-
vincing results (Figure 4, right). Although slight separation could be concluded from the profile of gap
versus time, the velocity calculation error significantly decreased to 0.4% (Table 3).

With the optimal parameters of mesh size (β = 0.025 mm) and penalty factor (η= 1.5), the solutions of
the model provided by Automatic solver were used to explore the relationship between the contact force
and the relative displacement between the centers of the 5th and 6th particles. The results in Figure 5
demonstrated that the dependency of the dynamic contact force on the relative displacement yielded a
power function with an exponent of 1.554, which was close to the value of 1.5 suggested by the Hertzian
contact law [Hertz 1881]. The results in Figure 5 and Table 3 proved that the finite element model with
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optimal parameters and solver could be applied to accurately simulate the propagation of SNSWs in 1-D
granular chain of spheres.

3.3. Propagation behaviors of pulse waves in composite chain. The finite element model together with
its optimal parameters (mesh size, penalty factor, and solver) obtained in Section 3.2 was used to inves-
tigate the propagation of SNSWs in a 1-D composite granular chain of spheres (Figure 1, bottom). In
the simulation model, the material of the spherical particles in the light sectional chain was alternatively
selected as Brass and PTFE, whose properties are listed in Table 1.

The initial speed of the striker particle was fixed at 0.626 m/s in all the simulation models. Due to the
energy trapping effect governed by the light-heavy and heavy-light interfaces, the propagation behaviors
of pulse waves in the light chain was complicated. So far, the multiple reflection behavior of the pulse
waves in the light chain was seldom explored with simulation tools. Here, as an example, the simulation
results obtained from the model with N2 = 6 particles in the light section were extracted to observe the
reflection behavior of output pulse waves in the composite chain. The profile of contact force versus
time shown in Figure 6 was extracted from the contact pair formed with the third and fourth particles in
the light section.

In the model with light sectional chain of Brass, one round of back and forth reflections can be
identified in the profile shown in Figure 6 (left). The pulse waves reflected from the light-heavy inter-
face are in the form of a single impulse, which is referred to back reflection wave (BRW). When the
BRW returns to the heavy-light interface, partial energy of BRW will be reflected again to generate
the forth reflection wave (FRW). When the original incident pulse wave passes through the heavy-light
interface, as suggested in the previous study [Hong and Xu 2002], partial energy of the pulse waves
is stored in the particles in the form of compressive deformation. The BRW imposes propulsive force
onto the contact area at the heavy-light interface and consequently deformation recovery happens, thus
leading to additional impact on the light section and generating a delayed forth reflection wave (DFRW)
(Figure 6, left).
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Figure 6. Profiles of contact force extracted at the analyzed contact pair in the model
of composite chain with the light sectional chain of Brass (left) and PTFE (right).

Similar reflection behavior of pulse waves at the first round of back and forth reflections can be
observed in the case with the light chain of PTFE. As sketched in Figure 6 (right), two reflected wave
packets are respectively generated by the mechanism of interface reflection and the deformation recovery
and can be identified during the process of the first forth reflection of pulse waves. The contact stiffness
between PTFE particle and steel particle was much lower than that between Brass particle and steel
particle. As emphasized in the previous report [Daraio et al. 2006b], for the fixed incident pulse waves,
the amount of energy reflected at the contact pair with low contact stiffness was higher than that in the
case of high contact stiffness. Accordingly, in the case with the light chain of PTFE, the ratio of energy
of BRW to the output pulses transmitted through the light-heavy interface was much higher than that in
the case with the light chain of Brass. In other words, a larger amount of energy of pulse waves was
trapped inside the light chain of PTFE compared to that in the light chain of Brass.

In the third section of the composite chain, the propagation velocity of pulse waves was determined
by the peak contact force at the contact pair [Rosas and Lindenberg 2003]. In the composite chain with
the light chain of PTFE, the amount of energy (or peak contact force) transmitted into the third section
chain was much smaller than that in the case with light chain of Brass. Thus, the output pulses of the
composite chain propagated more slowly in the case with the light chain of PTFE than that in the case
of Brass chain. The propagation time of the pulse waves reflected from the bottom cylinder was around
1.85 ms, which was longer than the propagation time of 1.25 ms estimated from Figure 6 (left). The
delay of pulse waves reflected from the bottom cylinder allowed the longer time window to observe the
reflection behavior of pulse waves in the light section and the second back reflection wave could also be
captured (Figure 6, right).

To carefully investigate the energy transmission efficiency (λ) of pulse waves at the light-heavy inter-
face, the profiles of contact force were extracted at the second contact pair in the third sectional chain.
With the increase in the number of light particles, the results of the contact force profiles for the cases
with the light chains of Brass and PTFE are plotted in Figure 7 (left and right, respectively). The amount
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Figure 7. Effects of the number of light particles on the transmitted pulse waves in the
model of composite chain with the light section of Brass (left) and PTFE (right).

of the energy of incident pulse waves was fixed due to the constant impact condition imposed on the
composite chain. Hence, the effect of the length of light section on the energy transmission efficiency λ
could be evaluated by verifying the results in Figure 7.

For both cases of the composite chain, the peak contact force of the transmitted (or output) pulses
demonstrated the exponentially decreasing trend with the increase in the value of N2. During the prop-
agation of the pulse waves in the first chain, the total energy desity of the pulse waves (including the
elastic energy and kinematic energy) retains as constant (see Figure 8). This confirmed that the energy
dissipation caused by material attenuation and friction is not considered in the simulation model.

However, the total energy of the pulse waves in the light section chain demonstrates successive at-
tenuation as the propagation of the pulse waves (see Figure 8). The maximum compressive stress in
the contact area of Brass sphere is changed from 1200 MPa to 1110 MPa, and for the PTFE sphere is
changed from 35 MPa to 20 MPa. The Young’s modulus of the light spheres is much lower than that of
the steel spheres used in the first chain. As a result, the maximum compressive stress in the contact area
of two light spheres may exceed the yield strength of the material of Brass and PTFE. Therefore, plastic
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Figure 9. Schematic diagram (left) and photo of the experimental setup (right).

deformation occurs at the contact area of two light spheres and part of the pulse waves’ energy is stored
in the form of plastic deformation. The decay of the output energy of pulses was attributed to plastic
deformation when pulse waves passed through the light section [Musson and Carlson 2014; 2016].

The profile of the contact force extracted from the case of PTFE showed two peaks. We believed
that the collision between the incident pulse waves and the BRW induced secondary collisions at the
light-heavy interface. The time interval between the two collisions was short and the output pulses were
overlapped to exhibit the double-peak character. The double-peak character in the waveform of transmit-
ted pulse waves was confirmed by subsequent experimental results. The decay of energy transmission
efficiency is quantitatively analyzed in Section 4.

4. Experimental verification and discussion

Experimental observation of the propagation behavior of pulse waves was conducted in a one-dimensional
composite granular chain composed of 40 spherical particles (see in Figure 9). The diameter of all the
particles was identical to that used in the simulation model. The configuration of the composite chain
was also identical to that illustrated in Figure 1 (bottom). Two sensing particles were respectively used
to replace the sixth particle in the first sectional chain and the second particle in the third sectional chain
to sense the propagation of pulse waves. Each sensing particle was made by cutting a steel particle into
halves and embedding a PZT wafer between the two halves [Daraio et al. 2006a; 2006b]. The sandwich
structure of the sensing particle was boned with epoxy and the voltage signals output by the PZT wafer
was acquired by a Tektronix 4490b digital oscilloscope with a sampling frequency of 10 MHz.

The well-arranged composite chain was placed in a plastic holder with an inclination angle of 3◦

in order to achieve the intact contact between every two adjacent particles [Leonard et al. 2014]. A
solenoid valve was used to hold and release the steel striker particle with a diameter of 10 mm. The
distance between the center of striker and the center of the first particle in the chain was adjusted to
be around 20 mm and the estimated speed of the impact imposed on the composite chain was about
0.626 m/s.

The light chain was alternatively fulfilled with the particles of Brass and PTFE. Figure 10 shows the
signal of pulse waves measured by the two sensing particles in the experimental tests. As predicted with
the simulation results in Figure 7, in the two cases, the peak voltage induced by the propagation of pulse
waves demonstrated the exponential attenuation behavior with the increase in the propagation distance.
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Figure 10. Effects of the number of light particles on the transmitted pulse waves in the
experiment of composite chain with the light section of Brass (left) and PTFE (right).

The ratio of the peak amplitude of incident pulse waves to the peak amplitude of output pulses was treated
as the energy transmission efficiency (λ). In addition, the time interval (1t) between the peak voltages
of the incident and transmitted pulse waves were estimated. The propagation distance (L) was divided
by the time interval (1t) to estimate the propagation velocity (Vsw) of the pulse waves. The estimated
results of λ and Vsw are plotted in Figure 11.

Experimental results were compared with simulation results based on the results shown in Figure 11.
For the composite chain with the light section of Brass, the measured propagation velocity of pulse waves
exponentially decayed from the initial value of 469 m/s (N2 = 3) to around 424 m/s (N2 = 24). The
measured value of Vsw was lower than the predicted value and the error might come from the mismatch
of material properties between the true particle and the particle in the simulation model. Among the
investigated cases, the maximum relative error between the simulated propagation velocity and measured
propagation velocity was about 4.2%. In the case with the light chain of PTFE, the curve fitted to the
predicted data was close to that fitted to the measured data (Figure 11, right). In the initial stage (N2 = 1),
the prediction error of propagation velocity was about 17.1%. When the value of N2 was larger than 3,
the prediction error dramatically decreased below 2.3%, indicating that the previously established finite
element models possessed the good prediction performance in the propagation velocity of the pulse waves
in the investigated composite chain.

In the studied two cases of the composite chain, both the measured and predicted results of energy
transmission efficiency showed the exponential decay trend. Hence, the light sectional chain had the
effects of velocity reduction and amplitude attenuation on the input pulse waves transmitted from the
first sectional chain. The propagation velocity and the amplitude of the output pulses were determined
by both the material properties and the number of light particles in the simulation results. Erenow, the
phenomenon similar to that demonstrated in Figure 11, was only reported at the nanoscale in simulation
studies. The results in Figure 11 indicated that even at the macroscale the investigated composite chain
was able to quantitatively tune the amplitude and propagation velocity of pulse waves by adjusting the
number of particles in the light sectional chain.



TUNING THE PROPAGATION CHARACTERISTICS IN 1-D COMPOSITE GRANULAR CHAIN OF SPHERES 357

Propagation distance

V
el

oc
it

y 
(m

/s
) V

alue of λ

480

460

440

420

1.0

0.9

0.8

0.7

50 100 150 200 250

Measured Vsw
Simulated Vsw
Measured λ
Simulated λ

Propagation distance

V
el

oc
it

y 
(m

/s
) V

alue of λ

250

200

150

0.24

0.20

0.16

0.12

0.08
500 100 150 200 250 300

Measured Vsw
Simulated Vsw
Measured λ
Simulated λ

Figure 11. Amplitude and velocity obtained by the experiment and simulation for the
particles with the low elastic modulus: Brass particles (left) and PTFE particles (right).

At the initial stage (N2 = 3), the prediction error of the value of λ was as small as 0.53% for the
case with the light chain of Brass and a prediction error was 1.3% for the case with the light chain of
PTFE. When the number of Brass (or PTFE) particles was larger than 6, the difference between the
measured energy transmission efficiency and the predicted energy transmission efficiency increased with
the increase in the propagation distance. In the experiment, along with the propagation of pulse waves in
the light chain, the inevitable friction between the particles and the plastic holder caused additional energy
dissipation to pulse waves. The longer propagation distance corresponded to the more dissipated energy.
The accumulation effect of the energy dissipation led to the continuously increasing error between the
measured and predicted values of λ.

The light sectional chain can act as a physical regulator to control the properties of the output pulse
waves. When the number of light particles was fixed, compared to the light Brass chain, the light PTFE
chain caused the more serious attenuation on the amplitude of the pulse waves and more significantly
decreased the propagation velocity of the output pulse waves. When the material of the light particle was
selected, the dependency of both the propagation velocity and the amplitude of the output pulse waves
on the number of light particle could be predicted with the proposed finite element simulation model.
However, the predicted values of Vsw and λ were larger than corresponding actual results because the
mechanical frictions in the system of composite chain were not considered in the simulation model.

5. Conclusion

The propagation characteristics of the trapped and output strongly nonlinear solitary waves in 1-D com-
posite granular chain of spherical particles were explored in this study. Finite element simulation was
performed with optimal mesh size, penalty factor, and solver and the obtained results confirmed that
the energy tunnel behavior, which had been reported at the nanoscale [Xu and Zheng 2017], was also
applicable to the composite chain at the macroscale. More precisely, the propagation velocity and the
amplitude of the finally output pulse waves in the composite chain could be tuned by adjusting the
material and the number of light particles.
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Though the energy dissipation caused by viscoplastic deformation of particles or friction was not con-
sidered in the simulation model, the total energy of the pulse waves in the light section chain successively
decays as the propagation of the pulse waves. This is because plastic deformation occurs at the contact
area of two light spheres and part of the pulse waves’ energy is stored in the form of plastic deformation.
As a result, the propagation velocity and the amplitude of the output pulse waves could be exponentially
reduced by increasing the number of light particles.

Verification experiments were performed to confirm the conclusions obtained from simulations. How-
ever, in the experiments unavoidable energy dissipation of SNSWs along its propagation occurs due to
viscoplastic deformation of particles and friction. Thus the finite element simulation results has a sys-
temic overestimation in predicting the propagation velocity and the amplitude of the output pulse waves.
However, the established finite element simulation model could be used to investigate the multireflection
behavior of the output pulse waves and reveal the effects of the configuration and material of the light
sectional chain on the properties of the output pulse waves.
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ACCURATE BUCKLING ANALYSIS OF PIEZOELECTRIC FUNCTIONALLY
GRADED NANOTUBE-REINFORCED CYLINDRICAL SHELLS UNDER

COMBINED ELECTRO-THERMO-MECHANICAL LOADS

SHENGBO ZHU, YIWEN NI, JIABIN SUN,
ZHENZHEN TONG, ZHENHUAN ZHOU AND XINSHENG XU

An accurate axial buckling analysis of piezoelectric functionally graded nanotube-reinforced composite
cylindrical shells under combined electro-thermo-mechanical loads is performed in the Hamiltonian sys-
tem. The Hamiltonian form of governing buckling equations is established based on the symplectic ge-
ometry and Reissner’s shell theory. Exact solutions are expressed in terms of symplectic eigenfunctions
which have five possible forms. A detailed parametric study is conducted to demonstrate the influences
of geometrical parameters, boundary conditions, reinforcement nanotubes and their distribution patterns
on the symplectic eigenfunctions. Furthermore, the effects of distribution patterns of nanotubes, electric
voltage and temperature rise on critical buckling stresses are investigated.

1. Introduction

In recent years, nanocomposite have received increasingly attention in both scientific and industrial com-
munities [Zeighampour and Tadi Beni 2014; Tadi Beni et al. 2015; 2016; Tadi Beni and Mehralian 2016;
Mehralian et al. 2016a; 2016b; 2017a; 2017b; Mehralian and Tadi Beni 2016; 2017a; 2017b; 2018; Jamal-
Omidi and ShayanMehr 2017; Kheibari and Beni 2017; Hajmohammad et al. 2018; Kamarian et al. 2018;
Rafiee et al. 2019]. Piezoelectric polymers, as a kind of piezoelectric composite, usually offer low density,
high toughness and high electromechanical effects, which cannot be realized with piezoelectric ceramics
or single crystals [Ueberschlag 2001]. Recently, in order to enhance the performance of such piezoelec-
tric polymers, boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs) with functionally graded
(FG) distribution in the matrix were introduced to reinforce the piezoelectric polymer [Ghorbanpour
Arani et al. 2016; Mohammadimehr et al. 2016]. The strength, electrical and thermal conductivity of
piezoelectric FG nanotube reinforced composites (NTRC) are greatly improved so that the proposed
composites become potential candidates for fabricating the key component of intelligent devices and
equipment, such as FG-NTRC hybrid laminated beams [Fan and Wang 2016], FG-NTRC beams with
piezoelectric layers [Rafiee et al. 2013; Yang et al. 2015; Wu et al. 2016] and FG-NTRC plates with
piezoelectric layers [Rafiee et al. 2014; Wu and Chang 2014; Mohammadimehr et al. 2016; Hajmoham-
mad et al. 2017; Keleshteri et al. 2017]. The cylindrical shells made of piezoelectric FG-NTRC are also
ones of the important fundamental components. Hence, the stability analysis of piezoelectric FG-NTRC
cylindrical shells under combined electro-thermo-mechanical loads is of great importance for the design
and evaluation of the fundamental structures.

Zhenhuan Zhou is the corresponding author.
Keywords: axial buckling, functionally graded materials, piezoelectric nanotube-reinforced composite, cylindrical shell,

analytical solution, symplectic method.
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The nature for buckling of piezoelectric cylindrical shells has been well studied in the literature.
Mohammadimehr et al. [2014], Ganesan and Kadoli [2003], Sheng and Wang [2010] investigated the
buckling of piezoelectric FG cylindrical shells by using the finite element method. Mirzavand et al.
[2016], Fard and Bohlooly [2017], Sun et al. [2016; 2018] investigated the axial buckling, thermal
buckling and postbuckling of piezoelectric cylindrical shells by the Galerkin method. Dai and Zheng
[2011] analyzed the buckling and postbuckling of piezoelectric fiber reinforced composite cylindrical
shell by the Ritz energy method. Mehralian et al. [2016a] investigated the buckling of anisotropic piezo-
electric cylindrical shells by using the generalized differential quadrature (GDQ) method. Farajpour
et al. [2017] investigated the vibration, buckling and smart control of piezoelectric nanoshells by using
the GDQ method. Zhu et al. [2017] investigated the size-dependent effect on the torsional buckling of
FG cylindrical nanoshell covered with piezoelectric nanolayers by using the GDQ method. Mirzavand
et al. [2010; 2013], Dai et al. [2013] investigated the thermal buckling and postbuckling of piezoelectric
FG cylindrical shells by using the finite difference method. Shen [2001; 2002a; 2002b; 2005; 2009;
2010], Shen and Li [2002], Shen and Noda [2007], Shen and Xiang [2007] analyzed the buckling and
postbuckling of piezoelectric FG cylindrical shells by the singular perturbation method. Sahmani et al.
[2016] studies the nonlinear buckling and postbuckling of piezoelectric cylindrical nanoshells by using
the singular perturbation method. Mirzavand and Eslami [2007; 2011], Khoa et al. [2019] obtained exact
solutions for buckling and postbuckling of piezoelectric FG cylindrical shells.

In contrast, there are only a few studies on the stability behaviors of piezoelectric shells made of NTRC.
Ghorbanpour Arani et al. [2012a; 2012b; 2014] and MosallaieBarzoki et al. [2012; 2013] investigated
the axial buckling, torsional buckling and dynamic buckling of piezoelectric NTRC cylindrical shells
under electro-thermo-mechanical loads by using the energy method and harmonic differential quadra-
ture method. Salehi-Khojin and Jalili [2008] obtained exact solutions for buckling of simply supported
piezoelectric NTRC cylindrical shells under electro-thermo-mechanical loads. For the piezoelectric FG-
NTRC, most of the existing literature were concentrated on the buckling of beams or plates [Rafiee et al.
2013; 2014; Wu and Chang 2014; Yang et al. 2015; Fan and Wang 2016; Mohammadimehr et al. 2016;
Wu et al. 2016; Hajmohammad et al. 2017; Keleshteri et al. 2017]. The stability of piezoelectric FG-
NTRC cylindrical shells was rarely reported in the open literature. Ansari et al. [2016] investigated the
postbuckling of FG-NTRC cylindrical shells with piezoelectric layers under electro-thermo-mechanical
loads by using the Ritz energy approach. Ninh [2018] analyzed the thermal torsional postbuckling of FG-
NTRC cylindrical shells with sur-bonding piezoelectric layers by using the Galerkin method. SafarPour
et al. [2019] obtained critical external voltage of rotating piezoelectric FG-NTRC cylindrical shells by
using the GDQ method.

In view of the literature, it is found that the stability analysis of piezoelectric NTRC cylindrical shells
is very limited, especially for piezoelectric FG-NTRC cylindrical shells. Most of the work were per-
formed based on numerical methods, e.g., energy method [Ghorbanpour Arani et al. 2012a; 2012b;
Mosallaie Barzoki et al. 2012; Ansari et al. 2016; Ninh 2018], GDQ method [Mosallaie Barzoki et al.
2013; Ghorbanpour Arani et al. 2014; SafarPour et al. 2019]. Analytical solutions were only reported
by Salehi-Khojin and Jalili [2008], which was derived by the trial functions. Although the numerical
approach could directly aid the engineering design, the analysis of data may be very time-consuming. In
this case, analytical solutions could provide an efficient way to the rapid design and evaluation of such
cylindrical shells.
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Motivated by this, we employ a new Hamiltonian-based method [Wang and Qin 2007; Chen and Zhao
2009; Yao et al. 2009; Lim and Xu 2010; Sun et al. 2013; 2014a; 2014b; Li et al. 2015; Ni et al. 2017;
2018] to find exact solutions for buckling of piezoelectric FG-NTRC cylindrical shells under combined
electro-thermo-mechanical loads. By introducing a total unknown vector, the high-order governing differ-
ential equations for buckling of the shell is reduced into a set of low-order ordinary equations. Thus, the
buckling problem of the piezoelectric FG-NTRC shell is regarded as an eigenproblem in the symplectic
space so that the exact solutions can be directly represented by the symplectic eigenfunctions. Unlike
the single-formed solution obtained by the classical analytical treatments, the present solutions have
five possible forms which highly depend on the geometrical parameters, circumference wave numbers,
reinforcement nanotubes and their distribution patterns. Numerical examples are provided to reveal the
effects of key influencing factors on the expressions of symplectic eigenfunctions and critical buckling
stresses.

This paper is organized as follows. Following this introduction, modeling of piezoelectric FG-NTRC
cylindrical shells under combined electro-thermo-mechanical loads is established. The basic equations
are presented in Section 3. The Hamiltonian form of governing buckling equations and exact solutions
are given in Sections 4 and 5, respectively. Numerical examples are provided in Section 6. Finally, the
conclusions are summarized in Section 7.

2. Modeling of piezoelectric NTRC cylindrical shells

Consider a piezoelectric FG-NTRC cylindrical shell with external electric voltage θ0, temperature field T (z)
and axial compression F in Figure 1 (left). The geometries are taken as length L , radius R and thickness h.
It is referred to a shell coordinate system (x, θ, z) where x , θ and z are in the axial, circumferential and
outward normal directions of the middle surface of shell. The displacements along x-, θ - and z- axes are
specified by u, v and w, respectively.

The NTRC is made from a mixture of NTs and an isotropic matrix. Four distribution patterns of the
NTs along the thickness direction are considered in the present study, as shown in Figure 1 (right). The
corresponding volume fractions of NTs are as follows [Ghorbanpour Arani et al. 2016; Mohammadimehr
et al. 2016]:

Uniformly distribution (UD): VN T = V ∗N T , (1a)

FG-X: VN T = 2(2|z|/h)V ∗N T , (1b)

FG-O: VN T = 2(2− 2|z|/h)V ∗N T , (1c)

FG-V: VN T = (1+ 2z/h)V ∗N T , (1d)

where V ∗N T is total volume fraction of the NTs and it ranges from 0 to 0.5.
It is considered that the constituents of NTRC are orthotropic and homogeneous along the principal

axis. The effective material properties of NTRC are evaluated by using the representative volume element
based on micromechanical models. The mechanical, electrical and thermal properties are expressed as
[Ghorbanpour Arani et al. 2016; Mosallaie Barzoki et al. 2012; Salehi-Khojin and Jalili 2008; Tan and
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Tong 2001a; 2001b]:

c11 =
cN T

11 cM
11

VN T cM
11+ VM cN T

11
, c12 = c11

(
VN T

cN T
12

cN T
11
+ VM

cM
12

cM
11

)
,

c22 = VN T cN T
22 + VM cM

22, c66 =
cN T

66 cM
66

VN T cM
66+ VM cN T

66
,

(2a)

e31 = c11

(
VN T

eN T
31

cN T
11
+ VM

eM
31

cM
11

)
, e32 = VN T eN T

32 + VM eM
32, (2b)

ε11 = VN T ε
N T
11 + VM ε

M
11, ε22 = VN T ε

N T
22 + VM ε

M
22, ε33 = VN T ε

N T
33 + VM ε

M
33, (2c)

β1 = VN Tβ
N T
1 + VM β

M
1 , β2 = VN Tβ

N T
2 + VM β

M
2 , (2d)

p3 = VN T pN T
3 + VM pM

3 , (2e)

where VM is the volume fractions of matrix which satisfies VN T + VM = 1; ci
11, ci

12, c22 and ci
66 are

elasticity constants; ei
31 and ei

32 are piezoelectric constants; εi
11, εi

22 and εi
33 are dielectric constants; β i

1
and β i

2 are thermal moduli; pi
3 is pyroelectric constant; “i = N T ” and “i = M” represent the NTs and

matrix, respectively.

Figure 1. A piezoelectric NTRC cylindrical shell. Left: geometry of a piezoelectric
NTRC cylindrical shell with thermal load, electric voltage and axial compression. Right:
four distribution patterns of NTs.
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3. Formulations of piezoelectric NTRC cylindrical shells

According to Reissner’s shell theory [Leissa 1993], the strain components on the middle surface of the
piezoelectric NTRC cylindrical shell are expressed as

εx =
∂u
∂x
−
∂2w

∂x2 z, (3a)

εθ =
1
R
∂v

∂θ
+
w

R
−

1
R2

(
∂2w

∂θ2 −
∂v

∂θ

)
z, (3b)

γxθ =
∂v

∂x
+

1
R
∂u
∂θ
−

1
R

(
2
∂2w

∂θ ∂x
−
∂v

∂x

)
z. (3c)

To simplify the manipulation, the electric potential which satisfies the Maxwell equation can be as-
sumed as a combination of cosine and linear variation, i.e., [Wang 2002; Pietrzakowski 2008; Lang and
Xuewu 2013; Ke et al. 2014; Mehralian et al. 2016a; Mehralian and Tadi Beni 2017b; 2018]

φ̃(x, θ, z)=− cos(βz)φ(x, θ)+
2zφ0

h
, (4)

where β = π/h; φ is electric potential induced by elastic deformation; φ0 is the applied uniform electric
voltage marked in Figure 1 (left).

The electric field E = {Ex , Eθ , Ez}
T are written as [Ke et al. 2014]

Ex =−
∂φ̃

∂x
= cos(βx)

∂φ

∂x
, (5a)

Eθ =−
1

R+ z
∂φ̃

∂θ
=

cos(βz)
R+ z

∂φ

∂θ
, (5b)

Ez =−
∂φ̃

∂z
=−β sin(βz) φ−

2φ0

h
. (5c)

The thermo-electro-mechanical constitutive equation for piezoelectric cylindrical shell under the plane
stress state is given by [Ke et al. 2014]


σx

σθ

σxθ

=
c11 c12 0

c12 c22 0
0 0 c66


εx

εθ

γxθ

−
0 0 e31

0 0 e32

0 0 0


Ex

Eθ
Ez

−

β1

β2

0

 T (z), (6a)


Dx

Dθ

Dz

=
 0 0 0

0 0 0
e31 e32 0


εx

εθ

γxθ

+
ε11 0 0

0 ε22 0
0 0 ε33


Ex

Eθ
Ez

+


0
0
p3

 T (z), (6b)

where σi j and Di are stress and electric displacement components, respectively.
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Integrating (6), the force, moment and generalized electric displacement resultants of the cylindrical
shell are obtained as

{Nx , Nθ , Nxθ }
T
=

∫ h/2

−h/2
{σx , σθ , σxθ }

T dz, (7a)

{Mx ,Mθ ,Mxθ }
T
=

∫ h/2

−h/2
{σx , σθ , σxθ }

T z dz, (7b)

{3x ,3θ ,3x}
T
=

∫ h/2

−h/2
−R

{
cos(βz)Dx ,

cos(βz)
R+ z

Dθ , β sin(βz)Dz

}T

dz. (7c)

The relations between the shear forces and moments can be expressed as

Qx =
∂Mx

∂x
+

1
R
∂Mxθ

∂θ
and Qθ =

∂Mxθ

∂x
+

1
R
∂Mθ

∂θ
. (8)

The prebuckling state can be considered as uniform deformation or axisymmetric deformation and
has a significant effect only for a particularly short and thick cylindrical shell [Yamaki 1984; Teng 1996;
Rotter 2014; Teng and Rotter 2014]. In the present study, since the displacement and angle of rotation are
very small, the prebuckling state is assumed as a uniform deformation. When the external loads increase
to a certain extent, another new equilibrium state will appear on the basis of the original equilibrium
state under external disturbance. The bifurcation buckling of the structure occurs at this time, and the
governing equation of linear buckling for the state of stability is established. The corresponding state
variables can be divided into

{u, v, w, φ} = {u0, v0, w0, φ0
}+ {u1, v1, w1, φ1

}, (9a)

{Ex , Eθ , Ez} =
{

E0
x , E0

θ , E0
z
}
+
{

E1
x , E1

θ , E1
z
}
, (9b)

{Dx , Dθ , Dz} =
{

D0
x , D0

θ , D0
z
}
+
{

D1
x , D1

θ , D1
z
}
, (9c)

{Nx , Nθ , Nxθ } =
{

N 0
x , N 0

θ , N 0
xθ
}
+
{

N 1
x , N 1

θ , N 1
xθ
}
, (9d)

{Mx ,Mθ ,Mxθ } =
{

M0
x ,M0

θ ,M0
xθ
}
+
{

M1
x ,M1

θ ,M1
xθ
}
, (9e)

{3x ,3θ ,3xθ } =
{
30

x ,3
0
θ ,3

0
xθ
}
+
{
31

x ,3
1
x ,3

1
xθ
}
, (9f)

{Qx , Qθ } =
{

Q0
x , Q0

θ

}
+
{

Q1
x , Q1

θ

}
, (9g)

where the superscripts “0” and “1” correspond to the prebuckling quantities and infinitesimal increments.
The corresponding resultant forces in prebuckling state can be obtained as N 0

x = N 0
e + N 0

t + N 0
m where

N 0
e =−2

∫ h/2
−h/2 e31φ0/h dz, N 0

t =
∫ h/2
−h/2 β1T (z) dz and N 0

m = F/2πR represent the internal forces caused
by external electric voltage, temperature rise and external axial compression, respectively.
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Substituting (3) and (6) into (7), internal forces and generalized electric displacements for the state of
stability can be simplified as

N 1
x = A11

∂u1

∂x
+

A12

R

(
∂v1

∂θ
+w1

)
− B11

∂2w1

∂x2 −
B12

R2

(
∂2w1

∂θ2 −
∂v1

∂θ

)
, (10a)

N 1
θ = A21

∂u1

∂x
+

A22

R

(
∂v1

∂θ
+w1

)
− B21

∂2w1

∂x2 −
B22

R2

(
∂2w1

∂θ2 −
∂v1

∂θ

)
, (10b)

N 1
xθ = A66

(
∂v1

∂x
+
∂u1

R∂θ

)
−

B66

R

(
2
∂2w1

∂x ∂θ
−
∂v1

∂x

)
, (10c)

M1
x = B11

∂u1

∂x
+

B12

R

(
∂v1

∂θ
+w1

)
− D11

∂2w1

∂x2 −
D12

R2

(
∂2w1

∂θ2 −
∂v1

∂θ

)
+ E31φ

1, (10d)

M1
θ = B21

∂u1

∂x
+

B22

R

(
∂v1

∂θ
+w1

)
− D21

∂2w1

∂x2 −
D22

R2

(
∂2w1

∂θ2 −
∂v1

∂θ

)
+ E32 φ

1, (10e)

M1
xθ = B66

(
∂v1

∂x
+
∂u1

R∂u

)
−

D66

R

(
2
∂2w1

∂x ∂θ
−
∂v1

∂x

)
, (10f)

31
x =−R X11

∂φ1

∂x
, (10g)

31
θ =−R X22

∂φ1

∂θ
, (10h)

31
z = RE31

∂2w1

∂x2 +
E32

R

(
∂2w1

∂θ2 −
∂v1

∂θ

)
+ R X33φ

1, (10i)

where

{Ai j , Bi j , Di j } =

∫ h/2

−h/2
ci j {1, z, z2

} dz (i, j = 1, 2, 6),

are components of the extensional, coupling and bending stiffness, A12 = A21, B12 = B21 and D12 = D21,

{E31, E32} =

∫ h/2

−h/2
{e31, e32}βz sin(βz) dz, X11 =

∫ h/2

−h/2
ε11 cos2(βz) dz,

X22 =

∫ h/2

−h/2
ε22

cos2(βz)
(R+ z)2

dz, X33 =

∫ h/2

−h/2
ε33β

2 sin2(βz) dz.

The governing equations for the state of stability can be obtained as [Ke et al. 2014]

∂N 1
x

∂x
+
∂N 1

xθ

R∂θ
= 0,

∂N 1
xθ

∂x
+
∂N 1

θ

R∂θ
+

Q1
θ

R
= 0, (11a)

∂Q1
x

∂x
+
∂Q1

θ

R∂θ
−

N 1
θ

R
− N 0

x
∂2w1

∂x2 = 0,
∂31

x

∂x
+
∂31

θ

∂θ
+31

z = 0. (11b)
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Two types of end conditions at x = 0 and L are considered here [Chen et al. 1996; Hussein and
Heyliger 1998; Saviz et al. 2007; Ke et al. 2014; Sun et al. 2016], i.e.,

Clamped (C): u1
= v1
= w1

=
∂w1

∂x
= φ1

= 0, (12a)

Simply supported (S):
∂u1

∂x
= v1
= w1

= M1
x = φ

1
= 0. (12b)

4. Governing equations in Hamiltonian system

To obtain the analytical solutions of (11), the Hamiltonian description is introduced here. Define q and p
as the original vector and its dual vector in the Hamiltonian system, respectively. The original vector is
assumed as a vector consisting of displacements, angle of rotation and electric potential, i.e.,

q = {q1, q2, q3, q4, q5}
T
= {u1, v1, w1, θ1

θ , φ
1
}

T, (13)

where φ1
θ is the angle of rotation,

θ1
θ =

v1

R
−

1
R
∂w1

∂θ
. (14)

The Lagrangian density function LC is introduced as [Ke et al. 2014]

LC =−
R
2

∫ h/2

−h/2

(
D1

x E1
x + D1

θ E1
θ + D1

z E1
z
)

dz

+
R
2

[
A11

(
∂u1

∂x

)2

+ A22

(
v̇1

R
+
w1

R

)2

+ 2A12
∂u1

∂x

(
v̇1

R
+
w1

R

)
+ A66

(
∂v1

∂x
+

u̇1

R

)2

− 2
B66

R

(
∂v1

∂x
+

u̇1

R

)(
2
∂ẇ1

∂x
−
∂v1

∂x

)
− 2B11

∂u1

∂x
∂2w1

∂x2

− 2B12

(
v̇1

R
+
w1

R

)
∂2w1

∂x2 + 2
B12

R
∂u1

∂x
θ̇1
θ + 2

B22

R

(
v̇1

R
+
w1

R

)
θ̇1
θ

+ D11

(
∂2w1

∂x2

)2

− 2
D12

R
∂2w1

∂x2 θ̇
1
θ +

D22

R

(
θ̇1
θ

)2
+

D66

R

(
2
∂ẇ1

∂x
−
∂v1

∂x

)2]
+

[
2B66

(
∂ u̇1

R∂x
+
∂2v1

∂x2

)
+

B22

R2

(
v̈1
+ v1
− Rθ1

θ

)
+ B12

∂ u̇1

R∂x

− D12
∂2ẇ1

R∂x2 +
D22

R2 θ̈
1
θ + 2D66

(
2
∂2θ1

θ

∂x2 −
∂2v1

R∂x2

)](
ẇ1
− v1
+ Rθ1

θ

)
, (15)

where (˙)= ∂( )/∂θ .
The corresponding dual vector p can be obtained by (15)

p=
δLC

δq̇
= {p1, p2, p3, p4, p5}

T
=
{

N 1
xθ , N 1

θ , V 1
θ ,M1

θ ,3
1
θ

}T
, (16)
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where equivalent shear forces V 1
θ can be expressed by

V 1
θ = Q1

θ +
∂M1

xθ

∂x
. (17)

From (14), we have
ẇ1
= v1
− Rθ1

θ . (18)

Substituting (18) into (10), we have

u̇1
=

(
B66

A66
− R

)
∂v1

∂x
− 2R

B66

A66

∂θ1
θ

∂x
+

R
A66

N 1
xθ , (19)

v̇1
= R

κ3

κ2

∂u1

∂x
+ R

κ5

κ2

∂2w1

∂x2 −w
1
+ R

D22

κ2
N 1
θ − R

B22

κ2
M1
θ + R

B22 E32

κ2
φ1, (20)

θ̇1
θ =−R

κ4

κ2

∂u1

∂x
+ R

κ6

κ2

∂2w1

∂x2 − R
B22

κ2
N 1
θ + R

A22

κ2
M1
θ − R

A22 E32

κ2
φ1, (21)

φ̇1
=−

1
R X22

31
θ . (22)

Substituting (10), (18), (20) and (21) into (11), we have

Ṅ 1
xθ = R

(
κ10

D22κ2

∂2u1

∂x2 +
κ11

D22κ2

∂3w1

∂x3 +
κ3

κ2

∂N 1
θ

∂x
−
κ4

κ2

∂M1
θ

∂x
+ E32

κ4

κ2

∂φ1

∂x

)
. (23)

Substituting (10), (17) and (18) into (11), we have

Ṅ 1
θ =−

κ9

R
∂2v1

∂x2 + 2κ9
∂2θ1

θ

∂x2 +

(
B66

A66
− R

)
∂N 1

xθ

∂x
− V 1

θ . (24)

Substituting (10), (17), (18), (20) and (21) into (11), we have

V̇ 1
θ =−R

[
κ11

D22κ2

∂3u1

∂x3 +
κ12

D22κ2

∂4w1

∂x4 +
κ5

κ2

∂2 N 1
θ

∂x2 +
κ6

κ2

∂2 M1
θ

∂x2 +

(
E31−

κ6

κ2
E32

)
∂2φ1

∂x2

]
+ N 1

θ + RN 0
x
∂2w1

∂x2 . (25)

Substituting (10), (17), (18) and (19) into (8), we have

Ṁ1
θ = 2κ9

∂2v1

∂x2 − 4Rκ9
∂2θ1

θ

∂x2 − 2R
B66

A66

∂N 1
xθ

∂x
+ RV 1

θ . (26)

Substituting (10) into (11), we have

3̇1
θ =−R

[
E32

κ4

κ2

∂u1

∂x
+

(
E31−

κ6

κ2
E32

)
∂2w1

∂x2 +
E32 B22

κ2
N 1
θ −

E32 A22

κ2
M1
θ − X11

∂2φ1

∂x2

+

(
X33+

A22 E2
32

κ2

)
φ1
]
, (27)
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where κ1 = A11 D22 − B2
12, κ2 = A22 D22 − B2

22, κ3 = B22 B12 − A12 D22, κ4 = A22 B12 − A12 B22,
κ5 = B12 D22 − B22 D12, κ6 = A22 D12 − B22 B12, κ7 = B12 D12 − B11 D22, κ8 = D2

12 − D11 D22, κ9 =

(A66 D66− B2
66)/A66, κ10 = κ

2
3 − κ1κ2, κ11 = κ3κ5− κ7κ2 and κ12 = κ8κ2+ κ

2
5 .

In view of (18)–(27), the Hamiltonian governing equations can be represented in a matrix form of

ψ̇ = Hψ, (28)

where ψ = {qT, pT
}

T is a total unknown vector; H is the Hamiltonian operator matrix in Appendix A.
The associated end conditions (12) are rewritten in the Hamiltonian form:

C: q1 = q2 = q3 =
∂q3

∂x
= q5 = 0, (29a)

S:
∂q1

∂x
= q2 = q3 =

κ11

D22κ2

∂q1

∂x
+

κ12

D22κ2

∂2q3

∂x2 + E31 q5+
κ5

κ2
p2+

κ6

κ2
p4 = q5 = 0. (29b)

5. Symplectic eigenvalue problem and buckling equation

According to the Hamiltonian matrix, the method of separation of variables is available to solve the
governing equation (28) [Lim and Xu 2010]. Assuming that ψ(x, θ)= η(x)eµθ , the eigenvalue equation
for (28) has the form of

Hηn = µηn, (30)

where µ= ni (n = 0,±1,±2, . . .) and η(x) are the symplectic eigenvalues and eigenfunctions, respec-
tively. It is worthy of note that the eigenfunctions ηn can be divided into two groups: zero eigenfunc-
tions η0 with µ = 0 and nonzero eigenfunctions ηn with µ 6= 0. The physical interpretations of η0
and ηn are the axisymmetric and nonaxisymmetric buckling solutions of the piezoelectric cylindrical
shell, respectively. Thus, the zero eigenfunctions and nonzero eigenfunctions are solved separately.

5.1. Zero eigenfunction. Considering zero eigenfunctions, the eigenvalue equation has the form of
Hη(1)0 = 0. In this case, characteristic equation is

λ10
+ ξ

(0)
1 λ8
+ ξ

(0)
2 λ6
+ ξ

(0)
3 λ4
+ ξ

(0)
4 λ2
+ ξ

(0)
5 = 0, (31)

in which ξ 0
i (i = 1, 2, . . . , 5) are the functions of compressive buckling load N 0

x , which are elaborated
in Appendix B.

The root of (31) are λ1,2 =±iα1, λ3,4 =±iα2, λ5,6 =±α3, λ7 = λ8 = λ9 = λ10 = 0. Thus, the zero
eigenfunctions can be represented by

Case I (µ= 0):

η
(1)
0 = c1 cos(α1x)+ c2 sin(α1x)+ c3 cos(α2x)+ c4 sin(α2x)+ c5 eα3x

+ c6 e−α3x

+ c7+ c8x + c9x2
+ c10x3, (32)

where c j = {c1
j , c2

j , . . . , c10
j }

T ( j = 1, 2, . . . , 10) are undetermined coefficient vectors. The physical
interpretations of (32) are the axisymmetric buckling solutions of the piezoelectric cylindrical shell.
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5.2. Nonzero eigenfunction. Considering nonzero eigenfunctions, the characteristic equation obtained
from the eigenvalue equation (H −µI)ηn = 0 is written as

λ10
+ ξ1λ

8
+ ξ2λ

6
+ ξ3λ

4
+ ξ4λ

2
+ ξ5 = 0, (33)

where, ξi (i = 1, 2, . . . , 5) are the functions of compressive buckling load and are elaborated in Appen-
dix C. The symplectic eigenfunctions can be expressed by

ηn =

10∑
i=1

ci eλi x , (34)

where λi (i = 1, 2, . . . , 10) are the roots of (33); c j = {c1
j , c2

j , . . . , c10
j }

T ( j = 1, 2, . . . , 10) are undeter-
mined coefficient vectors. Here, it should be pointed out that there are only ten independent coefficients.
To simplify the manipulation, c1

= {c1
1, c1

2, . . . , c1
10} are chosen as the independent coefficients. Therefore,

ck
= {ck

1, ck
2, . . . , ck

10} (k = 2, 3, . . . , 10) can be represented by c1.
According to λ and µ, the expressions of eigenfunction (34) can be grouped into five categories:

Case II (µ=±i): λ1,2 =±iα1, λ3,4 =±iα2, λ5,6 =±iα3, λ7,8 =±α4, λ9,10 = 0,

η(2)n = c1 cos(α1x)+ c2 sin(α1x)+ c3 cos(α2x)+ c4 sin(α2x)+ c5 cos(α3x)+ c6 sin(α3x)
+ c7 eα4x

+ c8 e−α4x
+ c9+ c10x, (35)

Case III (µ=±i): λ1,2 =±iα1, λ3,4 =±α2, λ5,6 =±α3, λ7,8 =±α4, λ9,10 = 0,

η(3)n = c1 cos(α1x)+c2 sin(α1x)+c3 eα2x
+c4 e−α2x

+c5 eα3x
+c6 e−α3x

+c7 eα4x
+c8 e−α4x

+c9+c10 x, (36)

Case IV (µ 6= ±i): λ1,2=±iα1, λ3,4=±iα2, λ5,6=±α3, λ7,8=±(α4+iα5), λ9,10=±(α4−iα5),

η(4)n = c1 cos(α1x)+ c2 sin(α1x)+ c3 cos(α2x)+ c4 sin(α2x)+ c5 eα3x
+ c7 eα4x cos(α5x)

+ c8 eα4x sin(α5x)+ c9 e−α4x cos(α5x)+ c10 e−α4x sin(α5x), (37)

Case V (µ 6= ±i): λ1,2 =±iα1, λ3,4 =±iα2, λ5,6 =±α3, λ7,8 =±α4, λ9,10 =±α5,

η(5)n = c1 cos(α1x)+ c2 sin(α1x)+ c3 cos(α2x)+ c4 sin(α2x)+ c5 eα3x
+ c6 e−α3x

+ c7 eα4x

+ c8 e−α4x
+ c9 eα5x

+ c10 e−α5x , (38)

Case VI (µ 6= ±i): λ1,2 =±iα1, λ3,4 =±iα2, λ5,6 =±iα3, λ7,8 =±iα4, λ9,10 =±α5,

η(6)n = c1 cos(α1x)+ c2 sin(α1x)+ c3 cos(α2x)+ c4 sin(α2x)+ c5 cos(α3x)+ c6 sin(α3x)
+ c7 cos(α4x)+ c8 sin(α4x)+ c9 eα5x

+ c10 e−α5x , (39)

where αi (i = 1, 2, . . . , 5) are determined by (33). These nonzero eigenfunctions η(i)n (i = 1, 2, . . . , 5)
represent the nonaxisymmetric buckling solutions of the piezoelectric FG-NTRC cylindrical shell.

Buckling equations and buckling mode shape functions can be determined by means of eigenfunc-
tions η and end conditions. Substituting (35)–(39) into (29), one has [ς ]10×10(c1)T = 0. For nontrivial
solutions, the determinant of the coefficient matrix of ς should vanish. Thus, the compressive buckling
loads Nmn = N 0

m are the roots of |ς | = 0. The buckling stresses is determined as σmn = Nmn/h, where
m and n are the axial wave numbers and circumference wave numbers, respectively. The smallest value
of σmn is the critical buckling stress σcr . The analytical buckling mode shape functions q1, q2 and q3 can
be obtained by substituting the eigenvalues into the corresponding eigenfunctions.
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6. Numerical examples and discussion

6.1. Validations. Since no available critical buckling load of piezoelectric FG-NTRC cylindrical shells is
reported in the open literature, a simply supported piezoelectric FG cylindrical shell made of BaTiO3/PZT-
5A or BaTiO3 /PZT-4 is considered to verify the accuracy of the proposed method. The material proper-
ties for PZT-5A, PZT-4 and BaTiO3 are taken as those in [Dong and Wang 2007; Sheng and Wang 2010].
The effective material properties P vary continuously in the thickness direction and can be expressed
as P(z) = (Po− Pi )(1/2+ z/h)k + Pi where k is the volume fraction exponent, Po and Pi denote the
property of the outer and inner surface of the shell, respectively. The nondimensional buckling load is
defined as Ncr/Nocr where

Nocr =
Eh2

R
√

3(1− ν2)
.

In the following numerical examples, a uniform temperature field is considered so that the temperature
through the shell thickness rises uniformly by a certain amount T (z)=1T . Variations of buckling loads
for m= n= 1 versus k are plotted in Figure 2 with L/R= 1, h/R= 0.01, N 0

m = 0.2Nocr , φ0= 200 V and
1T = 200 K. It can be seen that the trend of the present results are consistent with those reported by Sheng
and Wang [2010] with minor errors. The errors are mainly caused by the difference of shell theories.
The present results were obtained by Reissner’s shell theory while the reference data were obtained by
the first-order shear deformation theory. Furthermore, the relation between the buckling temperature rise
for m = n = 1 and the electric voltage are shown in Figure 3 with L/R = 1, h/R = 0.002, N 0

m = 0.5Nocr

and k = 1. The present method again produces good agreement with the treatment in reference [Sheng
and Wang 2010].
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Figure 2. Comparison of the dimensionless buckling loads for S-S piezoelectric FG
cylindrical shells with different volume fraction exponent k.
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Figure 3. Comparison of the buckling temperature rise for S-S piezoelectric FG cylin-
drical shells with different φ0.

For a further verification, the present results are compared with those obtained by high-order shear
deformation theory (HSDT). The critical buckling stresses of a clamped isotropic piezoelectric cylindrical
shell made of PZT-A or PZT-B without electric voltage and temperature rise are computed and tabulated
in Table 1. The material properties are selected as those in [Sun et al. 2016]. It is observed that the
present data obtained by Ressiner’s shell theory are in accordance with those of HSDT [Sun et al. 2016]
with a maximum error 2.86%. The errors are mainly caused by the difference of shell theories. The
critical buckling loads predicted by the HSDT are usually less than the Ressiner’s shell theory when the
shell is relatively thick.

h/R = 1/30 h/R = 1/35 h/R = 1/40 h/R = 1/45 h/R = 1/50

L/R = 1

Sun et al. (PZT-A) 1399.56 1199.57 1040.04 907.554 810.386
Present (PZT-A) 1433.91 1209.92 1043.43 913.969 808.000
Sun et al. (PZT-B) 1705.41 1447.32 1271.47 1120.34 997.118
Present (PZT-B) 1739.21 1481.68 1281.90 1110.33 991.122

L/R = 4

Sun et al. (PZT-A) 1281.11 1098.76 962.878 855.604 770.723
Present (PZT-A) 1317.75 1106.98 965.451 849.869 766.702
Sun et al. (PZT-B) 1565.56 1325.56 1159.39 1031.84 929.486
Present (PZT-B) 1607.89 1354.65 1153.65 1027.62 930.291

Table 1. Comparison of the critical buckling stresses (MPa) for a piezoelectric cylindri-
cal shell with different L/R and h/R.
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6.2. Discussion on symplectic eigenfunctions. In the existing literature, analytical analyses for buckling
of piezoelectric cylindrical shells were usually performed by the inverse or semiinverse methods under the
classical Lagrangian system. Analytical solutions were obtained by introducing some trial functions (e.g.,
trigonometric functions). Consequently, the obtained solutions highly depend on the expressions of the
predetermined functions. To overcome the above limitation of classical analytical treatments, the present
study proposed a rigorous method for buckling of piezoelectric FG-NTRC shells under the Hamiltonian
system. The obtained analytical solutions are directly expressed in terms of symplectic eigenfunctions
without any trial functions. It is interesting to find from Section 5 that there exist five cases of symplectic
eigenfunctions ((35)–(39)) for buckling of the shell, which implies the analytical solutions may have
five possible forms. To reveal the effects of key influencing parameters on the expressions of symplectic
eigenfunctions, a piezoelectric FG-NTRC cylindrical shell with R = 0.1 m, V ∗N T = 0.2, φ0 = 10000 V
and 1T = 10 K is considered in this section. The material properties of CNT, BNNT and polyvinylidene
fluoride (PVDF) are tabulated in Table 2 [Mosallaie Barzoki et al. 2012; Mohammadimehr et al. 2016].
The buckling stresses, cases of symplectic eigenfunctions and their characteristic roots for three end
conditions, various circumference wave number n, length L/R, thickness h/R, four distribution patterns
of NTs and two kinds of reinforcement nanofiller are tabulated in tables 3–7.

From Table 3, it is clear that the end conditions do not affect the case of symplectic eigenfunctions
regardless of circumference wave number n. It is also noted that the circumference wave number n has a
significant influence on the case of symplectic eigenfunctions when n is small. However, the symplectic
eigenfunctions always belong to Case V when n is large enough. Tables 4 and 5 present the buckling
stresses, cases of symplectic eigenfunctions and their characteristic roots for various L/R and h/R. It
is observed that the case of symplectic eigenfunctions have relations with the length and thickness of
the shell when n is small. To further illustrate this, the variations of buckling stresses versus L/R and
h/R with different n are plotted in figures 4 and 5. The influence of the reinforcement nanotubes (NT)
and their distribution patterns on the case of symplectic eigenfunctions are investigated in tables 6 and 7,
respectively. It is found that the piezoelectric FG-NTRC cylindrical shell with different reinforcement
NTs and distribution patterns of NTs may produce different cases of symplecitc eigenfunctions when n
is small.

Property CNT BNNT PVDF

c11 (GPa) 5824.9 2035 238.24
c22 (GPa) 7303.7 2035 23.6
c12 (GPa) 1019.37 692 3.98
c66 (GPa) 1944.5 672 6.43
e31 (C/m2) 0 0.95 −0.135
e32 (C/m2) 0 −0.45 −0.145
ε11 = ε22 = ε33 (10−9 C/Vm) 0 0.17708 11.068
β1 (106 NK−1 m−2) 25.413 2.857 17.198
β2 (106 NK−1 m−2) 41.272 2.051 1.958

Table 2. Material properties of BNNT, CNT and PVDF.
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n Eigensolution Characteristic roots σmn (MPa)

C-C

0 Case I 31.8519i 25.6692i 347.781 0 0 3513.36
1 Case II 28.4520i 22.2538i 0.135052i 347.783 0 3096.72
2 Case VI 12.3684i 5.79333i 3.23354i 0.193372i 347.787 1843.09
5 Case V 9.83078i 4.04971i 0.852275 66.0224 347.817 391.08

10 Case V 16.2447i 10.2467i 1.65614 134.083 347.925 746.39

C-S

0 Case I 30.1889i 27.0832i 347.781 0 0 3450.14
1 Case II 26.8361i 23.7118i 0.133366i 347.783 0 3047.35
2 Case VI 11.0384i 8.09206i 2.58624i 0.193946i 347.787 1836.50
5 Case V 8.01563i 4.96564i 0.852544 66.0167 347.817 339.36

10 Case V 14.5183i 11.4651i 1.65615 134.083 347.925 687.53

S-S

0 Case I 28.9171i 28.2743i 347.781 0 0 3429.71
1 Case II 25.3615i 25.1327i 0.132797i 347.783 0 3030.60
2 Case VI 9.90976i 9.42478i 2.47125i 0.194116i 347.787 1834.56
5 Case V 6.33423i 6.28319i 0.852649 66.0145 347.817 319.43

10 Case V 13.2460i 12.5664i 1.65615 134.083 347.925 667.97

Table 3. Buckling stresses, cases of symplectic eigenfunctions and characteristic roots
for a piezoelectric FG-NTRC cylindrical shell reinforced by CNTs with different end
conditions (FG-O, m = 1, L/R = 1, h/R = 0.01).

From tables 4–7, it is worth to note that the influences of geometrical parameters, reinforcement NTs
and their distribution patterns on the case of symplectic eigenfunctions only occur under the conditions of
a small circumference wave number n. In other words, analytical solutions for buckling of the piezoelec-
tric FG-NTRC cylindrical shell have a unique expression consisting of Case V symplectic eigenfunctions
when n is large enough. The observations explain the reasons for the use of single-formed trial functions
in the classical analytical method. In the buckling analysis of cylindrical shells, the circumference wave
number n for the critical buckling stress usually decreases with the increase of L/R [Yamaki 1984]. The
length of shells in most of theoretical studies usually selected less than 10 (e.g., [Mirzavand and Eslami
2007; Mirzavand and Eslami 2011; Salehi-Khojin and Jalili 2008]) so that n for the critical buckling
stress is larger than 5. Thus, the analytical solutions only have a unique form (a series of Case V
symplectic eigenfunctions) and the trial functions could produce accurate results. However, the specific
trial functions will lead to errors when the circumference wave number n for the critical buckling stress
is small (e.g., a very long shell).

At last, to get a better understanding of the buckling of piezoelectric FG-NTRC cylindrical shells,
the corresponding buckling modes for C-C end condition in Table 3 are presented in Figure 6. The
superscript and subscript of η are the case of symplectic eigenfunctions and the circumference wave
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number n. The color of the buckling modes is obtained by the “jet” type of the “colormap” function in
Matlab. Different colors represent the displacement along the z-axes (i.e., w) of the cylindrical shell.
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n Eigensolution Characteristic roots σmn (MPa)

L/R = 0.2

0 Case I 47.6496i 17.1589i 347.781 0 0 5485.46
1 Case II 37.9546i 15.2396i 0.165142i 347.783 0 3910.95
2 Case V 34.4650i 0.134607i 0.501912 19.2416 347.787 3215.40
3 Case V 32.2400i 0.400829i 0.561991 37.0153 347.794 2670.11

L/R = 0.5

0 Case I 35.1184i 23.2816i 347.781 0 0 3738.83
1 Case II 31.5626i 19.6989i 0.141165i 347.783 0 3272.59
2 Case V 16.5167i 0.188339i 2.18946 6.57829 347.787 1904.45
3 Case V 12.9775i 0.894441i 0.655560 35.3272 347.794 1014.58

L/R = 0.8

0 Case I 32.6248i 25.0611i 347.781 0 0 3555.36
1 Case II 29.1444i 21.6580i 0.136094i 347.783 0 3127.07
2 Case IV 12.8346i 0.193061i 347.787 0.752660± 4.18510i 1846.69
3 Case V 8.44500i 1.31099i 0.693229 35.0258 347.794 848.51

L/R = 1

0 Case I 31.8519i 25.6692i 347.781 0 0 3513.36
1 Case II 28.4520i 22.2538i 0.135052i 347.783 0 3096.72
2 Case VI 12.3684i 5.79333i 3.23354i 0.193372i 347.787 1843.09
3 Case V 7.25032i 1.50749i 0.703436 34.9646 347.794 817.80

Table 4. Buckling stresses, cases of symplectic eigenfunctions and characteristic roots
for a C-C piezoelectric FG-NTRC cylindrical shell reinforced by CNTs with different
L/R (FG-O, m = 1, h/R = 0.01).

η
(1)
0 (n = 0) η

(2)
1 (n = 1) η

(6)
2 (n = 2) η

(5)
5 (n = 5) η

(5)
10 (n = 10)

Figure 6. Buckling mode shapes for C-C piezoelectric FG-NTRC cylindrical shells with
different n (m = 1, L/R = 1, h/R = 0.01).

6.3. Effects of the distribution patterns of NTs, electric voltage and temperature rise. To study the
effects of the distribution patterns of NTs, electric voltage and temperature rise on the critical buckling
stresses, a C-C piezoelectric NTRC cylindrical shell with R = 0.1 m, L/R = 1 and h/R = 0.01 is
considered here. Variations of critical buckling stresses versus the volume fraction VN T for different
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reinforcement NTs and distribution patterns of NTs are plotted in Figure 7 with φ0 = 10000 V and
1T = 10 K. It is apparent that the critical buckling stress monotonically increases with the increasing
V ∗N T regardless of the reinforcement NTs and their distribution patterns; the critical buckling stresses
for the shell reinforced by CNTs are always larger than those reinforced by BNNTs. In addition, it
is also worth to note that the FG distributions produce larger critical buckling stresses than the UD
when V ∗N T is larger than a certain value. The observation implies the FG distributions of reinforcement
NTs could improve the antibuckling performance of the piezoelectric FG-NTRC cylindrical shell. The
corresponding critical buckling mode shapes for V ∗N T = 0.4 in Figure 7 are presented in Figure 8. It is
clear that the critical buckling mode shapes for different reinforcement NTs and distribution patterns of
NTs may have different n.

The critical buckling stresses for different applied electric voltages and temperature rises are tabulated
in tables 8 and 9, respectively. The computation parameters are taken as R= 0.1 m, L/R= 1, h/R= 0.01,
N ∗N T = 0.2, 1T = 10 K for Table 8 and φ0 = 10000 V for Table 9. It is observed that, for a specific

n Eigensolution Characteristic roots σmn (MPa)

h/R = 0.005

0 Case I 47.1921i 34.6504i 695.562 0 0 1707.06
1 Case II 41.3313i 35.1534i 0.0853643i 695.563 0 1539.29
2 Case VI 36.5806i 24.0368i 0.483566i 0.105374i 695.565 1270.04
3 Case V 14.5791i 0.436957i 3.41190 12.3680 695.569 735.64

h/R = 0.01

0 Case I 31.8519i 25.6692i 347.781 0 0 3513.36
1 Case II 28.4520i 22.2538i 0.135052i 347.783 0 3096.72
2 Case VI 12.3684i 5.79333i 3.23354i 0.193372i 347.787 1843.09
3 Case V 7.25032i 1.50749i 0.703436 34.9646 347.794 817.80

h/R = 0.02

0 Case I 23.4341i 17.4449i 173.891 0 0 7363.67
1 Case II 18.1864i 12.1161i 0.258297i 173.893 0 5633.51
2 Case V 6.57791i 0.506629i 0.600103 22.4029 173.902 2135.58
3 Case V 7.07369i 1.83233i 0.531687 39.0081 173.916 1179.39

h/R = 0.05

0 Case I 16.1556i 10.1217i 69.5562 0 0 19912.16
1 Case III 7.76176i 0.451008 8.29977 69.5634 0 9295.67
2 Case V 6.41198i 0.751327i 0.355160 26.1836 69.5850 4087.02
3 Case V 7.03125i 1.90352i 0.501247 40.0669 69.6209 3708.66

Table 5. Buckling stresses, cases of symplectic eigenfunctions and characteristic roots
for a C-C piezoelectric FG-NTRC cylindrical shell reinforced by CNTs with different
h/R (FG-O, m = 1, L/R = 1).
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n Eigensolution Characteristic roots σmn (MPa)

CNT

0 Case I 30.1287i 24.0535i 283.790 0 0 3996.50
1 Case II 26.4194i 20.4406i 0.147932i 283.791 0 3461.30
2 Case V 8.56357i 0.527150i 2.01878 7.46659 283.797 1882.29
3 Case V 8.25457i 2.48970i 0.548627 36.2180 283.805 898.03

BNNT

0 Case I 23.0869i 17.0869i 284.368 0 0 2246.17
1 Case II 21.2855i 16.0233i 0.0974117i 284.370 0 1930.55
2 Case VI 16.8124i 10.5598i 0.533340i 0.211343i 284.375 1496.09
3 Case V 7.78340i 1.46291i 0.812484 12.9785 284.384 839.19

Table 6. Buckling stresses, cases of symplectic eigenfunctions and characteristic roots
for a C-C piezoelectric FG-NTRC cylindrical shell with different reinforcement nan-
otubes (FG-X, m = 1, L/R = 1, h/R = 0.01).

reinforcement NT and distribution pattern, the critical buckling stress show a decreasing trend with the
increase of electric voltage or temperature rise. Furthermore, it is also noted from the tabular data that the
piezoelectric FG-NTRC cylindrical shell is insensitive to the electric voltage. For example, a 50× 104 V
electric voltage only leads to a 2.29% decrease of the critical buckling stress for the shell reinforced by
CNT with FG-X distribution. In contrast, the piezoelectric NTRC cylindrical shell is very sensitive to
the temperature rise. The critical buckling stresses significantly decreased by the temperature rise.
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Figure 7. Critical buckling stresses (MPa) for C-C piezoelectric NTRC cylindrical
shells with different V ∗N T .
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n Eigensolution Characteristic roots σmn (MPa)

UD

0 Case I 31.1433i 24.9141i 314.160 0 0 3718.79
1 Case II 27.4362i 21.4132i 0.142458i 314.162 0 3239.61
2 Case IV 9.43700i 0.334121i 314.167 3.37294± 2.77948i 1823.08
3 Case V 7.86433i 2.20178i 0.577299 36.1523 314.175 837.58

FG-X

0 Case I 30.1287i 24.0535i 283.790 0 0 3996.50
1 Case II 26.4194i 20.4406i 0.147932i 283.791 0 3461.30
2 Case V 8.56357i 0.527150i 2.01878 7.46659 283.797 1882.29
3 Case V 8.25457i 2.48970i 0.548627 36.2180 283.805 898.30

FG-O

0 Case I 31.8519i 25.6692i 347.781 0 0 3513.36
1 Case II 28.4520i 22.2538i 0.135052i 347.783 0 3096.72
2 Case VI 12.3684i 5.79333i 3.23354i 0.193372i 347.787 1843.09
3 Case V 7.25032i 1.50749i 0.703436 34.9646 347.794 817.80

FG-V

0 Case I 31.0240i 24.8178i 314.160 0 0 3780.42
1 Case II 27.3637i 21.3602i 0.142141i 314.162 0 3300.07
2 Case IV 9.36739i 0.232799i 314.167 3.17671± 3.49833i 1876.80
3 Case V 7.36768i 1.73605i 0.639055 35.7441 314.175 856.94

Table 7. Buckling stresses, cases of symplectic eigenfunctions and characteristic roots
for a C-C piezoelectric FG-NTRC cylindrical shell reinforced by CNTs with different
distribution patterns (m = 1, L/R = 1, h/R = 0.01).

7. Conclusion

The electro-thermo-mechanical buckling of a piezoelectric FG-NTRC cylindrical shell is investigated
under the framework of Hamiltonian system. Exact solutions for buckling of piezoelectric FG-NTRC
cylindrical shells are obtained and expressed in a series of symplectic eigenfunctions. Highly accurate
buckling loads and analytical buckling shape functions are achieved simultaneously. The major conclu-
sions are summarized as follows:

(1) Exact solutions for buckling of piezoelectric FG-NTRC cylindrical shells have five possible forms,
which highly depend on the geometrical parameters (L/R and h/R), circumference wave numbers,
reinforcement nanotubes and their distribution patterns.

(2) The influences of geometrical parameters (L/R and h/R), reinforcement NTs and their distribu-
tion patterns on expressions of symplectic eigenfunctions only occur when the circumference wave
number n is small. Otherwise, the symplectic eigenfunctions only have a unique form (Case V).
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Distribution φ0 (104 V)

−50 −25 0 25 50

CNT

UD 488.913 482.232 475.550 468.868 462.187
FG-X 595.554 588.879 582.204 575.529 568.854
FG-O 389.925 383.250 376.575 369.900 363.225
FG-V 473.930 467.255 460.580 453.905 447.230

BNNT

UD 383.596 378.388 373.181 367.974 362.766
FG-X 463.227 458.158 453.088 448.018 442.949
FG-O 311.640 306.571 301.501 296.431 291.362
FG-V 350.880 345.811 340.741 335.671 330.602

Table 8. Critical buckling stresses (MPa) for a C-C piezoelectric NTRC cylindrical shell
with different electric voltage φ0.

CNT, UD (n = 5) CNT, FG-X (n = 5) CNT, FG-O (n = 6) CNT, FG-V (n = 6)

BNNT, UD (n = 6) BNNT, FG-X (n = 5) BNNT, FG-O (n = 7) BNNT, FG-V (n = 6)

Figure 8. Critical buckling mode shapes for C-C piezoelectric NTRC cylindrical shells
with different reinforcement NTs and distribution patterns (L/R = 1, h/R = 0.01).

(3) The FG distribution of NTs could increase the carrying capacity of piezoelectric FG-NTRC cylin-
drical shells compared to uniform piezoelectric NTRC cylindrical shells. The FG-X shell produces
the highest critical buckling stress.

(4) The applied electric voltages and temperature rises could affect the carrying capacity of piezoelectric
FG-NTRC cylindrical shells. The critical buckling stresses are sensitive to the temperature rise but
insensitive to the electric voltage.
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Distribution 1T

0 5 10 15 20

CNT

UD 663.957 569.620 475.283 380.946 286.609
FG-X 770.611 676.274 581.937 487.600 393.263
FG-O 564.982 470.645 376.308 281.971 187.634
FG-V 648.987 554.650 460.313 365.976 271.639

BNNT

UD 516.471 444.722 372.973 301.224 229.475
FG-X 596.383 524.634 452.885 381.136 309.387
FG-O 444.796 373.047 301.298 229.549 157.800
FG-V 484.036 412.287 340.538 268.789 197.040

Table 9. Critical buckling stresses (MPa) for a C-C piezoelectric NTRC cylindrical shell
with different temperature rise 1T .
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x X11+ D11 n2 X22+ D11 X33
)]

+ A11 R
[
−4B2

66 n2 R X11+ n2(2B22 D11− 2B12 D12− B2
12 R+ A22 D11 R

)
X11

− 4B12 B66 R(−1+ n2)X11+ 2B66 R2(E2
31− N 0

x X11+ D11n2 X22+ D11 X33
)

+ A66 R
(
2D12 n2 X11+ 2B12 R X11

)
+ A66 R3(E2

31− N 0
x X11+ D11 n2 X22+ D11 X33

)]}
, (C.1)

ξ2 =
1(

B2
11− A11 D11

)
R4(D66+ 2B66 R+ A66 R2)X11

×
{
−2B2

12 n2(−1+ n2)R X11
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− 2A12 B11n2 R
[
E31 E32 R2

+ (−1+ n2)(D22+ B22 R)X11

− D66 R2 X22+ (D12+ 2D66)n2 R2 X22
]

+ B2
11 n2 R

[
E2

32+ n2(D22+ 2B22 R+ A22 R2)X22
]
+ A2

12 D66 R2 X11

+ A2
12n2 R2[2(D12+ 2D66)(−1+ n2)X11+ R2(E2

31− N 0
x X11+ D11n2 X22

)]
+ A66 2A12 E2

31n2 R4

+ A66
(
D2

12n4
− D11 D22 n4

− 2B22 D11n4 R− 2A12 D12 n2 R2
− A22 D11n4 R2

+ 4A12 D12 n4 R2
+ A2

12 R2
− 2A12 n2 N 0

x R4)X11

+ 2A12 A66 D11n4 R4 X22− 2A66 D12 D66 n4 X11

+ A66 D66 n2 R2[E2
31−

(
−4A12+ 8A12 n2

+ N 0
x
)
X11+ n2(D11+ 4B11 R)X22

]
+ 2A66 B11n2 R

[
D22 n2 X11+ B22(1+ n2)R X11

+ R2(E31 E32+ A22 X11+ D12 n2 X22− A12 R2 X22
)]

− A11 D22 n2 R2[(E2
31+ A66 n2 X11− N 0

x X11+ D11n2 X22
)
+ D66 n2 X11

]
+ A11 D2

12 n4 R2 X22+ 2A11 D66 E31 E32 n2 R2

− A11 D66 R(−1+ 2n2)[−A22 R+ 2n2(B22+ A22 R)]X11

− A11 D66 n2 R4 X22
(
4A66 n2

− N 0
x
)

− 2A11 D12 n2 R[−E31 E32 R+ (−1+ n2)(B22+ A22 R)X11

+ n2 R
(
−D66+ A66 R2)X22]

− A11 D11 n4 R3(2B22+ A22 R)X22− A11 D11 n2 R2 E2
32

− 2A11 R3 B22 n2[E2
31+

(
A66− N 0

x
)
X11

]
− A11 R4[A22

(
A66 X11+ E2

31n2
− N 0

x n2 X11
)
+ A66 n2(2E31 E32− N 0

x R2 X22
)]

+ R2[B2
11 D22− A66 D11 D66+ A11

(
D2

12− D11 D22+ 2D12 D66
)]

n2 X33

− 2
[
−B2

11 B22+ A11 B22 D11+ (A12+ A66)B11(D12+ 2D66)
]

n2 R3 X33

+ 2A12 B11 D66 R3 X33+
[
A2

12 D11+ 2A12 A66 D11+ A22
(
B2

11− A11 D11
)

− 2A11 A66(D12+ 2D66)
]
n2 R4 X33

+ A11 D66 N 0
x R4 X33+ R2(2A12 A66 B11 R3

+ A11 A66 N 0
x R4)X33− 2B2

66 D12 n4 X11

+ B2
66 n2[E2

31 R2
+ 4A12(1− 2n2)R2 X11− N 0

x R2 X11

+ R2(D11+ 4B11 R+ 4A11 R2)(n2 X22+ X33
)]

+ B2
12 n2[D66 n2 X11+ 4B66(1− 2n2)R X11+ E2

31 R2
+ 4A66 R2 X11

− 2A12(−1+ n2)R2 X11− N 0
x R2 X11

+ R2(D11− 2B11 R+ A11 R2)(n2 X22+ X33
)]

− 2B12 B2
66 n2(−1+ 4n2)R X11− 2B12 B66 D12 n4 X11
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+ 2B12 B66 n2 R2[(A12− 4A12 n2
− N 0

x
)
X11+ E2

31

+
(
D11n2

− B11n2 R− 2A11 R2
+ 2A11n2 R2)X22

]
− 2B12 B66 R2[

−D11n2
+ 2A11 R2

+ n2 R(B11− 2A11 R)
]
X33

− 2A11 B12 n2 R
[
−E31 E32 R2

− (−1+ n2)(D22+ B22 R)X11

+
(
D66− D12 n2

+ 2D66 n2)R2 X22
]

− 2A66 B12 n2 R
[(

D66− 2D12 n2
+ 2D66 n2)X11

+ R2(
−E2

31+ N 0
x X11− D11n2 X22+ A11 R2 X22

)]
− 2B12 R3[

−A66 D11n2
+ A11

(
D66− D12 n2

− 2D66 n2
+ A66 R2)]X33

+ 2A12 B12 n2 R
[(
−D12− D66+ D12 n2

+ 2D66 n2)X11

+ R2(E2
31+ 2A66 X11− N 0

x X11+ D11n2 X22+ D11 X33
)]

+ 2B11 B12 B22(−1+ n2)n2 R X11

− 2B11 B12 n2 R2[E31 E32+ A22(1− n2)X11+
(
D12+ B66+ A12 R2)(n2 X22+ X33

)]
+ 2B66

(
A2

12− A11 A22
)
R3 X11

+ 2B66 n4[A11 R(D22+ 2B22 R)X11+ B11
(
D22+ 3B22 R+ 2A22 R2)X11

+ A12 D11 R3 X22− B11 R2(D12+ 2A12 R2)X22
]

+ 4A12 B11 B66 R4 X33+ 2A11 B66 N 0
x R5 X33− 4A2

12 B66 n2 R3 X11

+ 2A11 B66 n2 R3(2A22 X11+ N 0
x R2 X22

)
− 2A12 B66 n2 R

[
D12 X11− R2(E2

31− N 0
x X11+ D11 X33

)]
− 2B11 B66 n2 R[B22 X11+ E31 E32 R+ A22 R X11

+ D12 R X33+ 2A12 R3(−X22+ X33)]
}
, (C.2)

ξ3 =
1(

B2
11− A11 D11

)
R6(D66+ 2B66 R+ A66 R2)X11

×
{
2B2

66 E31 E32 n4 R2
− B2

66 n2
[D22 n4

+ (1− 2n)2 R(A22 R− 2B22 n2
− 2A22 n2 R)]X11

− B2
66 n4 R2[2D12 n2

−
(
4A12− 8A12 n2

− N 0
x
)
R2]X22− 2A2

12 B66 n2(1− 2n2)R5 X22

− 2A11 B66 n2 R3[E2
32 n2
+ D22 n4 X22+ 2B22 n4 R X22+ A22(−1+ 2n2)R2 X22

]
− 2B11 B66 E2

32 n4 R2
− 2B11 B66 n4 R2[D22 n2

+ B22(−1+ 3n2)R+ A22(−1+ 2n2)R2]X22

+ 2A12 B66 n2 R
[
E31 E32 R2

+ (−1+ n2)
(
−B22 R+ D22 n2

+ 2B22 n2 R
)
X11

+ n2 R2(D12+ N 0
x R2)X22

]
− A12(−1+ n2)n2 R2[2E32 R(−B11 E32+ A12 E31 R)+ A12 D22(−1+ n2)X11

]
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− A2
12 D66 n2 R4 X22− A12 n4 R3

[2A12(D12+ 2D66)(−1+ n2)R

− A12 N 0
x R3
− 2B11(−1+ n2)(D22+ B22 R)]X22

− A11n2 R2[
−D66 E2

32 n2
− A22 D22(1− n2)X11+ 2A22 E31 E32(1− n2)R2

+ E2
32 N 0

x R2
− A22 D22 n4 X11+ B2

22(1− n2)2 X11

+ n2 R2(2A22 D12− 2A22 D12 n2
+ D22 N 0

x + A22 N 0
x R2)X22

]
+ A11 D66 n2 R2

[D22 n4
+ (−1+ 2n2)R(−A22 R+ 2B22 n2

+ 2A22 n2 R)]X22

− 2A11 B22 n2 R3[E31 E32(1− n2)+ n2(D12− D12 n2
+ N 0

x R2)X22
]

+ B2
66 n2 R2[2D12 n2

+ A12(−4+ 8n2)R2
+ N 0

x R2]X33− 2B11 B66 D22 n4 R2 X33

+ 2B66[B11 B22+ A12 D12− (3B11 B22+ A11 D22)n2
] n2 R3 X33

+ 2B66[A22 B11− 2(A22 B11+ A11 B22)n2
] n2 R4 X33

+ 2B66
[(

A2
12− A11 A22

)
(−1+ 2n2)+ A12 n2 N 0

x
]
R5 X33− A2

12 D66 R4 X33

− A2
12 D66 R4 X33+ A12

[
−2A12(D12+ 2D66)(−1+ n2)R+ A12 N 0

x R3

+ 2B11(−1+ n2)(D22+ B22 R)
]

n2 R3 X33

+ A11 D22
(
D66 n4

− n2 N 0
x R2)R2 X33

+ 2A11 B22
[
−D12− D66+ (D12+ 2D66) n2

− N 0
x R2] n2 R3 X33

+ A11 A22
[
D66(1− 2n2)2+ 2D12(−1+ n2)n2

− N 0
x n2 R2]R4 X33

+ 2B3
12 n2(−1+ n2)R3(n2 X22+ X33)

+ B2
12 n2 R2[

−
(
D66 n2

+ 4B66 R− 8B66 n2 R+ 2A12 R2

− 2A12 n2 R2
− N 0

x R2)(n2 X22+ X33)− A22(−1+ n2)2 X11
]

+ 2B12 B2
66 n2(−1+ 4n2)R3(n2 X22+ X33)

+ 2B12 B66 n2 R
[
−B12 n2(−1+ n2)X11+ A22(−1+ 3n2

− 2n4)R X11+ E31 E32 n2 R

+
(
D12 n2 R− A12 R3

+ 4A12 n2 R3
+ N 0

x R3)(n2 X22+ X33)
]

+ 2A11 B12 n2 R2[E31 E32(1− n2)R+ B22(1− n2)2 X11

+ R
(
D12+ D66− (D12+ 2D66) n2

+ N 0
x R2)(n2 X22+ X33)

]
+ 2A11 B12 n2 R3(1− n2)[E2

32+ (D22+ B22 R)(n2 X22+ X33)]

+ 2B11 B12 n2 R3(1− n2)[(B22+ A22 R)(n2 X22+ X33)]

+ A66 D22 n4
[D66 n2 X11− 2B12(−1+ n2)R X11]

+ A66 D22 n4 R2
[−2A12(−1+ n2)X11+ E2

31− N 0
x X11

+ (D11+ 2B11 R+ A11 R2)(n2 X22+ X33)]

− 2A66 D12 n4 R
[
E31 E32 R+ (1− n2)(B22+ A22 R)X11

+ D66 n2 R− A12 R3 X22+ 2n2 R2(B12+ A12 R)X22
]
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− 2A66 D12 n2 R2
[D66 n2

− A12 R2
+ 2n2 R(B12+ A12 R)]X33− A66 D2

12 n4 R2(n2 X22+ X33)

+ A66 D66 n2 R
[
−2E31 E32 n2 R+ 2B22 n2(−1+ 2n2)X11+ A22(1− 2n2)2 R X11

− R2(−2B12+ 8B12 n2
− 4A12 R+ 8A12 n2 R+ N 0

x R)(n2 X22+ X33)
]

+ A66 D11n4 R2
[E2

32+ R(2B22+ A22 R)(n2 X22+ X33)]

+ A66 n2 R3[
−4B2

12 n2 R X22+ 2B11n2(E2
32+ A22 R2 X22

)]
+ A66 n2 R4[2A12 E31 E32+ A22 E2

31n2
− 4A12 E31 E32 n2

+ A11 E2
32 n2
− A22 n2 N 0

x X11

+
(
−A2

12+ A11 A12+ 2A12 n2 N 0
x
)
R2 X22

]
+ 2A66 B12 n2 R3[

−A22 X11+ n2(
−2E31 E32+ A22 X11− 2A12 R2 X22+ N 0

x R2 X22
)]

+ A66 R4[
−4B2

12 n2
+ 2n2(A22 B11− 2A12 B12+ B12 N 0

x
)
R

+
(
−A2

12+ A11 A12+ 2A12 n2 N 0
x
)
R2]X33

+ 2A66 B22 n2 R3[A12 X11+ E2
31n2
−
(

A12+ N 0
x
)
n2 X11

+ n2 R(B11+ B11n2
+ A11 R)X22+ R(B11+ B11n2

+ A11 R)X33
]}
, (C.3)

ξ4 =
1(

B2
11− A11 D11

)
R6(D66+ 2B66 R+ A66 R2)X11

×
{

B2
66 E2

32 n6
+ B2

66 n2(n2 X22+ X33)[D22 n4
+ (−1+ 2n2)(−A22 R2

+ 2B22 n2 R+ 2A22 n2 R2)]

− 2B66(−1+ n2)n2 R[A12 E2
32 n2
− B12(−A22 R+ B22 n2

+ 2A22 n2 R)(n2 X22+ X33)

+ A12(−B22 R+ D22 n2
+ 2B22 n2 R)(n2 X22+ X33)]

+ A66 n4[
−2A12 E2

32 R2
+ 2A12 E2

32 n2 R2
+ E2

32 N 0
x R2
+ B2

22 X11− 2B2
22 n2 X11+ B2

22 n4 X11

− A22(−1+ n2)(2E31 E32 R2
− D22+ D22 n2 X11)

+ D22 n2(
−2A12+ 2A12 n2

+ N 0
x
)
R2 X22

+ A22 n2 R2(2D12− 2D12 n2
+ N 0

x R2)X22

+ 2B12(−1+ n2)R
(
E2

32+ D22 n2 X22− A22 R2 X22
)]

+ 2A66 B12 n2 R(−1+ n2)(D12 n2
− A22 R2)X33

+ A66 n4 R2[D22
(
−2A12+ 2A12 n2

+ N 0
x
)
+ A22

(
2D12− 2D12 n2

+ N 0
x R2)]X33

− 2A66 B22 E31 E32 n4(−1+ n2)R

− 2A66 B22 n2 R
[
A12 R2

+ D12(−1+ n2)n2
−
(

A12+ N 0
x
)
n2 R2](n2 X22+ X33)

− A66 D66 n2[D22 n4
+ (−1+ 2n2)R(−A22 R+ 2B22 n2

+ 2A22 n2 R)
]
(n2 X22+ X33)

− A66 D66 E2
32 n6

+ (−1+ n2)2 n2 R2[A22 B2
12(n

2 X22+ X33)− 2A12 B12 B22(n2 X22+ X33)



388 SHENGBO ZHU, YIWEN NI, JIABIN SUN, ZHENZHEN TONG, ZHENHUAN ZHOU AND XINSHENG XU

+ A2
12
(
E2

32+ D22 n2 X22+ D22 X33
)
+ A11 B2

22(n
2 X22+ X33)

− A11 A22
(
E2

32+ D22 n2 X22+ D22 X33
)]}
, (C.4)

ξ5 =
1(

B2
11− A11 D11

)
R6(D66+ 2B66 R+ A66 R2)X11

×{A66 n4(1− n2)2[−B2
22(n

2 X22+ X33)+ A22 E2
32+ A22 D22(n2 X22+ X33)]}. (C.5)
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THERMOELASTIC FRACTURE INITIATION:
THE ROLE OF RELAXATION AND CONVECTION

LOUIS M. BROCK

An isotropic, thermoelastic solid is at rest at uniform (absolute) temperature, and contains a semi-infinite,
closed plane crack. Thermal relaxation governs, and crack surfaces are subject to convection. In-
plane and compressive point forces, applied to each face of the crack initiate transient 3D extension.
Wiener–Hopf equations are formulated in integral transform space from expressions whose inverses
are dynamically similar and valid for short times. The solutions, upon inversion, are subjected to the
dynamic energy release rate criteria, with kinetic energy included. A differential equation for crack edge
contour is produced, and demonstrates that a certain type of point-force time variation can indeed cause
a constant extension rate. Calculations for the pure compression case show that variation in crack growth
rate with convection is not necessarily monotonic. A finite measure of crack edge thermal response for
pure compression is provided by the temperature norm. Calculations indicate even greater sensitivity to
thermal convection.

Introduction

Crack edge location in a transient 3D study is defined by a (possibly non-rectilinear) contour in the
crack plane. As an illustration, the semi-infinite, planar crack in an unbounded thermoelastic solid is
treated in [Brock 2017]. Fracture is driven by mixed-mode, point force loading on the crack faces, and
crack extension rate is constant and well below Rayleigh and body-wave speed. Fracture initiation is the
focus, and is governed by dynamic energy release rate [Freund 1972; 1990] with kinetic energy included
[Gdoutos 1993]. Therefore:

• Thermal relaxation [Ignaczak and Ostoja-Starzewski 2010] can be important.

• Asymptotic forms of the governing equations for thermal relaxation are viable.

• Only knowledge of solution behavior near the crack edge is required.

The possibility that discontinuities in temperature and heat flux, as well as in displacement, occur is
considered. Therefore analysis is based on the related, but unmixed, boundary-value problem of such
discontinuities prescribed on a plane in a crack-free solid. The analytical solution in transform space
is obtained and asymptotic forms whose inverses are valid for short times used to address the fracture
problem. The displacement discontinuity corresponding to crack extension direction can be resolved
in crack-opening, (in-plane) sliding and (in-plane) tearing modes. The fracture problem can thus be
reduced to four equations of the Wiener–Hopf type [Morse and Feshbach 1953] and two of them are
coupled. Solutions to the equations are then inverted, and subjected to the dynamic energy release rate.
A nonlinear, first-order differential equation for the (dimensionless) speed parameter that defines the crack

Keywords: thermoelastic, relaxation, transient, fracture, discontinuity, convection.
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edge contour results. Study shows that, in particular, a certain point-force loading history produces a
parameter that can vary with direction, but is time-independent.

It is noted that crack-surface thermal convection is not addressed in [Brock 2017]. Moreover the
restriction that crack extension rates be “well below” critical values simplified analysis of the Wiener–
Hopf equations, but is not required for their solution. This paper therefore also addresses the situation
treated in [Brock 2017], but crack extension rate is only required to be constant and subcritical, and
thermal convection is possible. Two sets of assumptions are now listed explicitly. If loading is only
in-plane:

• Crack surface friction can be neglected.

• Across the crack plane, temperature is continuous and heat flux is allowed.

With or without in-plane loading, if compression loading is present:

• Thermal convection, subject to thermal relaxation, occurs on the crack faces.

• A temperature discontinuity between crack faces can exist.

• Net heat flux across the crack itself cannot occur.

It will be seen that the latter assumption set gives, in contrast to [Brock 2017], three uncoupled sets
of equations in integral transform space. A single equation for the displacement discontinuity due to
in-plane tearing comprises one set. Two coupled equations for crack opening involve displacement
discontinuity and discontinuity in temperature of the two crack faces, and comprise the second set. The
third set consists of two coupled equations for in-plane sliding that involve displacement discontinuity
and the average of the two crack face temperatures. Equations are of the Wiener–Hopf type.

Problem statement

An unbounded, thermoelastic solid is at rest for time t ≤ 0 and uniform (absolute) temperature T0 prevails.
In terms of Cartesian basis x0 = x0(x0

k ), k = (1, 2, 3) the closed, plane crack occupies region AC

(x0
3 = 0, x0

1 = 0), with rectilinear boundary C (x0
1 , x0

3)= 0. Shear and compressive point forces appear
for t > 0 on both crack faces (x0

1 = 0−, x0
2 = 0, x0

3 = 0±). Brittle fracture is instantaneous, and the crack
extends outward from x0 = 0. The crack now occupies region AC + δA. Boundary C is assumed to now
include a concave bulge centered on the point-force sites:√

(x0
1)

2+ (x0
2)

2 = l(ψ, t), l(ψ, t)= V (ψ) t, (1a)

0< V < V ∗, ψ = tan−1 x0
2

x0
1

(|ψ |< π/2). (1b)

Equation (1) implies a dynamically similar fracture process, and (speed parameter) V is subcritical, i.e.,
lies below V ∗, the minimum of Raleigh and body wave speeds.

Displacement u(uk), traction T (σik) and 2, the change in temperature from T0, are field variables.
For the solid with thermal relaxation governed by the Lord–Shulman (LS) model [Lord and Shulman
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1967; Ignaczak and Ostoja-Starzewski 2010]:

∇ · T − ρD2
0 u = 0, (2a)(

kT∇
2
− ρCE D0 P0

)
2+µαDT0 D0 P0(∇ · u)= 0, (2b)

1
µ

T =
[ 2ν

1−2ν
(∇ · u)1−αD2

]
+∇u+ u∇ = 0, (2c)

P0 = 1+ t0 D0. (2d)

In (2) 2 and components (uk, σik) are functions of (x0, t), and (∇,∇2, 1) respectively are gradient and
Laplacian operators and identity tensor. Symbol (D0 f, ḟ ) signifies time differentiation in basis x0, and
t0 is thermal relaxation time. It is noted that (2) describes the classical (Fourier model) solid [Boley and
Weiner 1960] when P0= 1. Constants (µ, ρ, ν) represent shear modulus, mass density and Poisson’s ratio,
and (kT,CE , αD) are thermal conductivity, specific heat at constant strain, and coefficient of (volumetric)
thermal expansion. Homogeneity of (2a) and (2b) reflects the absence of thermal and mechanical body
forces. In particular, the solid contains no internal heat source or sink.

For convenience temporal behavior is described in terms of variable s = VRt , operator D0 = VR D and
parameters:

P0 = 1+ h0 D, (3a)

VR =

√
µ

ρ
, VD = CDVR, CD =

√
2

1− ν
1− 2ν

, ε =
µT0

ρCE
α2

D, (3b)

h =
kT

CE
√
µρ
, h0 = VR t0. (3c)

In (3) ε is the dimensionless thermal coupling constant, and (h, h0) are thermoelastic characteristic
lengths. Symbols (VR, VD) are, respectively, rotational speed and isothermal dilatational speed. In
regard to subcritical speed, it will be seen that subsonic (< VR) Rayleigh speeds exist. These depend
on both material properties and the nature of the point forces. Equations (2a) and (2b) can be partially
uncoupled and for s > 0 give, in view of (3)

u = uR + uD, (4a)

(∇2
− D2)uR = 0, ∇ · uR = 0, (4b)(

c2
D∇

2
− D2)uD −αD∇2= 0, (4c)[(

c2
D∇

2
− D2)(h∇2

− DP0
)
− εDP0∇

2](uD,2)= 0. (4d)

For x0
3 = 0±, (x0

1 , x0
2) ∈ AC + δA (s > 0):

σ3k =−Fk δ(x0
1) δ(x

0
2), ∂32=∓χP02. (5a)

For x0
3 = 0, (x0

1 , x0
2) /∈ AC + δA (s > 0):

[uk] = [σ3k] = [2] = [∂32] = 0. (5b)

In (5a) and (5b) k = (1, 2, 3) and ∂k f = ∂ f/∂x0
k . Force Fk is a positive constant and χ is the (positive)
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convection constant, with dimensions of inverse length. Symbol δ in (5a) denotes Dirac function, and
[ f ] = f (+)− f (−) where f (±) = f (x0

1 , x0
2 , 0±, s). Moreover [uk] must vanish continuously on C , but

[2] can exhibit (integrable) singular behavior. It is noted that two other relations also arise for x0
3 = 0,

(x0
1 , x0

2) ∈ AC + δA (s > 0):

[∂32] + 2χP0〈2〉 = 0, 〈∂32〉+χP0[2] = 0. (5c)

In (5c) 〈 f 〉 = 1
2( f (+)+ f (−)) is the average taken over (x0

1 , x0
2) ∈ AC + δA. For s ≤ 0 (u, T ,2) ≡ 0,

and for finite s > 0 (u, T ,2) must be bounded as |x0| →∞.

Discontinuity problem

A common practice for solving crack problems is to represent the relative motion of crack faces as
unknown discontinuities in displacement; see, e.g., [Barber 1992]. To implement that procedure here, a
more general problem is considered: The unbounded solid is again at rest at uniform (absolute) tempera-
ture T0 but for (x0

3 = 0, s > 0) discontinuities ([uk], [2], [∂32]) are imposed. For (x0
1 , x0

2) /∈ AC+δA and
(x0

1 , x0
2) /∈ AC + δA, respectively the discontinuities vanish and are continuous functions of (x0

1 , x0
2 , s).

They vanish for s ≤ 0, and are bounded in AC + δA for
√
(x0

1)
2+ (x0

2)
2→∞ (s > 0). Therefore, as in

the crack problem, (u, T ,2)≡ 0 for s ≤ 0, and are bounded as |x0| →∞ for finite s > 0.

Transform solution

An effective procedure (e.g., [Brock and Achenbach 1973]) for 2D transient study of semi-infinite crack
extension at constant speed employs coordinates that translate with the crack edge, and unilateral tempo-
ral and bilateral spatial integral transform [Sneddon 1972]. In view of (1) a translating basis x is defined
for |ψ |< π/2 as

x1 = x0
1 − [c(ψ) cosψ] s, x2 = x0

2 − [c(ψ) sinψ] s, x3 = x0
3 , (6a)

c(ψ)=
V (ψ)

VS
, D f = ∂S f − c(ψ)(∂1 f cosψ + ∂2 f sinψ), (6b)

∂S =
∂ f
∂s
, ∂k f =

∂ f
∂xk

k = (1, 2, 3). (6c)

The temporal Laplace transform operation is

L( f )= f̂ =
∫

f (s) exp(−ps) ds. (7a)

Integration is over positive real s and Re(p) > 0. A double spatial integral transform and inversion,
respectively, can be defined [Sneddon 1972] by

f̃ (p, q1, q2)=

∫∫
f̂ (p, x1, x2) exp[−p(q1x1+ q2x2)] dx1 dx2, (7b)

f̂ (p, x1, x2)=

(
P

2π i

)2∫∫
f̃ (p, q1, q2) exp[p(q1x1+ q2x2)] dq1 dq2. (7c)
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Integration in (7b) is over real (x1, x2); integration in (7c) is along the imaginary (q1, q2)-axes. It is noted
that (x, s) have dimensions of length, p has dimensions of inverse length, and (q1, q2) are dimensionless.
Because (1) involves a speed that varies with direction, application of (7a) and (7b) to (2)–(4) and
discontinuity restraints for (x0

3 , x3) = 0 is complicated. Despite use of ψ the discontinuity problem
is not axially symmetric. However, 3D studies of sliding and rolling contact [Brock 2012] and crack
growth [Brock 2017] suggest transformations:

Im(q1)= Im(q) cosψ, Im(q2)= Im(q) sinψ, (8a)

x1 = x cosψ, x2 = x sinψ. (8b)

Here Re(q)= 0+, |Im(q)|, |x |< 0 and |ψ |< π/2. Parameters (x, ψ) and (q, ψ) resemble quasi polar
coordinates, i.e.,

dx1 dx2 = |x | dx dψ, dq1 dq2 = |q| dq dψ. (8c)

The uncoupling effect of (8) leads to the combination

f̃ (p, q1, q2)→ f̄ (p, q, ψ), (9a)

f̂ (p, x, ψ)=−
p2

2π

∫
|q|
q

f̄ (p, q, ψ) exp(pqx) dq. (9b)

Integration is along the positive
(
Re(q)= 0+

)
side of the Im(q)-axis.

In view of (6)–(8) and (9a), equation (4) gives a corresponding set in transform space by making
formal substitutions:

∇ → (pq cosψ, pq sinψ, ∂3), D→ pQ, ∇
2
→ ∂2

3 + p2q2, (10a)

P0→ P0 = 1+ h0 pQ, (10b)

Q = 1− cq. (10c)

Set elements that correspond to (4b)–(4d) are homogeneous, ordinary differential equations in x3, with
characteristic functions pB(q) and p A±(p, q):

B(q)=
√

Q2− q2 , (11a)

A±(p, q)=

√(
2Q

0±±0−

)2

− q2, (11b)

0± =

√(
cD ±

√
hpQ/P0

)2
+ ε . (11c)

The solutions to the differential equations are

ūR =

[
U (±)

1 ,U (±)
2 , (±)

q
B

(
U (±)

1 cosψ +U (±)
2 sinψ

)]
exp(−pB|x3|), (12a)

ūD = ū++ ū−, (12b)

ū± = [q cosψ, q sinψ, (∓)A±]U
(±)
± exp(−p A±|x3|), (12c)
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2=2++2−, (13a)

2± =−C±
Q2

αD
pU (±)
± exp(−p A±|x3|), (13b)

C± = 1−
(

2cD

0+±0−

)2

, C+−C− =
0+0−

hpQ
P0. (13c)

Here (U (±)
± ,U (±)

1 ,U (±)
2 ) are unknown functions of (p, q, ψ) and (±) signifies x3 > 0(+), x3 < 0(−).

Equations (12a), (12c) and (13b) are bounded for Re(p) > 0 as |x3| → ∞ when Re(A±, B) ≥ 0 in
the cut q-plane. Imposition of discontinuities ([uk], [2], [∂32]) for (x0

3 , x3) = 0 leads to equations in
transform space that can be solved for the unknown functions. The results are presented in Appendix A,
where it proves convenient to use displacement discontinuities (1O ,1T ,1S) that for given |ψ |< π/2,
correspond to crack opening and in-plane sliding and tearing, respectively:

1O = [u3],

[
1S

1T

]
=

[
cosψ sinψ
sinψ −cosψ

] [
[u1]

[u2]

]
. (14)

Asymptotic analysis

Focus in this paper is upon fracture initiation, i.e., small t (small s). The LS model [Lord and Shulman
1967] is robust in this regard. Indeed calculations [Brock 2009; Ignaczak and Ostoja-Starzewski 2010]
indicate that h ≈ O(10−9)m and h0 ≈ O(10−10)m, so that in view of (7a) transform expressions valid
for |h0 p| � 1 suffice, i.e., s/h0� 1. Therefore (12), (13) and entries in Appendix A are modified by
employing asymptotic forms of (11b) and (11c):

A±(p, q)→ A±(q)=

√
Q2

c2
±

− q2 , (15a)

C± = 1−
c2

D

c2
±

, c± =
1
2
(0+±0−), C+−C− = λ0+0−, (15b)

0± =

√(
1
√
λ
± cD

)2

+ ε , λ=
h0

h
. (15c)

Equation (11a) and dimensionless terms c± in (15) show that solution behavior involves body wave speeds
(VR, V± = c±VR), where 1< c− < c+. Data from, e.g., [Brock 2009; Ignaczak and Ostoja-Starzewski
2010] suggest moreover that c+ > cD , c− ≈ cD− so that V+ is larger than isothermal dilatational wave
speed VD = cDVR while V− is approximately the same. Bounded behavior for (ûk, 2̂) as |x3| → ∞

requires in light of (12) and (13) that Re(A±) > 0 and Re(B) > 0 in the q-plane with, respectively,
branch cuts:

Im(q)= 0,
−1

c±− c
< Re(q) <

1
c±+ c

, (16a)

Im(q)= 0,
−1

1− c
< Re(q) <

1
1+ c

. (16b)

It is noted that (16) is valid only for c < 1; i.e., V (ψ) < VR (|ψ |< π/2).
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Application to fracture problem

In order that (12)–(15) and results in Appendix A represent the (asymptotic) transform solution for the
fracture problem, the transforms of (5a) must be satisfied. It is noted that (5a) is incorporated in general
formulas for (s > 0, x3 = 0±):

σ3k = σ
0
3k − Fk δ(x0

1) δ(x
0
2), (17a)

∂32= ∂320∓χP02
(±), (17b)

2=20+2
(±). (17c)

Here σ 0
3k and (∂320,20) respectively represent σ3k for |x3| = 0, x > 0 and (∂32,2) for x > 0 in a

region generated behind wave front c+ s − x − cs > 0. Thus the corresponding transforms exist for
Re(q) >−1/(c+− c). The Dirac function term has transform

−
Fk

pQ

(
Re(q) < 1/c

)
. (17d)

Terms (1O ,1S,1T ,2
(±), ∂32

(±)) and related terms ([2], 〈2〉, [∂32], 〈∂32〉) occur for x < 0 in a
region generated behind wave front c+ s + x + cs > 0. Thus the corresponding transforms exist for
Re(q) < 1/(c++ c). These behaviors show that

(σ 0
3k , ∂320, 20) and (1O , 1S , 1T , 2(±), ∂32

(±), Fk/pQ)

are analytic in halves of the q-plane that overlap in the strip −1/(c+ − c) < Re(q) < 1/(c+ + c). In
view then, of (2c), (11)–(17) and Appendix A, three sets of transform equations of the Wiener–Hopf type
can be generated. These are given in Appendix B where, in light of (14), it has proved convenient to
introduce traction terms:

σO = σ
0
33,

[
σS

σT

]
=

[
cosψ sinψ
sinψ −cosψ

] [
σ 0

31

σ 0
32

]
. (18)

Coefficients (MO(q), MS(q)) in (B.2) and (B.3) exhibit behavior:

MO

(
±1

cO ± c

)
= 0, MO ≈

bRO

a+a−

√
q
√
−q (|q| →∞), (19a)

RO =
1
c2

[
4a+a−−

K 2

λ0+0−b
(C+a+−C−a−)

]
, RO(±cO)= 0, (0< cO < 1), (19b)

MS

(
±1

cS ± c

)
= 0, MS ≈

RS

b
√

q
√
−q (|q| →∞), (20a)

RS =
1
c2

[ 4b
λ0+0−

(C+a+−C−a−)− K 2
]
, RS(±cS)= 0, (0< cS < 1). (20b)
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Behavior of coefficients (mO(q), mS(q), nO(q), nS(q)) is given by

mO ≈∓im3 (|q| →∞), m3 =
χhK

c0+0−

(
1

a+
−

1
a−

)
, (21a)

mS ≈±im12 (|q| →∞), m12 =
1

λc20+0−
(a+− a−), (21b)

nO ≈∓iqn3 (|q| →∞), n3 =
εK
0+0−

(
1

a+
−

1
a−

)
, (21c)

nS ≈±iq2n12 (|q| →∞), n12 =
2ε

0+0−
(a+− a−). (21d)

Notation ±i denotes Im(q) < 0 and Im(q) > 0, respectively, in expressions for (mO , mS , nO , nS). In
(19)–(21):

a±(c)=

√
1−

c2

c2
±

, b(c)=
√

1− c2 , K (c)= c2
− 2. (22a)

Here (b, a±) arise as factors of (B, A±) for |q|→∞. Expressions (MS,MO) and (RS, RO) are Rayleigh
functions of respectively, q and c. Data from, e.g., [Brock 2009; Ignaczak and Ostoja-Starzewski 2010]
indicate that in general

0< cO < cS < 1< c− < c+, c− ≈ cD − . (22b)

In addition to body wave speeds, therefore, solution behavior for the fracture problem is influenced by
Rayleigh speeds (VO = cO VR , VS = cSVR). In light of (22b) subcritical speed is defined as V (ψ) < VO

(|ψ |< π/2).

Solution: Wiener–Hopf problem (tearing mode)

Solution of Wiener–Hopf equation (B.1a) involves manipulations that produce left- and right-hand sides
that are analytic in overlapping regions of the complex q-plane. That is, the two sides are analytic
continuations of each other. To this end (B, A±) are written as products (B+B−, A+±A−±) where

B+ =
√

1+ q(1− c), B− =
√

1− q(1+ c), (23a)

A+
±
=

√
1

c±
+ q

(
1− c

c±

)
, A−

±
=

√
1

c±
− q

(
1+ c

c±

)
. (23b)

Factors B+ and B− are analytic in overlapping portions of the q-plane:

Re(q) > −1
1−c

, Re(q) < 1
1+c

. (23c)

In similar fashion factors A+± and A−± are analytic in overlapping portions:

Re(q) > −1
c±−c

, Re(q) < 1
c±+c

. (23d)
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For |q| →∞ (B±, A+±, A−±) generate factors

b±(c)=
√

1∓ c , a+
±
(c)=

√
1− c

c±
, a−

±
(c)=

√
1+ c

c±
. (24)

Manipulations of (B.1a) in view of (23a) and (23c) lead to

σ T

B+
−

FT

pQ

(
1

B+
−
√

c
)
=−µpB−1T +

√
c

FT

pQ
. (25)

Analytic continuation requires that the two sides of (25) be equal to the same entire function. Restrictions
on [uk] noted in connection with (5) imply that pq1T , and therefore the right-hand side of (25), vanish
for |q| →∞. In light of Liouville’s theorem [Morse and Feshbach 1953] the entire function must vanish.
Equation (25) then gives

σ T =
FT

pQ
−
√

c B+
FT

pQ
, p1T =

√
c

p2 Q B−
FT

µ
. (26a)

Imposition of fracture criteria such as dynamic energy release rate [Freund 1990] requires only knowledge
of (σT , D01T ) near crack contour C , i.e.,

√
x2
+ x2

3 ≈ 0, |ψ |< π/2. Therefore transform behavior for
|q| →∞ suffices and, in view of (6b), (26a) gives

σ T ≈
FT b+

p
√

qc
, pQ1T ≈

−FT

µpb−
√
−qc

. (26b)

Solution: Wiener–Hopf problem (crack-opening mode)

Two coupled equations, (B.2a) and (B.2b), are involved in this instance. In view of (19)–(21), (MO ,mO , nO )
can be expressed as products (M+O M−O , m+O m−O , n+O n−O ). The factors are analytic in overlapping halves
Re(q) > −1/(c+ − c)(+) and Re(q) < 1/(c+ + c)(−) of the complex q-plane. Based on a standard
procedure [Morse and Feshbach 1953; Achenbach 1976] the factors are found to be

M+O =
B+G+O
A++ A+−

(
1

cO − c
+ q

)
, M−O = RO

B−G−O
A−+ A−−

(
1

cO + c
− q

)
, (27a)

m+O =
A+−

a+−G+
, m−O =−m3

a−−G−

A−−
, (27b)

n+O =
A+−

a+−G+
, n−O =−n3 q

a−−G−

A−−
. (27c)

Term (G±O ,G±) is given in Appendix C, and it is noted that (M+O , m+O , n+O ) ≥ 0. Equation (B.2a) can
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therefore be put in the form

σO

P+O
−

F3

pQ

(
1

p+O
−

c
P3

)
=−µp1O

M−O
2
λ+O +µαD〈2〉

m−O
λ+O
+

F3

pQ PO
, (28a)

P+O =
√

M+O m+O , λ+O =

√
M+O
m+O

, (28b)

P3 =
√

c P+O

(
1
c

)
=

1
√

cO − c

√
g+O cO

g+a+−
, g+O = G+O

(
1
c

)
, g+ = G+

(
1
c

)
. (28c)

The left-hand side of (28a) is analytic for Re(q) >−1/(c+− c). Equations (28b), (28c), (C.2) and (C.3)
and behavior expected for σO suggest that this side vanishes for |q| →∞. Setting the right-hand side
of (28a) to zero leads to a quadratic equation in λ+O . The solution is itself an equation of the Wiener–
Hopf type; i.e., λ+O is set equal to a combination of terms that are analytic in the overlapping region
Re(q) < 1/(c++ c). Both sides must be analytic continuations of the same bounded entire function. For
|q| →∞:

λ+O → J3 =

√
b+

a++ a+−
. (29)

Equation (29) identifies this function as a constant, so that (28a) now takes the classic [Morse and
Feshbach 1953] form:

σO

P+O
−

F3

pQ

(
1

P+O
−

c
P3

)
=−µp1O

M−O J3

2
+µαD〈2〉

m−O
J3
+

cF3

pQ P3
. (30)

In view of the behavior noted for the left-hand side of (28a), the bounded entire function for (30) vanishes.
Thus (30) defines σO and provides a linear equation for (1O , 〈2〉). Use of that in (B.2b) gives

αD2O =−
nO

J3 M−O

√
c F3

µpQ P3
+αD〈2〉W, W = NO −

nO m−O
J 2

3 M−O
. (31)

Rearrangement of (31) into a form analogous to (30) is possible, but coefficient W leads to a complicated
expression. For |q| →∞ however, the resulting form, and its counterpart for (30), combine to give more
tractable forms:

σO ≈
J3 F3

P3 p
√

qc
, pQ1O ≈−

F3 D3

µp
√
−q

, (32a)

αD20 ≈

√
c J3 F3

m3 P3

hχ
0+0−

(
C−
a−
−

C+
a+

)
1

µp
√

q
, αD〈2〉 ≈

F3 E3

µp
√
−q

exp(∓i93), (32b)

D3 =
2a+a−
bRO

√
c J3

P3
cos93, E3 =

hχ
0+0−

cJ3

m3 P3

(
C+
a+
−

C−
a−

)
cos93, (32c)

93 = tan−1 hχ
0+0−

[(
C+
a+
−

C−
a−

)
c+

εK 2

c0+0−

(a+− a−)2

ba+a−RO

]
. (32d)

In (32b) (∓) signifies Im(q) > 0 and Im(q) < 0 respectively.
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Solution: Wiener–Hopf problem (sliding mode)

Equations (B.3a) and (B.3b) govern in this instance, but the method of solution closely mirrors that for
the crack-opening mode. For |q| →∞:

σS ≈
−
√

b+ FS

P12 p
√

q
, pQ1S ≈

FS D12

µp
√
−q

, (33a)

αD∂320 ≈
−FS

2µm12

(
C+
a+
−

C−
a−

)
pq

√
b+ P12 p

√
q
, αD|2| ≈ −

FS F12

µp
√
−q

, (33b)

D12 =
2b
P12

√
c

b+
C+a+−C−a−

2bm12 n12λ0+0−+ RS(C+a+−C−a−)
, E12 =

1

P12 m12
√

b+
. (33c)

Term (P12,m12, n12) in (33) correspond to (P3,m3, n3) and are given by

P12 =
1

√
cS − c

√
g+S cS

g+a+−
, g+S = G+S

(
1
c

)
, (34a)

m12 =
a+− a−
λc20+0−

, n12 =
2ε

0+0−
(a+− a−). (34b)

Term G±S is defined in Appendix C.

Solution behavior in crack plane near C

Equations (26b), (32) and (33) involve linear combinations of three types of transform. The types and
corresponding inverses are given in Appendix D. It proves convenient to now introduce some generality
by considering point-force loads that are not temporal step-functions. That is Fk→ Fk(s) Fk(0)= 0 . It
is also noted that D0 f = VR D f = VR pQ f̄ . Thus ahead of the extending crack (x→ 0+, |ψ |< π/2)
(26b), (32), (33) and (D.3) give by convolution:

σO ≈
−J3 KO

π P3
√

cx
, σS ≈

√
b+KS

π P12
√

cx
, σT ≈

−b+KT

π
√

cx
, (35a)

αD20 ≈
c2 J3

πK P3

C+a−−C−a+
a+− a−

KO

µ
√

cx
, (35b)

αD∂320 ≈−
∂

∂x0

c

π P12
√

b+
C+a+−C−a−

2λ0+0−

KS

µ
√

cx
. (35c)

For (x→ 0−, |ψ |< π/2):

D01O ≈
D3

π

VRKO

µ
√
−x

, D01S ≈−
D12

π

VRKS

µ
√
−x

, D01T ≈
1

πb−
√

c
VRKT

µ
√
−x

, (36a)

αD〈2〉 ≈
−E3

π
cos93

VRKO(s)
µ
√
−x

, αD|2| ≈
E12

π

VRKS(s)
µ
√
−x

. (36b)
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In (35) and (36):

KO =
d
ds

∫
d F3

du
du
√

s− u
, KS =

d
ds

∫
d FS

du
du
√

s− u
(0< u < s), (37a)

KT =
d
ds

∫
d FT

du
du
√

s− u
(0< u < s). (37b)

Velocity and temperature change near C

In regard to solution behavior near C for |x3| ≥ 0, temperature change 2 and particle velocity in terms
of components (D0uS , D0uT , D0u3) can be obtained from expressions (12)–(14) that are evaluated for
|q| →∞ in terms (A.1)–(A.3), (15), (26), (32), (33) and relation

D0

[
uS

uT

]
= D0

[
cosψ sinψ
sinψ −cosψ

] [
u1

u2

]
. (38)

The resulting expressions for (D0uS , D0uT , D0u3) are linear combinations of two transform types. The
types and corresponding inversions are given in Appendix D. Response near C is made clearer in terms
of local coordinates (r, ψ, φ), where (r→ 0+, |ψ |< π/2, |φ|< π ) and

x = r cosφ, x3 = r sinφ. (39)

In light of (39) term 1/
√

x − iω in Appendix D gives for ω = (b, a±) respectively:

1
√

2r
(B[+]+ iB[−]), B[±] =

1
B8

√
B8[±] cosφ, B8 =

√
1− c2 sin2 φ, (40a)

1
√

2r

(
A[+]± + iA[±]±

)
, A[±]± =

1
A±8

√
A±8[±] cosφ, A±8 =

√
1−

c2

c2
±

sin2 φ. (40b)

Generalization Fk→ Fk(s), Fk(0)= 0 is again made, and it can then be shown in view of (40) that for
(r ≈ 0+, |ψ |< π/2, |φ|< π ):

αD2≈
1

2π0+0−

KS

µ
√

2r

[
2ε
c

D12
(
A[−]− −A[−]+

)
+

E12

λ

(
C−A[−]− −C+A[−]+

)]
+

εK D3

2πc0+0−

KO

µ
√

2r

(
A[+]+
a+
−

A[+]−
a−

)
+

hχcE3

π0+0−

KO

µ
√

2r

[(
A[+]−
a−
−

A[+]+
a+

)
cos93+

(
A[−]−
a−
−

A[−]+
a+

)
sin93

]
, (41)
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D0 uT ≈−
VR

πµ

√
c

B[−]

2b−
KT
√

2r
, (42a)

D0 uS ≈
VR

πµc2

[
bD3B[+]

KO
√

2r
− K D12B[−]

KS
√

2r

]
+

VR

2πµc2λ0+0−

KS
√

2r

[
2D12

(
C−A[−]+ −C+A[−]−

)
+ cE12

(
A[−]− −A[−]+

)]
+

VR K D3

2πµc2λ0+0−

KO
√

2r

(
C+
a−

A[+]− −
C−
a+

A[+]+

)

+
VR hχλE3

πµ0+0−

KO
√

2r

[(
A[+]−
a−
−

A[+]+
a+

)
cos93+

(
A[−]−
a−
−

A[−]+
a+

)
sin93

]
, (42b)

D0 u3 ≈
VR

πµc2

[
K
b

D12B[+]
KS
√

2r
+ D3B[−]

KO
√

2r

]
+

VR

2πµc2λ0+0−

KS
√

2r
[a−A[+]− (2C−D12− cE12)+ a+A[+]+ (2C+D12− cE12)]

+
VR K D3

2πµc2λ0+0−

KO
√

2r

(
C+A[−]− −C−A[−]+

)
+

VRhχλE3

πµ0+0−

KO
√

2r

[(
A[−]+ −A[−]−

)
cos93+

(
A[+]− −A[+]+

)
sin93

]
. (42c)

Preliminary comments

The coupling of (χ,93) with KO in (35), (36), (41) and (42) shows that crack opening (and therefore
convection) indeed occurs only when compressive load F3(s) is present. These equations also show that
introduction of components that align with coordinates (x, ψ, x3) allow an uncoupling into three modes
of fracture. However classical definitions [Freund 1990] of in-plane modes are made in terms of the
normal and tangent to the crack edge, and designated as Modes II and III, respectively. Here crack edge
orientation is controlled by V (ψ). In terms of (35a) and (36a) for example[

σII

σIII

]
= MC

[
σS

σT

]
,

[
D01II

D01III

]
= MC

[
D01S

D01T

]
, (43a)

MC =

[
cosψC − sinψC

sinψC cosψC

]
, ψC = tan−1 dc

cdψ
. (43b)

Dynamic energy release rate criterion

Equation (43) need not be employed if the imposed fracture criterion is based on scalar products, i.e.,
dynamic energy release rate [Freund 1990]. If kinetic energy is included [Gdoutos 1993; Brock 2017] it
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can be shown that here the criterion can be written:

D0

∫∫
δA

eF dx0
1 dx0

2 −

∫∫
I
σ 0

3k D01k dx0
1 dx0

2 − D0

∫∫∫
123

ρ

2
D0 uk D0 uk dx0

1 dx0
2 dx0

3 = 0, (44a)

σ 0
3k D01k = σO D01O + σS D01S + σT D01T , (44b)

D0 uk D0 uk = (D0 uO)
2
+ (D0 uS)

2
+ (D0 uT )

2. (44c)

In (44a) eF is the surface energy per unit area in area δA, and is generally viewed as constant [de Boer
et al. 1988; Skriver and Rosengaard 1992]. Fracture zone I is a strip of infinitesimal thickness in the x0

1 x0
2 -

plane that straddles the portion of C that borders δA. In view of the singular behavior seen in (35) and (36)
it can be shown [Freund 1972] that integration yields a finite value. Subscript 123 signifies integration
over the solid, but the singular behavior exhibited in (42) demonstrates that the volume integral can be
confined to a tube of radius rC → 0 that is centered on, and encloses, the crack edge C . Analysis [Brock
2017] shows that these produce a single integration with respect to ψ on the left-hand side of (44a). That
is, (44a) is satisfied if the integrand vanishes for all |ψ |< π/2. However the integrand cannot, in general,
vanish for constant eF and time-invariant crack-extension rate; compare [Achenbach and Brock 1973].
An exception, featured in [Brock 2017], is case 3Fk(s)= 2 fk s3/2, i.e.,

KO = π f3, KS = π( f1 cosψ + f2 sinψ), KT = π( f1 sinψ − f2 cosψ). (45)

Here fk is constant and f3 ≥ 0. This analysis concerns fracture initiation, and appropriate asymptotic
forms such as (15) have been employed. So, the exception is here taken to represent only the initial
loading behavior. A focus is, moreover, on the role of crack surface convection. The observation con-
cerning (KO , 93) made above suggests that consideration of the pure-compression case ( f1 = f2 = 0)
is sufficient in this regard. In view of (35), (36), (42) and (45) formula (44a) produces the equation:

f 2
3 c

2πµ
J3 D3

P3
+

[
eF +

f 2
3

(2π)2µ

∫
8

(
Q2

O + Q2
S
)

cosφ dφ
]√

c2+

(
dc
dψ

)2

= 0, (46a)

QO =
D3

c2

[
B[−]+

K
2λ0+0−

(
C+A[−]− −C−A[−]+

)]
+

hχλ
0+0−

[(
A[−]+ −A[−]−

)
cos93+

(
A[+]− −A[+]+

)
sin93

]
, (46b)

QS =
D3

c2

[
bB[+]+

K
2λ0+0−

(
C+
a−

A[+]− −
C−
a+

A[+]+

)]
+

hχλ
0+0−

[(
A[+]−
a−
−

A[+]+
a+

)
cos93+

(
A[−]−
a−
−

A[−]+
a+

)
sin9

]
. (46c)

Subscript 8 in (46a) signifies integration over range |φ| < π . Absence of ψ in (46a) implies that
dc/dψ = 0; i.e., the crack edge forms a semicircle of radius cs about the point force. Equation (46a)
then reduces to a transcendental algebraic relation for constant c:

eF +
f 2
3

2πµ

[
J3 D3

P3
+

1
2π

∫
8

(
Q2

O + Q2
S
)

cosφ dφ
]
= 0. (46d)
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Thermal response on C

Equation (41) describes unbounded temperature change along crack edge C . As with dynamic energy
release rate a finite measure is possible, in this case by considering the norm of crack edge temperature
change:

‖2‖ =

√∫
C
22 dl. (47)

The line integration in (47) for given |ψ |< π/2 is around the surface of the tube of radius rC → 0 that
is involved in analysis of (44a). Thus (41) governs and dl = rC dφ. For pure compression ( f1 = f2 = 0)
equation (47) gives

‖2‖ =
f3

µαD

1
√

20+0−

[∫
8

dφ
(

K D3

2c
Q D + hχcE3 QE

)2]1/2

, (48a)

Q D =
A[+]+
a+
−

A[+]−
a−

, QE =

(
A[−]−
a−
−

A[−]+
a+

)
sin93− Q D cos93. (48b)

Illustration of convection effect

Convection is represented in (46) and (48) by hχ , a dimensionless constant that plays a role similar to
that of the Biot number in classical thermoelasticity [Boley and Weiner 1960]. As noted above, results
here are valid for subcritical speed V (ψ), i.e., c(ψ) < (c3, c12). In contrast results in [Brock 2017]
require that c(ψ) < 0.3. Imposing a similar requirement here, c < 0.4, does allow an explicit, asymptotic
representation of convection effect. In particular, expansions of (46b), (46c) and (48b) in powers of c
allow closed-form integration with respect to φ. Equations (46d) and (48a) become(

c2
D E0+E1+E2 h2χ2)c2

+

[
2µeF

π f 2
3

cO

(
1−

1
c2

D

)
−

1
cO
+

√
λ

2cD
0+

]
c2

D c− c2
D ≈ 0, (49a)

‖2‖ ≈
7c3/2

4µαD

√
π

2
f3

cO

(
ελ

c2
D − 1

+ hχc3/2
)
. (49b)

The (positive) coefficients (E0,E1,E2) are given in Appendix E. Equation (49) indicates that for c→ 0
convection parameter hχ diminishes in importance. More insight is possible by calculation of c and the
corresponding ‖2‖. Convection parameters hχ are based on Biot parameter values featured in [Boley
and Weiner 1960]. Values for loading parameter f3 are based on those in [Brock 2017], as are the material
constants for a generic solid at room temperature:

µ= 79 GPa, eF = 2.2 J/m2, VR = 3094 m/s,

cD = 2, c+ = 4.5452, c− = 1.997, cO = 0.9332,

T0 = 294 K, αD = 89.6 · 10−6 K−1, ε = 0.05044,

h = 3.1862 · 10−9 m, h0 = 1.547 · 10−10 m.

Combinations of (hχ, f3) chosen are such that quadratic (49a) yields solutions 0< c < 0.4. Calculations
for (c, ‖2‖) are displayed in Tables 1 and 2. Entries in Table 1 indicate that c tends to increase by orders
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f3 (N/m3/2) hχ = 0 hχ = 10 hχ = 50 hχ = 65 hχ = 80

1 · 104 0.00129249 0.00129248 0.001292476 0.00129247 0.00129225
2 · 104 0.00518312 0.00518309 0.00518323 0.00518174 0.00518103
5 · 104 0.0327376 0.0327294 0.0325396 0.0323988 0.0322297
1 · 105 0.123558 0.123168 0.115141 0.110192 0.10563
1 · 106 0.381241 0.2869926 0.2869926 0.250029 0.2194334

Table 1. Values of c for various (hχ, f3).

f3 (N/m3/2) hχ = 0 hχ = 10 hχ = 50 hχ = 65 hχ = 80

1 · 104 1.215 · 10−11 1.907 · 10−10 4.674 · 10−10 5.712 · 10−10 5.663 · 10−8

2 · 104 1.951 · 10−9 1.088 · 10−8 4.657 · 10−8 5.99 · 10−8 7.325 · 10−8

5 · 104 7.747 · 10−8 5.694 · 10−6 2.767 · 10−5 3.549 · 10−5 4.325 · 10−5

1 · 105 1.136 · 10−6 5.997 · 10−4 2.446 · 10−3 2.787 · 10−3 2.974 · 10−3

1 · 106 6.132 · 10−5 0.16846 0.37872 0.32555 0.27085

Table 2. Values of ‖2‖ (K m1/2) for various (hχ, f3).

of magnitude with increases in f3. Variation in c with hχ is not however monotonic for given f3. Indeed,
for higher f3-values a marked decrease occurs in c for higher hχ-values. Table 2 entries indicate that
‖2‖ also tends to increase with increasing f3. ‖2‖ is even more sensitive than c to variations in hχ ,
and especially in f3. Another contrast: except at the highest f3-value, monotonic increases in ‖2‖ occur
with increasing hχ . Variations noted in Tables 1 and 2 can be a matter of significant figures. The trends
described seem however to be clear.

Some summary comments

This paper addresses a problem similar to that found in [Brock 2017]. However crack surface thermal
convection is now considered and crack extension rate need only be subcritical, not well below Rayleigh
and body wave speed. In addition formulation of the governing Wiener–Hopf equations in integral trans-
form space differs. Because the requirement on speed is relaxed moreover, the equations yield solutions
that are more robust. Analysis of the inverses that result, and calculations for the pure compression case,
indicate that:

• Effect of convection is less important at low crack extension rates.
• Increase in point force magnitude does in general increase crack extension rate.
• For given force, variation in rate with convection may not be monotonic.
• At higher forces, increases in convection can decrease extension rate.
• Thermal response, in terms of crack edge temperature norm, is similar.
• Norm variation with changes in convection is however more pronounced.
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Appendix A

U (±)
1 =

q B
Q21O cosψ(±)

(
T1S

2Q2 cosψ +
1T

2
sinψ

)
, (A.1a)

U (±)
2 =

q B
Q21O sinψ(±)

(
T1S

2Q2 sinψ −
1T

2
cosψ

)
, (A.1b)

U (±)
+ =

hp

QP00+0− A+

(
αD

p2 [∂32] +C−T1O

)
(∓)

hp

QP00+0−

(
αD

p
[2] + 2C−q1S

)
, (A.2a)

U (±)
− =

−hp

QP00+0− A−

(
αD

p2 [∂32] +C+T1O

)
(±)

hp

QP00+0−

(
αD

p
[2] + 2C+q1S

)
, (A.2b)

T = Q2
− 2q2. (A.3)

In view of (5c), equations (A.1) and (A.2) are subject to constraints:

[∂32] + 2χP0〈2〉 = 0, 〈∂32〉 = χP0[2]. (A.4)

Appendix B

Tearing mode response is governed by

σ T −
FT

pQ
=−µp1T B, (B.1a)

FT = F1 sinψ − F2 cosψ. (B.1b)

Crack-opening mode response is governed by the coupled set

σO −
F3

pQ
=−µp1O

MO

2
+µαD〈2〉mO , (B.2a)

αD20 =−p1O
nO

2
+αD〈2〉NO . (B.2b)

Sliding mode response is governed by the coupled set

σS −
FS

pQ
=−µp1S

MS

2
+µαD[2]mS, (B.3a)

αD ∂320 = p21S
nS

2
+ pαD[2]NS, (B.3b)

FS = F1 cosψ + F2 sinψ. (B.3c)
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Coefficients in (B.2) and (B.3) are

MO =
1

Q2

[
4q2 B+

T 2

λ0+0−

(
C+
A−
−

C−
A+

)]
, (B.4a)

MS =
1

Q2

[
T 2

B
+

4q2

λ0+0−
(C+ A−−C− A+)

]
, (B.4b)

NO =−1+
χhQ
0+0−

(
C+
A+
−

C−
A−

)
, (B.4c)

NS =
1
2

[
χh0 Q+

1
λ0+0−

(C− A−−C+ A+)
]
, (B.4d)

mO =
χT h
0+0−β

(
1

A+
−

1
A−

)
, mS =

1
λ0+0−

q
Q2 (A+− A−), (B.5a)

nO =−
εT
0+0−

(
1

A+
−

1
A−

)
, nS =−

2εq
0+0−

(A+− A−). (B.5b)

Appendix C

ln G±O (q)=
1
π

∫
8O du

(u∓ c)(qu± Q)
, ln G±S (q)=

1
π

∫
8S du

(u∓ c)(qu± Q)
. (C.1a)

Integration is over range 1< u < c+, where for c− < u < c+:

8O = tan−1
(

4a+βλ
C−K 2 0+0−+

C+a+
C−α−

)
, 8S = tan−1 4C−a+β

4C+α−β + λK 20+0−
. (C.1b)

For 1< c < c−:

8O = tan−1 K 2

4λβ0+0−

(
C+
a−
−

C−
a+

)
, 8S = tan−1 4β

λK 20+0−
(C−a+−C+a−). (C.1c)

G±(q)=
1
π

∫
tan−1 a+

α−

du
(u∓ c)(qu± Q)

(c− < u < c+). (C.2)

In (C.1) and (C.2) a± = a±(u) and [see (24)] K = K (u). Moreover

β =
√

u2− 1, α− =

√
u2

c2
−

− 1. (C.3)
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Appendix D

Equations (26b), (32) and (33) involve three basic types of transform function. These types, and the
corresponding inverses generated by (9b) are

1
p
√

q
→−

√
p
πx

(x > 0), (D.1a)

1
p
√
−q
→−

√
p

π |x |
(x < 0), (D.1b)

exp(∓i93)

p
√
−q

→−

√
p

π |x |
cos93 (x < 0). (D.1c)

In view of (38) it can be shown that (D0 uS , D0 uT , D0 uO ) are linear combinations of two types of
transforms. The types, and their inversions generated by use of (9b) are[

1
p
√

q
,
(±)

p
√
−q

]
exp(−pω

√
q
√
−q)→−

√
p
π
[Re, Im]

1
√

x − iω
, (D.2a)[

1
p
√

q
,
(±)

p
√
−q

]
exp

(
(∓)i93− pω

√
q
√
−q
)
→

√
p
π
[Re, Im]

exp(−i93)
√

x − iω
, (D.2b)

ω = (b, a±)|x3|. (D.2c)

On the left-hand (transform) sides of (D.2a) and (D.2b) (±) signifies Im(q) > 0 and Im(q) < 0, respec-
tively. In view of (7a) moreover

√
p is the transform of

d
ds

(
1
√
πs

)
(s > 0). (D.3)

Appendix E

E0 =
1

8(c2
D − 1)

[
3
4

(
23+

3
2
(13c2

D)

)
+

c2
D − 32
c2

D − 1

]
, (E.1a)

E1 = 4c2
D +

(
1+ λc2

F
)[

1−
1

c2
D − 1

(
1
2
+

1
c2

D

)]
+

2c2
D

cO

(
1−

√
λ

cD
0+

)
+

c2
D

c2
D − 1

(7+ 3λ), (E.1b)

E2 = (cD λ)
2
[

1−
ελ

2c2
D(c

2
D − 1)

]2

. (E.1c)

In (E.1b) cF =

√
c2

D + ε, where VD = cF VR is dilatational wave speed in classical thermoelasticity; see,
e.g., [Brock 2009].
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DEVELOPMENT OF FRACTURE MECHANICS MODEL OF
BEAM RETROFITTED WITH CFRP PLATE

SUBJECTED TO CYCLIC LOADING

SHAHRIAR SHAHBAZPANAHI AND HUNAR FARID HAMA ALI

A new finite element model was proposed to simulate a concrete beam retrofitted by carbon fiber re-
inforced polymer (CFRP) composite under cyclic loading. A link element was introduced as interface
element to model crack propagation based on the cohesive law in the concrete material. Then the mass
and the damping matrix of the link element were defined. A bar element was implemented to simulate
the CFRP and then the energy release rates was determined. The load-displacement of the beam was
compared with the existing experimental test data and conventional fracture mechanics models carried
out using ABAQUS software. The load-displacement curves found by the proposed model were in
reasonable agreement with the results of existing experimental data (5.4%–7.6% difference) while con-
ventional fracture mechanics models carried out by the software ABAQUS showed a greater difference
(15.2%–24% difference) when compared to the previous experimental tests.

1. Introduction

Fracture mechanics theory is considered to be a more accurate method for predicting crack growth,
because this method is similar to the physical reality of crack propagation [Shi 2009]. Two methods
are now available for fracture analysis in concrete structures. These can be broadly categorized into
linear and nonlinear fracture mechanics. For the first time, linear fracture mechanics was implemented
to investigate the crack growth in warships [Esfahani 2007]. In this method, a constant factor was used on
the stress around the real crack [Shahbazpanahi 2017]. This constant factor was known as the intensity
factor of the stress. The linear fracture mechanics of this theory create stress-singularity in the real crack.
Studies such as [Raghu and Renuka 2007; Wu et al. 2011; Pietruszczak and Haghighat 2015], have
used linear fracture mechanics to study crack growth. Kaplan [1961] demonstrated that linear fracture
mechanics was not able to analyze the crack propagation of concrete beams with normal size [Shi et al.
2001]. Therefore, Hillerborg et al. [1976] presented the crack propagation method on the concrete beam
according to nonlinear fracture mechanics. This investigation introduced the fracture region in front of
real crack [Fischer and Bohse 2014]. This large and variable region was known as the fracture process
zone (FPZ). This zone has the ability to transfer stresses [Shahbazpanahi et al. 2015]. Hence, a study on
the role of the FPZ is indispensable for predicting and preventing crack propagation under static loading
[Tryding and Ristinmaa 2017]. Although more techniques of the crack propagation have been developed
in fracture mechanics, crack modeling for predicting the behavior of concrete structures is still far from
satisfactory. Fracture mechanics has been used to simulate crack propagation in the concrete material with
softening behavior [Kirane and Bažant 2015; Dong et al. 2016]. Griffith theory can be implemented to

Keywords: ABAQUS, beam, cyclic loading, cohesive, CFRP, propagation.
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evaluate the crack growth criterion in the FPZ [Shahbazpanahi 2017]. This theory explains that the energy
release rate must be bigger than the critical fracture energy to grow the crack [Ouzaa and Benmansour
2014; Biscaia et al. 2013a]. Based on Griffith theory, for the first time, a cohesive model was suggested to
model the FPZ in [Hillerborg et al. 1976]. In the suggested model in [Hillerborg et al. 1976], the stress at
the tip of the crack reaches the tensile strength [Dong et al. 2017]. The total area of the stress-opening of
the crack is the critical fracture energy. This model was implemented to simulate the crack propagation
in normal-size structures. The cohesive model was used in [Dugdale 1960] to study crack propagation
in brittle material and by using this method, mesh sensitivity was reduced. Many investigations have
been done to improve the cohesive model. The model proposed in [Hillerborg et al. 1976] has been
usually implemented because of its practicality and economic considerations [Palmieri and Lorenzis
2014]. Discrete cohesive zone model (DCZM) is one of the most used elements for simulating the
cohesive zone. The DCZM was used in some investigations in the review because this model was well-
matched with the finite element method [Xie and Waas 2006; Xu et al. 2011; Simon and Kishen 2017].
Also, one of the methods for the crack propagation modeling in the DCZM was the modified crack closure
integral method. It can be calculated by the virtual crack closure technique (VCCT). This technique
calculates the energy used for closing the crack by multiplying the nodal force and displacement opening.
This method is computationally inexpensive and provided satisfactory results [Xie et al. 2006; Xie and
Biggers Jr. 2006].

Furthermore, carbon fiber reinforced plastic (CFRP) plate can be used in flexure to prevent flexural
crack of a reinforced concrete (RC) beam. Modeling of CFRP retrofitted beams under cyclic loading
and investigating of the effect of CFRP plate on the crack propagation criterion in the concrete material
is important. Hence, it is necessary to introduce a numerical model to predict the crack propagation of
CFRP retrofitted beams under cyclic loading.

A large number of studies on structural behavior of CFRP-strengthened RC beams have recently
been reported [Bruno et al. 2013; Carloni and Subramaniam 2013; Abbass et al. 2014; Martinelli and
Caggiano 2014; Aravind et al. 2015; Baji et al. 2015]. Many numerical models have been developed for
structural analyses of CFRP-strengthened RC beams [Pan and Wu 2014; Zheng et al. 2015; Bruno et al.
2017]. However, most of them are about the analysis of the structural behavior under static loading or
the bond-slip of the CFRP. The effects of the CFRP retrofitting on the flexural crack growth criterion
under dynamic loading have not been studied based on the literature review.

This paper deals with the accurate stiffness, new mass and damping matrix of the interface element to
model the FPZ, material model of the concrete, material model the CFRP plate and new the crack prop-
agation criterion of the flexural-retrofitted RC beam. To obtain the energy release rates in the concrete
material, the link element was used. Then, mass and damping matrix of the link element was defined. A
bar element was implemented to simulate the CFRP and then the energy dissipation rate by the CFRP
was computed. The comparison of the results obtained by proposed model and the available experimental
test data were discussed.

2. Methods and materials

In the proposed model, a link elements boundary was used to model crack propagation. The link element
defends the softening behavior of the stress-opening of the crack in the submaterial.
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Figure 1. Spring interface element between two nodes.

2.1. Interface element. A nonlinear link is located between two nodes (Figure 1). These nodes are
placed in front of crack to model the FPZ. At the beginning of the analysis, the coordinates of joints 1
and 2 are same. The stiffness matrix of the interface element is

K=


kx 0 −kx 0
0 ky 0 −ky

−kx 0 kx 0
0 −ky 0 ky

 , (1)

where kx is normal and ky is shear stiffness values. In the proposed model, the kx is obtained from the
stress versus crack opening of the concrete material. In this study, kx and ky , obtained in [Shahbazpanahi
et al. 2012], were used to model the crack softening behavior of subconcrete. The variation of the length
of the FPZ was considered to predict the crack propagations.

2.2. Mass matrix and damping matrix in the concrete. Cracks require special modeling if subjected to
repeated loading. In the proposed model, the prediction of crack propagation was modeled as subjected
to cyclic loading. An improved damping matrix was developed based on the correct stiffness matrix.
This damping matrix improves the prediction of the crack propagation subjected to cyclic loading and is
more accurate than other existing models. In this study, the mass matrix, M1, of the interface element to
model crack propagation in concrete is given by

M1 =
1
2ρ1wc


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (2)

where ρ1 is mass density of concrete. The Rayleigh damping matrix in concrete, C1, is a linear combi-
nation of the mass and stiffness matrices, that is,

C1 = α1 M1+β1 K , (3)

where α1 and β1 are the damping coefficients. These damping coefficients are calculated automatically
from modal analysis with initial stiffness by FEAPpv program.
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Figure 2. The Newmark’s flowchart at each time step.

FEAPpv (Finite Element Analysis Program, Personal Version) was designed for research use [Taylor
2009]. A problem is solved by using a command language concept in FEAPpv. In this program, the
solution algorithm is written by the user. Therefore, each user may define a solution strategy that meets
specific needs. The system includes sufficient commands that can be used for applications in structural
or fluid mechanics, heat transfer, and other areas that require solutions modeled by differential equations,
including those for steady-state and transient problems. Users may also add new features for model
description and command language statements to meet specific application requirements.

2.3. Time integration. The global equation system is

MÜt +CU̇t + KUt = Ft , (4)

where M , K and C are the assembled as global mass, stiffness and damping matrices, Ft is the global load
vector, Ut , U̇t and Üt are the global nodal displacement, nodal velocity and nodal acceleration vectors,
respectively. Equation (4) can be solved using standard time integration algorithms. The Newmark
method was used in this study to solve dynamic equation. Figure 2 shows the Newmark’s flowchart at
each time step to solve the dynamic equation.

2.4. Energy release rate in the concrete material. To describe the crack propagation criterion in the
fracture process at the crack tip, Griffith energy approach can be used. This approach states that the
energy release rate, which is required to form the crack, must be sufficiently larger than the critical
fracture energy. The energy release rate is defined as the amount of energy stored in the FPZ [Lee et al.
2010]. Hence, to study the crack state, the crack propagation criterion can be defined in terms of the
energy release rate.



FRACTURE MECHANICS MODEL OF BEAM RETROFITTED WITH CFRP PLATE 417

Strain energy release rate for the mixed-mode in the concrete was assumed to be the same as Mode I
magnitude [Bocca et al. 1991]. Strain energy release rate for Mode I, due to this force, based on VCCT,
is

GI =
kx(u1− u3)

2

2B1a
, (5)

where 1a is mesh size and B is the thickness of the beam. The equation (5) can be applied for mixed-
mode and multiple-crack fracture problems. A single-active crack mode strategy following [Shi 2009]
is used to simulate multiple cracks. The DCZM element depends on the coordinates of the nodes [Xie
and Waas 2006]. Also, u1, u3 and 1a depend on the mesh size, however kx is a material property and
it is independent of mesh size. In the results section, mesh-size sensitivity will done to investigate how
results obtained from (5) are mesh-size dependent.

During cyclic loading, the stiffness of concrete was degraded. To determine effective stiffness of
concrete under cyclic loading, the stiffness of concrete was proposed as

kN =

(
1− 0.33

N
N f

)
kx , (6)

where kN is the effective stiffness of concrete at N cycles. N f is the number of loading cycles to failure
[Li et al. 2017] and the strain energy release rate at N cycles is

GIN =
kN (u1− u3)

2

2B1a
. (7)

2.5. The CFRP effect on flexural crack propagation. The CFRP effect on a flexural crack in the con-
crete is necessary to prevent growth and improve load bearing. A numerical model based on nonlinear
fracture mechanics should be developed to obtain the mechanical response of the CFRP on the FPZ.
Let us consider a CFRP reinforced RC beam (see Figure 3). The use of CFRP will increase the rate
of energy dissipation and the toughness of concrete structures [Wu and Bailey 2005]. The amount of
energy dissipated in the system can be determined by calculating the change in the potential energy of
the system. When reloading is applied, the energy dissipation rate of flexural-strengthened members by
CFRP is

R =
EF (u8− u10)(u12− u14)

2bf L ′
, (8)

where EF is the Young’s modulus of CFRP, bf is the width of the CFRP, and u8 and u10 are the displace-
ments in the x direction for nodes 4 and 5, respectively (Figure 3), and u12 and u14 are the displacements
in the x direction for nodes 6 and 7, respectively. L ′ is the length variation of crack propagation.

Equation (8) is used to estimate the effect of the CFRP as the crack propagates in the concrete beam.
This relationship shows that, when the FPZ length increases and the crack opening in concrete is small,
the effect of the CFRP on preventing crack propagation is relatively small. Finally, as the FPZ length
reaches a constant value and the crack opening increases, the role of the CFRP in resisting crack growth
increases. So far, no model has presented a convincing equation for estimating the effect of the CFRP
on crack propagation. Given that the CFRP is not located in the crack tip, the rate of energy dissipation
due to the moment of the couple caused by the CFRP force is ignored. The energy criterion of crack
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Figure 3. Modeling of flexural strengthened members by CFRP.
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Figure 4. Interface element for modeling bond slip of CFRP.

propagation can be expressed as

GIN − R > GC . (9)

Here, R and GIN are based on the size of the mesh. These equations are adopted with the assumption
that behavior outside FPZ is linearly elastic. Energy release rate is used to manage convergence in a
nonlinear process to a fixed solution. It is assumed that in unloading paths, the effect of the FRP on
unloading stiffness is less important and ignored.

2.6. Interface of CFRP bond-slip. Many researchers proposed constitutive models to simulate the bond
behavior between an FRP and concrete [Ferracuti et al. 2007; Ko and Sato 2007; Biscaia et al. 2013b].
In this study, a constitutive model was used in [Nakaba et al. 2001]. Figure 4 shows the eight-node
interface element for transferring shear in nodal forces between four-node isoparametric quadrilateral
element concrete and CFRP elements. In the present study, stress-slip is defined by (10), as used by
Nakaba et al.:

τ

τmax
=

s
smax
·

n
(n+ 1)+ (s/smax)n

, (10)

where τ and s are bond stress and slip between concrete and CFRP, respectively, τmax is maximum shear
stress, smax is the slip at maximum shear stress and n is a constant.

Two-dimensional plane stress finite elements are applied to analyze crack propagation. The CFRP
behavior is elastic but elastic-perfect plastic is considered to model the behavior of steel bars. Four-node
isoparametric elements are used for bulk concrete with linear elastic and isotropic behavior. The bar
elements are employed to simulate CFRP and longitudinal steel.
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material specifications
(mm)

modulus of
elasticity (MPa)

compressive
strength (MPa)

yield point
(MPa)

ultimate
tensile strain

concrete h = 200, b = 100 29.45 40.0 – –
steel bar dia. = 2× 12 mm 2 · 105 – 415 –

CFRP t = 0.13 2.40 · 105 – – 0.00152

Table 1. Material properties of the beam tested in [Kesavan et al. 2013].

3. Results and discussion

In this study, two CFRP-strengthened RC beams are modeled and discussed. The first example is the
beam as tested in [Kesavan et al. 2013]. A four-point bending concrete beam strengthened with the
CFRP plate on tension face under cyclic loading from that paper was modeled to verify our proposed
numerical model. The thickness and width of the CFRP plates were 0.13 mm and 50 mm, respectively.
The experimental test results have shown that failure was observed with the debonding of the CFRP plate,
and also the model showed that CFRP plate debonding occurred. The CFRP plate increased the bearing
capacity by 23% in the proposed model. The material properties of the beam tested in [Kesavan et al.
2013] are summarized in Table 1.

Also, to validate the proposed model, three-dimensional finite element modeling of beams by ABAQUS
software was employed. Software, such as ABAQUS, applies linear fracture mechanics to model crack
propagation. The proposed model can be compared to the conventional CZM approach used in analysis
software such as the FEA software ABAQUS. The beam was modeled by ABAQUS software with 3469
C3DBR elements. An isometric view of the model, cross section of the beam, is shown in Figure 5. The
CFRP plate was also set at specific positions to strengthen the beam as shown in Figure 6.

Figure 7 compares the load versus deflection for a beam subjected to cyclic loading obtained by the
proposed model, ABAQUS software data and with the results of experimental data in [Kesavan et al.
2013]. Results from the proposed model are in good agreement with those of Kesavan et al. It can be
observed that failure load in the proposed model was predicted within 5.4%–7.6% of the experimental
data. It can be seen that the push of the curve by the proposed model were similar to the experimental
data. However, the push of the curve by the ABAQUS software overestimated the experimental results.

P P

Figure 5. Details and dimensions of the beam strengthened with the CFRP plate tested
[Kesavan et al. 2013].
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Figure 6. The beam modeled by ABAQUS software.
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Figure 7. Load-deflection curve: experimental data in [Kesavan et al. 2013] (left) and
proposed model and ABAQUS software data (right).

ABAQUS software data shows a greater margin of difference (15.2%–24%) compared to experimental
data from [Kesavan et al. 2013].

Figure 8 illustrates the crack pattern of the beam, as modeled. As shown in Figure 8 (left), the flexural

P

Figure 8. Crack patterns of the beam predicted by the proposed model (left) and
ABAQUS (right).
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Figure 9. Comparisons pushover of load-deflection between three different meshes.

cracks have not propagated into the upper half of the beam. The proposed model predicted five flexural
cracks and five flexural-shear cracks. Within the shear span, the proposed model predicted five flexural-
shear cracks compared with two flexural-shear cracks observed in the ABAQUS simulation. However,
the flexural-shear cracks intersected together in the ABAQUS software. The number of shear cracks
is two in the proposed model compared with one shear crack predicted using ABAQUS. In both cases,
shear cracks propagated in the upper half of the beam depth. In the ABAQUS simulation, the real crack
is shown in red lines, while the FPZ propagation elements are displayed in green color. It should be
noted that the crack path is smooth, but the crack path is illustrated by unconventional lines in this study.
In the ABAQUS software, the degradation of the damage is characterized by damage variables from 0
to 0.1. If tensile damage obtained from the software is greater than 0.1, damage occurred. The results
from Figure 8 (left) showed that the maximum value of the tensile damage parameter is 0.407 > 0.1.
Therefore, the tensile damage occurred along the red lines as shown in Figure 8 (right). The test showed
that failure occurred with the debonding of CFRP plate. However, the model showed that CFRP plate
debonding occurs at failure load.

Figure 9 shows the pushover of the load — the midspan deflection with different mesh to study mesh-
size sensitivity and to check (5). Mesh 1 had 955 elements (element average size is 18 mm×16 mm, with
a finer mesh of 14 mm× 10 mm). Mesh 2 had 1,344 elements (element average size is 14 mm× 12 mm,
with a finer mesh of 12 mm×8 mm). Mesh 3 had 1,862 elements (element average size is 12 mm×8 mm,
with a finer mesh of 10 mm× 8 mm). The approximate matching of the three curves demonstrates the
independence of the model from mesh size and shows that the model exhibited fast convergence. The
results in mesh 3 were close to the experimental result (up to 95%).

Another example is a full-scale simply supported beam with four-point load strengthened by the
CFRP plate which was tested in [Heffernan and Erki 2004]. A CFRP-strengthened RC beam under
a cyclic load as in that article is modeled by using the proposed model. The details of reinforcement
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P P

Figure 10. Details of the beam strengthened with the CFRP plate tested in [Heffernan
and Erki 2004].

and dimensions of the beam are illustrated in Figure 10. The beam has three longitudinal steel rods of
diameter 25.2 mm in tensile side and the compressive side of the RC beam consists of two longitudinal
rods of diameter 11.3 mm. The beam span length and width are 2850 mm and 300 mm, respectively. The
material properties of this beam are summarized in Table 2.

The critical strain energy for Mode I in concrete and the elastic opening are 0.07 N · mm−1 and
0.077 mm, respectively. The maximum shear stress between the concrete and the CFRP, and the maxi-
mum slip are 5.95 MPa and 0.044 mm, respectively.

The central deflection and number of loading cycles curves observed in the previous experimental test
[Heffernan and Erki 2004], the proposed model and the ABAQUS software for the beam strengthened
by CFRP are shown in Figure 11. The results of the proposed model are close to that of the experimental
results. This finding indicates that the proposed model is validated by the test results. The yield point
of the curve in the proposed model is similar to its counterpart in the experimental test results (8%–
11% difference). However, this point obtained in the simulations by ABAQUS software is higher than
that in the experimental test results (18%–21% difference). The accuracy of the proposed model is also
confirmed by the close value of the failure load obtained from the proposed model and the experimental
test. The difference in load failure of the beam strengthened by CFRP is 8.4%. Compared with the
experimental test, the difference of load failure as analyzed by the ABAQUS software is over-predicted
(18%–25% difference).

Figure 12 (left) illustrates an initial mesh and crack paths for the beam by the proposed model at the
failure load. The crack pattern predicted by ABAQUS is shown in Figure 12 (right). It can be observed
from Figure 12 (left) that five flexural cracks occur at midspan perpendicular to the axis in the beam

material specifications
(mm)

modulus of
elasticity (MPa)

compressive
strength (MPa)

yield point
(MPa)

ultimate
tensile strain

concrete h = 300, b = 150 29.45 37.0 – –
steel area = 700 mm2 2 · 105 – 400 –

CFRP area = 89.4 mm2 2.33 · 105 – – 0.00175

Table 2. Material properties of the beam tested in [Heffernan and Erki 2004].
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Figure 11. Comparing results for the CFRP-strengthened beam.
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Figure 12. Crack patterns of the beam predicted by the proposed model (left) and
ABAQUS (right).

strengthened by CFRP. It is interesting to observe that the crack propagation is controlled by the CFRP
plate before into the upper half of the beam. There are five flexural-shear cracks in the shear span of the
beam. The two main diagonal shear cracks are formed at the support in the beam. This finding may be
compared with the predicted results by ABAQUS software results that only a shear crack was observed in
the vicinity of the support shown in Figure 12 (right). The shear cracks grew directly which are followed
by a slowly inclining slope towards the loading point. In both the proposed model and ABAQUS software
results, there are two shear cracks as shown in Figures 12 (left) and 12 (right), respectively. Crack length
was 9.7 mm at 40 kN load in the vicinity of the midspan and 162.7 mm at 120 kN load. Shear cracks
started at approximately 180 kN load at the support and expanded upward as load increased.

Based on the proposed model, the effect of CFRP length on the flexural crack propagation is studied.
The finding from this parametric study can be used for efficient design of RC beam strengthened by
CFRP plate under cyclic loading. The program computed the changing length of CFRP plate while other
parameters remained unchanged. Varying lengths of CFRP are 2450 mm, 2550 mm, 2650 mm, 2750 mm
and 2850 mm (equal to length of the beam). The influence of the varying lengths of CFRP on the biggest
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flexural crack length is shown in Figure 13. As expected, the load capacity increases with the increase
length of CFRP plate. It is found that the flexural crack length of the beam strengthened with CFRP
decreases with the increase in length of CFRP at the same load. For 2450 mm and 2550 mm lengths of
CFRP plate, the crack propagates to the half of the beam while the crack propagation arrests in the beam
strengthened by 2650 mm, 2750 mm and 2850 mm lengths. It can be seen that after the crack propagated
at a certain point, the load capacity is climbed for 2650 mm, 2750 mm and 2850 mm lengths of CFRP
plate. This phenomenon may be due to increase of the slip when the length of CFRP plates increase.

4. Conclusion

A new finite element model was proposed to simulate concrete beam retrofitted by CFRP composite under
cyclic loading. A link element was introduced as interface element to model crack propagation based
on the cohesive law in the concrete material. Then the mass and the damping matrix of the link element
were defined. A bar element was implemented to simulate the CFRP and then the energy release rates
was determined. The load-displacement of the beam were compared with the existing experimental test
data and conventional fracture mechanics models based on linear fracture mechanics carried out using
ABAQUS software. It was observed that the results from the proposed model are in good agreement with
the results of previous experimental data (5.4%–7.6% difference). The ABAQUS software data shows a
greater difference (15.2%–24% difference) compared to previous experimental test data. The results of
the proposed model are close to that of the previous experimental results. This finding indicates that the
proposed model was validated by the test results. The yield point of the curve in the proposed model was
similar to its counterpart in the experimental test results (8% to 11% difference). However, this point
obtained in the simulations by ABAQUS software was higher than that in the experimental test results
(18% to 21% difference). The accuracy of the proposed model was also confirmed by the close value of
the failure load obtained from the proposed model and the experimental test. The differences of beam
with strengthened by CFRP are 8.4% in terms of load failure. Comparing with experimental test, the
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differences of load failure as analyzed via ABAQUS was over-predicted (18% to 25% difference). As
expected, the load capacity increases with the increase length of CFRP plate. It is interesting to observe
that the crack propagation was controlled with CFRP plate before into the upper half of the beam. In one
of the beams, there were five flexural-shear cracks in the shear span of the beam. The two main diagonal
shear cracks were formed at the support in the beam. This finding may be compared with the predicted
results by ABAQUS software results that only a shear crack was observed in the vicinity of the support.
Also, it was found that the flexural crack length of the beam strengthened with CFRP decreases with
the increase in length of CFRP at the same load. The mesh-size sensitive analysis demonstrates that the
model is independent on mesh size and shows that the model exhibited fast convergence.

References

[Abbass et al. 2014] M. M. Abbass, V. Matsagar, and A. K. Nagpal, “Bond-slip response of FRP sheets or plates bonded
to reinforced concrete beam under dynamic loading”, pp. 1959–1969 in Advances in Structural Engineering, edited by V.
Matsagar, Springer, New Delhi, 2014.

[Aravind et al. 2015] N. Aravind, A. K. Samanta, D. K. S. Roy, and J. V. Thanikal, “Flexural strengthening of reinforced
concrete (RC) beams retrofitted with corrugated glass fiber reinforced polymer (GFRP) laminates”, Curved Layered Struct.
2:1 (2015), 244–253.

[Baji et al. 2015] H. Baji, A. Eslami, and H. R. Ronagh, “Development of a nonlinear FE modelling approach for FRP-
strengthened RC beam-column connections”, Structures 3 (2015), 272–281.

[Biscaia et al. 2013a] H. C. Biscaia, C. Chastre, and M. A. G. Silva, “Linear and nonlinear analysis of bond-slip models for
interfaces between FRP composites and concrete”, Compos. B Eng. 45:1 (2013), 1554–1568.

[Biscaia et al. 2013b] H. C. Biscaia, C. Chastre, and M. A. G. Silva, “Nonlinear numerical analysis of the debonding failure
process of FRP-to-concrete interfaces”, Compos. B Eng. 50 (2013), 210–223.

[Bocca et al. 1991] P. Bocca, A. Carpinteri, and S. Valente, “Mixed mode fracture of concrete”, Int. J. Solids Struct. 27:9
(1991), 1139–1153.

[Bruno et al. 2013] D. Bruno, F. Greco, and P. Lonetti, “A fracture-ALE formulation to predict dynamic debonding in FRP
strengthened concrete beams”, Compos. B Eng. 46 (2013), 46–60.

[Bruno et al. 2017] D. Bruno, F. Greco, S. L. Feudo, and P. N. Blasi, “Edge debonding prediction in beams strengthened by
FRP composite plates”, pp. 105–124 in Models, simulation, and experimental issues in structural mechanics, edited by M.
Frémond et al., Springer Series in Solid and Structural Mechanics 8, Springer, 2017.

[Carloni and Subramaniam 2013] C. Carloni and K. V. Subramaniam, “Investigation of sub-critical fatigue crack growth in
FRP/concrete cohesive interface using digital image analysis”, Compos. B Eng. 51 (2013), 35–43.

[Dong et al. 2016] W. Dong, D. Yang, X. Zhou, G. Kastiukas, and B. Zhang, “Experimental and numerical investigations on
fracture process zone of rock-concrete interface”, Fatigue Fract. Eng. Mater. Struct. 40:5 (2016), 820–835.

[Dong et al. 2017] W. Dong, Z. Wu, X. Zhou, L. Dong, and G. Kastiukas, “FPZ evolution of mixed mode fracture in concrete:
experimental and numerical”, Eng. Failure Analysis 75 (2017), 54–70.

[Dugdale 1960] D. S. Dugdale, “Yielding of steel sheets containing slits”, J. Mech. Phys. Solids 8:2 (1960), 100–104.

[Esfahani 2007] M. R. Esfahani, Fracture mechanics of concrete, Tehran Polytechnic press, Tehran, 2007.

[Ferracuti et al. 2007] B. Ferracuti, M. Savoia, and C. Mazzotti, “Interface law for FRP-concrete delamination”, Compos.
Struct. 80:4 (2007), 523–531.

[Fischer and Bohse 2014] G. Fischer and J. Bohse, “Observation and analysis of fracture rocesses in concrete with acoustic
emission (AE) and digital image correlation (DIC)”, pp. 1–8 in 31st Conference of the European Working Group on Acoustic
Emission (Dresden, Germany), 2014.

[Heffernan and Erki 2004] P. J. Heffernan and M. A. Erki, “Fatigue behavior of reinforced concrete beams strengthened with
carbon fiber reinforced plastic laminates”, J. Compos. Constr. (ASCE) 8:2 (2004), 132–140.

https://link.springer.com/chapter/10.1007/978-81-322-2187-6_151
https://link.springer.com/chapter/10.1007/978-81-322-2187-6_151
https://www.degruyter.com/view/j/cls.2015.2.issue-1/cls-2015-0012/cls-2015-0012.xml
https://www.degruyter.com/view/j/cls.2015.2.issue-1/cls-2015-0012/cls-2015-0012.xml
http://dx.doi.org/10.1016/j.istruc.2015.06.003
http://dx.doi.org/10.1016/j.istruc.2015.06.003
http://dx.doi.org/10.1016/j.compositesb.2012.08.011
http://dx.doi.org/10.1016/j.compositesb.2012.08.011
http://dx.doi.org/10.1016/j.compositesb.2013.02.013
http://dx.doi.org/10.1016/j.compositesb.2013.02.013
http://dx.doi.org/10.1016/0020-7683(91)90115-V
http://dx.doi.org/10.1016/j.compositesb.2012.10.015
http://dx.doi.org/10.1016/j.compositesb.2012.10.015
https://link.springer.com/chapter/10.1007/978-3-319-48884-4_5
https://link.springer.com/chapter/10.1007/978-3-319-48884-4_5
http://dx.doi.org/10.1016/j.compositesb.2013.02.015
http://dx.doi.org/10.1016/j.compositesb.2013.02.015
https://onlinelibrary.wiley.com/doi/abs/10.1111/ffe.12558
https://onlinelibrary.wiley.com/doi/abs/10.1111/ffe.12558
http://dx.doi.org/10.1016/j.engfailanal.2017.01.017
http://dx.doi.org/10.1016/j.engfailanal.2017.01.017
http://dx.doi.org/10.1016/0022-5096(60)90013-2
http://dx.doi.org/10.1016/j.compstruct.2006.07.001
https://www.ndt.net/article/ewgae2014/papers/th3a4.pdf
https://www.ndt.net/article/ewgae2014/papers/th3a4.pdf
http://dx.doi.org/10.1061/(ASCE)1090-0268(2004)8:2(132)
http://dx.doi.org/10.1061/(ASCE)1090-0268(2004)8:2(132)


426 SHAHRIAR SHAHBAZPANAHI AND HUNAR FARID HAMA ALI

[Hillerborg et al. 1976] A. Hillerborg, M. Modéer, and P.-E. Petersson, “Analysis of crack formation and crack growth in
concrete by means of fracture mechanics and finite elements”, Cem. Concr. Res. 6:6 (1976), 773–781.

[Kaplan 1961] M. Kaplan, “Crack propagation and the fracture concrete”, ACI J. 58:11 (1961), 591–610.

[Kesavan et al. 2013] K. Kesavan, K. Ravisankar, R. Senthil, and A. K. F. Ahmed, “Experimental studies on performance
of reinforced concrete beam strengthened with CFRP under cyclic loading using FBG array”, Measurement 46:10 (2013),
3855–3862.

[Kirane and Bažant 2015] K. Kirane and Z. P. Bažant, “Size effect in Paris law for quasibrittle materials analyzed by the
microplane constitutive model M7”, Mech. Res. Commun. 68 (2015), 60–64.

[Ko and Sato 2007] H. Ko and Y. Sato, “Bond stress-slip relationship between FRP sheet and concrete under cyclic load”, J.
Compos. Constr. (ASCE) 11:7 (2007), 419–426.

[Lee et al. 2010] J. H. Lee, R. M. Chacko, and M. M. Lopez, “Use of mixed-mode fracture interfaces for the modeling of
large-scale FRP-strengthened beams”, J. Compos. Constr. (ASCE) 14:6 (2010), 845–855.

[Li et al. 2017] D. Li, P. Huang, X. Guo, X. Zheng, J. Lin, and Z. Chen, “Fatigue crack propagation behavior of RC beams
strengthened with CFRP under cyclic bending loads”, Fatigue Fract. Eng. Mater. Struct. 41:1 (2017), 212–222.

[Martinelli and Caggiano 2014] E. Martinelli and A. Caggiano, “A unified theoretical model for the monotonic and cyclic
response of FRP strips glued to concrete”, Polymers 6:2 (2014), 370–381.

[Nakaba et al. 2001] K. Nakaba, K. K., T. Furuta, and K. Yoshizawa, “Bond behavior between fiber-reinforced polymer lami-
nates and concrete”, ACI Struct. J. 98:3 (2001), 359–367.

[Ouzaa and Benmansour 2014] K. Ouzaa and M. B. Benmansour, “Cracks in continuously reinforced concrete pavement”,
Arab. J. Sci. Eng. 39:12 (2014), 8593–8608.

[Palmieri and Lorenzis 2014] V. Palmieri and L. D. Lorenzis, “Multiscale modeling of concrete and of the FRP-concrete
interface”, Eng. Fract. Mech. 131 (2014), 150–175.

[Pan and Wu 2014] J. Pan and Y.-F. Wu, “Analytical modeling of bond behavior between FRP plate and concrete”, Compos. B
Eng. 61 (2014), 17–25.

[Pietruszczak and Haghighat 2015] S. Pietruszczak and E. Haghighat, “Modeling of fracture propagation in concrete structures
using a constitutive relation with embedded discontinuity”, Studia Geotechnica et Mechanica 36:4 (2015), 27–33.

[Raghu and Renuka 2007] P. B. K. Raghu and D. M. V. Renuka, “Extension of FCM to plain concrete beams with vertical
tortuous cracks”, Eng. Fract. Mech. 74:17 (2007), 2758–2769.

[Shahbazpanahi 2017] S. Shahbazpanahi, “Mechanical analysis of a shear-cracked RC beam”, Acta Scientiarum. Technol. 39:3
(2017), 285–290.

[Shahbazpanahi et al. 2012] S. Shahbazpanahi, A. A. A. Ali, F. N. Aznieta, and A. Kamgar, “A simple method to model crack
propagation in concrete”, Constructii J. 13:1 (2012), 41–50.

[Shahbazpanahi et al. 2015] S. Shahbazpanahi, A. A. A. Ali, A. Kamgar, and N. Farzadnia, “Fracture mechanic modeling of
fiber reinforced polymer shear-strengthened reinforced concrete beam”, Compos. B Eng. 68 (2015), 113–120.

[Shi 2009] Z. Shi, Crack analysis in stuctural concrete: theory and aplications, Butterworth-Heinemann, Burlington, USA,
2009.

[Shi et al. 2001] Z. Shi, M. Ohtsu, M. Suzuki, and Y. Hibino, “Numerical analysis of multiple cracks in concrete using the
discrete approach”, J. Struct. Eng. (ASCE) 127:9 (2001), 1085–1091.

[Simon and Kishen 2017] K. M. Simon and J. M. C. Kishen, “A multiscale approach for modeling fatigue crack growth in
concrete”, Int. J. Fatigue 98 (2017), 1–13.

[Taylor 2009] L. R. Taylor, FEAPpv source: a finite element analysis program, University of California, Berkeley, 2009.

[Tryding and Ristinmaa 2017] J. Tryding and M. Ristinmaa, “Normalization of cohesive laws for quasi-brittle materials”, Eng.
Fract. Mech. 178 (2017), 333–345.

[Wu and Bailey 2005] Z. J. Wu and C. G. Bailey, “Fracture resistance of a cracked concrete beam post-strengthened with FRP
sheets”, Int. J. Fract. 135 (2005), 35–49.

[Wu et al. 2011] Z. Wu, H. Rong, J. Zheng, F. Xu, and W. Dong, “An experimental investigation on the FPZ properties in
concrete using digital image correlation technique”, Eng. Fract. Mech. 78:17 (2011), 2978–2990.

http://dx.doi.org/10.1016/0008-8846(76)90007-7
http://dx.doi.org/10.1016/0008-8846(76)90007-7
https://www.concrete.org/publications/internationalconcreteabstractsportal/m/details/id/7999
http://dx.doi.org/10.1016/j.measurement.2013.07.031
http://dx.doi.org/10.1016/j.measurement.2013.07.031
http://dx.doi.org/10.1016/j.mechrescom.2015.03.003
http://dx.doi.org/10.1016/j.mechrescom.2015.03.003
http://dx.doi.org/10.1061/(ASCE)1090-0268(2007)11:4(419)
http://dx.doi.org/10.1061/(ASCE)CC.1943-5614.0000143
http://dx.doi.org/10.1061/(ASCE)CC.1943-5614.0000143
https://onlinelibrary.wiley.com/doi/full/10.1111/ffe.12673
https://onlinelibrary.wiley.com/doi/full/10.1111/ffe.12673
http://dx.doi.org/10.3390/polym6020370
http://dx.doi.org/10.3390/polym6020370
https://www.concrete.org/publications/internationalconcreteabstractsportal/m/details/id/10224
https://www.concrete.org/publications/internationalconcreteabstractsportal/m/details/id/10224
http://dx.doi.org/10.1007/s13369-014-1442-7
http://dx.doi.org/10.1016/j.engfracmech.2014.07.027
http://dx.doi.org/10.1016/j.engfracmech.2014.07.027
http://dx.doi.org/10.1016/j.compositesb.2014.01.026
http://dx.doi.org/10.2478/sgem-2014-0033
http://dx.doi.org/10.2478/sgem-2014-0033
http://dx.doi.org/10.1016/j.engfracmech.2007.01.007
http://dx.doi.org/10.1016/j.engfracmech.2007.01.007
http://dx.doi.org/10.4025/actascitechnol.v39i3.29672
http://dx.doi.org/10.1016/j.compositesb.2014.08.041
http://dx.doi.org/10.1016/j.compositesb.2014.08.041
http://dx.doi.org/10.1061/(ASCE)0733-9445(2001)127:9(1085)
http://dx.doi.org/10.1061/(ASCE)0733-9445(2001)127:9(1085)
http://dx.doi.org/10.1016/j.ijfatigue.2017.01.007
http://dx.doi.org/10.1016/j.ijfatigue.2017.01.007
http://dx.doi.org/10.1016/j.engfracmech.2017.03.020
http://dx.doi.org/10.1007/s10704-005-3468-z
http://dx.doi.org/10.1007/s10704-005-3468-z
http://dx.doi.org/10.1016/j.engfracmech.2011.08.016
http://dx.doi.org/10.1016/j.engfracmech.2011.08.016


FRACTURE MECHANICS MODEL OF BEAM RETROFITTED WITH CFRP PLATE 427

[Xie and Biggers Jr. 2006] D. Xie and S. B. Biggers Jr., “Progressive crack growth analysis using interface element based on
the virtual crack closure technique”, Finite Elem. Anal. Des. 42:11 (2006), 977–984.

[Xie and Waas 2006] D. Xie and A. M. Waas, “Discrete cohesive zone model for mixed-mode fracture using finite element
analysis”, Eng. Fract. Mech. 73:13 (2006), 1783–1796.

[Xie et al. 2006] D. Xie, A. G. Salvi, C. Sun, A. M. Waas, and A. Caliskan, “Discrete cohesive zone model to simulate static
fracture in 2D triaxially braided carbon fiber composites”, J. Compos. Mater. 40:22 (2006), 2025–2046.

[Xu et al. 2011] F. Xu, Z. Wu, J. Zheng, Y. Zhao, and K. Liu, “Crack extension resistance curve of concrete considering
variation of FPZ length”, J. Mater. Civ. Eng. (ASCE) 23:5 (2011), 703–710.

[Zheng et al. 2015] J.-J. Zheng, J.-G. Dai, and X.-L. Fan, “Fracture analysis of FRP-plated notched concrete beams subjected
to three-point bending”, J. Eng. Mech. (ASCE) 142:3 (2015), 1–10.

Received 11 Feb 2019. Revised 21 Apr 2019. Accepted 12 May 2019.

SHAHRIAR SHAHBAZPANAHI: sh.shahbazpanahi@gmail.com
Department of Civil Engineering, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran

HUNAR FARID HAMA ALI: hunar.hamaali@uoh.edu.iq
Department of Building and Construction Engineering, University of Halabja, Kurdistan, Iraq

mathematical sciences publishers msp

http://dx.doi.org/10.1016/j.finel.2006.03.007
http://dx.doi.org/10.1016/j.finel.2006.03.007
http://dx.doi.org/10.1016/j.engfracmech.2006.03.006
http://dx.doi.org/10.1016/j.engfracmech.2006.03.006
http://dx.doi.org/10.1177/0021998306061320
http://dx.doi.org/10.1177/0021998306061320
http://dx.doi.org/10.1061/(ASCE)MT.1943-5533.0000207
http://dx.doi.org/10.1061/(ASCE)MT.1943-5533.0000207
https://ascelibrary.org/doi/10.1061/%28ASCE%29EM.1943-7889.0001021
https://ascelibrary.org/doi/10.1061/%28ASCE%29EM.1943-7889.0001021
mailto:sh.shahbazpanahi@gmail.com
mailto:hunar.hamaali@uoh.edu.iq
http://msp.org




JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 14, No. 3, 2019

dx.doi.org/10.2140/jomms.2019.14.429 msp

ASSESSMENT OF DEGRADATION OF RAILROAD RAILS:
FINITE ELEMENT ANALYSIS OF INSULATED JOINTS AND

UNSUPPORTED SLEEPERS

HOSSAM ELSAYED, MOHAMED LOTFY, HAYTHAM ZOHNY AND HANY SOBHY

This research investigates the response of rail material using an elastic-plastic finite-element framework.
The implications of unsupported sleepers and insulated rail joints which represent sources of stiffness dis-
continuity in railroad lines were included. The nonlinear response of wheel-rail material was considered.
The developed finite-element model has been supported by an analytical method to assess the onset of
fatigue cracks in rails. Deflections, strains, stresses, and crack initiation parameters were obtained. The
results showed good compatibility with the field observations, Hertz’s theory, and equivalent studies. The
findings showed the high sensitivity of plastic flow and rail material fatigue to the value of rail deflection
which on the contrary has a meagre impact on the magnitudes of stresses. In addition, insulated rail joints
due to stress singularity have a hurtful influence on the quantities of stresses, plastic deformation, and
fatigue life. However, this effect plummets with increasing depth. For all cases, cracks initiate at the rail’s
surface knowing that the simulated friction coefficient between wheel and rail is 0.35 and the applied
wheel load is 110 kN. Additionally, 15 mm depth is enough to study the nonlinear characteristics of rail
materials. And finally, unsupported sleepers accelerate the electrical failure, which causes troublesome
traffic disturbances, at insulated rail joints.

1. Introduction

Deterioration of rails is a critical and growing issue for railways across the world. Zerbsta et al. [2009]
stated that in Great Britain over the last century the failures of rails per train kilometre have been raised
more than twice. In Egypt, for reasons still not rigorously identified, rail fracture is inevitable and
frequent every year (see Figure 1) with a plethora of replacements taking place prior to the complete
damage (not included in Figure 1). This problem is not only contributing to increasing the annual costs
of maintenance [Cannon et al. 2003] but also it may cause catastrophic incidents such as the derailment
of Hatfield train in the UK which resulted in four fatalities and over seventy casualties [Zerbsta et al.
2009]. This issue reaches its maxima at the locations where the track losses its stiffness continuity. Such
discontinuity can be found at the insulated rail joints (IRJs) (or in short insulated joints) which are used
to control the railway signalling system of most modern rail networks. At any IRJ, it is required to
have two rails electrically insulated from each other with an insulating material which always has lower
stiffness than the adjacent rails inducing high-stress concentration at IRJ’s zone. Zong and Dhanasekar
[2014] highlighted that the average life of IRJs is 20% compared with conventional rails, making their
replacement about 20%–50% of the entire track replacements. Another source of stiffness irregularity
appears at unsupported sleepers (or hanging sleepers), which refer to sleepers connected to the rail

Keywords: unsupported sleeper, railway model, wheel-rail contact, insulated rail joints, crack initiation, fatigue of rails.
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Figure 1 Variation of the number of rail fractures per year in the first line of Cairo Metro in Egypt [2] 

Figure 1. Variation of the number of rail fractures per year in the first line of Cairo
Metro in Egypt [El-sayed et al. 2018a].

without any support from the ballast. This fault is created by the uneven settlement of the ballast or
the underneath material layer formed during service life due to irregularity in track stiffness [Lundqvist
and Dahlberg 2005]. This defect exists in all ballasted railroad lines. Augustin et al. [2003] claimed
that in reality up to 50% of sleepers are partially or fully hanging. Olsson and Zackrisson [2002] found
by field measurements very frequent small gaps among sleepers and ballast, with different size of these
gaps of the same sleeper. Ishida et al. [1999] explained with an analytical dynamic model the baleful
effect of unsupported sleepers on the fatigue life of rail welds, rail deflection, and rail bending stress.

The likelihood of the occurrence of hanging sleepers at IRJs is high. This can be explained in Figure 2.
The reduction of stiffness at IRJ’s location intensifies the dynamic forces [Wen et al. 2005; Cai et al. 2007;
Pang and Dhanasekar 2006], causing track deterioration through a various number of failure modes
[Mandal and Peach 2010; Rathod et al. 2012; El-sayed et al. 2018b]; e.g., squashing, spalling, rolling
contact fatigue, plastic flow in the proximity of the joint, and sleepers’ failure. These failure forms
make a ferocious cycle with the quantity of impact load. As the train-track dynamic load escalated, the
nonuniform deformation of the ballast increases [Zhang et al. 2008; Grassie and Cox 1985], producing
unsupported sleepers’ defect. In the literature, most of the efforts investigate either the effects of unsup-
ported sleepers [Ishida et al. 1999; Zhang et al. 2008; Grassie and Cox 1985; Bezin et al. 2009] or IRJs
[Chen and Chen 2006; Chen and Kuang 2002; Zong and Dhanasekar 2012; Sandström and Ekberg 2009]
on the behaviour of railway track. However, both issues jointly should be studied for real knowledge of
the mechanisms of rail’s failure. Likewise, although the fatigue life and stress-strain states have been
extensively explored for conventional rails [El-sayed et al. 2018a; Ringsberg 2001; Ringsberg et al. 2000;
Ringsberg and Josefson 2001] and rails at traditionally bolted joints [Wen et al. 2005; Cai et al. 2007;
Mohammadzadeh et al. 2013], the impact of IRJs and hanging sleepers simultaneously and separately
on these dilemmas is questionable.
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Figure 2 The process of unsupported sleepers’ formation at IRJ 
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Figure 2. The process of unsupported sleepers’ formation at IRJ.

This research focuses on examining the influence of IRJs in collaboration with hanging sleepers on
the rail material response and comparing the results with that acquired from each issue individually. To
this end, numerical simulations were implemented in which different scenarios for comparison purpose
were created accounting for both normal and jointed tracks in the absence and presence of hanging
sleepers considering the whole track response. The plastic deformation, realistic contact geometry, and
rail bending were considered, which are necessary to get authentic findings. The numerical results were
discussed and compared against field investigation, Hertz’s theory, and equivalent studies. Likewise, they
were incorporated with a fatigue life criterion to get predictions of the initiation of fatigue cracks in rails.

2. Modelling of wheel-track system

To achieve the research objective, a three-dimensional (3D) finite element (FE) model was performed
considering the full wheel-track system with the implementation of an elastic-plastic material model us-
ing ABAQUS/Explicit code [Dassault Systèmes 2014]. The introduced model is based on specifications
of a sector of railroad track existing in Cairo Metro (CM), Egypt; it is hereafter named the test site and
it is depicted minutely in [Egyptian National Railways 2004]. At the test site, the standard 1435 mm
gauge is used. A 54E1 (UIC54) standard rail profile (Figure 3, second row, left) with an inclination of
1 : 20 is applied and supported by monoblock concrete sleepers (Figure 3, third row). The sleeper spacing
is 0.6 m and each sleeper is embedded into a ballast layer, which has a depth of 0.3 m. The sleeper is
separated from the rail bottom with a layer of compressible material (rail pad) of 5 mm height and a steel
plate of 14 mm thickness. The wheel has a nominal radius Rw of 510 mm (Figure 3, second row, right),
subjected to a vertical static load equal to 110 kN when there are 13 passengers per meter square in the
motorcoach. The peak permissible (design) speed of the trains passing the test site is 100 km/h while the
operational speed is 80 km/h.

2.1. Modelling of normal track. The normal track model here refers to the track with no irregularity.
Referring to Figure 3, two FE models were created namely “global model” and “submodel”. The global
model is used to account for the bending line of rail. The influence of rail pads, sleepers, ballast, and
subgrade was considered (see Figure 3, top row, left). The rail pad was connected with the rail and
sleeper in both vertical and transverse directions. The steel base plate existing under the rail pad was
disregarded since its impact on the rail bending is quite small because of its higher stiffness compared
with other components beneath the rail. The ballast and subgrade layers were connected by tie constraints
with no longitudinal displacement permitted at the ends of the two layers. The base of the model and the
ends of the rail were fixed in all directions. Symmetry of the track system was presumed so that only
one wheel and a half-straight track were modelled with symmetry boundary condition assigned at the
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Figure 3. Wheel-track interaction model. Top row: schematic diagram of a part of
the global FE model (left) and representation of the wheel-rail FE model in submodel
(right). Second row: rail profile (left) and wheel profile (right). Third row: dimensions of
a concrete monoblock sleeper (the plane is drawn above the longitudinal view). Bottom
row: meshing of a section of the global model (left) and meshing of submodel (right).
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symmetry plane. This system was modelled for a length of 20 sleeper spans which is long enough to
simulate the track response [Sadeghi 1997]. Such large FE model prohibits element size to be refined to
a desirable level due to barriers of calculation time which passively affects the fineness of local stresses
and strains generated at the region of wheel-rail interface. Accordingly, using submodeling approach,
which enables examining a local sector of the entire model with a much finer mesh and with no disregard
of the rail bending line [Dassault Systèmes 2014], another FE model dubbed as “submodel” was created.
This model as clarified in Figure 3 (top row, right) is composed of only a limited sector of the wheel
and rail. The response of rail’s boundaries with time in submodel was acquired from the global model.
For the same reason of calculation time, the rolling distance in both models was restrained to 240 mm.
The initial contact position among wheel-rail was taken at 140 mm away from the origin o of coordinate
system oxyz defined in Figure 3 (top row) where the origin o is located at the middle-top point of the
54E1 (UIC54) profile, at the mid-side of the two middle sleepers, i.e., sleeper 10 and sleeper 11. The
current and previous studies [El-sayed et al. 2018a; 2018b] have shown that this length using the explicit
analysis method in case of elastic-plastic behaviour can give reliable results. The meshed geometry is
demonstrated in Figure 3 (bottom row, left and right) for the global model and submodel, respectively.
The modelled wheel and rail parts were meshed with first-order brick elements (Type C3D8) with fine
elements, 2 mm×2 mm×2 mm and 1 mm×1 mm×0.8 mm in the global model and submodel, in x , y, z,
respectively, at the contact area; while, coarse mesh was allowed at other noncontacting regions. The
mesh transition among regions of different element characteristics was managed using tie constraints. For
other components reduced integrated solid elements (Type C3D8R) were preferred since they minify the
time of calculation and exhibit no shear locking. The material parameters of the FE model are given in
Table 1, in which the variables defining the nonlinear response of wheel-rail materials are also presented.
These parameters obtained from [El-sayed et al. 2018a] are compatible with the test site’s specifications.
The elastic-plastic behaviour was implemented only in submodel at the contact spot; i.e., the upper rail
part and the lower wheel part (Figure 3, top row, right). Other than that, the elastic response was applied.

2.2. Modelling of unsupported sleepers. As presented in Figure 4, two hanging sleepers were consid-
ered to be unsupported; namely sleeper 10 and sleeper 11, the two middle sleepers. These hanging
sleepers were modelled by introducing a gap with 2 mm and 4 mm between the two sleepers and the
ballast bed. Shi et al. [2012], according to measurement carried out by Guangzhou Railway Corporation
in China [Li and Sun 1992] clarified that the range of small gaps among sleepers and ballast is 2 mm
to 4 mm. In the simulation, the interaction between the hanging sleepers and ballast was activated only
when the prescribed gap was closed. The transition from the normal track sector to the unsupported one
was not studied; only the unsupported area was elucidated to explore the effect of increased deflection
on material failure.

2.3. Modelling of jointed railway track. As clarified in Figure 5 (left), the modelled IRJ as utilized at
the test site is composed of an insulating material inserted between two rail sections. This layer is made
of fibreglass material and its width is 8 mm. To secure the joint, two steel joint bars are fastened to
the rails with epoxy adhesive and six pretensioned bolts. The adhesive layers were presumed to have
a thickness of 3 mm. The joint bar has nonuniform cross-sections as seen in Figure 5 (right), shaped
with thicker mid-section (width = 48 mm) to provide additional strength and deflection resistance at the
joint’s region. In the simulation, the end post and adhesive layers were assumed to be fully bonded with
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Part Parameter (Unit) Value

Wheel (grade R7)

Mass density, ρw (kg/m3) 7850
Elastic modulus, Ew (MPa) 205000

Poisson’s ratio, νw 0.3
Yield stress, σyw (MPa) 316

Kinematic hardening parameter, γ 401
Kinematic hardening modulus, C (MPa) 137000

Rail (grade 900A)

Mass density, ρr (kg/m3) 7800
Elastic modulus, Er (MPa) 206000

Poisson’s ratio, νr 0.28
Yield stress, σyr (MPa) 379

Kinematic hardening parameters, γ1, γ2, γ3 55, 600, 2000
Kinematic hardening modules, C1, C2, C3 (MPa) 24750, 60000, 200000

Isotropic hardening parameter, R 500
Isotropic hardening modulus, Q∞ (MPa) −189

Mass density, ρp (kg/m3) 950
Rail pad Elastic modulus, Eρ (MPa) 800

Poisson’s ratio, νp 0.46

Mass density, ρc (kg/m3) 2300
Sleeper Elastic modulus, Ec (MPa) 36000

Poisson’s ratio, νc 0.3

Mass density, ρb (kg/m3) 1800
Ballast Elastic modulus, Eb (MPa) 170

Poisson’s ratio, νb 0.3

Mass density, ρs (kg/m3) 1600
Subgrade Elastic modulus, Es (MPa) 30

Poisson’s ratio, νs 0.25

Table 1. Material parameters applied in the numerical simulations [El-sayed et al. 2018a].
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Figure 4. Schematic drawing of hanging sleepers.
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Figure 5 Global overview of a part of the wheel–track model with IRJ 
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Figure 5. Left: global overview of a part of the wheel-track model with IRJ. Right:
mechanical drawing of the joint bar.

the adjacent steel material. The nuts and washers were not accounted for since they do not contribute
to the joint’s stiffness. The IRJ in this research is located over the two middle sleepers and the origin
o of IRJ’s scenarios is at the centre of 54E1 (UIC54) profile and at the surface of rail edge 1, the first
edge in the rolling direction. In submodel analysis, the presence of end post layer is the only difference
compared to the normal track model (Section 2.1). The joint bars, bolts, epoxy adhesive, and end post
were considered to behave elastically and modelled using C3D8R elements. The joint bars and bolts
were deemed to have the same elastic properties of rail steel (Table 1); whilst, the epoxy adhesive and
end post were presumed to have a modulus of elasticity of 4500 MPa, Poisson’s ratio of 0.19, and density
of 1920 kg/m3. These properties were used in other previous studies [Chen and Kuang 2002].

2.4. Applied loads. Loads and rolling of the wheel were negotiated by three quantities Fy , V , and ω
defined at the central point of the wheel. This point was rigidly linked by tie constraints with all nodes
of the closest side of the wheel part (see Figure 5, left). Here, Fy is the vertical force taken equivalent
to 110 kN. Displacement of the wheel was achieved by imposing a translational velocity V at the wheel
centre. To simulate pure rolling, an angular velocity ω equal to V/Rw was applied. Since the trains at
the site concerned move with a design speed of 100 km/h, a translational velocity of 100 km/h with an
angular one equal 54.5 rad/s were applied to the wheel. The wheel was not allowed to move in the lateral
direction and no lateral forces were applied to the model. For insulated joint’s scenarios, in the global
model, the bolt pretension load generated from bolt tightening was considered. The bolt pretension Pb

can be defined as [Wen et al. 2005]
Pb =

T
Kb D

, (1)

where Kb is the coefficient of the bolt torque moment T , and D is the bolt diameter. Here, the selected
values are T = 500 Nm [Wen et al. 2005], Kb = 0.2 [Wen et al. 2005], and D = 32 mm according to
IRJ’s design used in CM.
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2.5. Wheel-track interaction. In the FE-software, the interface was defined by surface-to-surface dis-
cretization algorithm. One surface of this approach is called “master surface” and the other is “slave
surface”. Contact was then achieved by forbidding nodes of the slave surface in each increment from
penetrating the master segment using a penalty algorithm which imposes normal springs among the
penetrating nodes and the master surface. The contact force is equal to the product of contact stiffness
and penetration distance. Isotropic Coulomb’s friction model was adopted to simulate the tangential
behaviour with a limiting shear stress value of µP at the contacting nodes where slip takes place. Here,
µ is the friction coefficient, and P is the interface pressure. If the frictional stress is lower than µP , a
penalty algorithm was used to ensure that no slip occurs. The value of µ was selected as 0.35 for wheel-
rail interface [Harrison et al. 2002], 0.3 for rail-rail pad and rail pad-sleeper interfaces [Zhang 2015],
0.7 for sleeper-ballast layer interface [Zhang 2015], and 0.4 for bolts-joint bars and bolts-rails interfaces
[Cai et al. 2007]. The finite sliding option was permitted during analysis to define the relative sliding
among the two contacting bodies. The wheel-rail contact position was presumed at the lateral centre of
the rail profile against the wheel tread.

3. Results and discussion

The results are discussed for the performed scenarios, which are:

Scenario 1: Normal track.

Scenario 2: Track with two hanging sleepers of 2 mm gap size.

Scenario 3: Track with an IRJ.

Scenario 4: Incorporation of scenario 2 with scenario 3.

Scenario 5: Track with two unsupported sleepers of 4 mm gap size.

Scenario 6: Integration of scenario 3 with scenario 5.

The last two scenarios are presented only when there is an obvious impact of increasing gap size from
2 mm to 4 mm.

3.1. Displacement. As depicted in Figure 6 (left), the crest downward displacement of scenario 1 is
1.95 mm which is concurrent with El-sayed et al. [2018a] with 8% difference owing to the finer meshing
implemented in this study. Another reason is that in [El-sayed et al. 2018a] the length of the modelled
track is equivalent to 32 sleeper spans being different from the FE model created here in which 20 sleepers
were utilized. In scenario 2, the climax downward deflection is 3.87 mm, extensively higher compared
with that acquired from scenario 1 due to low stiffness. This abrupt change of rail displacement at the
region of hanging sleepers would cause undesirable effects on ride comfort and safety. However, the
impact of IRJ on the magnitude of this component is relatively small (not exceed 2.7%). This means
that such joint bar design (see Figure 5, right) provides adequate stiffness to the rail joint in the vertical
direction. The impact of gap size on the peak values of rail deflection is clarified in Figure 6 (right). It is
obvious that the relationship between gap size and rail downward deflection is nonlinear. As the gap size
increased from 2 mm to 4 mm, the maximum downward deflection raised only by 16.6% in the absence
of IRJ and by 13.7% in the presence of IRJ. This behaviour is probably due to the impact of the adjacent
sleepers. Adding these findings to that obtained in [Ishida et al. 1999], it can be concluded that there
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Figure 7 Deflection of rail for the first four scenarios 
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Figure 8 Effect of gap size on the maximum downward deflection of rail 
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Figure 6. Left: deflection of rail for the first four scenarios. Right: effect of gap size
on the maximum downward deflection of the rail.

is a gap size above which the rail deflection is unchanging, and the unsupported sleepers don’t touch
the ballast. Figure 7 depicts the residual longitudinal deformation at the end of the loading step at IRJ’s
region for scenario 3 and scenario 4 as obtained from submodel analysis. As clarified, the width of end
post dwindled due to the axial deformation of rail material adjacent to IRJ’s zone. The peak reduction
of IRJ’s width for both scenarios occurred at y =−0.8 mm with a magnitude equal to 0.1874 mm and
0.2486 mm for scenario 3 and scenario 4, respectively, meaning that hanging sleepers can markedly
accelerate the electrical deterioration of IRJs, which occurs if the two rails at IRJ’s zone touched each
other when the track of this section is not occupied. This electrical problem causes troublesome traffic
disturbances.

 

 

 
 

 

 
Figure 9 Residual longitudinal deformation at IRJ’s region (deformation scale factor 10) 
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Figure 7. Residual longitudinal deformation at IRJ’s region (deformation scale factor = 10).
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3.2. Surface pressure. The interface pressure distribution at the position which has peak value during
rolling contact is plotted in Figure 8. However, it should be recognized that as the rail is discretely
supported, the contact characteristics alter with the change of contact position, see Figure 12 (left) for
more clarification. As depicted in scenario 1, the normal pressure is maxima when P = 1000 MPa
distributed over a contact area of 21.49 mm and 18.01 mm in z-direction and x-direction, respectively.
Compared with Hertz’s theory which is based on elastic behaviour assumption, refer to [Johnson 1985]
for detailed illustration, the present FE model as depicted in Figure 9, owing to the consideration of
plastic deformation, showed a lower pressure value with a larger contact patch in both directions. These
findings are in good agreement with that obtained in [Yan and Fischer 2000]. On the contrary with
scenario 1, the peak magnitude of pressure is largely unaffected by the existence of hanging sleepers,
the difference is only 1.67%, but the position of this value is different, it appeared closer to the track
origin. This position remained the same as the gap size increased from 2 mm to 4 mm. For scenario 3,
as expected a high impact on interface pressure parameters (shape and magnitude) due to edge effect
was obtained. The entity of IRJ raised the peak value of interface pressure to 1172 MPa, which is 17.2%
larger than that computed from scenario 1. Moreover, the contact spot became wider in z-direction and
in x-direction as well. In scenario 4, case of hanging sleepers with IRJ, the pressure value increased by
4.35% from that determined in scenario 3 with no change in the location of crest pressure value.
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Figure 10 Interface pressure’s distribution for the first four scenarios when the contact pressure reached 

its climax value. Note, A and B represent dimensions of the contact patch in rolling and lateral directions, 

respectively, and the white point shows the position of peak pressure value whose coordinates are drawn 

in a red box 
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Figure 8. Interface pressure’s distribution for the first four scenarios when the contact
pressure reached its climax value. Note, A and B represent dimensions of the contact
patch in rolling and lateral directions, respectively, and the white point shows the position
of peak pressure value whose coordinates are drawn in a red box.
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Figure 11 Distribution of contact pressure acquired from the FE model in scenario 1 and Hertz’s theory: (a) 

along rolling axis; (b) along lateral axis. Here, the origin is placed at the crest 𝑃 value 
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Figure 9. Distribution of contact pressure acquired from the FE model in scenario 1 and
Hertz’s theory: along the rolling axis (left) and along the lateral axis (right). Here, the
origin is placed at the crest P value.

The tangential stress distribution at the crest normal pressure position is delineated in Figure 10. In
scenario 1 and scenario 2, the magnitude of surface shear stress is lower than µP along the contact spot.
This means that the contact patch is totally in stick due to the free-rolling condition. The reason for
the small negative tangential stress quantity, existing in the leading edge of the contact patch, is that the
tangential force is negligible at this location, case of frictionless contact. However, in scenario 3 and
scenario 4, despite free-rolling, the tangential stress distribution coincides with the corresponding µP
curve up to rail edge 1 where interfacial shear stress hit its maximum magnitude. Furthermore, because
of the significant reduction of interface pressure at the end post as presented in Figure 8, the direction of
surface shear stress is opposite on both sides of the IRJ correlating well with the results gained in [Chen
and Chen 2006]. The effect of hanging sleepers on increasing the tangential stress of IRJ’s scenarios
is only obvious on the left side of the IRJ. These results reveal the meagre effect of rail deflection on
wheel-rail contact characteristics.

 
(a)                                                                                                     (b) 

Figure 12 Surface shear stress distribution along the z-axis: (a) for scenarios without IRJ; (b) for IRJ’s scenarios. Solid lines 
represent the tangential shear stress (𝜏𝑦𝑧) and dashed lines represent the interface pressure multiplied by 𝜇 (i.e. 𝑃𝜇) 
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Figure 12 Surface shear stress distribution along the z-axis: (a) for scenarios without IRJ; (b) for IRJ’s scenarios. Solid lines 
represent the tangential shear stress (𝜏𝑦𝑧) and dashed lines represent the interface pressure multiplied by 𝜇 (i.e. 𝑃𝜇) 
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Figure 10. Surface shear stress distribution along the z-axis: for scenarios without IRJ
(left) and for IRJ’s scenarios (right). Solid lines represent the tangential shear stress (τyz)
and dashed lines represent the interface pressure multiplied by µ (i.e., Pµ).
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3.3. Stress analysis. Figure 11 depicts the contours of von Mises stress σe in x-y plane from the FE
model together with the distribution of σe along the rail depth at x = 0 for the four main scenarios. These
plots were drawn when σe reached its maximum value. As clarified, the crest value of σe (denoted by
black point) formed at the rail’s surface with a value equal 514.8 MPa and 506.5 MPa in scenario 1 and
scenario 2, respectively, noticeably larger than the yield strength of rail material which is 379 MPa in this
analysis. In addition, in both scenarios the magnitudes of σe remain almost constant to some millimetres
beneath the rail surface. This could increase the probability of both surface and subsurface damage
initiation. For IRJ’s scenarios, the peak σe magnitude located at the rail’s top surface at z = 0, then it
decreased rapidly. Compared with scenario 1, the vicinity of IRJ again due to edge effect increased the
summit σe magnitude by 46.36% and 43.42% in scenario 3 and scenario 4, respectively. However, at
subsurface depths, approximately 4 mm below the surface, the behaviour reversed. Moreover, the effect
of hanging sleepers on this component is quite small along the upper rail part, being analogous with the
results presented in Section 3.2. This means that von Mises stress magnitude is highly influenced by the
contact characteristics and rail displacement has a minuscule impact on this quantity.

Figure 12 (left) indicates the crest von Mises stress σe magnitude in a strip of surface nodes along the
travelling direction at x = 0. The peak stress of a node is the maximum stress the node experienced in the
time history. As observed, for all given scenarios the characteristics of von Mises stress, such as values
and shapes (not shown in the figure), differ with time even with smooth rail surface. This is because of
both the vibrations of the track system which are inherent in the explicit model and the change of contact
spot position on a discretely supported system. The results showed that, the oscillation amplitude of σe

in scenario 1 is 47.01 MPa, 10.53% of the mean value which equal 446.55 MPa. For scenario 2, the
oscillation amplitude is 69.11 MPa, 15.80% of the mean value that is equivalent to 437.41 MPa. This
implies that on the contrary to the normal track, the stress oscillation increases in case of unsupported
sleepers. In the IRJ’s scenarios, the entity of insulating layer changed drastically the oscillation amplitude
which equals 253.52 MPa and 239.1 MPa in scenario 3 and scenario 4, respectively, in the studied strip.

3.4. Plastic strain analysis. As seen in Figure 12 (right), the maximum value of equivalent plastic strain
εeff in the first two scenarios appeared at subsurface and at different longitudinal position, precisely at
y =−2.54 mm and z = 35.20 mm for scenario 1 and at y =−4.19 mm and z = 74.36 mm for scenario 2.
These results contradict with the von Mises stress contours depicted in Figure 11 in which the peak stress
is on the surface. This behaviour occurs because of the rail deflection. El-sayed et al. [2018a] compared a
FE model that considered rail bending with another one that neglected this factor and the results explained
that a 1.805 mm vertical deflection makes the maximum εeff quantity appearing at subsurface; while the
zenith von Mises stress value is on the top. In addition, the peak εeff value is 0.009625 and 0.013018 in
scenario 1 and scenario 2, respectively; i.e., the hanging sleepers alone incremented the crest εeff value
by 35.25%. The increase of gap size from 2 mm to 4 mm reduced the crest εeff value for unsupported
sleepers’ scenarios without IRJ by 21.67% and made the maximum value appearing at y =−4.25 mm
and z = 22.75 mm. These findings emphasise that the εeff quantity is sensitive to the value of vertical
rail displacement. By combining these outcomes with that computed in [El-sayed et al. 2018a], one can
conclude that the plastic deformation in continuous rails increases as the rail deflection rises to a certain
value, then the plastic flow reduces again. However, this quantity is largely uninfluenced by the presence
of hanging sleepers alongside IRJ. For scenario 3 and scenario 4, the climax value of εeff emerged at
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Figure 11. Contours of von Mises stress in x-y plane associated with the variation of σe

along the rail depth at x = 0 for the first four studied scenarios. The red box denotes the
position of section in the longitudinal direction.
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Figure 14 Peak von Mises stress of a strip of surface nodes in the travelling direction at 𝑥 = 0 

 

0

100

200

300

400

500

600

700

-60-40-200204060

V
o

n
 M

is
e

s 
st

re
ss

 (
M

P
a

)

Longitudinal direction, z (mm)

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Rolling direction

 
Figure 15 Variation of equivalent plastic strain 𝜀𝑒𝑓𝑓 along rail depth for the first four scenarios at the 

location where the peak magnitude of 𝜀𝑒𝑓𝑓 is observed 
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Figure 12. Left: peak von Mises stress of a strip of surface nodes in the travelling
direction at x = 0. Right: variation of equivalent plastic strain εeff with rail depth for the
first four scenarios at the location where the peak magnitude of εeff is observed.

the top of rail edge 2, which is slightly larger than that obtained at rail edge 1, see Figure 13 for more
illustration, with a magnitude equal 0.026117 and 0.026633. These values are corresponding to 2.71 and
2.77 times of that computed from scenario 1. Then, the quantity of εeff decreased swiftly like the trend of
von Mises stress seen in Figure 11. With regard to the dimensions of plastic region, the depth of plastic
zone is 11.97 mm in scenario 1; whilst for those scenarios which include either hanging sleeper defect
or IRJ, the depth of plastic zone exceeded with a quite small value the 15 mm depth which signifies that
the presumed dimensions of plastic layer implemented in this research are widely adequate to recognize
the nonlinear response of rail material.

 

      

   

                                              
 

      
 

 

Figure 16 Contours of equivalent plastic strain 𝜀𝑒𝑓𝑓 at the perfect insulated joint scenario (scenario 3) 
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4. Fatigue crack initiation analysis

4.1. Fatigue Model. The high stresses induced by wheel-rail interface could increase the likelihood of
damage initiation. Subsequently, with time, this leads to rail fracture and vehicle derailment. Therefore,
it is necessary to quantify the fatigue impact. The results extracted from the FE model (Figure 14, for
instance), revealed the multiaxial and nonproportional state of both stress and strain of the elements at
the contact region. Hence, in the present study, the critical plane concept together with the multiaxial
fatigue criterion proposed in [Jiang and Sehitoglu 1999] was employed to identify the effect of hanging
sleepers and IRJs on the reliability of rail steel against crack initiation due to fatigue. Such combination
has been shown to fit very well with experimental findings regarding both fatigue life and crack plane
orientation [Chen et al. 1999; Varvani-Farahani 2000]. This method can be expressed with the multiaxial
fatigue parameter

FP= 〈σmax〉
1ε

2
+ J1τ1γ. (2)

At a material plane under consideration, 1ε is the range of the normal strain, and σmax is the largest
normal stress with 〈σmax〉 = σmax/2 for σmax > 0 and 〈σmax〉 = 0 for σmax ≤ 0. Furthermore, 1τ is the
range of shear stress, 1γ is the range of shear strain, and J is a material parameter.

The fatigue parameter FP is related to the fatigue initiation life N f via the relation

FPmax =
(τ ′f )

2

Gr
(2N f )2b

+ τ ′f γ
′

f (2N f )b+c, (3)

where FPmax is the peak fatigue parameter corresponding to the critical plane; τ ′f , γ ′f , b, and c are material
parameters; Gr = Er/2(1+ νr ) is the shear modulus of rail. The mechanical properties used in fatigue
calculations are b = −0.089, c = −0.559, γ ′f = 15.45, τ ′f = 468 MPa, and J = 0.2 [Ringsberg 2001].
Nevertheless, the grade of rail steel employed at the test site is 900A, the prescribed values of fatigue
parameters are corresponding to BS11 normal grade steel owing to lack of experimental data of grade
900A and the wide analogy of the mechanical properties of both two grades [Ringsberg et al. 2000;
Ringsberg and Josefson 2001].

 

 
Figure 17 Variation of stress and strain components with time for the element experiencing peak von 

Mises stress in scenario 2 
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Figure 14. Variation of stress and strain components with time for the element experi-
encing peak von Mises stress in scenario 2.
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4.2. Numerical predictions of fatigue impact. In the current research, the crack plane and the highest
damage parameter were identified by the rotation of stress and strain tensors at an equal increment
(1 degree) for a set of points suffering from maximum von Mises stress, at which damage is quite
probable. Shear stress range 1τ and shear strain range 1γ in (2) were identified by means of the
longest chord method [Papadopoulos 1998]. The first part of (2) was removed due to the compression
state of the three normal stress components (Figure 14). The crack plane was identified by two angles
depicted in Figure 15. Angle θ is the angle between the normal vector En and z-axis; whilst angle ϕ is
the angle between z-axis and crack plane. The variations of FP with the angles θ and ϕ for scenario 1
and scenario 2 as two samples are presented in Figure 16. These plots refer to the most critical point in
each scenario where FPmax is obtained.

As shown in Table 2, the critical plane in scenario 1 occurred at θ = 111◦, ϕ = 87◦, and d = 0. Field
results presented in Figure 17 (left) indicate that the predominant orientation of cracks on the surface,
corresponding to angle θ , lies between 113◦ and 123◦ which is in a good correlation with that predicted.
Note that, the cracks at the test site were deemed to be initiated after being visible on the rail surface,
but theoretically the crack may be treated to be initiated when its length is between 0.1 mm–0.5 mm

 

 
 

 

 

 

 

 

Figure18 Definition of crack plane angles in the railhead 
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Figure 19 Variation of fatigue parameter with plane orientation in the first two scenarios for the critical point that 

showed the highest fatigue parameter value 
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Figure 19 Variation of fatigue parameter with plane orientation in the first two scenarios for the critical point that 
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Figure 16. Variation of fatigue parameter with plane orientation in the first two scenar-
ios for the critical point that showed the highest fatigue parameter value.
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Scenario Description θ ϕ Coordinates FPmax Nr · 105

number Hanging sleepers (gap size) IRJ (degree) (degree) x y z (MPa) (passage)

1 No No 111 87 0 0 60.72 0.7812 10.54
2 Yes (2 mm) No 144 162 2.97 0 57.34 0.8403 9.176
3 No Yes 174 111 0 0 0 2.3319 1.498
4 Yes (2 mm) Yes 156 24 0 0 0 2.4152 1.412
5 Yes (4 mm) No 84 84 1.86 0 58.46 0.8683 8.628
6 Yes (4 mm) Yes 153 27 0 0 0 2.3059 1.527

Table 2. Predicted results of crack angles, crack coordinates, maximum fatigue param-
eter, and crack initiation life in each studied case.

[Ringsberg 2001]. However, angle ϕ contradicts with that estimated in [El-sayed et al. 2018a] where
ϕ = 9◦–27◦. This is likely because of cyclic loading on material hardening considered in [El-sayed et al.
2018a] and disregarded in the present research. Likewise, the FPmax computed at the critical plan is
0.7812 MPa. This maximum quantity causes the crack to initiate after 1.054 · 106 wheel passages. Upon
data collected from the test site about traffic volume, approximately 18576 axles pass the test site per
day. This means that the crack in the studied loading condition initiates after 56 days, but this is a critical
value because in this research the highest possible wheel load was chosen, and the action of wear which
can mitigate rail material fatigue [Wang et al. 2009] was overlooked. This implies that the cracks in
the test site probably initiate after the predicted period. In scenario 2 compared with scenario 1, a high
deviation of the critical plane angles with a slight difference in position was observed. In addition, the
FPmax in this scenario is higher than that evaluated from scenario 1 by 7.56%, which is corresponding
to 12.94% reduction in the fatigue life. As the gap size increased from 2 mm to 4 mm, the fatigue life
reduced again by 6.35%.

In scenario 3, the predicted location of cracks and the angle θ at the IRJ correlate well with the
observations, see Figure 17 (right) as an example. Generally, it is obvious that in IRJ’s scenarios the life
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Figure 20 Observed defects on the railhead surface at the test site at the initiation stage: (a) at a normal rail; (b) at an 

IRJ after three days of installation in the field. The given angle range is the predominate values along the test site 
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Figure 20 Observed defects on the railhead surface at the test site at the initiation stage: (a) at a normal rail; (b) at an 

IRJ after three days of installation in the field. The given angle range is the predominate values along the test site 
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given angle range is the predominate values along the test site.
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of fatigue largely declines and the position of FPmax occurs at the surface of rail edge 1. The main cause
of this is ratchetting, excessive plastic flow.

5. Conclusions

The behaviour of rail material in both normal and jointed railway tracks with and without hanging
sleepers was analysed considering different scenarios. A three-dimensional finite-element model was
built to compute displacements, stresses, and strains. The finite-element results were incorporated with
a multiaxial fatigue model to comprehend the mechanism of crack initiation in rails. The main findings
are summed up as follows:

• In comparison with the normal track model, the track with hanging sleepers exhibits higher mag-
nitudes of deflection, stress oscillation (as quantified by von Mises stress), and plastic strain. In
addition, unsupported sleepers reduce the fatigue life of the rail material.

• The quantity and position of plastic flow are highly sensitive to the value of rail deflection. On the
contrary, the interface parameters (interface pressure, tangential stress, and contact area) and von
Mises stress values are largely unaffected by this factor.

• At insulated joints, stiffness discontinuity at end post has a detrimental impact on the rail material,
particularly at rail’s edges. From the studied case compared with the normal track model, the model
with insulated joint mounted the peak magnitudes of interface pressure, von Mises stress, and plastic
strain by 17.2%, 46.36%, and 177%, respectively. In addition, due to the ratchetting response of the
material at rail’s edges, the fatigue life is severely reduced.

• The seriousness of insulated joints is increased if integrated with hanging sleepers. The increments
due to this incorporation for the case of 2 mm gap size in comparison with the perfect insulated track
model in rail deflection, joint width reduction, and fatigue life are 94.43%, 32.66%, and 6.09%,
respectively. However, a marginal increase in the fatigue life was found in the model of insulated
joint with 4 mm gap size. The higher reduction of the joint width in the entity of hanging sleepers
accelerates the deterioration of insulated joints from the electrical viewpoint.

• Based on the obtained results, it is recommended that the track maintenance operators should con-
sider a strategy to avoid the appearance or development of hanging sleepers.
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