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EXTENDED HIGHER-ORDER SANDWICH PANEL THEORY FOR
PLATES WITH ARBITRARY ASPECT RATIOS

FAISAL SIDDIQUI AND GEORGE A. KARDOMATEAS

A new extended higher-order sandwich panel theory (EHSAPT) for orthotropic elastic sandwich plates
is formulated. This new theory extends the one-dimensional extended higher-order sandwich panel beam
theory to two dimensions and applies it to plate structures. In this theory, the compressibility of the soft
core in the transverse direction is taken into consideration. The in-plane displacements are third-order
and the transverse displacement is second-order in the transverse coordinate respectively. This arrange-
ment allows the theory to take the axial, shear and transverse normal stresses in the core in considera-
tion. In order to derive the governing equations and associated boundary conditions, eleven generalized
coordinates are considered. Each face sheet has three generalized coordinates (two in-plane and one
transverse displacement respectively) and the core has five generalized coordinates which include three
displacements and two independent rotations. The governing equations and boundary conditions are
derived using a variational approach such that all core/face sheet displacement compatibility conditions
are satisfied.

1. Introduction

Typical sandwich panels consist of two metallic or composite thin face sheets separated by a honeycomb
or foam core. This configuration gives the sandwich panel high stiffness and strength, and enables
excellent energy absorption capabilities with little resultant weight penalty. This makes the sandwich
structure a preferred material of choice in a lot of applications including aerospace, naval, wind turbines
and civil industries. Many of the currently used methods of analysis on sandwich structures assume a
noncompressible core and are categorized as the classical and the first-order shear models when shear
effects are taken into consideration [Plantema 1966; Allen 1969]. The assumptions on these theories
are only adequate if the core is made of a high-strength and stiff material; but in many cases when the
core is a more compliant and softer material, the predictions from these theories become more and more
inaccurate especially under quasistatic loading [Phan et al. 2012]. Experimental results have also shown
that the core can undergo significant transverse deformation under a sudden impulsive load [Gardner
et al. 2012; Jackson and Shukla 2011; Nemat-Nasser et al. 2007; Tekalur et al. 2009; Wang et al. 2009].
This implies that in order to get accurate results the transverse deformation and shear stresses in the core
must be taken into consideration.

Keeping in view the importance of accurate prediction of failure modes, some of the recent compu-
tational models have considered transverse compressibility in the core. Frostig et al. [1992] proposed a
theory for sandwich panels in which the resulting shear strain in the core is constant and the resulting
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transverse normal strain in the core is linear in z; however, this model was only formulated for a one-
dimensional beam (HSAPT). Hohe et al. [2006] developed a model for sandwich plates in which the
transverse normal strain is constant along the transverse coordinate z, and the shearing strains are first-
order in z. Also, Li and Kardomateas [2008] explored a higher-order theory for plates in which the
transverse normal strain in the core is of third-order in z, and the shear strains in the core are of fourth-
order in z.

The accuracy of any of these models can be readily assessed because an elasticity solution already
exists. Pagano [1970] presented a three-dimensional elasticity solution for laminated rectangular plates
for the following cases:

(1) Orthotropic material: the cubic characteristic equation has a negative discriminant and results in
real and unequal roots.

(2) Isotropic material: the cubic characteristic equation has a zero discriminant and results in real and
equal roots.

Kardomateas [2008] then presented the solution for the case of positive discriminant, in which two of
the roots are complex conjugates. This is actually a case frequently encountered in sandwich construction
in which the orthotropic core is stiffer in the transverse direction than the in-plane directions.

In this paper we present an advanced new extended higher-order sandwich panel theory (EHSAPT),
which is a two-dimensional extension of the EHSAPT beam model presented in [Phan et al. 2012]. In
that reference the authors extended the HSAPT given in [Frostig et al. 1992] for beams, to allow for the
transverse shear distribution in the core to acquire the proper distribution as the core stiffness increases
as a result of nonnegligible in-plane stresses. The current paper extends the concept of Phan et al. [2012]
and applies it to two-dimensional plate structures. The theory assumes a transverse displacement in the
core that varies as a second-order equation in z, and in-plane displacements that are of third-order in z.
The novelty of this approach is that it allows for five generalized coordinates in the core (the in-plane
and transverse displacements and two independent rotations).

The theory is formulated for a sandwich panel with a symmetric layout. The major assumptions of
the theory are as follows:

(1) The face sheets satisfy the Kirchhoff assumptions, and their thicknesses are small compared with the
overall thickness of the sandwich section; they undergo large displacements with moderate rotations.

(2) The core is compressible in the transverse and axial directions (transverse displacement is second-
order in z and in-plane displacements are third-order in z); it has in-plane, transverse and shear
rigidities; and it undergoes large displacements.

(3) The bonding between the face sheets and core is assumed to be perfect.

2. Derivation of EHSAPT theory

We consider a sandwich plate with two identical face sheets of thickness f and a core of thickness 2c.
The cartesian coordinate system is placed in the middle plane of the sandwich plate as shown in Figure 1.

The corresponding displacements are denoted by (u, v, w). Subscript t , b and c refer to the top face
sheet, bottom face sheet and core. Subscript 0 refers to the middle surface of the respective phase. The
total thickness of the plate is given by htot = 2 f + 2c.
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Figure 1. Geometric configuration of the plate.

2A. Displacements and strains. It is highlighted that the following functions depend on x , y, z and t
and this functional dependence will not be explicitly written in the equations that follow in favor of
conserving writing space:

ut,b,c
= ut,b,c(x, y, z, t), ut,b,c

0 = ut,b,c
0 (x, y, t), ψc

0 = ψ
c
0(x, y, t), uc

2 = uc
2(x, y, t),

uc
3 = uc

3(x, y, t),

vt,b,c
= vt,b,c(x, y, z, t), v

t,b,c
0 = v

t,b,c
0 (x, y, t), φc

0 = φ
c
0(x, y, t), vc

2 = v
c
2(x, y, t),

vc
3 = v

c
3(x, y, t),

wt,b,c
= wt,b,c(x, y, z, t), wc

1 = w
c
1(x, y, t), wc

2 = w
c
2(x, y, t).

2A.1. Displacements of the face sheets. The face sheets are assumed to satisfy the Kirchhoff–Love as-
sumptions and their thickness is assumed to be small as compared to the overall thickness of the plate.
The displacements are represented as

ut
= ut

0− ζ
twt

,x , (2-1a)

vt
= vt

0− ζ
twt

,y , (2-1b)

wt
= wt . (2-1c)

Similarly, for the bottom face sheet,

ub
= ub

0− ζ
bwb

,x , (2-2a)

vb
= vb

0 − ζ
bwb

,y , (2-2b)

wb
= wb , (2-2c)

where ζ t,b
= z∓ (c+ f t,b/2).
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The nonlinear strain-displacement relations are

[
εt,b

]
=

ε
t,b
xx

εt,b
yy

γ t,b
xy

= [ε0
]
+ ζ

[
κ
]
=

 ε0x + ζκx

ε0y + ζκy

γ0xy + ζκxy

 , (2-3a)

[ε0] =

 ε0x

ε0y

γ0xy

=
 u0,x +

1
2w

2
,x

v0,y +
1
2w

2
,y

u0,y+v0,x+w,xw,y

 . (2-3b)

Moreover, [κ] is the curvature matrix and can be given as

[κ] =

 κx

κy

κxy

=
−w,xx

−w,yy

−2wxy

 . (2-3c)

2A.2. Displacements for the higher-order core. First-order approximation of the classical sandwich
panel theory neglects the transverse deformation of the core and leads to erroneous results in many
practical cases. However, in many instances it becomes essential to capture the core compressibility
effects and thus we use a higher-order definition of the in-plane and transverse deformation of the core
in terms of the transverse coordinate:

uc
= uc

0+ψ
c
0 z+ uc

2z2
+ uc

3z3, (2-4a)

vc
= vc

0−φ
c
0z+ vc

2z2
+ vc

3z3, (2-4b)

wc
= wc

0+w
c
1z+wc

2z2. (2-4c)

In these equations uc
0, v

c
0 and wc

0 are the in-plane and transverse displacements and φc
0 and ψc

0 are the
rotations about the x-axis and y-axis, respectively. Also, uc

2, uc
3, vc

2, vc
3, wc

1 and wc
2 are the in-plane and

transverse unknown functions to be determined by enforcing displacement compatability conditions at
the core/face sheets interface. We therefore enforce compatability at z =±c and after some algebraic
calculations, the following core displacement field is obtained:

uc
= uc

0+ zψc
0 −

z3

4c3 [2ub
0− 2ut

0+ 4cψc
0 − f bwb

,x − f twt
,x ]

−
z2

4c2 [−2ub
0− 2ut

0+ 4uc
0+ f bwb

,x − f twt
,x ], (2-5a)

vc
= vc

0− zφc
0 −

z3

4c3 [2v
b
0 − 2vt

0− 4cφc
0 − f bwb

,y − f twt
,y]

−
z2

4c2 [−2vb
0 − 2vt

0+ 4vc
0+ f bwb

,y − f twt
,y], (2-5b)

wc
= wc

0−
z2

2c2 [−w
b
−wt
+ 2wc

0] −
z

2c
[wb
−wt
]. (2-5c)

It is highlighted that in developing their higher-order theories, Li and Kardomateas [2008] and Phan
et al. [2012] assumed that the core undergoes large rotation with a small displacement and therefore
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neglected the in-plane strains. However, the current theory does not make any such assumptions and we
consider all six strains in the core. This leads to the following six strain-displacement relations for the
core:

εc
xx = uc

0,x + zψc
0 ,x −

z3

4c3 [2ub
0,x − 2ut

0,x + 4cψc
0 ,x − f bwb

,xx − f twt
,xx ]

−
z2

4c2 [−2ub
0,x + 4uc

0,x − 2ut
0,x + f bwb

,xx − f twt
,xx ]ψ

c
0 ,x , (2-6a)

εc
yy = v

c
0,y − zφc

0,y −
z3

4c3 [2v
b
0 ,y − 2vt

0,y − 4cφc
0,y − f bwb

,yy − f twt
,yy]

−
z2

4c2 [−2vb
0 ,y + 4vc

0,y − 2vt
0,y + f bwb

,yy − f twt
,yy], (2-6b)

εc
zz =−

z
c2 [2w

c
0−w

b
−wt
] −

1
2c
[wb
−wt
] (2-6c)

γ c
xy = uc

0,y + zψc
0 ,y + v

c
0,x − zφc

0,x −
z3

4c3 [2ub
0,y − 2ut

0,y + 4cψc
0 ,y − f bwb

,xy − f twt
,xy]

−
z3

4c3 [2v
b
0 ,x − 2vt

0,x − 4cφc
0,x − f bwb

,xy − f twt
,xy]

−
z2

4c2 [−2ub
0,y + 4uc

0,y − 2ut
0,y + f bwb

,xy − f twt
,xy]

−
z2

4c2 [−2vb
0 ,x + 4vc

0,x − 2vt
0,x + f bwb

,xy − f twt
,xy], (2-6d)

γ c
xz = ψ

c
0 +w

c
0,x −

z2

2c2 [2w
c
0,x −w

b
,x −w

t
,x ] −

z
2c
[wb

,x −w
t
,x ]

−
3z2

4c3 [2ub
0− 2ut

0+ 4cψc
0 − f bwb

,x − f twt
,x ]

−
z

2c2 [−2ub
0+ 4uc

0− 2ut
0+ f bwb

,x − f twt
,x ], (2-6e)

γ c
yz =−φ

c
0 +w

c
0,y −

z2

2c2 [2w
c
0,y −w

b
,y −w

t
,y] −

z
2c
[wb

,y −w
t
,y]

−
3z2

4c3 [2v
b
0 − 2vt

0− 4cφc
0 − f bwb

,y − f twt
,y]

−
z

2c2 [−2vb
0 + 4vc

0− 2vt
0+ f bwb

,y − f twt
,y]. (2-6f)

2A.3. Constitutive relations. We assume that the face sheets are composite laminates and the core is
fully orthotropic. The stress-strain relations for the top and bottom sheets read asσ

t,b
xx

σ t,b
yy

τ t,b
xy

=
C t,b

11 C t,b
12 C t,b

16

C t,b
12 C t,b

22 C t,b
26

C t,b
16 C t,b

26 C t,b
66


ε

t,b
xx

εt,b
yy

γ t,b
xy

 , (2-7a)

where Ci j (i, j = 1, 2, 6) are the plane stress reduced stiffness coefficients. The core is considered to be
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fully orthotropic: 

σ c
xx

σ c
yy

σ c
zz

τ c
yz

τ c
xz

τ c
xy


=



Cc
11 Cc

12 Cc
13 0 0 0

Cc
12 Cc

22 Cc
23 0 0 0

Cc
13 Cc

23 Cc
33 0 0 0

0 0 0 Cc
44 0 0

0 0 0 0 Cc
55 0

0 0 0 0 0 Cc
66





εc
xx

εc
yy

εc
zz

γ c
yz

γ c
xz

γ c
xy


. (2-7b)

Since the face sheets are laminated composite plates with the face sheets composed of multiple laminas,
each fiber angle of an individual lamina can be chosen independently. The following constitutive relations
are defined:

χ(θ)=



1 1 cos θ cos 4θ
1 1 −cos θ cos 4θ
1 −1 0 −cos 4θ
0 1 0 −cos 4θ
0 0 1

2 sin 2θ sin 4θ

0 0 1
2 sin 2θ −sin 4θ


. (2-8)

Similarly, the following four material invariants are defined:

α1 =
E1+ E2+ 2ν12 E2

4α0
, α2 =

E1+ E2− 2ν12 E2

8α0
+

G12

2
,

α3 =
E1− E2

2α0
, α4 =

E1+ E2− 2ν12 E2

8α0
−

G12

2
,

where α0 = 1− ν12 E2/E1. Next, we define an array of the lamina stiffness coefficients such that

C = {C11, C22, C12, C66, C16, C26}
T . (2-9)

We then define an array of the material invariants as

α = {α1, α2, α3, α4}
T . (2-10)

Therefore

[C(θ)] = [χ(θ)]{α}. (2-11)

Hence depending upon the angle of individual laminas, the material coefficients for the face sheets are
defined. Next, the stress and moment resultants for the facesheets are defined as

[N t,b
] =

N t,b
xx

N t,b
yy

N t,b
xy

=
N t,b1

xx

N t,b1

yy

N t,b1

xy

+
N t,b2

xx

N t,b2

yy

N t,b2

xy

= ∫ c+ f t,b/2

c
[σ t,b1

] dz+
∫ c+ f t,b

c+ f t,b/2
[σ t,b2

] dz. (2-12)
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Similarly

[M t,b
] =

M t,b
xx

M t,b
yy

M t,b
xy

=
M t,b1

xx

M t,b1

yy

M t,b1

xy

+
M t,b2

xx

M t,b2

yy

M t,b2

xy

= ∫ c+ f t,b/2

c
[σ t,b1

] ζ t,b dz+
∫ c+ f t,b

c+ f t,b/2
[σ t,b2

] ζ t,b dz. (2-13)

For the core the following resultants are defined:

[N c
] =



N c
xx

N c
yy

N c
zz

N c
xy

Qc
x

Qc
y


=

∫ c

−c



σ c
xx

σ c
yy

σ c
zz

σ c
xy

σ c
xz

σ c
yz


dz, for the core. (2-14a)

Similarly, the following resultants are also defined for the core:

Mc
xx

Mc
yy

Mc
zz

Mc
xy

Mc
yz

Mc
xz


=

∫ c

−c



σ c
xx

σ c
yy

σ c
zz

σ c
xy

σ c
yz

σ c
xz


z dz,


Rc

xx

Rc
yy

Rc
xy

Rc
yz

Rc
xz

=
∫ c

−c


σ c

xx

σ c
yy

σ c
xy

σ c
yz

σ c
xz

 z2 dz,

Pc
xx

Pc
yy

Pc
xy

= ∫ c

−c

σ
c
xx

σ c
yy

σ c
xy

 z3 dz. (2-14b)

Also

Ii =

∫ h/2

−h/2
ρ(z)i dz (i = 0, 1, 2, 3, . . . , 6). (2-15)

2B. Governing differential equations. The governing differential equations and associated boundary
conditions can be derived using the Hamilton’s principle. The sandwich panel is subjected to a transverse
load q(x, y, t) on the top and bottom face sheets. Let the strain energy be denoted by U , the kinetic energy
by K and the external work by W . The variational principle states that

δ[T − (U −W )] = 0, (2-16)

in which the first variation of the energy functionals can be written as

δU =
∫ t

0

∫ b

0

∫ a

0

[ ∫ c+ f t

c

(
σ t

xxδε
t
xx + σ

t
yyδε

t
yy + τ

t
xyδγ

t
xy
)

dz

+

∫ c

−c

(
σ c

xxδε
c
xx + σ

c
yyδε

c
yy + σ

c
zzδε

c
zz + τ

c
xyδγ

c
xy + τ

c
xzδγ

c
xz + τ

c
yzδγ

c
yz
)

dz

+

∫
−c

−c− f b

(
σ b

xxδε
b
xx + σ

b
yyδε

b
yy + τ

b
xyδγ

b
xy
)

dz
]

dx dy, (2-17)
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δT =
∫ t

0

∫ b

0

∫ a

0

[∫ c+ f t

c
ρt(u̇tδu̇t

+ v̇tδv̇t
+ ẇtδẇt) dz+

∫ c

−c
ρc(u̇cδu̇c

+ v̇cδv̇c
+ ẇcδẇc) dz

+

∫
−c

−c− f b
ρb(u̇bδu̇b

+ v̇bδv̇b
+ ẇbδẇb)

]
dz, (2-18)

and the work done by external forces is

δW =
∫ t

0

∫ b

0

∫ a

0
q t(x, y, t) δwt

+ qb(x, y, t) δwb dx dy dt, (2-19)

where ρ is the mass density and dot above the variables represents differentiation with respect to time;
q t(x, y, z) and qb(x, y, z) are the distributed transverse load on top and bottom face sheets, respectively;
δwt and δwb represents the virtual transverse displacements of top and bottom face sheets, respectively.
Equating time derivatives equal to zero would recover the governing differential equations and associated
boundary conditions for a static case.

2B.1. Equations of motion. The governing equations and associated boundary conditions can be ob-
tained by substituting the strain-displacement relations ((2-3) and (2-6)) and stress-strain relations (2-7)
in the first variations of the energy functionals. We make use of the stress and moment resultants defined
by using (2-12), (2-13) and (2-14), respectively. We then employ Green’s theorem to relieve the primary
variables of derivatives. This results in eleven governing equations: three for each face sheet and five for
the core. Also, boundary conditions are acquired as a result of the process:

δub
0 : 4α2 Mc

xz − 6α3 Rc
xz − N b

xy,y + 2α3 Pc
xy,y − 2α2 Rc

xy,y − N b
xx,x + 2α3 Pc

xx,x

− 2α2 Rc
xx,x +β1üb

0− 2β2üc
0+ 4β3üt

0+ 2β5ψ̈
c
0 −β4ẅ

b
,x + 2 f tβ3ẅ

t
,x = 0, (2-20a)

δvb
0 : 4α2 Mc

yz − 6α3 Rc
yz − N b

yy,y + 2α3 Pc
yy,y − 2α2 Rc

yy,y − N b
xy,x + 2α3 Pc

xy,x

− 2α2 Rc
xy,x +β1v̈

b
0 + 2β2v̈

c
0+ 4β3v̈

t
0− 2β5φ̈

c
0 −β4ẅ

b
,y + 2 f tβ3ẅ

t
,y = 0, (2-20b)

δwb
: 4α2 Mc

zz −α1 N c
zz + (α1+ 2 f bα2)

(
Mc

xz,x +Mc
yz,y

)
− 2Mb

xy,xy
−Mb

xx,xx

+ f bα3
(
Pc

xx,xx
+ Pc

yy,yy
+ 2Pc

xy,xy

)
− f bα2

(
Rc

xx,xx
+ Rc

yy,yy
+ 2Rc

xy,xy

)
− Rc

xz,x (2α2+ 3 f bα3)+β6ẅ
b
−β7ẅ

c
0−β8ẅ

t
+β4

(
üb

0,x + v̈
b
0,y

)
+ f bβ2

(
üc

0,x + v̈
c
0,y

)
+ 2 f bβ3

(
üt

0,x + v̈
t
0,y

)
+ f bβ5

(
ψ̈c

0,x − φ̈
c
0,y

)
+ f b f tβ3

(
ẅt
,xx + ẅ

t
,yy
)
−β9

(
ẅb
,xx + ẅ

b
,yy
)
= qb
[x, y, t], (2-20c)

δut
0 : 4α2 Mc

xz + 6α3 Rc
xz − N t

xy,y − 2α3 Pc
xy,y − 2α2 Rc

xy,y − N t
xx,x − 2α3 Pc

xx,x

− 2α2 Rc
xx,x + 4β3üb

0+ 2ξ2üc
0+ ξ1üt

0+ 2ξ5ψ̈
c
0 − 2 f bβ3ẅ

b
,x + ξ4ẅ

t
,x = 0, (2-20d)

δvt
0 : 4α2 Mc

yz + 6α3 Rc
yz − N t

yy,y − 2α3 Pc
yy,y − 2α2 Rc

yy,y − N t
xy,x − 2α3 Pc

xy,x

− 2α2 Rc
xy,x + 4β3v̈

b
0 + 2ξ2v̈

c
0+ ξ1v̈

t
0− 2ξ5φ̈

c
0 − 2 f bβ3ẅ

b
,x + ξ4ẅ

t
,x = 0, (2-20e)
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δwt
: 4α2 Mc

zz +α1 N c
zz − (α1+ 2 f tα2)

(
Mc

yz,y −Mc
xz,x

)
− 2M t

xy,xy
−M t

xx,xx

+ f tα3
(
Pc

yy,yy
+ Pc

xx,xx
+ 2Pc

xy,xy

)
+ f tα2

(
Rc

yy,yy
+ 2Rc

xy,xy
+ Rc

xx,xx

)
− Rc

xz,x (2α2+ 3α3 f t)−β8ẅ
b
+ ξ7ẅ

c
0+ ξ6ẅ

t
+ f b f tβ3

(
ẅb
,yy + ẅ

b
,xx
)

− 2 f tβ3
(
üb

0,x + v̈
b
0,x

)
− f tξ2

(
üc

0,x + v̈
c
0,y

)
− ξ4

(
üt

0,x + v̈
t
0,y

)
− f tξ5

(
φ̈c

0,y + ψ̈
c
0,x

)
− ξ9

(
ẅt
,yy + ẅ

b
,xx
)
= q t
[x, y, t], (2-20f)

δuc
0 : 8α2 Mc

xz + N c
xy,y − 4α2 Rc

xy,y + N c
xx,x − 4α2 Rc

xx,x − 2β2üb
0−11üc

0− 2β2üt
0

−12ψ̈
c
0 +β2 f bẅb

,x −β2 f t ẅt
,x = 0, (2-20g)

δvc
0 : 8α2 Mc

yz + N c
yy,y − 4α2 Rc

yy,y + N c
xy,x − 4α2 Rc

xy,x − 2β2v̈
b
0 −11v̈

c
0− 2β2v̈

t
0

+12φ̈
c
0 +β3 f bẅb

,y −β3 f t ẅt
,y = 0, (2-20h)

δwc
0 : 8α2 Mc

zz + Qc
y,y − 4α2 Rc

yz,y + Qc
x,x − 4α2 Rc

xz,x +β7ẅ
b
−11ẅ

c
0− ξ7ẅ

t
= 0, (2-20i)

δφc
0 : − Qc

y + 12Rc
yz −Mc

xy,x +Mc
yy,y − 4α2 Pc

yy,y − 4α2 Pc
xy,x − 2β5v̈

b
0 −12v̈

c
0

+ 2ξ5v̈
t
0+14φ̈

c
0 + f bβ5ẅ

b
,y + f tξ5ẅ

t
,y = 0, (2-20j)

δψc
0 : Qc

x − 12Rc
xz −Mc

xy,y −Mc
xx,x + 4α2 Pc

xx,x + 4α2 Pc
xy,y + 2β5üb

0+12üc
0

+ 2ξ5üt
0+14ψ̈

c
0 − f bβ5ẅ

b
,x + f tξ5ẅ

t
,x = 0, (2-20k)

where α1 = 1/2c, α2 = 1/4c2, α3 = 1/4c3, and

β1 =
4c6 I b

0 + c2 I c
4 − 2cI c

5 + I c
6

4c6 , β2 =
c4 I c

2 − c3 I c
3 − c2 I c

4 + cI c
5

4c6 , β3 =
c2 I c

4 − I c
6

16c6 ,

β4 =
8c7 I b

0 + 4c6 f b I b
0 + 8c6 I b

1 + c2 f b I c
4 − 2c f b I c

5 + f b I c
6

8c6 , β5 =
c3 I c

3 − c2 I c
4 − cI c

5 + I c
6

4c5 ,

β6 =
4c4 I b

0 + c2 I c
2 − 2cI c

3 + I c
4

4c4 , β7 =
c3 I c

1 − c2 I c
2 − cI c

3 + I c
4

2c4 , β8 =
c2 I c

2 − I c
4

4c4 ,

β9 =
16c8 I b

0 + 16c7 f b I b
0 + 4c6 f b2 I b

0 + 32c7 I b
1 + 16c6 f b I b

1 + 16c6 I b
2 + c2 f b2 I c

4 − 2c f b2 I c
5 + f b2 I c

6

16c6 ,

11 =
c4 I c

0 − 2c2 I c
2 + I c

4

c4 , 12 =
c4 I c

1 − 2c2 I c
3 + I c

5

c4 , 14 =
c4 I c

2 − 2c2 I c
4 + I c

6

c4 ,

ξ1 =
4c6 I t

0 = c2 I c
4 + 2cI c

5 + I c
6

4c6 , ξ2 =
c4 I c

2 + c3 I c
3 − c2 I c

4 − cI c
5

4c6 ,

ξ4 =
8c7 I t

0 + 4c6 f t I t
0 − 8c6 I t

1 + c2 f t I c
4 + 2c f t I c

5 + f t I c
6

8c6 ,
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ξ5 =
c4 I c

3 + c3 I c
4 − c2 I c

5 − cI c
6

4c6 , ξ6 =
4c4 I t

0 + c2 I c
2 + 2cI c

3 + I c
4

4c6 , ξ7 =
c3 I c

1 + c2 I c
2 − cI c

3 − I c
4

2c4 ,

ξ9 =
16c8 I t

0 + 16c7 f t I t
0 + 4c6 f t 2 I t

0 − 32c7 I t
1 − 16c6 I t

1 + 16c6 I b
2 + c2 f t 2 I c

4 + 2c f t 2 I c
5 + f t 2 I c

6

16c6 .

The associated boundary conditions at x = 0, a read as

ub
0 = ũb, or Ñ b

xx ,= N b
xx − 2α3 Pc

xx + 2α2 Rc
xx ,

uc
0 = ũc, or Ñ c

xx ,= N c
xx − 4α2 Rc

xx ,

ut
0 = ũt , or Ñ t

xx ,= N t
xx + 2α3 Pc

xx + 2α2 Rc
xx ,

vb
0 = ṽ

b, or Ñ b
yy,= N b

xy − 2α3 Pc
xy + 2α2 Rc

xy,

vc
0 = ṽ

c, or Ñ c
yy,= N c

xy − 4α2 Rc
xy,

vt
0 = ṽ

t , or Ñ t
yy,= N t

xy + 2α3 Pc
xy + 2α2 Rc

xy,

wb
= w̃b, or Q̃x

b
=−α1 Mc

xz − 2α2 f b Mc
xz + 2α2 Rc

xz + 3α3 f b Rc
xz −β4üb

0− f bβ2üc
0

− 2β3 f büt
0−β5ψ̈

c
0 +Mb

xy,y − f bα3 Pc
xy,y +α2 f b Rc

xy,y

+Mb
xx,x −α3 f b Pc

xx,x +α2 f b Rc
xx,x +β9ẅ

b
,x + f b f tβ3ẅ

t
,x ,

wb
,y = w̃

b
,y, or M̃xy

b
=−Mb

xy +α3 f b Pc
xy −α2 f b Rc

xy,

wc
0 = w̃

c, or Q̃x
c
= Qc

x − 4α2 Rc
xz,

ψc
0 = ψ̃

c
0

c
, or M̃xx

c
= Mc

xx − 4α2 Pc
xx ,

φc
0 = φ̃

c
0

c
, or M̃xy

c
=−Mc

xy + 4α2 Pc
xy,

wt
= w̃t , or Q̃x

t
= α1 Mc

xz + 2α2 f t Mc
xz + 2α2 Rc

xz + 3α3 f t Rc
xz + 2 f tβ3üb

0+ f tξ2üc
0

+ ξ4üt
0+ ξ5ψ̈

c
0 +M t

xy,y − f tα3 Pc
xy,y − f tα2 Rc

xy,y

+M t
xx,x − f tα3 Pc

xx,x − f tα2 Rc
xx,x − f b f tβ3ẅ

b
,x + ξ9ẅ

t
,x ,

wt
,y = w̃

t
,y, or M̃xy

t
=−M t

xy +α3 f t Pc
xy +α2 f t Rc

xy,

where the tilde accent denotes the known external boundary values. Similar equations can be written for
y = 0, b.

3. Conclusion

In this paper, a new higher order sandwich panel plate theory (EHSAPT) is presented. This is a two
dimensional extension of the one dimensional theory presented in [Phan et al. 2012]. In this derivation
both the core compressibility effects and the core shear stresses are considered, the theory also allows
for nonzero axial stresses in the core. In order to capture all these effects, eleven generalized coordinates
are defined with five generalized coordinates for the core and three each for the two face sheets. The
equations are derived using a variational approach and associated boundary conditions are presented.
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APPLICATIONS OF EXTENDED HIGHER ORDER SANDWICH PANEL THEORY
FOR PLATES WITH ARBITRARY ASPECT RATIOS

FAISAL SIDDIQUI AND GEORGE A. KARDOMATEAS

In this paper, solutions for a transversely loaded simply supported case with several different plate config-
urations based on extended higher-order sandwich panel theory (EHSAPT) are outlined and numerical
results are presented. The results are also compared to established elasticity solutions and validation
of EHSAPT for plates of arbitrary aspect ratios is made. The results are also compared to existing
classical and first-order shear models for completeness. The results show excellent agreement both
for displacements and stresses through the core. Analytical formulations and solutions to the natural
frequency analysis of simply supported composite sandwich plates are also presented. The effects of
variation of geometrical parameters of the structure on the natural frequency are also studied.

1. Introduction

This paper deals with the application of extended higher-order sandwich panel theory for plates with
arbitrary aspect ratios derived in the companion paper [SK 2019]. The face sheets are made up of
two individual laminas, each of which can have different layouts. The results have been presented
for a transversely loaded simply supported sandwich panel, for static and dynamic cases, and are then
compared to the classical model, the first order shear model [Plantema 1966; Allen 1969] and elasticity
solutions [Kardomateas and Phan 2011; Kardomateas 2008; Noor 1973]. After establishing accuracy of
the theory we then study the effects of varying certain geometric parameters on the fundamental natural
frequency of the structure.

SK [2019] proposed an extended higher-order sandwich panel theory for sandwich plates with arbitrary
aspect ratios considering a transverse displacement in the core that varies as a second-order equation in
z and the in-plane displacements that are of third order in z, the transverse coordinate.

A higher-order sandwich panel theory (HSAPT) for one-dimensional beam was proposed in [Frostig
et al. 1992], which considers the shear strain in the core to be constant while the resulting normal strain
in the core is linear in z. Another model presented by Hohe et al. [2006] for sandwich plate considers
the resulting transverse normal strain as constant in the transverse coordinate, z, while the shear strains
are first order in z. Another higher-order theory proposed by Li and Kardomateas [2008] considers
the transverse normal strain as third order in z, and the shear strains as fourth order in the transverse
coordinate. Phan et al. [2012] extended the HSAPT theory [Frostig et al. 1992] for beams that allows
for the transverse shear distribution in the core to acquire the proper distribution as the core stiffness
increases as a result of nonnegligible in-plane stresses. The HSAPT model is incapable of capturing the
in-plane stresses and assumes negligible in-plane rigidity. The current research extends that concept and
applies it to two-dimensional plate structures with variable aspect ratios. This approach allows for five

Keywords: sandwich panel, plate, arbitrary aspect ratio, EHSAPT.
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generalized coordinates in the core. Noor [1973] presented an exact three dimensional elasticity solution
for the free vibration analysis of isotropic, orthotropic and anisotropic composite laminated plates which
serves as a benchmark for comparison with these extended higher order theories.

2. Application of EHSAPT to a simply supported sandwich plate: static case

We consider a sandwich plate with two identical face sheets of thickness f and a core of thickness 2c
respectively. The cartesian coordinate system is placed in the middle plane of the sandwich plate as
shown in Figure 1. The corresponding displacements are denoted (u, v, w). The subscripts t, b and c
refer to the top face sheet, bottom face sheet and the core respectively. Similarly, the subscript 0 refers
to the middle surface of the respective phase. The total thickness of the plate is given by htot = 2 f + 2c.

In order to compare the results of EHSAPT with other available theories, the case of a simply supported
plate will be studied. The following boundary conditions are applied [SK 2019]: For x = 0, a,

ut
0 = uc

0 = ub
0 = 0, vt

0 = v
c
0 = v

b
0 = 0, wt

= wc
0 = w

b
= 0, M̃ t

= M̃c
= M̃b

= 0. (2-1)

Similar boundary conditions can be written for the other two ends of the plate at y = 0, b.
The displacements can be written in the form

ut
0 =U T cos mπx

a
sin nπy

b
, uc

0 =U C cos mπx
a

sin nπy
b
, ub

0 =U B cos mπx
a

sin nπy
b
, (2-2a)

vt
0 = V T sin mπx

a
cos nπy

b
, vc

0 = V C sin mπx
a

cos nπy
b
, vb

0 = V B sin mπx
a

cos nπy
b
, (2-2b)

wt
=W T sin mπx

a
sin nπy

b
, wc

0 =W C sin mπx
a

sin nπy
b
, wb

=W B sin mπx
a

sin nπy
b
, (2-2c)

φ =8 sin mπx
a

cos nπy
b
, ψ =9 cos mπx

a
sin nπy

b
. (2-2d)

Here U T , U C , U B , V T , V C , V B , W T , W C , W B , 8 and 9 are constants to be determined. Substituting
equations (2-2) into the governing differential equations [SK 2019] results in a system of eleven equations
for the eleven unknown constants: U T , U C , U B , V T , V C , V B , W T , W C , W B , 8 and 9.

2A. Numerical results and case study. In this section, we present the numerical results for several
typical sandwich configurations. The results are compared to the classical model, the first-order shear
model and established elasticity solutions. In the following we assume a sinusoidal transverse loading

z

f t

f
c
cb

a

2c2c

b

x

top face sheet
core
bottom face sheet

Figure 1. Geometric configuration of the plate.
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Figure 2. Transverse displacement wt at the top face z = c+ f t at y = 1
2 b for a = b = 5htot.

on the top face sheet of the form

q(x, y)= q0 sin πx
a

sin πy
b
, 0≤ x ≤ a, 0≤ y ≤ b, (2-3)

where q0 is the magnitude of the load applied which is taken to be 106. Let us consider a sandwich
configuration consisting of unidirectional graphite/epoxy faces with moduli (in GPa) of E f

1 = 181.0,
E f

2 = E f
3 = 10.3, G f

12 = G f
31 = 7.17 and G f

23 = 5.96 and Poisson’s ratio of ν f
12 = 0.277, ν f

31 = 0.016
and ν f

32 = 0.4. The core is made up of hexagonal glass/phenolic honeycomb with moduli (in GPa) of
Ec

1 = Ec
2 = 0.032, Ec

3 = 0.300, Gc
23 = Gc

31 = 0.048, and Gc
12 = 0.013 and Poisson’s ratio of νc

12 = ν
c
31 =

νc
32 = 0.250.

The two face sheets are assumed to be identical with a thickness of ft = fb = f = 2 mm. The core
thickness is 2c= 16 mm. The total thickness of the plate is defined to be htot = 2 f +2c. In the following
results, the displacements are normalized with 100× htot q0/E f

1 and the normal stresses with q0 a2/h2
tot.

Two plate configurations are considered with a = b = 5htot and a = b = 20htot respectively. Plotted in
Figure 2 is the normalized displacement at the top face sheet as a function of x at y = 1

2 b. In this figure
we also show the predictions of the classical plate theory as well as the first-order shear theories; for the
latter, there are two versions: one that is based only on the core shear stiffness and one that includes
the face sheet stiffnesses. From Figure 2, we can see that both the classical and the first-order shear
theories seem to be inadequate. The classical theory is too nonconservative and can sometimes hardly
make any difference. On the other hand, the first-order shear theory where shear is assumed to be carried
exclusively by the core is too conservative; this clearly demonstrates the need for higher-order theories
in dealing with sandwich plate structures. In this regard the EHSAPT theory gives a profile which is
essentially identical to the elasticity solution. In Figure 2 we can also see the effect of transverse shear,
which is an important feature of sandwich structures.
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Figure 3. Through-thickness distribution in the core of the axial stress: σxx (left) and
σyy (right) at x = 1

2a and y = 1
2 b; case of a = b = 5htot.
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Figure 4. Through-thickness distribution in the core of the transverse normal stress σzz

at x = 1
2a and y = 1

2 b; case of a = b = 5htot.

The distribution of the axial stresses σxx and σyy in the core as a function of z at the midspan location,
x = 1

2a and y = 1
2 b (where the bending moment is maximum) is plotted in Figure 3. Note that for both

elasticity and the extended high-order theory, there is no symmetry with regard to the midplane (z = 0).
The through-thickness distribution of the transverse normal stress in the core, σzz , at the midspan

location, x = 1
2a and y = 1

2 b, is shown in Figure 4. It can be seen that the elasticity curve is in perfect
agreement with the EHSAPT curve and both are nearly linear.

Plotted in Figures 5, 6 and 7 are the normalized displacement, axial stresses and the transverse normal
stress respectively for the case of a = b = 20htot.
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Figure 5. Transverse displacement wt at the top face z = c+ f t at y = 1
2 b for a = b = 20htot.
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Figure 6. Through-thickness distribution in the core of the axial stress: σxx (left) and
σyy (right) at x = 1

2a and y = 1
2 b; case of a = b = 20htot.

3. Application of EHSAPT to a simply supported sandwich plate: dynamic case

The dynamic case of a simply supported rectangular plate on all four edges is considered and boundary
conditions mentioned in (2-1) are applied at x = 0, a. Similar boundary conditions can be written for
the other two ends of the plate at y = 0, b.

The displacements for the dynamic case can be written in the form

ut
0 =U T cos mπx

a
sin nπy

b
eiωt , uc

0 =U C cos mπx
a

sin nπy
b

eiωt , ub
0 =U B cos mπx

a
sin nπy

b
eiωt , (3-1a)

vt
0 = V T sin mπx

a
cos nπy

b
eiωt , vc

0 = V C sin mπx
a

cos nπy
b

eiωt , vb
0 = V B sin mπx

a
cos nπy

b
eiωt , (3-1b)
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wt
=W T sin mπx

a
sin nπy

b
eiωt , wc

0 =W C sin mπx
a

sin nπy
b

eiωt , wb
=W B sin mπx

a
sin nπy

b
eiωt , (3-1c)

φ =8 sin mπx
a

cos nπy
b

eiωt , ψ =9 cos mπx
a

sin nπy
b

eiωt . (3-1d)

Substituting equations (3-1) into the governing differential equations [SK 2019] results in a system of
eleven equations which are collected to obtain

([K ] − λ[M]){ub
0 uc

0 ut
0 v

b
0 v

c
0 v

t
0 w

b wc
0 w

t φ ψ}T = 0, where λ= ω2, (3-2)

where [K ] and [M] are the stiffness and mass matrices respectively.

3A. Numerical results and case study. In this section, the numerical results for several different geo-
metric configurations are presented and a parametric study to analyze the free response of laminated
composite plates is carried out. In order to make the comparison with an existing elasticity solution
provided by Noor [1973], a simply supported square laminated plate with the face sheets and core con-
structed from the same material is considered. It should be noted that uniform material properties have
been chosen to validate the current formulation against the elasticity solution, which does not exist for
sandwich configurations. Two different symmetric layouts with respect to the middle plane such that the
fiber orientations of the laminas alternate between 0◦ and 90◦ with respect to the x-axis are studied and
compared to the elasticity solution. The following material properties are used:

E1/E2 = 3, E2 = E3, G12 = G13 = 0.6E2, G23 = 0.5E2, ν12 = ν13 = ν23 = 0.25.

Following the Navier’s solution procedure [Reddy 2006] the assumed displacement functions are
substituted (3-1) into the governing differential equations [SK 2019], and the resulting eigensystem is
solved. The nondimensionalized frequency are evaluated as:

λ̄= (ωb2/h)
√
ρ/E2,
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Figure 7. Through-thickness distribution in the core of the transverse normal stress σzz

at x = 1
2a and y = 1

2 b; case of a = b = 20htot.
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lamination and # of layers elasticity EHSAPT

0/90/0 6.6185 6.56874
0/90/0/90/0 6.6468 6.6521

Table 1. Nondimensionalized fundamental frequencies, λ̄= (ωb2/h)
√
ρ/E2 for a sim-

ply supported square plate with a/h = 5.

where ω is the circular frequency.
Table 1 shows that the results from EHSAPT closely match the elasticity solutions and provide us the

necessary basis to verify our results and carry out a parametric study and analyze the variation of the
fundamental natural frequency vis-à-vis changes in various geometric and material parameters.

4. Parametric study

The variation of fundamental frequency with respect to the following parameters is studied:

a/h side-to-thickness ratio

tc/t f thickness of the core to thickness of face-sheets

a/b aspect ratio

Ec
1/Ec

2 degree of orthotropy of the core

E f
1 /E f

2 degree of orthotropy of the flanges

4A. 5-Ply symmetric laminate with typical material properties. Considering the material properties of
individual layers in the flanges and the core are typical of high fibrous composites,

E f
2 = E f

3 , G f
12 = G f

13 = 0.6E f
2 , G f

23 = 0.5E f
2 , ν

f
12 = ν

f
13 = ν

f
23 = 0.25,

Ec
2 = Ec

3, Gc
12 = Gc

13 = 0.6Ec
2, Gc

23 = 0.5Ec
2, νc

12 = ν
c
13 = ν

c
23 = 0.25.

Additionally we consider three different symmetric layouts of the composite sandwich laminate:

• 0/90/core/90/0

• 0/60/core/60/0

• 0/45/core/45/0

Initially, considering the variation of the normalized fundamental natural frequency with the side to
thickness ratio for a simply supported square plate with tc/t f = 10, E f

1 /E f
2 = 3 and Ec

1/Ec
2 = 10, in

Figure 8, left, it can be seen that as the side to thickness ratio increases, the natural frequency also starts to
increase for all three laminates considered. It can be seen that the highest fundamental natural frequency
is achieved in the case of the 0/45/core/45/0 symmetric layout for any given a/h ratio. Moreover, the
increase in natural frequency with an increase in side-to-thickness ratio can be explained by the fact that
the sandwich plates are not assumed to be infinitely stiff through the thickness since the shear terms
are included in the analytical plate model. The effect of the shear deformation results in a decrease
in normalized natural frequency. This effect is more pronounced when the thickness, h of the plate
increases, which can also be symbolized by an increase in a/h ratio.
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Figure 8. Fundamental natural frequency versus a/h ratio (left) and tc/t f ratio (right).

Next, the variation of the normalized fundamental natural frequency with the thickness of the core
to thickness of the face-sheets for a simply supported square plate with a/h = 10, E f

1 /E f
2 = 3 and

Ec
1/Ec

2 = 10 is analyzed and depicted in Figure 8, right. It is known that an increase in stiffness of
the sandwich plate results in an increased normalized natural frequency. A similar behavior for various
laminates is observed. It can be seen that as the core thickness increases in relation to the thickness of the
face-sheets the fundamental natural frequency starts to decrease. Again it can be seen that the highest
fundamental natural frequency is achieved in the case of the 0/45/core/45/0 symmetric layout for any
given tc/t f ratio.

In the next case, the variation of the fundamental natural frequency with the aspect ratio of the simply
supported plate with tc/t f = 10, a/h = 10, E f

1 /E f
2 = 3 and Ec

1/Ec
2 = 10 is considered and presented in

Figure 9, left. It can be seen that as the aspect ratio increases (that is, as the plate becomes narrower), its
fundamental natural frequency starts to decrease. In this case the layout of the laminate does not seem
to have a significant effect on the natural frequency of the laminate composite plate.

The effect of variation of the degree of orthotropy of the core for a simply supported square laminated
plate with tc/t f = 10, a/h = 10 and E f

1 /E f
2 = 3 is shown in Figure 9, right. It can be seen that as

the degree of orthotropy of the core increases the fundamental natural frequency of the plate starts to
decrease and the isotropic core provides the highest natural frequency for any laminate layout. Again the
0/45/core/45/0 layout seems to provide the highest fundamental natural frequency for any given Ec

1/Ec
2

ratio.
Finally, the effect of varying the degree of orthotropy of the flanges for a simply supported square plate

with an isotropic core and tc/t f = 10 and a/h = 10 is considered and presented Figure 10. It can be
seen that as the ratio E f

1 /E f
2 increases the fundamental natural frequency of the plate also increases and

hence it can be concluded that a combination of a isotropic core and highly orthotropic flanges provides
the highest fundamental natural frequency.
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4B. 3-ply symmetric graphite-epoxy T300/934 laminate. We now consider a 3-ply laminate graphite-
epoxy T300/934 with the following material properties:

• Face sheets:

E f
1 = 19 · 106 psi (131 GPa), E f

2 = 1.5 · 106 psi (10.34 GPa), E f
2 = E f

3 ,

G f
12 = 1 · 106 psi (6.895 GPa), G f

13 = 0.90 · 106 psi (6.205 GPa), G f
23 = 1 · 106 psi (6.895 GPa),

ν
f

12 = 0.25, ν
f

13 = 0.22, ν
f

23 = 0.49,

ρ f
= 0.057 lb/inch3 (1627 kg/m3).
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Figure 11. Normalized fundamental frequency versus side-to-thickness ratio a/h (left)
and thickness of core to thickness of face sheet tc/t f (right) of a simply supported 3-ply
square plate.

• Core properties (isotropic):

Ec
1 = Ec

2 = Ec
3 = 2Gc

= 1000 psi (6.89x10-3 GPa),

Gc
12 = Gc

13 = Gc
23 = 500 psi (3.45x10-3 GPa),

νc
12 = ν

c
13 = ν

c
23 = 0,

ρc
= 0.3403x10−2 lb/inch3 (97 kg/m3).

Initially, considering the variation of the normalized fundamental natural frequency with the side to
thickness ratio (a/h) for a simply supported square plate with tc/t f = 10. In Figure 11, left, it can be
observed that the natural frequency increases as a/h increases. This is because the sandwich plate is
considered to be infinitely rigid through the thickness.

Now, considering the variation of the normalized fundamental natural frequency with the thickness of
the core to thickness of the face-sheets for a simply supported square plate with a/h = 10. In Figure 11,
right, it can again be seen that as the core thickness increases in relation to the thickness of the face
sheets the fundamental natural frequency starts to decrease.

Finally, considering the variation of the fundamental natural frequency with the aspect ratio of the
simply supported plate with tc/t f = 10 and a/h = 10. In Figure 12 as expected, it can be seen that as
the aspect ratio increases the fundamental natural frequency starts to decrease. This result again matches
the behavior as predicted in Figure 9.

5. Conclusion

This paper presents the applications and validation of extended higher-order sandwich panel theory
for plates with arbitrary aspect ratios presented in [SK 2019]. The results have been presented for a
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supported 3-ply plate.

transversely loaded simply supported sandwich panel and are then compared to the classical model, the
first-order shear model [Plantema 1966; Allen 1969] and elasticity solutions [Kardomateas and Phan
2011; Kardomateas 2008]. It is quite evident that the EHSAPT theory generates very good results which
are in excellent agreement with the elasticity solution. These results also highlight the shortcomings of
the incumbent classical and first-order shear models.

It is highlighted that some of the other recently presented higher order sandwich panel theories present
very good results for the displacement profile but stresses through the core show inconsistencies when
compared to elasticity solutions. The same can be seen by comparing the results obtained by Li and
Kardomateas [2008]. It can be seen that his theory generates a very closely matched displacement
profile but the transverse normal stress through the core (σ c

zz) does not match the elasticity solution and
underestimates the stress at the face sheet and core interface. It is highlighted that through the thickness,
transverse normal stress in the core can play a very crucial role in failure modes of the sandwich plate and
debonding at the interfaces, local wrinkling and core crushing are some serious repercussions of inaccu-
rate results. The present EHSAPT theory on the other hand not only generates excellent results for the
displacement solution but also shows superior agreement with the exact solution for stresses. Therefore,
this new theory is expected to have wide implications in the analysis of sandwich plate structures.

Analytical formulations and solutions to the natural frequency analysis of simply supported composite
sandwich laminated plates based on a higher-order theory is presented. The displacement field takes into
account the compressibility effects in the core which allows us to take the axial, shear and transverse
normal stresses in the core into consideration. For laminated composite plates the solutions of this
higher-order refined theory are found to be in excellent agreement with the three-dimensional elasticity
solution.

A parametric study was then carried out to analyze the effect of varying the various geometric pa-
rameters and material properties on the fundamental natural frequency of laminated composite sandwich
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plates with three different symmetric layouts. This study could suggest some guidelines for sandwich
plate optimal design.

References

[Allen 1969] H. J. Allen, Analysis and design of structural sandwich panels, Pergamon, Oxford, 1969.

[Frostig et al. 1992] Y. Frostig, M. Baruch, O. Vilnay, and I. Sheinman, “High-order theory for sandwich-beam behavior with
transversely flexible core”, J. Eng. Mech. (ASCE) 118:5 (1992), 1026–1043.

[Hohe et al. 2006] J. Hohe, L. Librescu, and S. Y. Oh, “Dynamic buckling of flat and curved sandwich panels with transversely
compressible core”, Compos. Struct. 74:1 (2006), 10–24.

[Kardomateas 2008] G. A. Kardomateas, “Three-dimensional elasticity solution for sandwich plates with orthotropic phases:
the positive discriminant case”, J. Appl. Mech. (ASME) 76:1 (2008), art. id. 014505.

[Kardomateas and Phan 2011] G. A. Kardomateas and C. N. Phan, “Three-dimensional elasticity solution for sandwich beams/wide
plates with orthotropic phases: the negative discriminant case”, J. Sandw. Struct. Mater. 13:6 (2011), 641–661.

[Li and Kardomateas 2008] R. Li and G. A. Kardomateas, “Nonlinear high-order core theory for sandwich plates with or-
thotropic phases”, AIAA J. 46:11 (2008), 2926–2934.

[Noor 1973] A. K. Noor, “Free vibrations of multilayered composite plates”, AIAA J. 11:7 (1973), 1038–1039.

[Phan et al. 2012] C. N. Phan, Y. Frostig, and G. A. Kardomateas, “Analysis of sandwich beams with a compliant core and
with in-plane rigidity: extended high-order sandwich panel theory versus elasticity”, J. Appl. Mech. (ASME) 79:4 (2012), art.
id. 041001.

[Plantema 1966] F. J. Plantema, Sandwich construction: the bending and buckling of sandwich beams, plates, and shells, Wiley,
New York, 1966.

[Reddy 2006] J. N. Reddy, Theory and analysis of elastic plates and shells, 2nd ed., CRC, Boca Raton, FL, 2006.

[SK 2019] F. Siddiqui and G. A. Kardomateas, “Extended higher order sandwich panel theory for plates with arbitrary aspect
ratios”, J. Mech. Mater. Struct. 14:4 (2019).

Received 4 Dec 2018. Revised 24 Apr 2019. Accepted 4 Jun 2019.

FAISAL SIDDIQUI: faisals@gatech.edu
Georgia Institute of Technology, Atlanta, GA, United States

GEORGE A. KARDOMATEAS: george.kardomateas@aerospace.gatech.edu
Georgia Institute of Technology, Atlanta, GA, United States

mathematical sciences publishers msp

http://dx.doi.org/10.1016/C2013-0-02134-2
http://dx.doi.org/10.1061/(ASCE)0733-9399(1992)118:5(1026)
http://dx.doi.org/10.1061/(ASCE)0733-9399(1992)118:5(1026)
http://dx.doi.org/10.1016/j.compstruct.2005.03.003
http://dx.doi.org/10.1016/j.compstruct.2005.03.003
http://dx.doi.org/10.1115/1.2966174
http://dx.doi.org/10.1115/1.2966174
http://dx.doi.org/10.1177/1099636211419127
http://dx.doi.org/10.1177/1099636211419127
http://dx.doi.org/10.2514/1.37430
http://dx.doi.org/10.2514/1.37430
http://dx.doi.org/10.2514/3.6868
http://dx.doi.org/10.1115/1.4005550
http://dx.doi.org/10.1115/1.4005550
http://dx.doi.org/10.1201/9780849384165
mailto:faisals@gatech.edu
mailto:george.kardomateas@aerospace.gatech.edu
http://msp.org


JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 14, No. 4, 2019

dx.doi.org/10.2140/jomms.2019.14.473 msp

INSTABILITIES IN THE FREE INFLATION OF A
NONLINEAR HYPERELASTIC TOROIDAL MEMBRANE

SAIRAM PAMULAPARTHI VENKATA AND PRASHANT SAXENA

We study an incompressible nonlinear hyperelastic thin-walled toroidal membrane of circular cross-
section subjected to inflation due to a uniform pressure, comparing three elastic constitutive models
(neo-Hookean, Mooney–Rivlin, and Ogden) and different torus shapes. A variational approach is used to
derive the equations of equilibrium and bifurcation. An analysis of the pressure–deformation plots shows
occurrence of the well-known limit point (snap-through) instabilities in the membrane. Calculations are
performed to study the elastic buckling point to predict bifurcation of the solution corresponding to the
loss of symmetry. Tension field theory is employed to study the wrinkling instability that, in this case,
typically occurs near the inner regions of tori with large aspect ratios.

1. Introduction

Nonlinear elastic membranes are widely used to make engineering structures and occur naturally as
biological tissues. Air bags, diaphragm valves, balloons, and soft tissues like skin, arterial walls, and cell
walls are some examples. Large deformation due to inflation in membranes is typically associated with
several instability modes and the behaviour strongly depends on the geometric and material nonlinearities.
Here we study the inflation of an incompressible toroidal membrane under hydrostatic pressure and
the instabilities accompanying large deformation. We present new results and analyses for different
constitutive models, limit points, buckling, and wrinkling instabilities.

Axisymmetric deformations of toroidal membranes have been studied for several decades, for exam-
ple, see the early works [Clark 1950; Jordan 1962; Liepins and Sanders 1963]. By using perturbation
technique, an approximate solution for a thick-walled toroidal membrane made of neo-Hookean material
is given in [Kydoniefs and Spencer 1965] and for a thin-walled toroidal membrane in [Kydoniefs and
Spencer 1967]. Yang and Feng [1970] examined the problems concerning large axisymmetric defor-
mations of nonlinear membranes of Mooney–Rivlin type by employing standard numerical techniques.
Hill [1980] determined analytical solutions for a thick-walled toroidal membrane using the Mooney–
Rivlin model. Asymptotic behaviour of a nonlinear torus was studied in [Bonadies 1987] using an
assumption that overall radius of the torus is large in comparison to the radius of larger circle generating
the torus. Application of finite-element formulation to numerically analyse axisymmetric incompressible
nonlinear elastic membranes of general shape which exhibit finite strains can be found in the works
[Wriggers and Taylor 1990; Gruttmann and Taylor 1992; Başar and Itskov 1998]. Numerical studies
by Holzapfel et al. [1996] and Humphrey [1998] shine light on remarkable success of the finite-element
approach to understand axisymmetric nonlinear behaviour of anisotropic biomembranes and cells under
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Keywords: membrane, limit point, wrinkling, bifurcation, nonlinear elasticity, finite deformation.
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finite strain. Shang and Cheng [1991] employed Runge–Kutta numerical method followed by Newton–
Raphson iterative technique to study axisymmetric deformation of hyperelastic toroidal membrane with
finite strains by considering the volume of the gas inside the torus (monotonic function) as a control
parameter instead of internal pressure (nonmonotonic function). Papargyri [1995] examined a pres-
surised compressible thin-walled nonlinear toroidal membrane by comparing the stability of analytical
solution obtained from perturbation approach with the numerical results. Papargyri and Stavrakakis
[2000] applied a numerical scheme to study an incompressible thin-walled nonlinear torus under in-
ternal pressure for different elastic constitutive models. Papargyri [2005] developed a finite-element
method to numerically determine stresses and deformations in both compressible and incompressible
thin-walled toroidal membrane under static inflation using Levenberg–Marquardt algorithm. By varying
the geometric and material parameters, Tamadapu and DasGupta [2012] studied in-plane deformations in
homogeneous inflated elastic toroidal membranes made of neo-Hookean and Mooney–Rivlin materials
using discretisation methods for both isotropic and anisotropic cases. A direct integration method coupled
with Nelder–Mead optimisation technique was formulated to determine numerical solutions for toroidal
membranes in [Tamadapu and DasGupta 2014; Roychowdhury and DasGupta 2015].

Typical deformation characteristics of membranes under inflation involve the phenomenon of limit
point or snap-through instability. A peak pressure is reached for a given deformation beyond which the
membrane inflates rapidly with the slightest increase in pressure. These instabilities have been widely
studied for membranes of various shapes [Benedict et al. 1979; Dreyer et al. 1982; Carroll 1987; Khayat
et al. 1992; Müller and Struchtrup 2002]. Kanner and Horgan [2007] investigated the effect of strain-
hardening on limit point instability in thin-walled spherical and cylindrical shells for different constitutive
models and material parameters. Tamadapu et al. [2013] analysed the effects of geometric and material
parameters on limit point pressure and the associated instabilities during inflation of incompressible
nonlinear elastic membranes of Mooney–Rivlin type, including the torus. Reddy and Saxena [2017;
2018] employed both analytical and numerical schemes to study limit point instability in toroidal and
cylindrical magnetoelastic membranes. Application of bifurcation theory to study buckling problems in
the case of a general elastic deformation is a well-developed research area; see, for example, the classical
works [Koiter 1945; Budiansky 1974].

During the process of stretching, a local structural instability in the form of wrinkling is typically
observed in thin-walled elastic membranes for certain geometries and material parameters [Harold 1970;
Szyszkowski and Glockner 1987; Jenkins et al. 1998]. Due to unequal stretching in the principal di-
rections during inflation, compressive stresses may develop in certain regions of the membrane causing
out of plane displacements. According to the tension field theory [Pipkin 1986], the wrinkles orient
along the direction of the positive principal stress and the wrinkling occurs in the direction of negative
principal stress. The component of principal stress along the direction of wrinkling is considered to
be zero by Pipkin [1986]. Steigmann [1990] extended this theory to nonlinear elastic membranes and
developed analytical functions to obtain information about stretch and the alignment of tension lines
in membranes undergoing wrinkling. It is to be noted that, as no bending stiffness is assigned to the
membrane, the amplitude and wavelength of the wrinkles cannot be computed by using this theory.
Research on the wrinkling of membranes include [Stein and Hedgepeth 1961; Wu 1974; 1978; Wu
and Canfield 1981; Mansfield 1981; Zak 1982; Haughton and McKay 1995; Epstein 1999; Saxena
et al. 2019], to name a few. Axisymmetric deformations of tense and wrinkled zones in thin-walled
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elastic isotropic membranes were found in Li and Steigmann [1995a; 1995b] using relaxed form of
Ogden’s three-terms strain energy model, by Roxburgh [1995] using relaxed form of Mooney–Rivlin
strain energy function, and by Steigmann [2005] using relaxed form of Varga strain energy function.
Wong and Pellegrino [2006] proposed an analytical method to determine the location of wrinkles and
quantify the geometrical patterns such as amplitude and wavelength in linear elastic membranes. Nayyar
et al. [2011] and Barsotti [2015] applied finite-element methods to study wrinkling in thin-walled elastic
membranes. Patil et al. [2015] used a combination of standard and relaxed strain energy density functions
to numerically determine the nonlinear axisymmetric deformations in tensed and wrinkled regions for an
incompressible cylindrical membrane with nonuniform thickness. The numerical analysis was performed
by applying finite difference method coupled with the Newton–Raphson iterative technique.

Here we analyse the influence of geometry and material parameters on axisymmetric deformations,
limit points, bifurcation points, and wrinkling of inflated isotropic hyperelastic toroidal membrane under
a uniform hydrostatic pressure. The two-point boundary value problem obtained from the equilibrium
equations is converted to an initial value problem. Then, for a given deformation of a point on the outer
equator of the membrane, the shooting method is employed to capture the unknown initial conditions
using Nelder–Mead optimisation coupled with direct integration to solve the resulting equilibrium equa-
tions. We apply the classical theory of instability developed by Koiter [1945] and Budiansky [1974] by
considering pressure as the loading parameter to compute the bifurcation point at which the symmetric
fundamental solution becomes unstable. It is observed that bifurcation for torus of neo-Hookean type
typically occurs very close to the limit point for the first mode except for the smallest aspect ratio case
in which it occurs post limit point for the second mode. Location of wrinkled region is computed using
an iterative process based on a kinematic condition that helps in an accurate recomputation of the entire
solution using a coupled form of standard and relaxed energy to determine the membrane deformation.

Remainder of this paper is organised as follows. In Section 2, we formulate the problem statement
along with the necessary kinematical equations for the reference and deformed configurations of the
toroidal membrane. In Section 3, we formulate the governing equations of elastic equilibrium using the
first variation of the total potential energy functional. We introduce three different elastic constitutive
models (Ogden, Mooney–Rivlin, and neo-Hookean) used for computations and also derive the governing
equations corresponding to wrinkling by using relaxed strain energy density. In Section 4, second vari-
ation of the strain-energy functional is derived for the neo-Hookean model to compute critical pressure
for buckling. We discuss the numerical procedure used for computations and present our results and
analysis in Section 5. Finally, we present the conclusions in Section 6.

2. Kinematics of deformation

Consider the reference and deformed configurations of an isotropic incompressible hyperelastic thin-
walled toroidal membrane of a circular cross-section as shown in Figure 1. Smaller radius is Rs and
the radius of revolution is Rb in the reference configuration. The toroidal membrane is inflated by an
internal hydrostatic pressure. Thickness of the undeformed and deformed membranes are denoted by
T and t , respectively related by the stretch ratio λ3 = t/T . The thinness assumption requires T � Rs .
Profile of the midsurface of torus in the deformed configuration can be traced using two functions %̃ and
η̃ as shown in the figure. The torus is symmetric about the Y 1-Y 2 plane, hence we constrain the solution
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Figure 1. Toroidal membrane. Left: reference configuration, before deformation, with a
circular cross-section highlighted. Right: slice of the membrane thickness acted upon by
an internal pressure P . Top middle: Cross-section after general deformation illustrated
through a point Q on Y i -Y 3 plane. The membrane at any instant is symmetric about
Y 1-Y 2 plane and about the Y 3 axis.

space and study only the deformations of the toroidal membrane with respect to the upper half of the
Y 1-Y 2 plane. The calculations and notation below closely follow those in [Reddy and Saxena 2017].

It can be shown that the covariant metric tensors Gi j and g̃i j in the reference and deformed configu-
rations, respectively, are given by

[Gi j ] =

R2
s 0 0

0 R2
b R2 0

0 0 1

 , [g̃i j ] =

 %̃2
θ+η̃

2
θ %̃θ %̃φ+η̃θ η̃φ 0

%̃θ %̃φ+η̃θ η̃φ %̃2
φ+%̃

2
+η̃2

φ 0
0 0 λ2

3

 , (1)

where R = [1+ Rs/Rb cos θ ], and a subscript θ or φ denotes partial differentiation in that variable.
Upon introducing the nondimensional parameters

γ = Rs/Rb, % = %̃/Rb, η = η̃/Rb, (2)

and applying the constraint of incompressibility det(F)= 1, F being the deformation gradient tensor,
we can write the principal stretch ratios λ1, λ2, λ3 as

λ2
1 =

1
2

[
%2
θ + η

2
θ

γ 2 +
%2
φ + η

2
φ + %

2

R2

]
+

1
2

√[
%2
θ + η

2
θ

γ 2 −
%2
φ + η

2
φ + %

2

R2

]2

+ 4
[
%θ%φ + ηθηφ

γ R

]2

,

λ2
2 =

1
2

[
%2
θ + η

2
θ

γ 2 +
%2
φ + η

2
φ + %

2

R2

]
−

1
2

√[
%2
θ + η

2
θ

γ 2 −
%2
φ + η

2
φ + %

2

R2

]2

+ 4
[
%θ%φ + ηθηφ

γ R

]2

,

λ2
3 =

1
λ2

1λ
2
2
=

γ 2 R2[
[%2
θ + η

2
θ ][%

2
φ + η

2
φ + %

2] − [%θ%φ + ηθηφ]2
] = γ 2 R2

[%θηφ − %φηθ ]2+ %2[%2
θ + η

2
θ ]
. (3)
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3. Energy considerations and governing equations

3.1. Potential energy and equilibrium equations. The total potential energy functional E of the system
of interest is given by

E[%, η] = T
∫
�

W d A−
∫ V0+1V

V0

P̂ dV, (4)

where T is the thickness of undeformed membrane, � represents the midsurface of the undeformed
membrane, V0 represents the enclosed initial volume and 1V measures the change in the enclosed
volume, W (%, %θ , %φ, ηθ , ηφ) is the strain energy per unit undeformed volume, and P̂ is the hydrostatic
pressure. Note that W has no explicit dependence on η since none of the principal stretch ratios depend
on η as seen from (3).

Equation (4) can be rewritten as

E[%, η] = T
∫ 2π

0

∫ 2π

0
W
√

G dθ dφ−
∫ 2π

0

∫ 2π

0
P̂n da · δ y, (5)

where
√

G =
√

det(Gi j ) = R Rs Rb and da =
√

g dθ dφ is the area of a differential element on the
deformed surface with the unit normal n. Note that the strain energy is calculated over the reference
configuration while the pressure work is evaluated over the deformed configuration.

First variation of the total potential energy is given as

δE = T
∫ 2π

0

∫ 2π

0

[[
∂W
∂%

√
G− ∂

∂θ

(
∂W
∂%θ

√
G
)
−
∂

∂φ

(
∂W
∂%φ

√
G
)]
δ%

−

[
∂

∂θ

(
∂W
∂ηθ

√
G
)
+
∂

∂φ

(
∂W
∂ηφ

√
G
)]
δη

]
dθ dφ

+

∫ 2π

0

∫ 2π

0
P̂ R3

b[[%%θ ]δη− [%ηθ ]δ%] dθ dφ. (6)

From the principle of minimum potential energy, equilibrium states are attained when δE = 0 that results
in the following Euler equations to be satisfied for evaluating the principal solution of deformation:

∂

∂θ

(
∂W
∂%θ

√
G
)
+
∂

∂φ

(
∂W
∂%φ

√
G
)
−
∂W
∂%

√
G+

P̂ R3
b

T
[%ηθ ] = 0, (7a)

∂

∂θ

(
∂W
∂ηθ

√
G
)
+
∂

∂φ

(
∂W
∂ηφ

√
G
)
−

P̂ R3
b

T
[%%θ ] = 0. (7b)

The fundamental solution is symmetric with respect to rotation about the Y 3 axis resulting in %φ = ηφ = 0.
Upon using this condition, (7a) is simplified to

∂2W
∂θ∂%θ

γ R−
∂W
∂%θ

γ 2 sin θ −
∂W
∂%

γ R+
P̂ Rb

T
%ηθ = 0, (8)

and (7b) becomes
∂2W
∂θ∂ηθ

γ R−
∂W
∂ηθ

γ 2 sin θ −
P̂ Rb

T
%%θ = 0. (9)
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The governing equations (8) and (9) are solved using the boundary conditions which are determined
based on compatibility and symmetry of the cross-section of the torus

%θ (0)= %θ (π)= 0, η(0)= η(π)= 0. (10)

3.1.1. Elastic constitutive models. In order to demonstrate mechanical behaviour via computations we
use the three-term Ogden, Mooney–Rivlin, and neo-Hookean hyperelastic models for the elastic strain
energy density W in this work. These are three very commonly used hyperelastic energy density functions
in several computational studies [Holzapfel 2000]. The mathematical expressions and numerical values
of the material parameters are given below.

The strain energy density for the three-term Ogden model is given by

W ∗(λ1, λ2)=

3∑
j=1

µ j

α j

[
λ
α j
1 + λ

α j
2 +

[ 1
λ1λ2

]α j
− 3

]
, (11)

along with the conditions
∑

j µ jα j = 2µ and µ jα j > 0. The nondimensional parameters can be defined
as µ∗1 = µ1/µ, µ∗2 = µ2/µ, µ∗3 = µ2/µ, where µ is the baseline shear modulus.

Upon substituting α1 = 2, α2 =−2, and µ3 = 0 in (11), we arrive at the Mooney–Rivlin strain energy
density given by

W ∗(λ1, λ2)=
1
2µ1

[
λ2

1+ λ
2
2+

1
λ2

1λ
2
2
− 3

]
−

1
2µ2

[
1
λ2

1
+

1
λ2

2
+ λ2

1λ
2
2− 3

]
. (12)

Upon using α1 = 2, µ2 = µ3 = 0 in (11), we arrive at the neo-Hookean strain energy density given by

W ∗(λ1, λ2)=
1
2µ1

[
λ2

1+ λ
2
2+

1
λ2

1λ
2
2
− 3

]
. (13)

Upon substitution of the explicit expressions of each of the above energy density functions, the resulting
governing equations (8) and (9) can be rewritten as a system of first-order ODEs in matrix form as

1 0 0 0
0 S22 0 S24

0 0 1 0
0 S42 0 S44



U ′1
U ′2
U ′3
U ′4

=

U2

V1

U4

V2

 , (14)

where
U1 = %, U2 = %θ = U ′1, U ′2 = %θθ , U3 = η, U4 = ηθ = U ′3, U ′4 = ηθθ , (15)

and the remaining terms S22, S24, S42, S44,V1,V2 for each of the constitutive models are listed in Sections
A.1–A.3 in the Appendix.

3.2. Relaxed strain energy density. During the inflation of elastic membranes, compressive stresses
might develop for certain geometries as the membrane undergoes unequal stretching in the principal
directions. As membranes are no-compression structures, these in-plane negative stresses result in out of
plane deformations causing wrinkling instability. According to the tension field theory, with the absence
of bending stiffness in thin membranes, infinitesimally small and closely spaced wrinkles are formed
due to compressive stresses. We observe the compressive stresses for certain geometries and for specific
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material parameters in our study. Pipkin [1986] proposed the concept of “relaxed strain energy density”
by modifying the elastic constitutive relation based on principal stretches to study the wrinkling behaviour
in linear elastic membranes. This theory is extended to nonlinear elastic membranes by Steigmann [1990].
The relaxed strain energy density WR is represented as

WR =


W (λ1, λ2) if λ2 ≥ w(λ1) and λ1 ≥ w(λ2),

Wt(λ1) if λ2 ≤ w(λ1) and λ1 ≥ 1,
Wt(λ2) if λ1 ≤ w(λ2) and λ2 ≥ 1,
0 if λ1 ≤ 1 and λ2 ≤ 1,

(16)

where the function w(λ) is termed as the “natural width in simple tension” and defined below. For any
fixed value of λ1, the minimum of W with respect to λ2 is attained at

λ2 = λ
−1/2
1 =: w(λ1). (17)

Similarly, for any fixed value of λ2, the minimum of W with respect to λ1 is attained at

λ1 = λ
−1/2
2 = w(λ2). (18)

As compressive stresses develop in the region λ1 ≥ 1 and λ2 ≤ w(λ1), we can replace the original strain
energy density function W by Wt(λ1) as mentioned in (16).

The terms S22, S24, S42, S44,V1,V2 in the governing equation (14) for computations in the wrinkled
region should be modified according to the above-stated conditions and are given in Appendix A.4.

4. Second variation of total potential energy functional

In elastic solids, we often observe critical (buckling) points for certain load values at which the equilib-
rium path branches out into multiple stable and/or unstable paths. These critical points are of considerable
interest as the postbuckling response of the system is usually different from the initial response (principal
solution). Considering the hydrostatic pressure as a loading parameter, we adopt the procedure proposed
in [Budiansky 1974] to determine the critical pressure in our case of hyperelastic membrane beyond
which the symmetric fundamental solution is no longer the energy minimiser. To reduce the complexity
of long mathematical expressions, we study the critical pressure condition only for the neo-Hookean
material model.

4.1. Critical pressure. The fundamental solution for % and η is symmetric with respect to the Y 3 axis
and therefore has no dependence on φ. We define critical pressure as the point where the solution
loses this symmetry while retaining the symmetry with respect to the Y 1-Y 2 plane. Hence, we consider
the bifurcation branches that include perturbations in the φ direction. The following expansions are
considered for the variables % and η:

%(θ, φ)= %0(θ)+ %̂(φ)= %0(θ)+ϒ%1(φ)+ · · ·

η(θ, φ)= η0(θ)+ η̂(φ)= η0(θ)+ϒη1(φ)+ · · ·

ϒ = 〈%̂, %1〉 = 〈η̂, η1〉, 〈%i , % j 〉 = 〈ηi , η j 〉 =

{
1 if i = j,
0 otherwise, (19)
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where the scalar parameter ϒ � 1 measures the amount of bifurcation mode, 〈•〉 represents a suitable
inner product, and %1 and η1 represent the first bifurcation mode with %0 and η0 being the fundamental
states.

Bifurcation of the solution occurs when the second variation of the potential energy vanishes. For the
current scenario, it is given as

δ2 E = E ′′c U1δU = [E ′′cα1
+ E ′′cα2

− E ′′cα31
− E ′′cα32

+ E ′′cα33
+ E ′′cα34

]U1δU

+ [−E ′′cα35
+ E ′′cα36

+ E ′′cP
]U1δU = 0, (20)

where we have defined several terms as below

E ′′cα1
U1δU = 0, (21)

E ′′cα2
U1δU = 2µ̄T

∫ 2π

0

∫ 2π

0

%1φδ%φ + η1φδηφ + %1δ%

R2

√
G dθ dφ, (22)

E ′′cα31
U1δU = 2µ̄T γ 2

∫ 2π

0

∫ 2π

0

EaaEab

E2
ac

√
G R2 dθ dφ, (23)

E ′′cα32
U1δU = 2µ̄T γ 2

∫ 2π

0

∫ 2π

0

[%θηφ − %φηθ ][η1φδ%θ − %1φδηθ ]

E2
ac

√
G R2 dθ dφ, (24)

E ′′cα33
U1δU = 8µ̄T γ 2

∫ 2π

0

∫ 2π

0

[%θηφ − %φηθ ]
2EaaEab

E3
ac

√
G R2 dθ dφ, (25)

E ′′cα34
U1δU = 8µ̄T γ 2

∫ 2π

0

∫ 2π

0

[%θηφ − %φηθ ]EadEab

E3
ac

√
G R2 dθ dφ, (26)

E ′′cα35
U1δU = 2µ̄T γ 2

∫ 2π

0

∫ 2π

0

%1[%
2
θ + η

2
θ ]δ%+ 2%%1[%θδ%θ + ηθδηθ ]

E2
ac

√
G R2 dθ dφ, (27)

E ′′cα36
U1δU = 8µ̄T γ 2

∫ 2π

0

∫ 2π

0

%%1[%
2
θ + η

2
θ ][[%θηφ − %φηθ ]Eaa + Ead ]

E3
ac

√
G R2 dθ dφ, (28)

E ′′cP
U1δU =

∫ 2π

0

∫ 2π

0
P̂ R3

b[%θη1δ%+ %η1δ%θ − ηθ%1δ%− %%1δηθ ] dθ dφ, (29)

with
Eaa = ηφδ%θ + %θδηφ − ηθδ%φ − %φδηθ , Eab = %θη1φ − ηθ%1φ , µ̄= 1

2µ1,

Eac = [%θηφ − %φηθ ]
2
+ %2
[%2
θ + η

2
θ ], Ead = %[%

2
θ + η

2
θ ]δ%+ %

2
[%θδ%θ + ηθδηθ ]. (30)

Upon separating the coefficients of δ% and δη, we obtain the following governing equations for the
bifurcated mode

Kaa%1+Kbb%1φφ +Kccη1φφ = 0, (31)

and

Laa%1+Lbb%1φφ +Lccη1φφ = 0, (32)
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Three-term Ogden model [1972]:
µ∗1 = 1.4910, µ∗2 = 0.0029, µ∗3 =−0.0236,
α1 = 1.3, α2 = 5.0, α3 =−2.0,

Mooney–Rivlin model: M=−
µ2

µ1
= 0.1 and 0.3.

Table 1. Nondimensional material parameters used for numerical computations.

where the bifurcation pressure is denoted as P̂c and

Kaa = Rγ %4N 3
+ 3R5γ 3N 2

+ 6%2
θ R5γ 3N − 2%%θθ R5γ 3N + 6%%θ R4γ 4N sin θ

+ 8%%θ [%θ%θθ + ηθηθθ ]R5γ 3
−

1
2 Pcηθ R2%4N 3,

Kbb =−%
4γ RN 3

+ η2
θ R5γ 3N , Kcc =−%θηθ R5γ 3N ,

N = %2
θ + η

2
θ , Pc =

P̂c Rb

µ̄T
,

Laa = 6%θηθ R5γ 3N−2%ηθθ R5γ 3N+6%ηθ R4γ 4N sin θ+8%ηθ [%θ%θθ+ηθηθθ ]R5γ 3
+

1
2 Pc%

4%θ R2N 3,

Lbb =−%θηθ R5Nγ 3, Lcc =−γ R%4N 3
+ %2

θ R5γ 3N . (33)

Upon considering the following ansatz for %1 and η1:

%1 = %
0
1 exp(i nφ), η1 = η

0
1 exp(i nφ), where i =

√
−1. (34)

It can be shown that a nontrivial solution for the above system of equation exists when

Rres = [[KccLaa −KaaLcc] + n2
[KbbLcc−KccLbb]] = 0. (35)

The residue Rres defined above should be put to zero computationally in order to calculate the critical
pressure value.

5. Numerical procedure, results, and discussion

Computations are performed for numerical values of the material parameters presented in Table 1.

5.1. Calculation of fundamental solution. The governing equations (8) and (9) for fundamental solu-
tion are subjected to boundary conditions defined by (10). They are numerically solved for three elastic
constitutive models (Ogden, Mooney–Rivlin, and neo-Hookean) by following a method used for similar
problems in [Tamadapu and DasGupta 2014; Reddy and Saxena 2017]. The two point boundary value
problem is converted into an initial value problem with two unknown parameters (%(0), ηθ (0)) at a
particular nondimensional pressure P . For a given value of location of point on the outer equator of the
membrane (%(0) > 1+ γ ), we start with an initial guess for the pair (ηθ (0), P), and employ shooting
method to obtain the two boundary values %θ (π) and η(π) for the point on the inner edge. Ideally %θ (π)
and η(π) should be zero. The desired optimisation pair (ηθ (0), P) which reduces the value of the cost
function, [%θ (π)2 + η(π)2]1/2, to a sufficiently small quantity (< O(10−12)) is obtained by using the
Nelder–Mead simplex optimisation technique of two variables. This optimisation method is performed
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Figure 2. Deformation profiles of the membrane subject to inflation using Ogden energy
density function for aspect ratios γ = 0.2 and γ = 0.7. The nondimensional coordinates
% and η are introduced in (2). Due to symmetry, only the upper half is plotted.

using fminsearchbnd function with lower bounds on the guess pair ({ηθ (0), P}> 0) in Matlab R2017b.
As we capture the desired pair, we use a strong mass-state dependent ode45 solver in Matlab R2017b
to solve the set of equilibrium equations in order to obtain the values of %, %θ , η, ηθ over the domain
θ ∈ [0, π] which is finely divided into 2000 intervals.

5.1.1. Fundamental solution, deformation profiles, and validation. We plot the inflation profiles of the
toroidal membrane for the Ogden model in Figure 2 for the aspect ratios γ = 0.2 and γ = 0.7. Similar
profiles are obtained for all the models, aspect ratios, and pressure values but not shown here for brevity.
It can be seen from Figure 2, left, that for the small aspect ratio (γ = 0.2), both the inner and the outer
ends move outwards while for higher aspect ratio (γ = 0.7) and Figure 2, right, inner end remains at
almost the same position while the outer end moves outwards upon the increase of pressure.

Plots of %(π) (inner end) vs. %(0) (outer end) for all the three material models and several aspect
ratios {γ ∈ (0.2, 0.7) for Ogden and Mooney–Rivlin, γ ∈ (0.2, 0.8) for neo-Hookean} are presented in
Figure 3. For the Ogden and neo-Hookean models, it is clearly seen that upon the increase of inflation
(moving rightwards on the %(0) axis), the inner end first moves slightly inwards and then moves outwards
for almost all values of γ . Only for large aspect ratios (γ = 0.7 for Ogden and γ = 0.7, 0.8 for neo-
Hookean), the inner end undergoes very small changes in its position. This is also expected physically
since tori with large γ have very little room for movement of the inner end. The behaviour is different
for the two Mooney–Rivlin material models as shown in Figure 3, bottom. For the cases {γ = 0.2 to 0.5,
M= 0.1} and {γ = 0.2, M= 0.3}, with an increase in pressure the inner edge moves outwards before
moving inwards again for higher inflation. For all other cases, the inner edge moves further inwards
monotonically upon increase of pressure.

These considerable differences in behaviours of constitutive models demonstrate the importance of
selecting the right model for the material at hand. For example, behaviour of natural rubbers can usually
be explained by the three-term Ogden model [1972] while that of certain soft biological tissues can be
simulated by the neo-Hookean model [Horný et al. 2006]. Our results for the Mooney–Rivlin model
match those presented in [Tamadapu and DasGupta 2014] for M= 0.3, γ = 0.2 and 0.5 cases, and those
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Figure 3. Movement of end points for different hyperelastic constitutive models during
inflation of the membrane for various aspect ratios γ . The end %(0) represents the
inflation as explained in Section 5.1 and %(π) is the inner end of the torus profile.

presented in [Reddy and Saxena 2017] for M= 0.1, γ = 0.2 and 0.5; thus providing a validation of the
formulation and the computations.

5.1.2. Limit point and Cauchy stress. We compute the pressure-deformation and pressure-stress charac-
teristics for all the three material models for the aspect ratios lying in the range γ ∈ (0.2, 0.8). Variation
of nondimensional pressure (P) with the relative increase in volume (1V/V ) of torus for three repre-
sentative aspect ratios γ = 0.2, 0.4, and 0.6 is shown in Figure 4. In each of these curves we observe
the classical limit point as the point at which pressure stops increasing monotonically. In a pressure
controlled experiment, this generally results in a snap-through instability causing uncontrolled increase
in membrane’s volume likely leading to failure. However, the states beyond limit point can be reached
in a volume controlled experiment.

It is evident from these curves that tori with small aspect ratios γ can sustain much higher pressure
values for the same relative increase in volume. This effect is also visible in the limit point pressure Plim

plotted in Figure 5. Higher values of γ result in lower values of corresponding Plim. We also note that
with comparable values of shear modulus µ used in the computations, Ogden material has the smallest
value of Plim followed by neo-Hookean and Mooney–Rivlin materials, respectively. We note that upon
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Figure 4. Pressure vs. volume curves for all the three material models for three different
aspect ratios γ = 0.2, 0.4, 0.6.

increasing volume beyond the limit point, there is a consistent decline in pressure for the neo-Hookean
model whereas opposite happens for Mooney–Rivlin (M= 0.3, γ = 0.6) case where pressure increases
monotonically. In all the other cases (Ogden model, Mooney–Rivlin (M = 0.1) and Mooney–Rivlin
(M= 0.3, γ = 0.2, 0.4)) pressure rises with volume after an initial fall at the limit point.

We also study the variation of Cauchy stresses in the membrane with inflation as computed using (43),
(49), and (53). The behaviour is almost similar for all the three models and we plot a few representative
results for Ogden model in Figure 6. Variation of the principal stresses σθθ and σφφ at the inner equator
(θ = π) with the internal pressure is shown. Typically the magnitude of principal stresses along the
minor circumference (σθθ ) is larger than that of the principal stresses along the major circumference
(σφφ). For most cases, the stresses increase monotonically with inflation, the exception being σφφ(θ = π)
at γ = {0.6, 0.7}. Beyond the limit point, the stresses increase rapidly upon slight changes in pressure,
likely leading to failure.

We further observe in Figure 6 that σφφ attains a negative value for certain values of pressure for torus
with γ = 0.7. Similar observations are made for the neo-Hookean model (γ = 0.8) and Mooney–Rivlin
model ({M= 0.1; γ = 0.4, 0.5, 0.6, 0.7} and {M= 0.3; γ = 0.2, 0.3, 0.4, 0.5, 0.6}) but those results are
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Figure 6. Variation of the principal stresses σθθ and σφφ with pressure at the inner
equator (θ = π) of the torus for the Ogden material model.

not plotted here for the sake of brevity. Negative values of the principal stress indicate the occurrence of
wrinkling instability and this is further explored in Section 5.3.

5.2. Calculation of critical pressure. The fundamental solution obtained for the variables %θ and ηθ is
used in calculating second order derivatives of % and η with respect to the variable θ . The values of %θθ
and ηθθ in each interval are calculated by using forward difference method, i.e., %θθ i = (%θi+1 − %θi )/1θ

where 1θ = π/2000 and i = 1, 2, . . . , 2000. The variables (%, η) and their derivatives are calculated at
each θi for all the values of pressure during inflation process of a membrane with an aspect ratio γ . These
values are substituted in (35) and by changing the values of the mode number n from 1 to 5, we calculate
Rres at each θi for all the values of pressure and for a given aspect ratio γ . We repeat this process for all the
values of γ ∈ (0.2, 0.8) considered in our study for the neo-Hookean material. Zeros of Rres are searched
by computing the value of pressure at which it changes sign. Only a change of order (> O(10−4)) in
the residual value is considered to be admissible to avoid numerical errors; if the value of Rres does not
fall in the desired range we do not assign any critical value of pressure for that case. This procedure is
repeated for the entire domain θ ∈ [0, π] and the corresponding critical pressure for the point located
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Figure 7. First critical points on the pressure-volume curves for the neo-Hookean model
are marked with dots. For γ = 0.3, critical point is achieved for n = 2 and occurs
significantly after the limit point, while for all other cases it is achieved at n = 1 very
close to the limit point.

at θi on the membrane is noted. The lowest of all the critical pressure values occurring at or before the
limit point for a given aspect ratio is termed as critical point pressure for that membrane under inflation.

Based on our computations, we obtain critical (bifurcation) points for the cases {n = 1, γ = 0.4, 0.5,
0.6, 0.7, 0.8} and {n = 2, γ = 0.3}. All other cases lead to no solution of (35). The critical point for
γ = 0.3 occurs well after the limit point and although this configuration is difficult to access in a pressure
controlled experiment, it can be achieved in a volume or mass controlled experiment [Wang et al. 2017].
For all other γ values, the critical points are very close (albeit not equal) to the limit point. These points
are depicted graphically in Figure 7.

5.3. Computation of wrinkling instability. Wrinkling is achieved when the in-plane stress in any direc-
tion in the membrane reaches zero. In the negative-stress regions, we use the relaxed form of the strain
energy density and the subsequently modified equations in Section 3.2 to recompute the solutions with
a method similar to that employed in Section 5.1.

We start with an initial guess value for the location of onset of wrinkling region θwr taken to be
the starting location of the region σφφ < 0. We employ standard strain energy density in the region
0 ≤ θ ≤ θwr to calculate the variables %, %θ , η, and ηθ at θwr and use these as the initial conditions to
determine the solution in the region θwr ≤ θ ≤ π employing the relaxed strain energy density function.
Next, we minimise the cost function [%θ (π)2+ η(π)2]1/2 to a sufficiently small quantity (<O(10−12))

by using the Nelder–Mead simplex optimisation technique of two variables (ηθ (0), P) and determine
the variables over the domain θ ∈ [0, π]. Then, we calculate λ2

2λ1 − 1 obtained at θwr to check if the
value is in order of (< O(10−10)) and this process is repeated by varying θwr in the range

( 1
2π, π

)
till

we get the desired solution set (λ1, λ2) at θwr, since we observe that both the principal stretch ratio
values are greater than one for the points on the boundary in the range 0 ≤ θ ≤ 1

2π . The coordinate
θ = θwr at which λ2

2λ1 − 1 < O(10−10) represents the starting location of wrinkles on the membrane.
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Figure 8. Membrane profiles upon wrinkling computed using relaxed strain energy den-
sity. Left: Ogden constitutive model (inflating pressure = 1.46, %(0) = 2.20). Right:
Mooney–Rivlin model (inflating pressure= 7.62, %(0)= 6.05).

This numerical scheme is implemented in Matlab R2017b. We note that this scheme is an improvement
over the traditional case where θwr would simply be taken as the first point where σφφ < 0 based on
computations made using the standard energy density function.

Wrinkling analysis is carried out for Ogden material with aspect ratio γ = 0.7, for Mooney–Rivlin
material with γ = 0.4, M= 0.3, and for neo-Hookean material with aspect ratio γ = 0.8 after observing
negative σφφ stress values as discussed in Section 5.1.2. We observe that wrinkling occurs only in a small
region near the inner equator on the membrane for all the above-mentioned cases whenever σφφ < 0. Thus,
according to the tension field theory, wrinkling happens along the φ direction while the wrinkle lines
ought to appear along the θ direction. Membrane profiles upon wrinkling for two cases of Ogden and
Mooney–Rivlin models are plotted in Figure 8.

Once the onset of wrinkling is confirmed by observing negative circumferential stress values, we
recompute the entire solution using the combination of relaxed and total strain energy densities using
the numerical scheme described earlier in this section. We observe that this updated solution (membrane
profile and location of wrinkling) is different from the one in which θwr is obtained using the standard
strain energy. Values obtained by both the solutions and relative errors are presented in Table 2. Here
θ = θwr is the starting point of wrinkles in the reference configuration. Maximum error in the calculations
of θwr is 0.77% or 1.3◦ for the Mooney–Rivlin material at the pressure P = 7.62. Although the error
between these two approaches in this case of toroidal geometry is small, the difference in solutions is
still noteworthy and might be more relevant in other constitutive models or membrane geometry.

6. Conclusions

In this work we have presented new analysis and results in the study of free inflation of a nonlinear hyper-
elastic toroidal membrane. To analyse the deformation behaviour and instabilities in free inflation of a
torus under a hydrostatic pressure, toroidal membranes made of three materials (Ogden, Mooney–Rivlin,
and neo-Hookean) are considered and a comparative study is conducted amongst them. We observe
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model %(0) P
standard energy

density
relaxed energy

density error %

Ogden
(γ = 0.7)

2.01 1.41 173.97◦ 172.98◦ 0.57
2.20 1.46 173.07◦ 171.81◦ 0.73

Mooney–Rivlin
(γ = 0.4,M= 0.3)

5.55 7.23 176.13◦ 175.41◦ 0.41
6.05 7.62 174.42◦ 173.07◦ 0.77

neo-Hookean
(γ = 0.8)

2.21 1.84 175.41◦ 174.60◦ 0.46
2.31 1.87 175.41◦ 174.60◦ 0.46

Table 2. Error in the prediction of the parameter θwr by standard strain energy density function.

strain-hardening behaviour in Ogden and Mooney–Rivlin material models after the limit point pressure.
For the neo-Hookean model bifurcation of solution occurs well post limit point for γ = 0.3 corresponding
to the second mode, and very close to the limit point for all other aspect ratios for the first mode.

We notice that limit point pressure decreases with increase in aspect ratio and increases with increase
in stiffness of the membrane. We also notice that for Mooney–Rivlin model with higher aspect ratio and
a stiffer material, nondimensional pressure increases monotonically with inflation. In the compressive
stress regions, we use the concept of relaxed strain energy density to study wrinkling behaviour and we
observe differences between the wrinkled configuration predicted by standard strain energy density and
its relaxed form.

Based on our results on critical point bifurcation and wrinkling, it can be claimed that the predicted
behaviour of membrane in Figure 4 and Figure 6 for large volume cases is most likely inaccurate. The
fundamental solution does not hold for the postinstability regime and a recalculation of configuration/
stress/ pressure needs to be performed. This postbuckling analysis to understand membrane’s behaviour
will be undertaken as future work.

Appendix: Matrix coefficients of governing equations for various constitutive models

A.1. Coefficients for Ogden model. For Ogden constitutive model, the governing equation (8) gives

3∑
j=1

µ j

λ
α j+3
1 λ

α j+1
2 γ 2α j+2 R2α j+2[%2

θ + η
2
θ ]

3/2
[ Â j%θθ + B̂ jηθθ + Ĉ j ] +

[
P̂ Rb

T

]
%ηθ = 0, (36)

while the governing equation (9) results in

3∑
j=1

µ j

λ
α j+3
1 λ

α j+1
2 γ 2α j+2 R2α j+2[%2

θ + η
2
θ ]

3/2
[D̂ j%θθ + Ê jηθθ + F̂ j ] −

[
P̂ Rb

T

]
%%θ = 0, (37)

where

Â j =
[
[α j − 1][%2

θ + η
2
θ ]
α j%α j Rα j + [α j + 1]γ 2α j R2α j

]
%2
θ [%

2
θ + η

2
θ ]%R2

+ [[%2
θ + η

2
θ ]
α j%α j Rα j − γ 2α j R2α j ]η2

θ [%
2
θ + η

2
θ ]%R2,
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B̂ j =
[
[α j − 1][%2

θ + η
2
θ ]
α j%α j Rα j + [α j + 1]γ 2α j R2α j

]
%θηθ [%

2
θ + η

2
θ ]%R2

− [[%2
θ + η

2
θ ]
α j%α j Rα j − γ 2α j R2α j ]%θηθ [%

2
θ + η

2
θ ]%R2,

Ĉ j = α j [%θ R+ %γ sin θ ]%θ [%2
θ + η

2
θ ]

2γ 2α j R2α j+1

− [[%2
θ + η

2
θ ]
α j%α j Rα j − γ 2α j R2α j ]%%θ [%

2
θ + η

2
θ ]

2γ R sin θ

− [[%2
θ + η

2
θ ]
α j/2%2α jγ α j − γ 2α j R2α j ][%2

θ + η
2
θ ]

3 R2, (38)
and

D̂ j =
[
[α j − 1][%2

θ + η
2
θ ]
α j%α j Rα j + [α j + 1]γ 2α j R2α j

]
%θηθ [%

2
θ + η

2
θ ]%R2

− [[%2
θ + η

2
θ ]
α j%α j Rα j − γ 2α j R2α j ]%θηθ [%

2
θ + η

2
θ ]%R2,

Ê j =
[
[α j − 1][%2

θ + η
2
θ ]
α j%α j Rα j + [α j + 1]γ 2α j R2α j

]
η2
θ [%

2
θ + η

2
θ ]%R2

+ [[%2
θ + η

2
θ ]
α j%α j Rα j − γ 2α j R2α j ]%2

θ [%
2
θ + η

2
θ ]%R2,

F̂ j = α j [%θ R+ %γ sin θ ]ηθ [%2
θ + η

2
θ ]

2γ 2α j R2α j+1

− [[%2
θ + η

2
θ ]
α j%α j Rα j − γ 2α j R2α j ]%ηθ [%

2
θ + η

2
θ ]

2γ R sin θ. (39)

The components of matrices in (14) for the Ogden energy density are given by

S22 = µ
∗

1
[
U1 R2
[U2

2 +U2
4 ][[S

1
]U2

2 + [S
2
]U2

4 ]
]
λ
α2+α3+6
1 λ
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α1+α3+2
2 γ 2α1+2α3+4 R2α1+2α3+4

+µ∗3
[
U1 R2
[U2

2 +U2
4 ][[S

5
]U2

2 + [S
6
]U2

4 ]
]
λ
α1+α2+6
1 λ

α1+α2+2
2 γ 2α1+2α2+4 R2α1+2α2+4,

S24 = µ
∗

1
[
U1 R2
[U2

2 +U2
4 ][[S

1
]U2U4− [S2

]U2U4]
]
λ
α2+α3+6
1 λ

α2+α3+2
2 γ 2α2+2α3+4 R2α2+2α3+4

+µ∗2
[
U1 R2
[U2

2 +U2
4 ][[S

3
]U2U4− [S4

]U2U4]
]
λ
α1+α3+6
1 λ

α1+α3+2
2 γ 2α1+2α3+4 R2α1+2α3+4

+µ∗3
[
U1 R2
[U2

2 +U2
4 ][[S

5
]U2U4− [S6

]U2U4]
]
λ
α1+α2+6
1 λ

α1+α2+2
2 γ 2α1+2α2+4 R2α1+2α2+4,

S42 = µ
∗

1
[
U1 R2
[U2

2 +U2
4 ][[S

1
]U2U4− [S2

]U2U4]
]
λ
α2+α3+6
1 λ

α2+α3+2
2 γ 2α2+2α3+4 R2α2+2α3+4

+µ∗2
[
U1 R2
[U2

2 +U2
4 ][[S

3
]U2U4− [S4

]U2U4]
]
λ
α1+α3+6
1 λ

α1+α3+2
2 γ 2α1+2α3+4 R2α1+2α3+4

+µ∗3
[
U1 R2
[U2

2 +U2
4 ][[S

5
]U2U4− [S6

]U2U4]
]
λ
α1+α2+6
1 λ

α1+α2+2
2 γ 2α1+2α2+4 R2α1+2α2+4,

S44 = µ
∗

1
[
U1 R2
[U2

2 +U2
4 ][[S

1
]U2

4 + [S
2
]U2

2 ]
]
λ
α2+α3+6
1 λ

α2+α3+2
2 γ 2α2+2α3+4 R2α2+2α3+4

+µ∗2
[
U1 R2
[U2

2 +U2
4 ][[S

3
]U2

4 + [S
4
]U2

2 ]
]
λ
α1+α3+6
1 λ

α1+α3+2
2 γ 2α1+2α3+4 R2α1+2α3+4

+µ∗3
[
U1 R2
[U2

2 +U2
4 ][[S

5
]U2

4 + [S
6
]U2

2 ]
]
λ
α1+α2+6
1 λ

α1+α2+2
2 γ 2α1+2α2+4 R2α1+2α2+4, (40)

and
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along with
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Nondimensional principal Cauchy stresses in the θ - and φ-directions are computed as

σθθ =

[
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A.2. Coefficients for Mooney–Rivlin model. The components of matrices in (14) for the Mooney–
Rivlin energy density are given by
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4 ]
2γ R sin θ + [V5

m][U
2
2 +U2

4 ]
3 R2]λ4

1−
[
[V1

m]U2[U2
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4 ]
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1
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8 R8
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[
[V3
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4 ]
2]λ8

1λ
4
2γ

8 R8
−

1
2 PU1U4[U2

2 +U2
4 ]

3/2λ9
1λ

3
2γ

6 R6,

V2 =
[
[V2

m]U1U4[U2
2 +U2

4 ]
2γ R sin θ

]
λ4

1−
[
[V1

m]U4[U2
2 +U2

4 ]
2]λ4

1

−M
[
[V4

m]U1U4[U2
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4 ]
2γ R sin θ

]
λ8

1λ
4
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8 R8

+M
[
[V3
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4 ]
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4
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8 R8
+

1
2 PU1U2[U2
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4 ]

3/2λ9
1λ

3
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6 R6, (45)

along with

S1
m = [U

2
2 +U2

4 ]
2U2

1 R2
+ 3γ 4 R4, S2

m = [U
2
2 +U2

4 ]
2U2

1 R2
− γ 4 R4,

S3
m =−3[U2

2 +U2
4 ]
−2U−2

1 R−2
− γ−4 R−4, S4

m = [U
2
2 +U2

4 ]
−2U−2

1 R−2
− γ−4 R−4, (46)

V1
m = 2[U2 R+U1γ sin θ ]γ 4 R5, V2

m = [U
2
2 +U2

4 ]
2U2

1 R2
− γ 4 R4,

V3
m =−2[U2 R+U1γ sin θ ]γ−4 R−3, V4

m = [U
2
2 +U2

4 ]
−2U−2

1 R−2
− γ−4 R−4,

V5
m = [U

2
2 +U2

4 ]U
4
1γ

2
− γ 4 R4, V6

m = [U
2
2 +U2

4 ]
−1U−4

1 γ−2
− γ−4 R−4, (47)

P =
P̂ Rb

1
2µ1 T

, M=−
µ2

µ1
. (48)

Nondimensional principal Cauchy stresses in the θ - and φ-directions are computed as

σθθ = 2
[
λ1

λ2
−

1
λ3

1λ
3
2

]
[1+Mλ2

2], σφφ = 2
[
λ2

λ1
−

1
λ3

1λ
3
2

]
[1+Mλ2

1]. (49)

A.3. Coefficients for neo-Hookean model. The components of matrices in (14) for the neo-Hookean
energy density are given by

S22 =
[
U1 R2
[U2

2 +U2
4 ][[S

1
n ]U

2
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2
n ]U

2
4 ]
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1λ
2
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4 R4,
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n ]U2U4]
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λ6

1λ
2
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4 R4,

S42 = S24,

S44 =
[
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[U2

2 +U2
4 ][[S

1
n ]U

2
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2
n ]U

2
2 ]
]
λ6

1λ
2
2γ

4 R4, (50)

and

V1 =
[
[V2

n ]U1U2[U2
2 +U2

4 ]
2γ R sin θ + [V3

n ][U
2
2 +U2

4 ]
3 R2]λ6

1λ
2
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4 R4

−
[
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[
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4 ]
2γ R sin θ

]
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4 R4
−
[
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2]λ6

1λ
2
2γ

4 R4

+
1
2 PU1U2[U2

2 +U2
4 ]

3/2λ11
1 λ

5
2γ

10 R10, (51)
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along with

S1
n = [U

2
2 +U2

4 ]
2U2

1 R2
+ 3γ 4 R4, S2

n = [U
2
2 +U2

4 ]
2U2

1 R2
− γ 4 R4,

V1
n = 2[U2 R+U1γ sin θ ]γ 4 R5, V2

n = [U
2
2 +U2

4 ]
2U2

1 R2
−γ 4 R4, V3

n = [U
2
2 +U2

4 ]U
4
1γ

2
−γ 4 R4,

P =
P̂ Rb

1
2µ1T

. (52)

Nondimensional principal Cauchy stresses in the θ - and φ-directions are computed as

σθθ = 2
[
λ1

λ2
−

1
λ3

1λ
3
2

]
, σφφ = 2

[
λ2

λ1
−

1
λ3

1λ
3
2

]
. (53)

A.4. Matrix coefficients for wrinkled region. In the wrinkled region, using the relaxed energy density
obtained by substituting λ2 = 1/

√
λ1, we find that the terms S22, S24, S42, S44, V1, V2 for each of the

material models discussed above are modified as below.
For Ogden energy density, we get

S22 = µ
∗

1 R
[
%2
θ

[
[α1− 1]λ3α1/2

1 +
[ 1

2α1+ 1
]]
+ η2
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1 ,
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S42 = S24,

S44 = µ
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1 , (54)

along with

V1 =
[
µ∗1[λ
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For Mooney–Rivlin energy density, we get

S22 = R
[
%2
θ [λ

4
1+2λ1+3M]+η2

θ [λ
4
1−λ1+M[λ

3
1−1]]

]
,

S24 = R[%θηθ [3λ1+4M−Mλ3
1]],

S42 = S24,

S44 = R
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η2
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4
1+2λ1+3M]+%2

θ [λ
4
1−λ1+M[λ

3
1−1]]

]
, (56)

along with
V1 = [λ

4
1−λ1+M[λ

3
1−1]]γ 3λ2

1U2 sin θ−
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2 P
]
U1U4λ

6
1γ
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4
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3
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2 P
]
U1U2λ

6
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3]. (57)

For neo-Hookean energy density, we get

S22 = R[%2
θ [λ

4
1+2λ1]+η

2
θ [λ

4
1−λ1]], S24 = R[%θηθ [3λ1]],

S42 = S24, S44 = R[η2
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4
1+2λ1]+%

2
θ [λ

4
1−λ1]], (58)

and

V1 = [λ
4
1−λ1]γ

3λ2
1U2 sin θ−

[[1
2 P
]
U1U4λ

6
1γ

3], (59)

V2 = [λ
4
1−λ1]γ

3λ2
1U4 sin θ+
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2 P
]
U1U2λ

6
1γ

3]. (60)
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PLANE STRAIN POLAR ELASTICITY OF FIBRE-REINFORCED
FUNCTIONALLY GRADED MATERIALS AND STRUCTURES

KONSTANTINOS P. SOLDATOS, METIN AYDOGDU AND UFUK GUL

This study investigates the flexural response of a linearly elastic rectangular strip reinforced in a func-
tionally graded manner by a single family of straight fibres resistant in bending. Fibre bending resistance
is associated with the thickness of fibres which, in turn, is considered measurable through use of some
intrinsic material length parameter involved in the definition of a corresponding elastic modulus. Solution
of the relevant set of governing differential equations is achieved computationally, with the use of a well-
established semianalytical mathematical method. A connection of this solution with its homogeneous
fibre-reinforced material counterpart enables the corresponding homogeneous fibrous composite to be
regarded as a source of a set of equivalent functionally graded structures, each one of which is formed
through inhomogeneous redistribution of the same volume of fibres within the same matrix material.
A subsequent stress and couple-stress analysis provides details of the manner in which the flexural
response of the polar structural component of interest is affected by certain types of inhomogeneous
fibre distribution.

1. Introduction

Fibrous composites with either homogeneously or inhomogeneously distributed stiff fibres are increas-
ingly attracting attention and interest, particularly after carbon nanotube fibres were found suitable for
inclusion in their constituent phases (e.g., [Liew et al. 2015]). Despite their low density and nanometer
thickness, carbon nanotubes are known to exhibit remarkably high strength and stiffness, as well as
similarly high bending resistance.

Fibre bending stiffness of such a kind of stiff fibres is thus naturally required to be accounted for in
modelling and studying the behaviour of relevant composites, regardless of whether fibre reinforcement is
distributed in a homogeneous or in some inhomogeneous manner. This requirement becomes particularly
important in cases of high fibre concentration (either global or local), where fibre bending resistance gives
rise to a couple-stress field. The latter makes the stress field nonsymmetric, and endows the composite
characteristics of a polar material. It is recalled in this context that the conventional theory of fibre-
reinforced materials is built on the simplifying assumption of perfectly flexible fibres [Adkins and Rivlin
1955; Rivlin 1955; Spencer 1972], namely fibres that exhibit no bending resistance, and is therefore
inherently a nonpolar elasticity theory.

The study of polar material behaviour is naturally associated with modelling features falling into
the Cosserat theoretical framework [Cosserat and Cosserat 1909]. Linearly elastic behaviour of polar
fibrous composites may accordingly be attempted through use of either the polar linear elasticity theory

Keywords: cylindrical bending, elastic beams, elastic plates, fibre bending stiffness, fibre-reinforced structures, functionally
graded structures, plane strain elasticity, polar elasticity.
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proposed in [Mindlin and Tiersten 1962] for generally anisotropic materials or the linearised version of
the theory proposed in [Spencer and Soldatos 2007] for specific types of polar fibrous composites (see
also [Soldatos 2015]). It is recalled in this connection that the type of appropriate material anisotropy
that fits a relevant boundary value problem is dictated by the specific direction(s) that fibres are aligned
to in a fibrous composite.

However, as is also pointed out in [Soldatos 2018], there exists no evidence suggesting that the
anisotropic version of the Mindlin and Tiersten theory [Mindlin and Tiersten 1962] was motivated by
potential applications referring to linearly elastic composites having embedded fibres resistant in bending.
As a matter of fact, most of the polar linear elasticity analysis detailed in [Mindlin and Tiersten 1962] is
devoted to the isotropic version of that theory.

Motivated by these observations, the analysis presented in [Soldatos 2018]:

(i) underlined the principal equations of the Cosserat polar material framework (see also [Truesdell
and Toupin 1960]) that provide common ground for the theories proposed in [Mindlin and Tiersten
1962] and [Spencer and Soldatos 2007];

(ii) noted the manner in which the linear constitutive equation employed in [Mindlin and Tiersten 1962]
was obtained through a suitable truncation of the energy expansion proposed in [Toupin 1962];

(iii) enlarged and enriched the theoretical background through which both theories [Mindlin and Tiersten
1962; Spencer and Soldatos 2007] are valid and operate; and, within that enlarged background,

(iv) identified their similarities and potential differences without having the intention to either bridge or
eliminate the latter.

The principal relevant similarity recorded in [Soldatos 2018] refers to the fact that the governing
equations of either theory are generally nonelliptic. As a result, the solution to any well-posed boundary
value problem, attempted through use of either theory, may be not unique. There are basic historical
reasons (see [Soldatos 2018]) that prevented Mindlin and Tiersten from noticing this fact [Mindlin and
Tiersten 1962], where it is stated that such a potential solution, described by continuous displacements
possessing continuous derivatives of all orders, is the unique solution of the implied boundary value
problem.

However, reference [Soldatos 2018] has shown that such a solution, which will be termed as a “continu-
ous solution” in what follows, is in fact the only possible solution described by continuous displacements
possessing continuous displacements of all orders. Due to the observed “lack of ellipticity” of polar
elasticity equations, that continuous solution may be accompanied by a number of “weak discontinuity”
solutions of the same boundary value problem and may thus be not unique. These are solutions described
by continuous displacements that possess discontinuous derivatives, and may thus represent microscale
(fibre-thickness) material failure modes (e.g., [Soldatos 2015; Merodio and Ogden 2002; Merodio and
Ogden 2003]). Such kind of possible solutions are not observable in corresponding problems underpinned
by nonpolar linear elasticity principles, which always lead to elliptic governing differential equations.

The outlined observations raise immediately a question of whether the prevailing solution of a po-
lar elasticity boundary value problem is the continuous one or some of its possible weak discontinuity
counterparts. The task of seeking for an answer to this question is of paramount practical importance in
structural analysis applications.
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Such a challenging task may well depend on the particular polar elasticity problem of interest. More-
over, it seemingly requires some analytical or numerical/computational comparison of all relevant weak
discontinuity solutions among themselves, as well as against their common continuous counterpart. In
fact an appropriate comparison may also be required of the stored energy levels reached by all possible
solutions involved. The need becomes thus evident for the derivation of relevant continuous or weak
discontinuity solutions to a number of relatively simple or more difficult boundary value problems, with
the aim to reach afterwards a stage that makes the implied comparisons possible.

The present study is considered as an immediate continuation of an initial, relatively simple step made
already in that direction [Farhat and Soldatos 2015], in the sense that it complements the latter in the
search for continuous solutions to the plane strain bending problem of a simply supported, linearly elastic
rectangular strip reinforced by a single family of straight fibres resistant in bending. While Farhat and
Soldatos [2015] dealt with the case of either homogeneous or layer-wise inhomogeneous (laminated)
strips, this communication considers the more general case of material inhomogeneity due to continuous
through-thickness variation of the fibre-reinforcement.

The elastic strip of interest may be regarded as a rectangular beam made of functionally graded ma-
terial (FGM) having unit width, or as the cross-section of a corresponding rectangular plate having
infinite extent in the out-of-plane direction. The latter representation provides direct connection with the
relevant, nonpolar elasticity problem considered and solved in [Pagano 1969] but, here, the implied bend-
ing stiffness of functionally graded fibres furnishes the strip with polar material properties. Moreover,
material inhomogeneity features in the analysis through the variable form attained by the coefficients of
the corresponding set of Navier-type partial differential equations.

With the help of Appendix A, Section 2 thus provides a proper mathematical description of the plane
strain state of polar, linearly elastic structures reinforced in a functionally graded manner by a single
family of straight fibres resistant in bending. For simplicity, this description is based on the restricted
version of the polar elasticity theory presented in [Spencer and Soldatos 2007]. This version of the theory
(see also [Soldatos 2015]) involves only a single elasticity modulus of fibre bending resistance and, as
soon as certain additional conditions are met [Soldatos 2018], can establish connection with the theory
of Mindlin and Tiersten [1962].

Section 3 formulates the aforementioned bending problem of a simply supported prismatic beam (or
rectangular plate cross-section). Moreover, with use of Appendix B, it employs a suitable semianalytical
mathematical method (e.g., [Soldatos and Hadjigeorgiou 1990; Soldatos and Ye 1994; Shuvalov and
Soldatos 2003; Ye 2003; Dagher and Soldatos 2011; Brischetto 2019]), provides information that under-
pins its computational efficiency, and finalises the solution of the corresponding Navier-type equations.
With the help of appendices C and D, Section 4 connects afterwards the present problem of interest
with its homogeneous polar elasticity counterpart [Farhat and Soldatos 2015]. This connection enables
a homogeneous fibre-reinforced component [Farhat and Soldatos 2015] to be regarded as the source of
a set of equivalent functionally graded structures, each one of which is made through inhomogeneous
redistribution of the same volume of fibres within the same matrix material.

Three different types of such inhomogeneous fibre redistribution are thus selected in Section 4, and
are employed afterwards in Section 5, in the discussion of the numerical results presented there. The
latter thus examines in detail the manner in which each of the employed types of inhomogeneous fibre
distribution affects the flexural response of the composite structure. Finally, Section 6 summarises the
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main conclusions drawn and outlines directions on the manner in which the search for identification of
corresponding weak discontinuity solutions should be contacted.

2. Theoretical formulation

A linearly elastic fibre-reinforced plate has finite length, L , in the x direction, infinite extent in the
y direction, and finite thickness, h, in the z direction of a Cartesian coordinate system Oxyz (0≤ x ≤ L ,
−∞ ≤ y ≤ +∞, −h/2 ≤ z ≤ h/2). The plate material has embedded a single family of fibres which
are parallel to the x-axis, can resist bending, and are distributed in the z-axis direction in a continuous,
functionally graded manner. The plate is subjected to external loading that justifies plane strain response,
in the sense that the displacement component in the y direction is zero while the other two displacement
components, as well as all remaining physical quantities, are independent of the coordinate parameter y.
In the usual manner, the plate cross-section can thus be considered as a two-dimensional elastic strip or
as a prismatic beam having length L , thickness h and unit width (Figure 1). In this context, relevant
terminology of prismatic beams is also employed in what follows.

The through-thickness inhomogeneous distribution of the fibres is regulated by controlling their vol-
ume fraction, V f (z), which requires from the material properties of the structural component to be known
functions of the z coordinate parameter. Every material property, P(z) say, of such a functionally graded
fibrous composite is usually expected to obey the mixture law

P(z)= V f (z)P f
+ V m(z)Pm, V f (z)+ V m(z)= 1 (0≤ V f (z), V m(z)≤ 1), (1)

where V m(z) is the volume fraction of the matrix phase, while P f and Pm represent the corresponding
constant material property of the fibre and the matrix phase, respectively.
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Figure 1. Geometrical features and nomenclature of a prismatic beam.
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It is pointed out that the inequality conditions noted in (1) are imposed on the ground of evident
theoretical arguments that hold true regardless of the particular form of V f (z) or, equivalently, V m(z).
In this context, the denoted upper limit of the fibre volume fraction, namely V f (z)= 1, is in principle
possible only in cases that fibres are assumed perfectly flexible and, having no thickness, can therefore
fill in completely the entire volume of the composite. However, fibres do have thickness in practice and,
due to the structural architecture of the fibrous composite, leave gaps among them which are filled in
with matrix material even in parts of the composite that fibres are distributed very densely.

A more realistic approach thus requires introduction of a maximum fibre volume parameter, V f
max say,

such that
0≤ V f (z)≤ V f

max < 1. (2)

This additional condition does not need to be discussed further at these early stages of the problem
formulation. However, it is reconsidered and discussed later, in sections 4 and 5, where determination
of a value for V f

max becomes part of some specific applications.
In the implied plane strain state, the average fibre and matrix concentrations of the composite are

defined as

〈V f
〉 =

1
h

∫ h/2

−h/2
V f (z) dz, 〈V m

〉 =
1
h

∫ h/2

−h/2
V m(z) dz, 〈V f

〉+ 〈V m
〉 = 1. (3)

The particular case of a homogeneous fibrous composite, where the fibre volume fraction is constant, is
thus characterised by the relationship V f (z) = 〈V f

〉 for all z. If the fibres resist bending and 〈V f
〉 is

adequately high, say 40% to 60%, then the fibre response to mechanical loading generates considerable
couple-stress and nonsymmetric stress (e.g., [Spencer and Soldatos 2007; Soldatos 2015; 2018; Farhat
and Soldatos 2015]). In the case of FG fibrous composites with relatively low 〈V f

〉, creation of a couple-
stress field is still possible locally, namely in specific parts of the composite where V f (z) anticipates
high fibre concentration.

The stress and couple-stress components that contribute actively in plane strain equilibrium are shown
schematically in Figure 2 (see also [Spencer and Soldatos 2007; Farhat and Soldatos 2015; Soldatos
2009]). The symmetric part of the stress tensor is given by the standard form of the generalised Hooke’s
law, which in the present, plane strain case acquires the form σx

σz

τ(xy)

=
C11 C13 0

C13 C33 0
0 0 C55

 ex

ez

2exz

 , (4)

where the appearing linear strain components are

ex =U,x , 2exz =U,z +W,x , ez =W,z. (5)

Here, U (x, z) and W (x, z) are the displacement components along the axial and transverse coordinate di-
rection, respectively, and a comma denotes partial differentiation with respect to the indicated coordinate
parameter(s).

The elastic moduli appearing in (4) vary in the transverse direction in accordance with the mixture
law (1), namely

Ci j (z)= V f (z)C f
i j + V m(z)Cm

i j . (6)
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Figure 2. Schematic representation of the active stress and couple-stress components.

As the matrix phase is naturally considered isotropic, the following relationships are assumed valid:

Cm
11 = Cm

33 = λ+ 2µ, Cm
13 = λ, Cm

55 = (C
m
11−Cm

13)/2= µ. (7)

where λ and µ are the constant Lamé moduli of the matrix material. In this context, Appendix A describes
an alternative manner in which the elastic moduli of the matrix and the fibre phases can be related, and
thus lead to the determination of their Ci j counterparts appearing in (4).

The antisymmetric part of the stress tensor is defined as

τ[xz] =
1
2 mxy,x , (8)

where the only nonzero couple-stress component met in this plane strain problem (e.g., [Spencer and
Soldatos 2007; Farhat and Soldatos 2015]), namely

mxy = d f K f
z =−d f W,xx , (9)

acts in the manner shown in Figure 2, and K f
z represents the fibre curvature. Unlike Ci j , which have

dimensions of stress, the fibre bending modulus d f has dimensions of force. Like Ci j though, this is
also expected to obey the mixture law (1).

However, unlike the fibre phase, the isotropic matrix phase does not contribute to the bending stiffness
of the fibrous composite, and, as a result, the second term in the right-hand side of the corresponding
expression (1)1 is zero. Hence, in line with previous relevant studies [Farhat and Soldatos 2015; Soldatos
2009], where material homogeneity enabled the relevant constant value of d f to be considered as a
product of the form C11 l L , the fibre bending modulus attains here the through-thickness variable form

d f (z)= V f (z)C f
11 l L , (10)

where the intrinsic material length parameter l is connected with the fibre thickness. In this manner, l = 0
represents cases of nonpolar material behaviour, where fibres are perfectly flexible and the subsequent
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absence of couple-stress (mxy,x = τ[xz] = 0) enables the stress tensor to attain its conventional symmetric
form (4).

When l is nonzero, the nonzero shear stresses are unequal, so that

τxz = τ(xz)+ τ[xz], τzx = τ(xz)− τ[xz]. (11)

In the absence of body forces, the equilibrium equations thus acquire the form

σx,x + τ(xz),z − τ[xz],z = 0, τ(xz),x + τ[xz],x + σz,z = 0, (12)

which, after appropriate use of equations (4)–(9), lead to the Navier-type equations:

C11U,xx + (C13+C55)W,xz +C55 U,zz +C55,z(U,z +W,x)+
1
2 l L C f

11V f W,xxxz

+
1
2 l L C f

11V f
,z lW,xxx = 0,

C55W,xx + (C13+C55)U,xz +C13,z U,x +C33,zW,z +C33W,zz −
1
2 l L C f

11V f W,xxxx = 0.

(13)

The outlined polar elasticity formulation is general, in the sense that it applies to all cases that a
relevant FGM fibrous composite exhibits plane strain behaviour. For analytical purposes, it is found
convenient to rearrange equations (13) into the following matrix form

AX = 0, (14)

where

A=

[
C11

∂2

∂x2 +C55
∂2

∂z2 +C55,z
∂
∂z (C13+C55)

∂2

∂x ∂z +C55,z
∂
∂x +

1
2 LC f

11V f
,z l ∂

3

∂x3 +
1
2 LC f

11V f l ∂4

∂x3 ∂z

(C13+C55)
∂2

∂x ∂z +C13,z
∂
∂x C55

∂2

∂x2 +C33
∂2

∂z2 +C33,z
∂
∂z −

1
2 LC f

11V f l ∂
4

∂x4

]
,

X =
[
U W

]T
,

3. Cylindrical bending of a simply supported plate

Attention is now confined into the particular case that deformation is due to external application of the
lateral boundary tractions:

σz(x, h/2)= q(x), σz(x,−h/2)= 0, τzx(x, h/2)= 0, τzx(x,−h/2)= 0. (15)

The externally applied transverse load, q(x), is considered known and can, therefore, be represented in
the following Fourier-type sine-series form

q(x)=
∞∑

m=1

qm sin(Mx), M = mπ/L (m = 1, 2, . . .). (16)

It is further assumed that the longitudinal ends of the plate cross-section or prismatic beam (x = 0, L)
are subjected to the following set of homogeneous boundary conditions:

σx(0, z)= σx(L , z)= 0, W (0, z)=W (L , z)= 0, mxy(0, z)= mxy(L , z)= 0, (17)
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which is consistent with the symmetries of simply supported boundaries. In the particular case of a
homogeneous fibrous composite, where V f and V m are both known constants, the problem of present
interest thus reduces naturally to its polar elasticity counterpart studied in [Farhat and Soldatos 2015].

The simple support boundary conditions (17) are satisfied exactly by the following choice of a dis-
placement field:

U = h f (z) cos(mπx/L), W = hg(z) sin(mπx/L) (m = 1, 2, . . .), (18)

where the functions f (z) and g(z) are to be determined. The expressions in (18) represent a potential
solution to the described boundary value problem when the external loading is identical with a single
term of the series expansion (16), namely

q(x)= qm sin(Mx), M = mπ
L
. (19)

The linearity of the described boundary value problem, combined with the superposition principle of
relevant solutions, makes it then sufficient for someone to look only for a solution of the particular case
in which the external load is given according to (19), with m being an arbitrary positive integer.

Upon inserting (18) into (14), the latter equation is transformed into a fourth-order set of simultaneous
ordinary differential equations (ODEs) with variable coefficients. This can be expressed as

G(z, D)B = 0, (20)

where

G(z, D)=
[

d1+ d2 D2
+ d3 D (d4+ d11)D+ d5

−d4 D2
+ d7 d6 D+ d8+ d9 D2

+ d12

]
,

D = d/dz, B =
[

f (z) g(z)
]T
.

(21)

Due to the variable form of V f (z), the appearing coefficients, namely

d1 =−h2 M2, d2 = C55/C11, d3 = C55,z/C11,

d4 = hM(C13+C55)/C11, d5 = (Mh/L)
(
C f

11 DV f/C11
)
, d6 = DC33/C11,

d7 =

(Mh
L

)
DC13/C11, d8 =−(C55 h2 M2)/C11,

d9 = C33/C11, d11 =−
1
2 hM3l L

(
C f

11V f/C11
)
, d12 =−

1
2 hM4l L

(
C f

11V f/C11
)
,

(22)

are, in general, functions of z.
Solution of (20) is here achieved with the use of a semianalytical method, which considers that the

inhomogeneous polar material strip of interest is essentially made of an infinite number of fictitious
layers having infinitesimally small thickness and constant material properties. As computational prac-
tice requires use of a finite number of such fictitious layers (see Figure 1), the larger the number of
those fictitious layers considered the nearer the obtained numerical results approach their exact elasticity
counterparts.

The implied “fictitious layers method” was initially introduced for the solution of nonpolar linear
elasticity problems dealing with the dynamic response of isotropic cylindrical components [Soldatos and
Hadjigeorgiou 1990]. In such problems, it is the geometry rather than the material inhomogeneity of
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the structure that spreads variable coefficients into the governing differential equations. The method
has since been applied successfully to both static and dynamic studies of homogeneous and laminated
composite components of cylindrical geometry (e.g., [Soldatos and Hadjigeorgiou 1990; Soldatos and
Ye 1994; Shuvalov and Soldatos 2003; Ye 2003; Dagher and Soldatos 2011] and relevant references
therein), and is proven capable to provide asymptotically identical results to those based on potential or
existing exact elasticity solutions.

Moreover, the numerical stability and the rate of convergence of the method are found in practice
superior to those of corresponding analytical solutions based on power-series methods (e.g., [Dagher
and Soldatos 2011]), where computational practice still requires some suitable finite term truncation of
ultimately infinite series solutions, and, hence, does not avoid the concept of an approximation. More
recently, the applicability of this fictitious layer method has successfully been extended towards solution
of relevant structural mechanics problems that involve even doubly curved functionally graded structural
components [Brischetto 2019].

Description of the solution thus obtained is facilitated by initially converting (20) into the following,
equivalent set of four first-order linear ODEs with variable coefficients:

D F = T (z)F, (23)

where

F = [D f, f, Dg, g]T ,

T (z)=


−d3/d2 −d1/d2 −(d4+ d11)/d2 −d5/d2

1 0 0 0
d4/d9 −d7/d9 −d6/d9 (−d8+ d12)/d9

0 0 1 0

 . (24)

The implied solution then continues by resembling its counterparts described in [Soldatos and Hadjige-
orgiou 1990; Soldatos and Ye 1994; Shuvalov and Soldatos 2003; Ye 2003; Dagher and Soldatos 2011].
For self-sufficiency of this communication, further details are briefly presented in Appendix B.

4. Application for selected forms of the fibre volume fraction

As pointed out in Section 2, even in parts of the composite where fibres are distributed very densely, the
fibre structural architecture leaves gaps which are naturally filled in with matrix material. The inequality
conditions noted in (1) should accordingly be refined through use of the more realistic inequality (2),
provided that proper consideration of the fibre-scale structure can enable determination of the refined
upper bound parameter V f

max. This may be achieved with use of some appropriate representative volume,
or area elements (RVE) of the fibre distribution pattern [Gibson 1994]. Nevertheless, any V f

max-value
thus obtained depends on the chosen RVE discretisation, and may therefore be not unique.

Appendix C thus demonstrates the manner in which rectangular or triangular RVEs of the kind implied
in Figure 3 (bottom) can be used as reasonably simple examples in the present problem of interest,
where the direction of the considered uniaxial family of fibres in normal to the depicted yz-plane (see
also Figure 1). The two different values of maximum fibre volume fraction thus determined in (C.5)
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Figure 3. Discretization of fibre representative elements: homogeneous composite, Sz =

constant (top), inhomogeneous composite, Sz = variable (middle), and rectangular and
triangular fibre representative elements (bottom).

and (C.6) are here conjoined as

V f
max =

{
π/4∼= 0.785, for rectangular RVEs,

π/2
√

3∼= 0.907, for triangular RVEs.
(25)

4.1. Particular case: homogeneous composites [Farhat and Soldatos 2015]. In order to deal with appli-
cations of the outlined analysis, connection is initially established with the corresponding study detailed
in [Farhat and Soldatos 2015] for corresponding homogeneous fibrous composites. It is recalled in this
context that the effective material properties of the homogeneous fibrous composite employed in [Farhat
and Soldatos 2015] are

EL/ET = 40, GLT /ET = 0.5, νLT = νT T = 0.25. (26)
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The analysis is evidently capable to consider homogeneous fibre distributions by using appropriate con-
stant values of the fibre volume fraction V f and, upon taking (2) and (3) into consideration, it thus
requires

〈V f
〉 = V f

≤ V f
max, 〈V

m
〉 = V m

= V f
max− V f . (27)

Let us, for instance, consider the choice

V f (z)= 〈V f
〉 =

1
2 , (28)

which refers to a homogeneous fibrous composite whose volume consists 50% homogeneously dis-
tributed fibres and 50% matrix material. Upon inserting

α1 = 79, α3 = 1.5, α2 = α4 = α5 = 1, ν = 0.25, (29)

into (A.3), and making use of (3), the mixture law (1) reveals that the effective material properties of
the corresponding homogeneous composite are those detailed in (26). With use of (A.2), the holding
relationships between the elastic moduli of the corresponding fibre and matrix phases are then found
to be

E f
T /E = 1, E f

L /E f
T = 79, G f

LT /E f
T =

3
5 , ν

f
LT = ν

f
T T = ν = 0.25, G f

T T /E f
T =

2
5 . (30)

It can then readily be verified that, in this particular case that the fibrous composite of interest is ho-
mogeneous and possesses effective material properties of the kind described in (26), the present analysis
produces identical displacement and stress distributions to those detailed in [Farhat and Soldatos 2015]
with its first iteration (N = 1). Further iterations are unnecessary in that case, as they naturally return
the same numerical results.

It is emphasised that the outlined verification of the present analysis is still possible for constant
choices of V f that differ from (28), as soon as the values of the constants (29) and, subsequently, of the
ratios (30) are modified in a manner that enables the mixture law (1) to yield again to the effective elastic
moduli (26). A couple of specific, additional relevant cases are in fact identified in Section 4.3 below, in
connection with the form (35) of possible inhomogeneous fibre distribution.

4.2. Functionally graded, linear redistribution of the fibres. The connection established with the ho-
mogeneous fibrous composite considered in [Farhat and Soldatos 2015] is now exploited by considering
the following pair of linearly inhomogeneous fibre distributions:

V f (z)= 0.5+ ε(z/h) (0< ε ≤ εmax ≤ 1), (31)

V f (z)= 0.5− ε(z/h) (0< ε ≤ εmax ≤ 1). (32)

As either of these return
〈V f
〉 =

1
2 , (33)

they both represent corresponding inhomogeneous composites consisting of 50% fibre and 50% matrix
material.

A schematic representation of the volume fraction of these inhomogeneous fibre distributions is de-
picted in Figure 4, along with their counterparts that represent the homogenous composite described
already in Section 4.1 (Figure 4, left). Both (31) and (32) are evidently fibre distributions which vary
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Figure 4. Schematic representation of fibre volume fractions of the type (28) (left),
(31) (second), (32) (third) and (35) (right).

linearly through the thickness, and are nonsymmetric with respect to the middle plane of the composite
beam. It is evident that (31) represents a top-stiff fibrous composite while (32) corresponds to a bottom-
stiff such.

When inserted into (31), the value ε = εmax refers to an inhomogeneous fibrous composite with maxi-
mum fibre volume fraction at the top (V f (h/2)= (1+εmax)/2) and minimum at the bottom (V f (−h/2)=
(1−εmax)/2) lateral plane of the composite. The situation is evidently reversed (V f (h/2)= (1−εmax)/2,
V f (−h/2) = (1+ εmax)/2) when ε = εmax is inserted into (32). In principle, εmax may be as high as
εmax = 1 but the fibre-scale structure of a composite relates this parameter with V f

max. Hence, by virtue
of (25), the second part of Appendix C shows that

εmax = 2V f
max− 2∼=

{
0.5708, for rectangular RVEs,

0.812, for triangular RVEs.
(34)

The relevant numerical results presented in Section 5 below refer to inhomogeneous composites whose
effective material properties are evaluated with use of the mixture law (1), after each of (31) and (32) is
inserted into (A.3). This process requires also use of (29) and (30), so that the resulting inhomogeneous
composite is thought of as formed by a relevant redistribution into the same matrix of a same volume
of fibres (50%) possessing the material properties (30). It can indeed be readily verified that, in both
cases, the obtained through thickness average elastic moduli are still in exact agreement with the effective
material properties (26) of the homogeneous fibrous composite employed in [Farhat and Soldatos 2015].

4.3. Symmetric, piecewise linear redistribution of the fibres. The last fibre distribution of present in-
terest is associated with a class of inhomogeneous fibrous composites whose volume fraction varies
symmetrically with respect to the middle plane of the composite (see Appendix D). This class is described
as

V f (z)= α|z/h|, (35)

where α is some real positive constant.
In this case, the fibre volume fraction increases in a piecewise linear manner with the increasing

distance from the middle plane (see Figure 4, right). As V f (0) = 0 and V f (h/2) = V f (−h/2) = α/2,
equation (35) refers to a fibrous composite graded in a manner that maximum fibre volume fraction
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is attained at both lateral planes. As also noted in Appendix D, equation (35) yields the average fibre
volume fraction (33) when α = 2.

However, as shown next with the help of Appendix C, the types of fibre-scale structure considered
there make (33) incompatible with the fibre distribution (35). This is because the connection of (35)
with maximum volume fractions noted in (25) gives, respectively, the following maximum value of the
positive constant α:

αmax = 2V f
max
∼=

{
1.571, for rectangular RVEs,

1.814, for triangular RVEs,
(36)

which, in either case is smaller than 2.
Indeed, the corresponding average volume fractions, namely

〈V f
〉 ∼=

{
0.39, for rectangular RVEs,

0.45, for triangular RVEs,
(37)

verify that neither of the values of α noted in (36) enables consideration of an average fibre volume
fraction which is as high as its 0.5 counterpart assumed by the top- and bottom-stiff fibre distributions (31)
and (32).

Nevertheless, as also pointed out in Appendix C, a relevant inhomogeneous fibrous composite having
average volume fraction 〈V f

〉 = 0.45 and effective properties (26), is obtained by replacing all material
constants and moduli appearing in (A.3) and (30) with

α1 = 87.667, α3 = 1.55575, α2 = α4 = α5 = 1, ν = 0.25,

E f
T /E = 1, E f

L /E f
T = 87.667, G f

LT /E f
T = 0.6223,

ν
f
LT = ν

f
T T = ν = 0.25, G f

T T /E f
T =

2
5 .

(38)

A considerable part of the numerical results presented in the next section thus refers to the polar me-
chanical response of this inhomogeneous fibre-reinforced composite which, along with employing the
material properties (38), implies further that α = 1.814 in (35).

5. Numerical results and discussion

All numerical results presented and discussed in this section are obtained by setting m = 1 in (19). These
results are presented in a nondimensional form, through use of the following dimensionless displacement
and stress parameters:

W =
〈ET 〉W

Lq1
, U =

〈ET 〉U
Lq1

, σ̄x =
σx

q1
, σ̄z =

σz

q1
,

τ̄zx =
τzx

q1
, τ̄xz =

τxz

q1
, mxy =

mxy

Lq1
.

(39)

By virtue of (33), these are seen equivalent to their counterparts employed for the corresponding case of a
homogenous fibrous composite in [Farhat and Soldatos 2015], where, however, an evident typographical
error is noticed in the couple-stress nondimensionalisation. The evident symmetries that (19) imposes
along the x-direction imply that the magnitude of displacements, stresses, and couple-stress have identical
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through-thickness distribution at x/L and 1− x/L . Numerical results are accordingly presented for the
left half of the beam only.

All rectangular beams considered for the results shown next possess the same span ratio with their
homogeneous counterpart studied in [Farhat and Soldatos 2015], namely

h/L = 0.25. (40)

For a natural connection with [Farhat and Soldatos 2015], the same notation, namely

λ= l/h ≤ 1, (41)

is used for the nondimensional intrinsic material parameter that refers to fibre thickness. In this regard, a
note is made of the fact that this parameter should not be misinterpreted as denoting the Lamé modulus
employed in (7) and (A.1).

As l is connected with the fibre thickness and, hence, cannot exceed the beam thickness, λ acquires
naturally the upper bound value noted in (41) only if l = h. However, connection of l with the fibre thick-
ness is here refereed to only as an example of the manner in which one can handle the aforementioned
dimensions difference between the fibre bending modulus, d f , and the conventional elastic moduli met
in nonpolar elasticity.

If, for instance, one accepts that fibres are approximately arranged through the beam thickness in the
form of representative volume elements described in Appendix C, the estimated upper bound of λ may
further be reduced considerably, or even be related to the V f

max-values noted there. All numerical results
shown in what follows take this observation into careful consideration by using reasonably low values
of λ.

However, in view of (10), equation (41) leads essentially to the following reparametrisation of the
fibre bending stiffness modulus:

d f (z)= λhLV f (z)C f
11. (42)

This relationship shows that, although useful on physical grounds, λ is not necessarily the most influential
parameter for a proper determination of d f . In fact, determination of d f in a structural component
should still be based on potential experimental work and observation, precisely as happens with the
determination of conventional elastic moduli.

By setting ε= 0 in (31) or (32), it is thus made initially sure that the present analysis gives identical nu-
merical results, and is thus in complete agreement with its counterpart presented in [Farhat and Soldatos
2015]. This confirmation then enables the next consideration and study of corresponding numerical
results that refer to inhomogeneous relevant composites having fibre volume fraction of the type (31)
and (32) with ε 6= 0, or (35) with α = 1.814.

5.1. Through-thickness displacements distributions. For several different values of the fibre inhomo-
geneity and the fibre bending stiffness parameters, Tables 1 and 2 present the nondimensional value of
the in-plane and the transverse (flexural) displacement, respectively, obtained at selected points through
the thickness of a top-stiff beam. To a considerable extent, these results are susceptible to comparison
with their counterparts presented in Table 1 and Table 2 of [Farhat and Soldatos 2015], respectively, for
corresponding homogeneous fibrous composites.
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z/h λ= 0 λ= 0.004 λ= 0.01

ε = 0.01
0.50 0.011225 −0.025557 −0.047459
0.25 −0.097383 −0.063687 −0.044853
0 −0.114490 −0.067416 −0.041244
−0.25 −0.131141 −0.071387 −0.038791
−0.50 −0.228791 −0.104571 −0.038351

ε = 0.05
0.50 −0.427908 −0.292289 −0.219078
0.25 −0.522101 −0.318635 −0.205783
0 −0.522724 −0.308312 −0.189578
−0.25 −0.527046 −0.302616 −0.178970
−0.50 −0.609684 −0.329450 −0.176406

ε = 0.1
0.50 −0.874707 −0.575411 −0.405471
0.25 −0.945979 −0.585632 −0.378715
0 −0.922377 −0.556283 −0.346454
−0.25 −0.907455 −0.536790 −0.325080
−0.50 −0.962171 −0.554231 −0.319076

ε = εmax = 0.812
0.50 −0.643334 −0.619429 −0.587989
0.25 −0.497675 −0.470583 −0.434870
0 −0.287050 −0.269299 −0.245997
−0.25 −0.141990 −0.132669 −0.120484
−0.50 −0.086794 −0.080983 −0.073505

Table 1. Through-thickness in-plane displacement distributions U (0, z) of a top-stiff
beam with volume fraction Vf = 0.5+ ε(z/h).

In line with the relevant trend noted in [Farhat and Soldatos 2015], Table 2 thus confirms that the
magnitude of the flexural displacement decreases with increasing fibre bending stiffness parameter, λ,
due to the additional flexural stiffness provided by the fibre bending resistance. However, it is seen here
further that the magnitude of the flexural displacement decreases further with the increase in inhomo-
geneity parameter, ε. This is because, by increasing ε, the bending stiffness of the beam is increasing
near the top lateral boundary where the external load is applied.

It is recalled on the other hand that the results presented in Table 1 and Table 2 of [Farhat and Soldatos
2015] show that, in the case of a homogeneous beam (ε = 0), the in-plane displacement is always at
least an order of magnitude smaller than its flexural counterpart. However, upon increasing the nonzero
value of ε, the increasing material inhomogeneity affects the existing local coupling between bending
and extension to such an extent that the magnitude of U becomes comparable to that of W .
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z/h λ= 0 λ= 0.004 λ= 0.01

ε = 0.01
0.50 −1.206993 −0.739809 −0.484421
0.25 −1.149196 −0.685004 −0.431542
0 −1.104615 −0.645031 −0.394655
−0.25 −1.078050 −0.620907 −0.372337
−0.50 −1.063969 −0.610125 −0.363511

ε = 0.05
0.50 −1.180509 −0.728882 −0.478972
0.25 −1.096412 −0.658369 −0.416258
0 −1.027262 −0.604367 −0.371167
−0.25 −0.976980 −0.567067 −0.341455
−0.50 −0.939239 −0.543660 −0.324820

ε = 0.1
0.50 −1.111774 −0.702100 −0.466968
0.25 −1.001214 −0.615004 −0.393610
0 −0.907888 −0.546501 −0.339828
−0.25 −0.834697 −0.495854 −0.302449
−0.50 −0.776832 −0.458180 −0.277773

ε = εmax = 0.812
0.50 −0.171586 −0.164078 −0.154164
0.25 −0.083960 −0.079280 −0.073117
0 −0.030777 −0.028854 −0.026333
−0.25 −0.006525 −0.006087 −0.005518
−0.50 0.002057 0.001928 0.001574

Table 2. Through-thickness deflection distributions W (L/2, z) of a top-stiff beam with
volume fraction Vf = 0.5+ ε(z/h).

It is then not surprising that the values of U shown in Table 1 differ from those of their counterparts
presented in [Farhat and Soldatos 2015] even for ε = 0.01. In fact, for ε = 0.05 the values of U are
already comparable with their W counterparts (Table 2). Moreover, for ε = εmax = 0.812, which is the
maximum value assigned to ε when fibre scale structure is designed with use of triangular RVEs, the
magnitude of the in-plane displacement parameter exceeds that of W , at least within the adopted region
of the λ-variation. It is pointed out that, as all numerical results shown in this study refer to the left half
of the beam, the minus sign associated with almost all numerical values shown in Table 1 implies that
the beam deformation creates a predominantly tensile in-plane displacement.

Analogous conclusions may be drawn by observing and comparing the numerical results tabulated
in Tables 3 and 4 for corresponding U - and W -values of a bottom-stiff inhomogeneous beam. The
magnitude of displacements is again decreasing with increasing the value of the fibre bending stiffness
parameter, λ. However, the sign of almost all numerical values shown in Table 3 reveals that the beam
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z/h λ= 0 λ= 0.004 λ= 0.01

ε = 0.01
0.50 0.250340 0.118811 0.045144
0.25 0.136190 0.075284 0.042483
0 0.112192 0.065065 0.039931
−0.25 0.090771 0.056854 0.038507
−0.50 −0.013041 0.021001 0.038125

ε = 0.05
0.50 0.748837 0.423789 0.242223
0.25 0.627284 0.370636 0.229269
0 0.592660 0.348727 0.214766
−0.25 0.564908 0.333408 0.206064
−0.50 0.452050 0.293394 0.204560

ε = 0.1
0.50 1.368695 0.821958 0.506558
0.25 1.244704 0.759189 0.481362
0 1.202953 0.725370 0.452783
−0.25 1.173460 0.703956 0.435998
−0.50 1.055960 0.661147 0.434126

ε = εmax = 0.812
0.50 2.811083 2.737809 2.637961
0.25 2.775249 2.680974 2.554224
0 2.784161 2.645146 2.461564
−0.25 2.854059 2.671874 2.433894
−0.50 2.877000 2.705601 2.480754

Table 3. Through-thickness in-plane displacement distributions U (0, z) of a bottom-
stiff beam with volume fraction Vf = 0.5− ε(z/h).

deformation creates now a predominantly compressive in-plane displacement.
Strong local inhomogeneity effects, of the type observed previously in Tables 1 and 2, have now

emerged mainly at the bottom part of the beam. It is instructive for someone to observe that for ε = 0.05
the magnitude of the in-plane displacement (Table 3) is again comparable with its flexural displacement
counterpart (Table 4). Moreover, for ε = εmax = 0.812, the former parameter exceeds the latter to
such a substantial degree, that the deformation seems in this case to take mainly place through in-plane
extension rather than flexure. Nevertheless, Tables 1–4 suggest that, in general, top-stiff beams suffer
smaller flexure and, therefore, may generally be considered stronger than their bottom-stiff counterparts
at the same value of the inhomogeneity parameter, ε.

The observed in-plane deformation dominance seems to increase with increasing ε to an extent that af-
fects substantially the detailed features of relevant stress distributions. This discussed later in Section 5.3,
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z/h λ= 0 λ= 0.004 λ= 0.01

ε = 0.01
0.50 −1.209372 −0.741459 −0.485668
0.25 −1.165977 −0.695181 −0.438107
0 −1.135000 −0.662904 −0.405705
−0.25 −1.121685 −0.646083 −0.387473
−0.50 −1.120934 −0.642795 −0.382980

ε = 0.05
0.50 −1.192043 −0.736960 −0.485114
0.25 −1.178822 −0.708742 −0.448893
0 −1.176597 −0.692904 −0.426143
−0.25 −1.191500 −0.691817 −0.416782
−0.50 −1.219350 −0.704768 −0.421728

ε = 0.1
0.50 −1.132737 −0.717222 −0.478691
0.25 −1.157282 −0.712660 −0.457720
0 −1.191433 −0.718584 −0.448099
−0.25 −1.242375 −0.738541 −0.450930
−0.50 −1.307130 −0.773375 −0.467856

ε = εmax = 0.812
0.50 −0.077214 −0.077423 −0.077602
0.25 −0.203017 −0.197384 −0.189706
0 −0.337329 −0.321135 −0.299640
−0.25 −0.486706 −0.454688 −0.412841
−0.50 −0.657611 −0.609844 −0.547717

Table 4. Through-thickness deflection distributions W (L/2, z) of a bottom-stiff beam
with volume fraction Vf = 0.5− ε(z/h).

which illustrates the influence that the increasing value of ε exerts on the bending stress distribution
observed within both top- and bottom-stiff beams.

Under these considerations, the corresponding nondimensional displacement results shown in Tables 5
and 6 suggest that beams with through-thickness symmetric fibre distribution are similarly strong. Indeed,
the magnitude of the flexural displacements shown in Table 6 are comparable with their counterparts
shown in Table 2 for the largest value of the fibre inhomogeneity parameter, ε = εmax = 0.812, at least
within the top half of the beam. Moreover, while the top-stiff beam has higher average fibre volume
fraction, the difference observed between corresponding numerical results shown in Tables 2 and 6 is
decreasing at the top part of the beam with the increase in fibre bending stiffness parameter.

5.2. Through-thickness couple-stress and shear stress distributions. As transition from nonpolar to po-
lar material behaviour is caused by the emerging couple-stress field, immediate attention is next directed
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z/h λ= 0 λ= 0.004 λ= 0.01

0.50 −1.986187 −1.829115 −1.642851
0.25 −1.609659 −1.460507 −1.283656
0 −1.304430 −1.172045 −1.015665
−0.25 −1.330097 −1.185678 −1.015671
−0.50 −1.394719 −1.242775 −1.063927

Table 5. Through-thickness in-plane displacement distributions U (0, z) of a beam with
volume fraction V f

= 1.814|z/h|.

z/h λ= 0 λ= 0.004 λ= 0.01

0.50 −0.227618 −0.209966 −0.188966
0.25 −0.073957 −0.066799 −0.058321
0 0.003799 0.003735 0.003642
−0.25 0.064515 0.057539 0.049324
−0.50 0.144491 0.127854 0.108322

Table 6. Through-thickness deflection distributions W (L/2, z) of a beam with volume
fraction V f

= 1.814|z/h|.

towards the influence that couple-stress creation exerts on the shear stress components, giving thus rise
to nonsymmetric stress. Corresponding numerical results that show the manner in which normal stresses
are affected are also presented and discussed afterwards, in Section 5.3.

In this context, Figures 5 and 6 depict the through-thickness distribution of the nondimensional couple-
stress parameter mxy measured at selected axial positions of a top-stiff and a bottom-stiff beam, respec-
tively, when λ= 0.006 and ε = 0.1. The sinusoidal form that mxy acquires in the axial direction enables
the couple-stress to satisfy the homogeneous boundary conditions (17)3 imposed at the beam ends. These
figures thus demonstrate the manner in which nonzero couple-stress distribution is created away from
those ends, as well as the manner in which the mxy-magnitude increases with increasing distance from
the left end of the beam. As expected, the figures also show that, regardless of the value of x/L , the
magnitude of mxy attains a maximum on the top or on the bottom lateral plane of a top-stiff or a bottom-
stiff beam, respectively.

For different values of the fibre bending stiffness parameter, λ, Figures 7 and 8 illustrate next the
through-thickness distribution of the shear stress τ̄zx at the left end of a top- and a bottom-stiff beam,
respectively. In line with [Farhat and Soldatos 2015], all depicted distributions satisfy the zero shear
traction boundary conditions imposed on the upper and lower surface of the beam. Due to the relatively
small value of the material inhomogeneity parameter (ε = 0.1), the depicted curves do not diverge
substantially from their counterparts shown in Figure 6 of [Farhat and Soldatos 2015]. However, they
have all lost their largely symmetric form observed in [Farhat and Soldatos 2015] with respect to the
beam middle axis, while their highest magnitude is moved towards the direction of increased fibre re-
inforcement; namely, upwards for the top-stiff and downwards for the bottom-stiff beam. As the beam
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Figure 5. Through-thickness distribution of the couple-stress, mxy , at different axial
positions of a top-stiff beam (ε = 0.1).
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Figure 6. Through-thickness distribution of the couple-stress, mxy , at different axial
positions of a bottom-stiff beam (ε = 0.1).
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becomes stiffer with increasing λ, that highest magnitude of τ̄zx decreases and moves naturally towards
zero. It comes, however, a little as a surprise that, in the case of the bottom-stiff beam (Figure 8) and
for the relatively large value λ= 0.009 of the fibre thickness parameter, the relatively small value of that
highest τ̄zx -magnitude changes sign, along with the sign of the whole τ̄zx -distribution.

Figures 9 and 10 show next the through-thickness distributions of the stresses τ̄xz that correspond to
τ̄zx -distributions illustrated in Figures 7 and 8, respectively. Due to the symmetry of the stress tensor
when λ = 0, the distributions drawn for λ = 0 in Figures 7 and 8 are identical to their counterparts
shown in Figures 9 and 10, respectively. However, as generation of nonzero couple-stress destroys stress
symmetry, all τ̄xz distributions associated with λ 6= 0 in Figures 9 and 10 acquire nonzero values on the
lateral beam boundaries.

Due to the relatively small value of the fibre inhomogeneity parameter (ε = 0.1) the depicted τ̄xz-
distributions present again similarities with their counterparts shown in Figure 5 of [Farhat and Soldatos
2015]. Nevertheless, in almost all cases, the highest magnitude of the τ̄xz-value moves again towards the
stiffest part of the inhomogeneous structural component. An exception to this trend is again observed in
the case of the bottom-stiff beam (Figure 10) where, for the relatively large value λ= 0.09 of the fibre
thickness parameter, the τ̄xz-distribution reverses hollows and attains highest magnitude on the bottom
lateral boundary.

Another remarkable observation relates to the fact that, like their counterparts depicted in Figure 6
of [Farhat and Soldatos 2015], all τ̄xz-distributions shown in Figures 9 and 10 intersect at a certain
pair of material points located at the vicinity of z/h = ±0.3. At those points, the value of τ̄xz thus
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Figure 7. Through-thickness distribution of the shear stress τ̄zx at the left end of a top-
stiff beam (ε = 0.1).
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Figure 10. Through-thickness distribution of the shear stress τ̄xz at the left end of a
top-stiff beam (ε = 0.1).

seems independent of the fibre thickness parameter, λ, although it evidently still depends on the fibre
inhomogeneity parameter, ε. At present, there seems no obvious explanation to this effect, which is
apparently due to the manner in which the couple-stress influences the values of τ̄xz .

Under these considerations, Figures 11 and 12 depict the through-thickness τ̄zx - and τ̄xz-distributions,
respectively, predicted at the left end of a beam reinforced in the symmetric, piecewise linear manner (35).
Remarkably, changes of the fibre bending stiffness parameter, λ, do not seem to influence notably either
of these shear stress distributions. The considerable similarity observed between the τ̄zx -distributions
depicted in Figure 11 and their τ̄xz counterparts shown in Figure 12 is thus not surprising.

In fact, the principal difference between corresponding results demonstrated in those figures is that
all τ̄zx -distributions (Figure 11) attain, naturally, a zero value at the top and bottom lateral plane. Like
their counterparts depicted previously in Figures 9 and 10, all different τ̄xz-curves shown in Figure 12
pass again through a certain pair of material points, which are now moved at the vicinity of z/h =±0.4.
Moreover, the lack of fibre-reinforcement on the middle-axis has apparently made z/h = 0 a third point
of intersection for all τ̄xz- and τ̄zx -curves depicted in Figures 11 and 12. It is thus observed that, due
to low local fibre-reinforcement, the stress state is nearly symmetric within a certain material band that
surrounds the beam middle-axis.

5.3. Through-thickness normal stress distributions. Figures 13 and 14 depict the through-thickness
distribution of the nondimensional normal stresses σ̄z and σ̄x , respectively, at the mid-span of a homo-
geneous fibre-reinforced beam (ε = 0). Both figures depict in blue (λ = 0) the known distribution of
the implied normal stress when fibres are perfectly flexible [Soldatos and Watson 1997]. The remaining
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Figure 11. Through-thickness distribution of the shear stress τ̄zx at the left end of a
beam subjected to the symmetric, piecewise linear fibre reinforcement (35).
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Figure 13. Distribution of the normal stress σ̄z at the mid-span (x/L = 0.5) of a homo-
geneous beam (ε = 0).

curves then show the influence that fibre bending stiffness exerts on those known distributions upon
gradually increasing the value of λ. Figure 13 thus makes it clear that fibre bending stiffness has marginal
effect on the transverse normal stress distribution.

However, Figure 14 reveals that, upon increasing λ, the increasing resistance of the beam lowers the
magnitude of σ̄x and, hence, decreases the influence that the depicted, well-known boundary layer effect
of the σ̄x -distribution exerts on the strength of the structure. In fact, for λ as small as 0.009, the influence
is decreased to such an extent that the value of the axial normal stress might be felt notable only within
a particularly narrow layer near the beam lateral boundary. Still though, every curve shown in Figure 14
evolves about a pivotal point, located at the vicinity of (σ̄x , z) = (0, 0), in a manner that divides the
corresponding bending stress distribution into a compressive and a tensile part (top and bottom half of
the beam, respectively).

In the light of these observations, Figures 15 and 16 present next evidence of the fact that the combined
action of fibre bending stiffness and material inhomogeneity (ε = 0.1) has still marginal effect on the
σ̄z-distribution of a top- and a bottom-stiff beam, respectively. However, the same is not true for the
corresponding σ̄x -distributions.

A search for the effect that combined action of fibre bending stiffness and material inhomogeneity has
on the σ̄x -distribution is facilitated by initially considering that fibres are perfectly flexible (λ= 0) and
varying only the value of the inhomogeneity parameter ε. In this context, Figures 17 and 18 demonstrate
the manner in which the “blue” σ̄x -distribution associated in Figure 14 with λ= 0 evolves with increasing
inhomogeneity in a top- and a bottom-stiff beam, respectively. A thorough study of the results presented
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homogeneous beam (ε = 0).

0.5

0.4

0.3

0.2

0.1

0

− 0.1

− 0.2

− 0.3

− 0.4

− 0.5
− 1.0 − 0.9 − 0.8 − 0.7 − 0.6 − 0.5 − 0.4 − 0.3 − 0.2 − 0.1 0

z /
h

σz

h /L= 0.25

λ = 0
λ = 0.003
λ = 0.006
λ = 0.009

V =f ε0.5 + (z /h)

Figure 15. Distribution of the normal stress σ̄z at the mid-span (x/L = 0.5) of a top-stiff
beam (ε = 0.1).



PLANE STRAIN POLAR ELASTICITY OF FIBRE-REINFORCED MATERIALS AND STRUCTURES 523

0.5

0.4

0.3

0.2

0.1

0

− 0.1

− 0.2

− 0.3

− 0.4

− 0.5
− 1.0 − 0.9 − 0.8 − 0.7 − 0.6 − 0.5 − 0.4 − 0.3 − 0.2 − 0.1 0

z /
h

σz

h /L= 0.25

λ = 0
λ = 0.003
λ = 0.006
λ = 0.009

V =f ε0.5 − (z /h)

Figure 16. Distribution of the normal stress σ̄z at the mid-span (x/L = 0.5) of a bottom-
stiff beam (ε = 0.1).

in Figures 17 and 18 makes afterwards clearer the corresponding results depicted in Figures 19 and 20
for corresponding inhomogeneous beams with embedded fibres resistant in bending (λ= 0.06).

Figure 17 thus reveals that, upon increasing ε, the observed σ̄x -distribution curve is initially transposed
to the right. This is due to the dominance the ε exerts on its linearly dependent elastic moduli for small
amounts of inhomogeneity. Hence, upon increasing ε within a narrow interval of relatively small values,
the corresponding change of the elastic moduli suffices to “push” the depicted curve to the right, to
an extent that soon turns the whole σ̄x -distribution completely tensile. Nevertheless, beyond the value
ε = 0.083, which is still relatively small, the inhomogeneity difference between the top and the bottom
parts of the beam becomes very dominant. Upon increasing ε further, the σ̄x -curve thus changes shape
and, while still moves to the right and hence stays tensile, reveals that it is the upper, rather than the
bottom part of the top-stiff beam that bares most of the externally applied loading.

Eventually, at about ε = 0.25, the top part of the beam becomes so stiff that, while the value of the
tensile bending stresses start to decrease at the lower part of the beam, the value of σ̄x approaches a
maximum on the top lateral plane. Further increase of the ε-value and, hence, of the stiffness of top part
of the beam lowers the observed tensile bending stresses throughout the beam thickness. It is instructive
in this regard to note that the σ̄x -curve in Figure 17 for ε = 0.4 is essentially transposed to the left when
the inhomogeneity parameter is increased up to ε = 0.5708, or further up to ε = 0.812. It is recalled that
(34) associates 0.5708 or 0.812 with the maximum value that ε may attain when the fibre-scale structure
is modelled with rectangular or triangular RVEs, respectively. It is thus observed that, upon increasing ε
towards its maximum value, the decreasing tensile value of σ̄x observed near the bottom boundary of the
top-stiff beam is naturally moving towards zero.
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Figure 17. Variation of the bending stress distribution at the mid-span (x/L = 0.5) with
increasing inhomogeneity of a top-stiff beam reinforced by perfectly flexible fibres (λ= 0).
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Figure 18. Variation of the bending stress distribution at the mid-span (x/L = 0.5) with
increasing inhomogeneity of a bottom-stiff beam reinforced by perfectly flexible fibres
(λ= 0).
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Figure 18 demonstrates that the bending stress distribution of a bottom-stiff beam with embedded per-
fectly flexible fibres responds in an analogous manner. One of the evident principal differences with the
trends observed in Figure 17 is the fact that, upon increasing material inhomogeneity, the σ̄x -distribution
curve that corresponds to λ = 0 in Figure 14 moves towards the left, and thus soon turns completely
compressive. Moreover, the change of shape that the σ̄x -curve observes for higher values of ε suggests
that, naturally, it is now the bottom, rather than the upper part of the bottom-stiff beam that bares most
of the loading. Finally, the aforementioned observations, associated in Figure 17 with the top and the
bottom plane of a top-stiff beam, are naturally seen in Figure 18 associated with the bottom and the top
plane, respectively, of a bottom-stiff beam.

In the light of these observations, Figures 19 and 20 illustrate next the manner in which the “yellow”
σ̄x -distribution curve, formed in Figure 14 by setting λ= 0.006, evolves with increasing inhomogeneity
of a top- and a bottom-stiff beam, respectively. To a considerable extent, these results show substantial
quantitative similarity with their counterparts depicted in Figures 17 and 18 for corresponding beams
having embedded perfectly flexible fibres. However, and in close agreement with all previously observed
trends, the extra bending stiffness added now on the functional graded beam lowers significantly the
magnitude of the observed bending stresses.

Figures 21 and 22 depict the distribution of the normal stresses σ̄x and σ̄z , respectively, at the mid-span
of a fibre-reinforced beam subjected to the symmetric, piecewise linear fibre reinforcement (35). In line
with the results depicted in Figures 11 and 12 for corresponding shear stress distributions, both stress
distributions attain a nearly symmetric form, with respect to the middle axis, within a narrow band of
weak local fibre-reinforcement. Regardless of the value of the fibre bending stiffness parameter, that
symmetry gradually fades outside that band around the middle axis.

The value of the bending stress at the top boundary of the beam, where the external load is applied,
thus becomes naturally bigger from its bottom boundary counterpart (see Figure 21). However, like the
top-stiff beam (see Figures 17 and 19 for ε 6= 0), the bending stress is always tensile throughout the beam
thickness. Unlike the corresponding results shown in Figures 17 and 19 though, the imposed lack of local
fibre-reinforcement at z/h = 0 enables the beam middle axis to remain almost free of bending stress.
It is also noticeable in this regard that, regardless of the value of the fibre bending stiffness parameter,
the through-thickness shape of the σ̄x -distribution resembles closely the form (35) of the corresponding
fibre volume fraction.

On the other hand, Figure 22 reveals that the weak reinforcement observed around the beam middle
axis and, hence, practically the negligible influence of σ̄x is locally compensated by a sharp jump of the
transverse normal stress, σ̄z . The latter is seen positive and, therefore, tensile within the aforementioned
narrow band, as well as within the bottom part of the beam. Unlike its top- and bottom-stiff counterparts,
which are negative and therefore compressive throughout the beam thickness (see Figures 15 and 16),
the distribution of σ̄z depicted in Figure 22 is compressive at and near the top beam boundary, where the
external load is applied, but turns tensile within the aforementioned band of weak fibre-reinforcement.
It then remains tensile in the bottom part of the beam, where it decreases and becomes finally zero on
the unstressed bottom beam boundary.
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Figure 19. Variation of the bending stress distribution at the mid-span (x/L = 0.5) with
increasing inhomogeneity of a top-stiff beam reinforced by fibres resistant in bending
(λ= 0.006).
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Figure 20. Variation of the bending stress distribution at the mid-span (x/L = 0.5)
with increasing inhomogeneity of a bottom-stiff beam reinforced by fibres resistant in
bending (λ= 0.006).
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Figure 21. Variation of the bending stress distribution at the mid-span (x/L = 0.5) with
increasing fibre bending stiffness of a beam subjected to the symmetric, piecewise linear
fibre reinforcement (35).
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span (x/L = 0.5) of a beam subjected to the symmetric, piecewise linear fibre reinforce-
ment (35).
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6. Conclusions

This study aims initially to promote the need for extension into the regime of polar material response
of fibrous composites of relevant nonpolar linear elasticity solutions. Namely, existing solutions of well-
posed boundary value problems represented by continuous displacements having continuous derivatives
of all orders. As nonpolar elasticity of fibre-reinforced materials assumes that fibres embedded in a
structural component are perfectly flexible, the implied solution extensions will offer substantially better
understanding of the behaviour of composites reinforced by stiff fibres, such as carbon nanotubes, that
exhibit considerable bending resistance.

In serving the first of these aims, this study continued an initial relevant extension [Farhat and Soldatos
2015] of the well-known Pagano’s nonpolar plane strain elasticity solution [Pagano 1969], by considering
that the implied stiff fibres are redistributed within their matrix in an inhomogeneous, functionally graded
manner. Like in [Farhat and Soldatos 2015], the implied solution extension was based on the restricted
version of the polar elasticity theory presented in [Spencer and Soldatos 2007], namely a theory that
involves only a single elasticity modulus of fibre bending resistance. That extra elasticity modulus is
associated with the global response of the fibrous composite, rather than with the response of individual
fibres, but its involvement enables the theory to make use of an intrinsic length parameter that relates to
an average fibre thickness.

By setting that intrinsic length parameter and, therefore, the fibre thickness equal to zero, our theory
and analysis reduce naturally to their conventional, nonpolar elasticity counterparts. Thus content and
results of this article are useful even in cases of nonpolar material response, where the fibres embedded
in a relevant functionally graded fibrous composite are perfectly flexible. In this context, the parametric
studies performed in Section 5, along with their counterparts presented in [Farhat and Soldatos 2015],
enable better understanding of the influence that fibre bending resistance exerts on the plane strain be-
haviour of the implied class of fibrous composites, provided that the obtained, continuous solution of the
boundary value problem (Section 3) prevails over potential weak discontinuity solutions.

In this connection, it is reemphasised that this communication aims further to make it wider known
that, unlike its nonpolar linear elasticity counterpart, a corresponding fully continuous polar linear elas-
ticity solution is not necessarily the unique solution of the respective boundary value problem. Due to
the lack of ellipticity that linear elasticity equations suffer outside their nonpolar material regime, the
implied polar elasticity extension of a continuous solution may instead be accompanied by a number of
additional “weak discontinuity” solutions. Namely, solutions of the same boundary value problem that
may represent fibre-scale failure modes.

It is recalled in this context that a preliminary theoretical analysis that enables determination of weak
discontinuity surfaces in linearly elastic structural components reinforced by fibres resistant in bend-
ing is already available in [Soldatos 2014; 2015]. Reference [Soldatos 2015], in particular, makes use
of precisely the same, restricted theoretical background employed in the present study, but applies its
findings to three-dimensional study of composites reinforced by two families of straight uniaxial fibres.
Specialization of that analysis [Soldatos 2015] to the case of a single fibre family is currently under way.
This is expected to lead to weak discontinuity solutions that accompany potential three-dimensional
extensions of the continuous solution as detailed in Section 3. Identifications of weak discontinuity
solutions associated with the plane strain solution (Section 3) may then follow as particular cases.
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Appendix A: Determination of the elastic moduli appearing in (4)

The Young’s modulus and the Poisson’s ratio of the isotropic matrix phase are respectively given, in
terms of the Lamé moduli appearing in (7), by the standard formulas

E ≡ Em
L = Em

T =
µ(3λ+ 2µ)
λ+µ

, ν ≡ νm
=

λ

2(λ+µ)
. (A.1)

The fibre phase of the composite can be either isotropic or anisotropic. For the purpose of the present
study, this is considered as transversely isotropic.

The elastic moduli of the fibre phase are accordingly considered to relate with their matrix phase
counterparts as (

E f
L , E f

T

)
= (α1, α2)E, G f

LT = α3µ= α3
E

2(1+ ν)
,(

ν
f
LT , ν

f
T T

)
= (α4, α5)ν, G f

T T =
E

2(1+ ν f
T T )

,

(A.2)

where α1, α2, . . . , α5 are considered as known dimensionless constants, and a subscript “L” or “T ” in-
dicates the axis or the plane of transverse isotropy, respectively.

With use of the mixture law (1), the effective elastic moduli of the functionally graded fibrous com-
posite are obtained in the following form:

EL = [1+ (α1− 1)V f (z)]E, ET = [1+ (α2− 1)V f (z)]E,

GLT = [1+ (α3− 1)V f (z)]
E

2(1+ ν)
,

νLT = [1+ (α4− 1)V f (z)]ν, νT T = [1+ (α5− 1)V f (z)]ν,

(A.3)

while it is still (e.g., [Jones 1998])

GT T =
ET

2(1+ νT T )
. (A.4)

The elastic moduli appearing in (4) can then be obtained by inserting (A.3) and (A.4) into the standard
relevant formulas (e.g., [Jones 1998]), after aligning the longitudinal direction of transverse isotropy, L ,
with the x-axis of the adopted Cartesian coordinate system.

Appendix B: Implementation of the fictitious layers method

For a sufficiently thin plate or beam (h/L � 1), an approximate solution of (23) is obtained by replacing
the variable z appearing in (6) and, hence, in (22) with its middle-plane value, namely its value at z = 0.
In this manner, (23) is replaced by the following system of approximate linear ODEs:

D F = T (0)F, F = [D f, f, Dg, g]T . (B.1)

As this ODE system has constant coefficients, the exact form of its general solution can be expressed as

F(z)= S(z)F
(
−

1
2 h
)
, S(z)= exp

[(
z+ 1

2 h
)
T (0)

] (
−

1
2 h ≤ z ≤ 1

2 h
)
, (B.2)
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where the elements of the appearing exponential matrix S(z) are determined in the manner detailed in
[Ye 2003]. It is thus anticipated that the thinner is the inhomogeneous structural component of interest
the nearer (B.2) approximates the exact solution of (23) or, equivalently, (20).

When the thickness is not sufficiently small, the exact solution of (20) is approached computationally
very closely by dividing the structure into N successive fictitious layers (see Figure 1) having the same
constant thickness, h( j)

= h/N ( j = 1, 2, . . . , N ). Each individual fictitious layer is associated with a
local transverse coordinate parameter, z( j)

= z− ( j − 1)h/N + h/2, and, due to the FGM nature of the
plate, is itself materially inhomogeneous in the region h( j)/2≤ z( j)

≤ h( j)/2.
However, by choosing a suitably large value of N , each fictitious layer is itself regarded as a suf-

ficiently thin plate or beam whose mechanical response and behaviour are described satisfactorily by
an approximate solution of the form (B.2). The approximate solutions thus obtained for all N fictitious
layers are then suitably connected together by means of appropriate continuity conditions imposed on the
displacement and interlayer stress components. Upon increasing the value of N , this process provides a
sufficiently close solution to that of the exact governing equations (20) (see also [Shuvalov and Soldatos
2003]).

In more detail, the continuity conditions imposed on a generic j-th material interface (denoted by zj

in Figure 1) are as ( j = 1, 2, . . . , N − 1):

U (−h( j+1)/2)=U (h( j)/2), W (−h( j+1)/2)=W (h( j)/2),

σz(−h( j+1)/2)= σz(h( j)/2), τzx(−h( j+1)/2)= τzx(h( j)/2).
(B.3)

In matrix form, these are transformed into

F( j+1)(−h( j+1)/2)= R( j)F( j)(h( j)/2), (B.4)

where

R( j)
=



C ( j−1)
55

C ( j)
55

0 0
C ( j−1)

55 + d f ( j−1)/4

C ( j)
55

−
C ( j)

55 + d f ( j)/4

C ( j)
55

0 1 0 0

0
C ( j−1)

13

C ( j)
33

−
C ( j)

13

C ( j)
33

C ( j−1)
33

C ( j)
33

0

0 0 0 1


, (B.5)

and C ( j)
55 , C ( j)

13 , . . . , etc., signify the constant values that the implied elastic moduli acquire on the middle
plane, z( j)

= 0, of the j -th fictitious layer ( j = 1, 2, . . . , N ). Application of the same notation is extended
to include the appearing fibre bending stiffness parameter, d f ( j), where, however, it is also implied that
the previous use is made of (10).

Upon using successively (B.1), (B.2) and (B.4), one builds up the solution of the problem considered
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in a recursive manner. Hence, for the i-th layer, it is

F(z)≡ F(i)(z(i))= S(i)(z(i))F(i)
(
−h(i)

2

)
= S(i)(z(i))R(i−1) F(i−1)

(
h(i−1)

2

)
= S(i)(z(i))R(i−1)S(i−1)

(
h(i−1)

2

)
F(i−1)

(
−h(i−1)

2

)
= S(i)(z(i))(H (i))F(1)

(
−h(1)

2

)
, (B.6)

where

H (i)
=

1∏
k=i−1

R(k)S(k)
(

h(k)

2

)
. (B.7)

The value of F(z) on the outer lateral surface is then obtained as

F(N )(h(N )/2)= H F(1)(−h(1)/2), H = S(N )(h(N )/2)H (N ). (B.8)

If this is connected with the lateral boundary conditions (15), then (B.6) yields a linear system of four si-
multaneous algebraic equations for the four unknown components of the vector F(−h(1)/2)≡ F(−h/2).
Solution of that system of algebraic equations is then substituted back into (B.6) and it provides a semi-
analytical solution of the governing differential equations (23).

In the case of homogeneous fibrous composites, the first iteration of the outlined solution (N = 1)
provides naturally the exact elasticity results obtained in [Farhat and Soldatos 2015]. For inhomogeneous
composites, the number of iterations (N > 1) required for accurate prediction of displacement and stress
distributions depends on the degree of the assumed material inhomogeneity. As already mentioned, the
convergence behaviour and success of this fictitious layer method has been verified repeatedly in the
past (e.g, [Soldatos and Hadjigeorgiou 1990; Soldatos and Ye 1994; Shuvalov and Soldatos 2003; Ye
2003; Dagher and Soldatos 2011]) as well as most recently in [Brischetto 2019]. It accordingly suffices
here to note that the value of λ does not seem to exert significant influence on the observed convergence
characteristics of the method, which thus remain essentially unchanged, regardless of whether the plate
is made of polar (λ 6= 0) or nonpolar material (λ= 0).

All numerical results shown in this communication were obtained by setting N = 100. In general,
the maximum difference observed between corresponding results obtained on the basis of N = 100 and
N = 70 iterations never exceeded 0.3%. It is worth noting that each iteration requires multiplication
of 4× 4 matrices only. As a result, the implied hundreds of iterations involved in computations do not
require noticeable use of excessive computer time.

Appendix C: Consideration of the fibre-scale structure

It is assumed that fibres have circular cross-section of diameter d and, in the case of a homogeneous
plate [Farhat and Soldatos 2015] are distributed along the z-direction in a regular form of N equidistant
rows. The possible types of rectangular or triangular types RVEs depicted in Figure 3 consider that each
vertex of an element is the centre of a fibre cross-section. In either case, Sy represents the distance of
two neighbouring fibres in the y-direction.
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Similarly, Sz represents the aforementioned constant distance between two neighbouring fibre rows.
In this manner, Sz is the distance of neighbouring fibres in the z-direction of the rectangular element
while, for a triangular RVE, it represents the height of the depicted isosceles triangle. In the particular
case that the depicted triangle is considered equilateral (S = Sy), it is Sz =

√
3 Sy/2.

It becomes then readily understood that, necessarily, the following conditions always hold:

Sy ≥ d, Sz ≥ d, (C.1)

for the rectangular element. For the triangular element, these are modified as

Sy ≥ d, S ≥ d. (C.2)

For the purposes of the present study, d may be considered identical with the intrinsic parameter l
introduced in (9). However, the adopted notation distinction of those two parameters is retained here, in
order to signify that (i) the shape of the fibre cross-section may be considered noncircular in different
applications, and (ii) the intrinsic length parameter l can acquire some different meaning in the theory
of polar elasticity for fibre-reinforced materials [Spencer and Soldatos 2007], such as the fibre spacing
for example.

Under these considerations, the fibre volume fraction of the RVE is defined as

V f
=

area of fibers within the RVE
area of rectangle or triangle

. (C.3)

For a rectangular RVE, this definition leads directly to

V f
=

πd2

4Sy Sz
, (C.4)

but this result still holds true in the case a equilateral triangular RVE (S = Sy , Sz =
√

3 Sy/2). It is
thus seen that the plane strain assumption which underpins the principal problem of present interest is
adequately and properly served by considering Sy = d in (C.4), regardless of whether the implied element
is a rectangular or a triangular one.

It follows that the maximum fibre volume fraction in a rectangular RVE is achieved by setting Sy =

Sz = d in (C.4), thus leading to
V f

max =
π

4
∼= 0.785. (C.5)

This value of V f
max necessarily coincides with the maximum possible value of V f that the homogeneous

counterpart of the present problem [Farhat and Soldatos 2015] is associated with when the fibre-scale
structure is simulated with rectangular RVEs.

Similarly, maximum fibre volume fraction in a triangular RVE is achieved when S = Sy = d. In that
case, (C.4) yields

V f
max =

π

2
√

3
∼= 0.907, (C.6)

which coincides with the maximum V f -value that the homogeneous version of the problem is associated
with if the fibre structure is simulated with equilateral triangular elements.

The values of V f
max shown in either (C.5) or (C.6) thus also consist of their corresponding upper

limits such that the V f -value can attain in the present inhomogeneous version of the problem, where
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fibres are assumed redistributed in the manner described by (31), (32) or (35) within the same matrix
material. However, such an upper limit of V f can here be associated only with the densest fibre part of
the inhomogeneous beam. Namely, the part located at the neighbourhood of z/h = 1/2 or z/h =−1/2
in top-stiff (31) or a bottom-stiff (32) beam, respectively, and the neighbourhood of both lateral planes
(z/h = ±1/2) in the case of a beam reinforced in the symmetric manner (35). This is achievable by
considering that Sz is a suitable function of z which takes its lowest value (namely Sz = d or Sz =

√
3 d/2

for rectangular or triangular elements, respectively), in those densest fibre parts of the composite.
Hence, by associating V f

max with the top (z/h = 1/2) or the bottom plane (z/h =−1/2) of a top- or
bottom-stiff beam, respectively, either of (31) or (32) yields the maximum value of the parameter εmax

provided in (34). The inhomogeneous fibre distributions proposed in (31) and (32) are accordingly
connected naturally with the present analysis when the fibre-scale structure is accurately simulated with
rectangular or triangular RVEs, as soon as the εmax-value shown in (34) replaces the noted theoretical
upper bound ε= 1. It is recalled that, by virtue of (3)1, both (31) and (32) will thus still return 〈V f

〉 = 1/2.
However, in the case of the symmetric fibre distribution (35), association of V f

max with the densest fibre
part of the beam, z/h =±1/2, yields V f

max = α/2. By virtue of (C.5) and (C.6) (alternatively (25)), one
thus obtain the maximum values of α shown in (36). The corresponding average volume fractions noted
in (37) are then obtained by inserting each of those maximum α-values into (35) and, then, performing
the integration noted in (3).

Consideration of a fibrous composite having the effective properties (26) is still possible for 〈V f
〉 =

0.39 in this case, after replacing (A.3) with

α1 = 101, α3 = 1.64165, α2 = α4 = α5 = 1, ν = 0.25, (C.7)

and simultaneously modifying (30) as

E f
T /E = 1, E f

L /E f
T = 101, G f

LT /E f
T = 0.6566, ν

f
LT = ν

f
T T = ν = 0.25, G f

T T /E f
T =

2
5 . (C.8)

In a similar manner, a fibrous composite with effective properties (26) is obtained for 〈V f
〉 = 0.45 when

all quantities appearing in (C.7) and (C.8) are replaced by their counterparts shown in (38).

Appendix D: A class of through-thickness symmetric fibre volume fractions

Consider a class of fibre volume fractions represented by the following even function of z:

V f (z)= αn|z/h|n ≤ 1 (−h/2≤ z ≤ h/2). (D.1)

Regardless of the value of the positive integer n, this form of V f (z) is evidently symmetric with respect
to the middle axis, z = 0, of the composite. Consider further that

〈V f (z)〉 = k1/k2 (k2 ≥ k1 ≥ 0, k2 6= 0), (D.2)

so that the known integers n, k1 and k2 are such that the inequalities noted in (1) are satisfied regardless
of the value of the variable z.

It is observed in this regard that the maximum value of the fibre volume fraction, namely

V f
max = V f (±h/2)= αn/2n

≤ 1, (D.3)
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is attained at the lateral planes of the functionally graded fibrous composite. It follows that satisfaction
of the inequalities noted in (1) restricts the value of the coefficient αn as

0< αn ≤ 2n. (D.4)

By introducing (D.1) into (3)1 and performing the denoted integration, one obtains

αn = 2n(n+ 1) k1/k2, (D.5)

so that

V f (z)=
2n(n+ 1)k1

k2
|z/h|n (−h/2≤ z ≤ h/2). (D.6)

However, connection of (D.5) with (D.4) makes it clear that a fibre volume fraction of the form (D.6) is
admissible for all values of z only if

n ≤ (k2/k1)− 1 (k2 ≥ k1 > 0). (D.7)

For instance, in the particular case met in Section 4.2, where the composite contains 50% fibre and
50% matrix material, a combination of (D.2) with (33) suggests that

k1 = 1, k2 = 2. (D.8)

Use of (D.7) makes it then further understood that, in that case, the only admissible value of the positive
integer n is

n = 1, (D.9)

thus leading to α1 = 2 and, hence, to the fibre volume fraction (35) with α = 2.
It becomes also understood that, in cases when the fibre volume fraction is such that k2/k1 ≥ 3,

(D.7) returns multiple admissible values of n and, therefore, multiple admissible forms of (D.1). However,
cases of volume fractions that admit multiple values of n are not considered in this investigation.
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INTEGRATED MODELLING OF TOOL WEAR
AND MICROSTRUCTURAL EVOLUTION INTERNAL RELATIONS

IN FRICTION STIR WELDING WITH WORN PIN PROFILES

ZHAO ZHANG AND ZHIJUN TAN

An adaptive remeshing model was coupled with the Archard equation to calculate the tool wear in friction
stir welding (FSW). The Monte Carlo method was used to simulate recrystallization in FSW with worn
tools. In addition, experiments were used to validate the predicted temperatures and microstructures. As
indicated by the results, appropriate tool wear can lead to self-optimization of the tool in FSW. This wear
mechanism is controlled by the change in the average strain rate during the FSW process. The average
strain rate first increases and then decreases with tool wear, which is the key factor when determining the
final grains. An appropriate amount of tool wear can lead to smaller grains in the stirring zone of FSW
whereas excess tool wear can lead to larger grains.

1. Introduction

Friction stir welding (FSW) has emerged in recent decades and has quickly been applied in various indus-
tries due to its advantages, including no melting, no pollution, and low residual distortions. Furthermore,
FSW is suitable for light alloys, such as aluminum and magnesium alloys. Optimization of the process
parameters can lead to high-quality friction stir welds without defects [Yang et al. 2018; He et al. 2017;
Zhang and Zhang 2007; Ebrahimpour et al. 2019].

In FSW, the tool plays the key role for the final weld quality. De et al. [2014] tested the durability of
a FSW welding tool of mild steel and found that the higher temperature, caused by increasing the tool
rotation speed or the tool diameter, can lead to an increase of the tool durability. Sahlot et al. [2018]
studied the tool wear in FSW of the CuCrZr alloy and found that the pin profile changes due to wear,
resulting in root defects for a long weld distance. Suresha et al. [2011] studied the tool profile effects
on the tensile properties of friction stir welded AA7075-T6. Moreover, Chen and Nakata [2009] studied
the effect of tool geometry on microstructural changes as well as the mechanical properties in friction
stir lap welding. Mehta et al. [2011] studied the influence of tool geometry in FSW and optimized the
tool shoulder diameter. Zhang and Wu [2015] studied the tool diameter effect in FSW and correlated the
changes of strain rates and temperatures with the grain sizes. The tool size effect on the grains was also
studied by Zhang et al. [2014], as well as the effect on temperatures and material deformations [Zhang
et al. 2009]. Mastanaiah et al. [2018] investigated the role of a hybrid tool pin profile compared with the
conventional pin profile. Shindo et al. [2002] and Prado et al. [2003] found that there is self-optimization
for tool wear in FSW. The wear rate decreases with the increase of the tool wear in FSW.

Sahlot and Arora [2018] established a numerical model based on Modified Archard’s wear equation
to investigate the tool wear in FSW with experimental validations, finding that the wear amount is more

Keywords: friction stir welding, wear, Monte Carlo.
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obvious near the pin tip. The wear is more at the beginning and becomes less at long traverse. Tool
wear can lead to the changes of pin profiles in FSW. In turn, the change in the pin profile can lead to
a change in material flow, as indicated by Beygi et al. [2018], affecting the microstructures in welding
zones. The relationship between microstructure and tool wear is very important when conducting a
detailed investigation of the FSW mechanism.

The microstructural evolution can also be altered owning to the profile changes caused by tool wear.
A numerical scheme for the microstructures provides an insight into the FSW process. Meanwhile, the
recrystallization and grain growth in the stirring zone (SZ) and the grain coarsening in the heat-affected
zone are usually simulated by a Monte Carlo method and cellular automaton method, respectively. Zhang
et al. [2016] proposed a Monte Carlo method to simulate the microstructural changes in FSW, then
further considered the effect of precipitate, as indicated in [Wu and Zhang 2017]. The evolution of the
precipitates was determined by a numerical model, as displayed in [Zhang et al. 2017]. The Monte Carlo
method was further extended to a 3D case in [Zhang and Hu 2018]. Another method to predict the grain
sizes in FSW is cellular automaton. Earlier work for cellular automata coupled with a finite element
method (FEM) was conducted by Saluja et al. [2012], then Song et al. [2014] to predict the grain sizes in
FSW. Akbari et al. [2016] established a cellular automaton model to predict the grain sizes in the FSW of
a magnesium alloy. Meanwhile, Valvi et al. [2016] combined the cellular automata method and a FEM
to predict the grain sizes in the FSW of aluminum alloys.

Although the tool wear is not serious in the FSW of AA6061, there is evidence to show that it can be
found for long-term use, i.e., for the FSW of AA6061. Thus, it is interesting to study how the worn tool
affects the key phenomena, including the temperatures and recrystallizations in FSW. To understand the
mechanism of tool wear and the wear-induced self-optimization in FSW, it is important to conduct theo-
retical and numerical analyses on the internal relationships among the internal parameters. Experiments
must be used to validate the numerical models, then the internal relationships between the tool wear and
microstructures can be established. In the current work, tool wear was calculated with validation from
literatures. A Monte Carlo method was used to simulate the grain evolutions in the SZ. In addition, an
experiment was performed to validate the grain sizes. Then, the correlation between the tool wear and
the microstructures could be established. The systematic work was used for the investigation on the
self-optimization mechanism of the tool in FSW.

2. Experimental procedure

The FSW machine and the instruments used in the experiment are shown in Figure 1. AA6061-T6 was
selected as the welding material. The rotating speed was 1000 rpm and the transverse speed was 1 mm/s.
The tool material was H13 steel. In addition, a scanning electron microscope (SEM) system was used
to validate the grain morphologies and sizes predicted by the Monte Carlo method with a worn tool. An
infrared radiation thermometer was used to validate the predicted temperature field.

A microstructure analysis was performed on the cross-section of the weld by field-emission scanning
electron microscopy (FE-SEM, Supra-55, Carl Zeiss Sigma NTS Gmbh, Germany). The SEM samples
were ground and polished with a diamond paste of 0.5µm. To investigate the grain size distribution of
the weld zone, the samples were etched in the Keller’s reagent for 200 s. The average grain size was then
calculated using the linear intercept method: d = 1.56L , where L is the intercept length.
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Figure 1. FSW machine and the used instruments.
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Figure 2. FSW model and welding tool before wear: FEM model (left) and welding tool (right).

3. Numerical models

An adaptive remeshing model was used to simulate the FSW process based on DEFORM3D, as shown
in Figure 2 (left). The initial mesh sizes ranged from 2 mm–5.4 mm. Then, the mesh sizes ranged from
0.4 mm–1 mm in the remeshing region in the SZ. The used initial tool before wear is shown in Figure 2
(right). The shoulder diameter is 10 mm and the pin diameter is 3 mm. The pin is slightly shorter than the
thickness of the welding plate, which is of the same length as that used in the experiment. The rotating
speed was 1000 rpm while the transverse speed was 1 mm/s.

The shear friction model was used for the contact behaviors on the tool-plate interface:

τ = mk, (1)

where k is the yield shear stress and m is the frictional factor, which is selected as 0.6 according to [Wan
et al. 2016].
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Figure 3. Mechanical properties of AA6061-T6.

The yield shear stress can be determined by the shear failure criteria:

k = σs/
√

3, (2)

where σs is the yield strength. The tabulated flow stress was used as functions of the strain rates and
temperatures:

σy = σy(ε̄
p, ˙̄ε p, T ), (3)

where ε̄ p is the equivalent plastic strain and ˙̄ε p is the equivalent plastic strain rate.
The relations between the flow stresses and the strain rates and temperatures are shown in Figure 3

(data from DEFORM3D). Heat is generated by both friction and plastic deformation, with friction being
the main contributor. A detailed description on the adaptive remeshing model can be found in [Zhang
and Wan 2012].

The Archard equation was used to calculate the tool wear in FSW [Lee and Jou 2003]:

W =
∫

K
pa
· vb

H c dt, (4)

where W is the total wear depth of the tool, p is the pressure on the welding tool, v is the sliding
velocity, and H is the hardness of the welding tool, taken as 62HRC. Additionally, K = 2 · 10−5 for
AA6061+20%Al2O3 and K = 2 · 10−8 for AA6061-T6; a and b are commonly taken as 1, and c = 1.75
for the welding tool.

The simulation was divided into two steps. In the first step, the FSW process was simulated in
DEFORM3D. The obtained data was combined with the Archard equation to simulate the tool wear.
In the following step, the worn tools obtained at different instances were used in numerical models to
connect the worn shapes with the FSW temperature histories. The obtained temperatures were then
combined with the developed Monte Carlo method to correlate the tool wear with the microstructural
evolutions in FSW with worn pin profiles.
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physical property value

average number per unit area (Z) 4.31 · 1020 atom/m2

Planck constant (h) 6.624 · 10−34 J s
accommodation probability (A) 1
Avogadro’s number (Na) 6.02 · 1023 mol−1

atom molar volume (Vm) 1.0 · 10−5 m3/mol
fusion entropy (1S f ) 11.5
activation enthalpy (Q) 156 kJ/mol
boundary energy (γ ) 0.5 J/m2

gas constant (R) 8.31 J mol−1 K−1

DRX constant (N0) 1024 m−3

Table 1. Material parameters.

A Monte Carlo method was used to simulate the recrystallization and the following grain growth in
FSW. In the previous work by Zhang et al. [2016], a relation between the Monte Carlo step and the real
temperature was established as

(MC S)(n+1)n1 =

(
L0

K1l

)n+1

+
(n+ 1) αCn

1

(K1l)n+1

∑[
expn

(
−

Q
RTi

)
ti

]
, (5)

where C1 can be described by

C1 =
2Aγ Z V 2

m

N 2
a h

exp
(
1S f

R

)
, (6)

where A, Z , Vm , 1S f , R, Na , γ , Q, and h are summarized in Table 1. A detailed description on the
Monte Carlo method can be found in [Zhang et al. 2016].

The nucleation rate is a function of the strain rate ˙̄ε [Grujicic et al. 2015]:

ṅ = N0 ˙̄ε exp(−Q/RT ), (7)

where N0 is a constant and ˙̄ε is the equivalent strain rate in the SZ, which is obtained using the FEM.

4. Results and discussion

To validate the tool wear predictions, AA6061+20%Al2O3 was used. The tool wear rate decreased with
the increase of the wear depth. Furthermore, the numerical model fitted well with the experimental
observation by Prado et al. [2003], as shown in Figure 4 (left). When AA6061-T6 was used, the tool
wear obviously decreased. For the short welding distance for the FSW of AA6061-T6, the tool wear
is difficult to observe. This phenomenon was also noticed in the experiment by Prado et al. [2001]. In
comparison with the experiments, the current model on tool wear can be validated.

Figure 4 (right) shows the variation of the wear depth with the welding distance in the FSW of AA6061-
T6. With the increase of the wear depth, the wear rate becomes smaller. This indicates a self-optimization
for the welding tool in FSW. The wear mainly occurs near the tip of the welding pin. However, the
material near the root of the pin is hardly worn.
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Figure 5. Comparison of predicted and experimental temperature: predicted tempera-
ture in Case 2 (left) and temperature image observed by Infrared Radiation Thermometer
(right).

This phenomenon is clearly observed in the experiment performed by Sahlot and Arora [2018]. The
change in the pin profile due to wear can lead to changes in the temperatures and microstructural evo-
lutions in FSW. Determining how the tool wear affects the temperatures and deformations in the FSW
process is key for investigations on the microstructural evolutions in FSW with worn tools. Therefore,
four different worn tools were selected for further simulations. Case 1 represents the initial cylindrical
tool without wear. Cases 2–4 represent the worn tools with worn distances ranging from 225 m–1425.5 m,
as shown in Figure 4 (right).

Figure 5 shows a comparison of the predicted temperature from the adaptive remeshing model and the
experimental temperature observed by the infrared radiation thermometer, showing that the results agree
well with each other. However, the temperature field under the shoulder cannot be directly observed by
the infrared radiation thermometer. Therefore, the maximum welding temperature extracted under the
shoulder in the numerical model is usually higher than that observed, as can be seen in Figure 6.

Figure 6 shows the predicted temperature histories in FSW processes with different worn tools. With
the increase of the wear depth, the maximum welding temperature decreases. The temperature during
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Figure 6. Temperature histories in FSW with different worn tools.

FSW is determined by the frictional and plastic dissipations, as indicated in [Zhang and Zhang 2009],
with friction being the main contributor. Compared with Case 1, the pin-plate bottom contact surface
decreased by 55.6% in Case 2, 88.9% in Case 3, and becomes zero in Cases 4 and 5. The decrease of
the pin-plate bottom contact surface leads to the decrease of the welding temperature with the increase
of tool wear.

Additionally, the change in the tool profile due to wear can lead to different grain evolutions in FSW. A
Monte Carlo method was used to simulate the nucleation in dynamic recrystallization and the following
grain growth. To validate the Monte Carlo method, an experiment was performed using the machine
shown in Figure 1. The worn tool in Case 2 was used for the comparison of the numerical and exper-
imental results, as shown in Figure 7. The grain sizes near the top and bottom surfaces are different.
Due to the higher temperature near the top surface, the grain size near this area is larger than that near
the bottom surface. This observation was also made in the 3D Monte Carlo simulation in the previous
work by Zhang and Hu [2018]. The average grain size was 12.1µm on point 1 and 11µm on point 2
in the experiment. The predicted values on point 1 and point 2 in the numerical model were 12.7µm
and 11.4µm, respectively. In addition, the average grain size was 11.5µm on point 3 and 10.8µm on
point 4 in the experiment. Meanwhile, the predicted values on point 3 and point 4 in the numerical
model were 12.3µm and 10.9µm, respectively. This shows that the numerical model fitted well with
the experimental measurements.

The nine points shown in Figure 8 (left) were selected to calculate the average strain rates in different
FSW processes with different worn tools. Figure 8 (right) shows the calculated strain rates in FSW with
different worn tools. It indicates that the appropriate tool wear can increase the strain rates in FSW
whereas excess tool wear can lead to a decrease of the strain rates. The strain rate is a key factor for
determining the nucleation in recrystallization. The increase of the strain rate can lead to an increase of
the nucleation rate, and vice versa, according to (7).

The calculated nucleation rate histories in FSW with different worn tools are shown in Figure 9.
The point 1.5 mm away from the top surface was selected for comparison. For Case 2, the maximum
nucleation rate increased to 8.58 · 1012 s−1 m−3 from 7.98 · 1012 s−1 m−3 in Case 1. In Cases 3–5, the
maximum nucleation rates decreased to 4.42 · 1012 s−1 m−3, 3.02 · 1012 s−1 m−3, and 2 · 1012 s−1 m−3,
respectively.
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Figure 9. Nucleation rates in different worn tools.

Using the calculated nucleation rates shown in Figure 9, the grain sizes in the FSW with different
worn tools could be predicted, as shown in Figure 10. In the FSW with the initial tool without wear
(Case 1), the average grain size was 13.2µm. For Case 2, the average grain size decreased to 12.7µm.
While for Cases 3–5, the average grain sizes increased to 14.1µm, 15.2µm, and 16.7µm, respectively.
Appropriate tool wear can lead to smaller grains in the SZ and lead to improvement of the welding
quality. However, excess tool wear can lead to the coarsening of the grains in the SZ. This indicates that
self-optimization exists in FSW, but the control of the tool wear remains important for the control of the
final welding quality in FSW.

The variations of the grain sizes with time in different FSW processes with different worn tools are
summarized in Figure 11. The tool wear can obviously affect the grain growth in FSW. The differences
between the numerical model and the experiment are 4.96% for point 1, 3.63% for point 2, 6.96% for
point 3 and 0.9% for point 4. The error for point 3 is higher than the other points. This is caused by
the generation of flash in this region [Kumar et al. 2013]. This can lead to errors on the prediction of
strain rates and then affect the predictions of microstructural evolutions. But the comparison shows the
proposed models are successful in almost all the regions in the stirring zone. With validation from the
experiment, the Monte Carlo method becomes an efficient tool for the design of an appropriate tool pin
profile for the optimal welding quality.
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Figure 10. Predicted grain morphologies in FSW with worn tools.
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Figure 11. Variations of average grain sizes in FSW with worn tools.

5. Conclusions

(1) Tool wear can lead to a decrease of the wear rate in FSW.

(2) Appropriate tool wear can lead to the formation of smaller equiaxed grains in the SZ. However,
excess tool wear can lead to the coarsening of grains in the SZ in FSW.

(3) Strain rate is a key factor for controlling the self-optimization of the tool in FSW.
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LOCAL GRADIENT THEORY FOR THERMOELASTIC DIELECTRICS:
ACCOUNTING FOR MASS AND ELECTRIC CHARGE TRANSFER

DUE TO MICROSTRUCTURE CHANGES

OLHA HRYTSYNA AND VASYL KONDRAT

In this paper a complete set of nonlinear field equations of a gradient-type continuum theory for ther-
moelastic nonferromagnetic dielectrics is obtained. The specification of the mentioned set of equations
is based on the application of electrothermomechanical balance laws and takes into consideration the
polarization electric current and mass flux (of nondiffusive and nonconvective nature) associated with
microstructure changes. The electric current is caused by a change of both dipole and quadrupole
electric moments over time, whilst the mass flux is caused by a change of the vector of the local mass
displacement over time. The obtained set of equations accounts for the electromechanical coupling for
isotropic materials and describes the near-surface, size, flexoelectric and thermopolarization effects. The
classical theory of piezoelectrics is incapable of describing the mentioned phenomena. For isothermal
linear approximation, the proposed theory is used to investigate the effect of thin-film thickness as well
as of the diameter and surface curvature of a thin fiber and a cylindrical hole in elastic dielectrics on their
stationary stress-strain state, bound surface electric charge, surface energy of deformation and polariza-
tion, etc. It is shown that a disjoining pressure emerges in thin films. This pressure can affect the strength
and stability of nanoscale dielectric films. The results obtained in this paper are general and can be used
for designing new nanocomposite materials and devices utilizing the micro/nanoscale films, fibers, etc.

A list of symbols including the notations used in this paper can be found on page 566. In general, bold
symbols stand for vector quantities and bold symbols with caps denote second-order tensor quantities.

1. Introduction

The generalized theories of dielectrics have attracted the attention of many investigators. Extension
of the classical field theory was stimulated by intensive development of new technologies, in particular,
nanotechnologies, as well as by the availability of a number of inconsistencies in classical (local) theories.
For example, classical theories predict a singular solution in problems with concentrated sources, cracks,
and defects. Some experimental results (namely, polarization of a material with centrosymmetry under
nonuniform mechanical loads or temperature gradients [Kholkin et al. 1982; Zholudev 1966], nonlinear
dependence of capacitance of thin dielectric film on its thickness, known as Mead’s anomaly [Mead
1961], size effects [Axe et al. 1970; Nam et al. 2006; Tang and Alici 2011] etc.) are outside the scope of
classical theories of dielectrics.

There are several different ways of constructing extended theories of elastic dielectrics. One group of
theories considers the additional degrees of freedom (i.e., microrotations, microdeformations, etc.) for

Keywords: local gradient theory, electric quadrupole moment, local mass displacement, surface and size effects.
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material points in order to model the contribution of the microstructure changes to the macroscopic behav-
ior of the body. In such a way there were developed more general theories, in particular, micromorphic,
microstretch, micropolar continua, etc. [Eringen 1966; 1999; Eringen and Suhubi 1964]. The nonlocal
and gradient theories form another group of extended theories of dielectrics. The nonlocal field theory
for piezoelectricity with functional constitutive relations was proposed in [Eringen 1984; 2002]. The
gradient-type theories were mainly formulated using the variation methods or methods of nonequilibrium
thermodynamics [Kalpakidis and Massalas 1993; Maugin 1980; Nowacki 1983; Papenfuss and Forest
2006; Ván 2003]. Such theories were developed by allowing the stored energy density to depend on the
gradient of some physical quantities, namely, the strain tensor gradient [Mindlin 1965], the polarization
gradient [Mindlin 1968], or the electric field gradient [Kafadar 1971; Kalpakides and Agiasofitou 2002;
Kalpakidis and Massalas 1993; Maugin 1988]. Note that the electric field gradient is a thermodynamic
conjugate of the electric quadrupole [Kafadar 1971]. For a more detailed description of these theories,
see monographs [Burak et al. 2011; Eringen 1999; 2002; Erofeyev 2003; Maugin 1988; Nowacki 1983;
1986] and reviews [Kondrat and Hrytsyna 2009; Yang 2006].

Burak et al. [2007; 2008] proposed a continuum-thermodynamical approach to the construction of
a gradient-type theory of electrothermoelasticity of polarized solids (local gradient electrothermome-
chanics of dielectrics, in the author’s terminology). The mentioned approach is based on accounting
for nondiffusive and nonconvective mass fluxes associated with changes in the material microstructure.
These fluxes are related to the process of local mass displacement [Burak et al. 2007; 2008].

The objective of this paper is to develop this approach and to construct the local gradient theory
of nonferromagnetic dielectrics that accounts for the above mass fluxes as well as for the polarization
currents. Here, we will consider the contribution of electric dipole and quadrupole moments to the
polarization current. The developed theory will be used for describing near-surface and size effects, in
particular, to investigate the surface energy of deformation and polarization, a disjoining pressure in thin
solid films, etc.

2. Investigation object and notations

We consider an electrically polarizable nonferromagnetic heat-conducting elastic body which occupies
the domain (V∗) of three-dimensional Euclidean space with a smooth surface (6∗). In view of the action
of external forces, electromagnetic field and heating of the body, mechanical, thermal, and electromag-
netic processes can occur within the solid. These processes may be accompanied by changes in the
microstructure of a small body element (dV ) (representative volume). We characterize these changes
by an electric flux Jes (polarization current) and a nonconvective and nondiffusive mass flux Jms . It
should be noted that Marchenko et al. [2009] observed the mentioned nondiffusive mass flux within the
near-surface domains of thin films during their formation. We relate the mass flux Jms to the process of
the local mass displacement [Burak et al. 2007; 2008].

All fields that characterize the processes occurring in the solid should obey the fundamental laws of
continuum physics, namely, the Maxwell equations and the corresponding balance laws (balances of
energy, mass, linear momentum, angular momentum, and entropy).
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3. Conservation laws of mass and induced mass

We separate from the body a fixed small volume (V ) bounded by closed surface (6). The interaction
of the microparticles of the considered volume (V ) with the exterior microparticles occurs through the
surface (6). The integral form of the mass balance equation for the considered volume can be written
as

d
dt

∫
(V )
ρ dV =−

∮
(6)

Jm∗ · n d6. (1)

Here, ρ is the mass density, Jm∗ is the density of mass flux, n is the outward unit normal to the surface (6),
and the dot denotes the scalar product.

We take into consideration that the mass-center displacement of the representative volume may be
induced not only by its convective displacement as a rigid entity (i.e., translational displacement of the
element geometric center) but also by the changes of the relative positions of microparticles within this
element, that is, the change of its microstructure (see Figure 1). In view of this, we represent the mass
flux Jm∗ as the sum of the convective component ρv∗ and component Jms related to the ordering of
microstructure of the representative volume, that is Jm∗ = ρv∗+ Jms . Here, v∗ = u̇∗ is the velocity vector
of convective displacement of the representative volume, u∗ = r∗− r0 (Figure 1). Hence, equation (1) in
the local form can be written as

∂ρ

∂t
+∇ · (ρv∗+ Jms)= 0, (2)

where ∇ is the Hamilton operator.
We introduce the velocity vector v of the center of mass by the formula [Burak et al. 2007; 2008]

v =
1
ρ
(ρv∗+ Jms). (3)

In view of formula (3), the equation of mass balance (2) can be written in the standard form

∂ρ

∂t
+∇ · (ρv)= 0. (4)

Following Burak et al. [2007; 2008], assume that the mass flux Jms is caused by a change over time
of the mass dipole moment 5m (i.e., the vector of local mass displacement):

Jms = ∂5m/∂t . (5)

To describe the local mass displacement by the formula∫
(V∗)
5m dV =

∫
(V∗)
ρmπ r dV, (6)

we also introduce the density of induced mass ρmπ [Burak et al. 2008]. In (6), we integrate over the
volume (V∗) of the solid body. Note that from the integral equation (6) the following useful relations can
be easily obtained: ∫

(V∗)
ρmπ dV = 0, (7)

ρmπ =−∇ ·5m . (8)
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Figure 1. Changing the center of mass of a small body element within the classical
theory (u = r − r0) (left), and local gradient theory taking the local mass displacement
into account (u = r∗+πm − r0, where πm =5m/ρ) (right).

Let’s derive the formula (8). To this end, we multiply the lefthand and righthand sides of the relation (6)
by an arbitrary constant vector a and use the identity a ·5m = (5m ·∇)(a · r). As a result, after some
algebra, we obtain∫
(V∗)
(a · r)ρmπ dV =

∫
(V∗)
(5m ·∇)(a · r) dV =−

∫
(V∗)

∇ · [5m(a · r)] dV −
∫
(V∗)
(a · r)(∇ ·5m) dV . (9)

Assume that the body comes in contact with vacuum. Since vector 5m is equal to zero outside the body,
then ∫

(V∗)
∇ · [5m(a · r)] dV = 0. (10)

Because vector a is arbitrary, from the expression (9) we get formula (8). Similarly, formula (7) can be
obtained [Burak et al. 2011].

By differentiating formula (8) with respect to time and taking relation (5) into account, one can obtain
a conservation law of an induced mass:

∂ρmπ

∂t
+∇ · Jms = 0. (11)

4. Electrodynamics equations

The Maxwell equations in the local form are given by [Landau and Lifshitz 1982]

∇× E =−
∂B
∂t
, ∇× H = Je f , (12)

∇ · B = 0, ∇ · D = ρe. (13)

Here Je f = Je + Jed + Jes , where Je is the density of the electric current (convection and conduction
currents), Jes is the polarization current, and Jed = ε0(∂E/∂t), ε0 is the electric permittivity of a vacuum.
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Assume that the polarization current Jes is caused by a change over time of both the dipole P and the
quadrupole Q̂ electric moments [Kondrat and Hrytsyna 2019], namely

Jes =
∂5e

∂t
, 5e = P −

1
6
∇ · Q̂. (14)

Here, 5e is the polarization vector, which can be thought of as a vector of the local displacement of
electric charges. Thus, using (14), one can write

Je f = Je+ ε0
∂E
∂t
+
∂5e

∂t
. (15)

For nonferromagnetic dielectrics, the constitutive equations for the vectors of magnetic B and elec-
tric D inductions look like

B = µ0 H, D = ε0 E+ P − 1
6
∇ · Q̂. (16)

Here, µ0 is the magnetic permeability in vacuum. We also introduce the density of an induced charge ρeπ

[Bredov et al. 1985] ∫
(V∗)
5e dV =

∫
(V∗)
ρeπ r dV . (17)

From (17) it follows that [Bredov et al. 1985]∫
(V∗)
ρeπ dV = 0, ρeπ =−∇ ·5e. (18)

The conservation law of induced electric charges looks like [Bredov et al. 1985]

∂ρeπ

∂t
+∇ · Jes = 0. (19)

Equations (12), (13), (15), and (16) yield the following balance law for the energy Ue of the electro-
magnetic field [Burak et al. 2011]:

∂Ue

∂t
+∇ · Se+

(
Je+

∂5e

∂t

)
· E = 0. (20)

Here, Ue = (ε0 E2
+µ−1

0 B2)/2, Se = µ
−1
0 E × B. Note that the last term in (20) describes the effect

of the electromagnetic field on a substance. Let us rewrite the above term in such a way that it contains
the quadrupole Q̂∗ and dipole P∗ electric moments, the electric field vector E∗, and the density of
the electric current Je∗ in the reference frame of the mass centers moving with a velocity v relative to
the laboratory reference frame. In this co-moving frame, the vectors E, P , Je and the tensor Q̂ are
transformed according to the relations: E = E∗− v× B, P = P∗, Je = Je∗ + ρev, Q̂ = Q̂∗. Here, the
vector Je∗ is the conduction current density. Substituting these equations into (20) and using the mass
conservation law (4), the balance equation for the energy of the electromagnetic field can be reduced to
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the following form:

∂Ue

∂t
+∇ · Se+ Je∗ · E∗+ ρ

D p
Dt
· E∗+ ρ

Dq̂
Dt
: (∇⊗ E∗)

+ v ·

[
ρe E∗+

(
Je∗ +

∂5e

∂t

)
× B+ ρ(∇⊗ E∗) · p− ρ(∇⊗∇⊗ E∗) : q̂

]
−∇ · {[ p · E∗+ q̂ : (∇⊗ E∗)]ρv} = 0. (21)

Here, p= P/ρ and q̂ = Q̂/6ρ, ⊗ is the tensor product, and D...
Dt =

∂...
∂t + v ·∇ . . . denotes the material

time derivative.

5. Equation of entropy balance

We used the approaches of classical nonequilibrium thermodynamics. Within the nonequilibrium ther-
modynamics, the entropy balance equation may be expressed in the local form as [de Groot and Mazur
1962]

ρ
Ds
Dt
=−∇ ·

(
Jq

T

)
+ η+ ρ

R

T
. (22)

Here, s is the specific entropy, Jq is the density of the heat flux, T is the absolute temperature, R denotes
the distributed heat source, and η is the entropy production per unit of volume and time.

6. Energy balance law for system “solid-electromagnetic field”

We assume that the total energy E is the sum of internal energy ρu (u is the specific internal energy),
kinetic energy ρv2/2, and the energy Ue of the electromagnetic field: E = ρu + 1

2ρv
2
+Ue. We also

assume that the change in the total energy is caused (i) by the convective energy transport ρ(u+ v2/2)
through the body surface, (ii) by the energy flux σ̂ · v due to the power of surface forces, (iii) by the heat
flux Jq , (iv) by the electromagnetic energy flux Se, (v) by the energy flux µJm linked with the mass
transport relative to the centre of mass of the small body element, (vi) by the energy flux µπ Jms related
to the material microstructure ordering (i.e., local mass displacement), as well as (vii) by the action of
mass forces F and (viii) by the action of distributed heat sources R. Thus, the law of the energy balance
can be written as

d
dt

∫
(V )

E dV =−
∮
(6)

[
ρ

(
u+

1
2
v2
)
v−σ̂ ·v+Se+Jq+µJm+µπ Jms

]
·n d6+

∫
(V )
(ρF·v+ρR)dV, (23)

where σ̂ is the Cauchy stress tensor, µ is chemical potential, µπ is an energy measure of the effect of
the local mass displacement on the internal energy and Jm = ρ(v∗− v) [Burak et al. 2008].

By the use of (4), (5), (8), (21), and (22), taking a time derivative of the righthand side of (23) and by
means of the divergence theorem, after some lengthy algebraic manipulations, we obtain the following
local form of the balance equation for the internal energy u:

ρ
Du
Dt
= ρT

Ds
Dt
+ σ̂∗ :

D ê
Dt
+ ρE∗ ·

D p
Dt
+ ρ∇⊗ E∗ :

Dq̂
Dt
+ ρµ′π

Dρm

Dt
− ρ∇µ′π ·

Dπm

Dt

+ Je∗ · E∗− Jq ·
∇T
T
− Tη+ v ·

[
−ρ

Dv
Dt
+∇ · σ̂∗+ Fe+ ρ(F+ Fm)

]
, (24)
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where πm = 5m/ρ; ρm = ρmπ/ρ; µ′π = µπ −µ. Here, ê, Fe, Fm , and σ̂∗ are the infinitesimal strain
tensor, ponderomotive force, additional mass force, and modified stress tensor that are defined by

ê= [∇⊗ u+ (∇⊗ u)T ]/2, (25)

Fe = ρe E∗+ ρ(∇⊗ E∗) · p+
(

Je∗ +
∂5e

∂t

)
× B+ ρ(∇⊗∇⊗ E∗)T (2,3) : q̂, (26)

Fm = ρm∇µ′π − (∇⊗∇µ′π ) ·πm, (27)

σ̂∗ = σ̂ − ρ[ p · E∗+ q̂ : (∇⊗ E∗)+ ρmµ
′

π −πm ·∇µ
′

π ] Î, (28)

where superscript 〈T 〉 denotes a transposed tensor and Î is the unit tensor.
Applying the principle of frame indifference in a rigid translation, from (21) we obtain the balance of

momentum in the form
ρ(Dv/Dt)=∇ · σ̂∗+ Fe+ ρ(F+ Fm). (29)

It is evident from (29), that the electric quadrupole and mass dipole moments induce nonlinear body
forces F′e = −ρ(∇⊗∇⊗ E∗) : q̂ and Fm and couple stresses σ̂ ′

∗
= −ρ[q̂ : (∇⊗ E∗)+ ρmµ

′
π − πm ·

∇µ′π ] Î within the body. Note that as evident from relation (25), we confined ourselves to linear strain-
displacement relations (i.e., geometric nonlinearity is neglected within the framework of constructed
mathematical model) whereas the balance equations (4), (11), (22), and (29) are nonlinear (the model
takes physical nonlinearity into account).

By means of the Legendre transformation f = u− T s− E∗ · p− q̂ : (∇⊗ E∗)+∇µ′π ·πm we define
the generalized Helmholtz free energy. Using this new thermodynamic function and the balance of linear
momentum (29), from (24) we obtain

ρ
D f
Dt
=−ρs

DT
Dt
+ σ̂∗ :

D ê
Dt
− ρ p ·

D E∗
Dt
− ρ q̂ :

D(∇⊗ E∗)
Dt

+ ρµ′π
Dρm

Dt
+ ρπm ·

D∇µ′π

Dt

+ Je∗ · E∗− Jq ·
∇T
T
− Tη. (30)

While inspecting (30), we assume that the Helmholtz free energy is a function of T , ê, E∗, ∇⊗ E∗,
ρm , and ∇µ′π that is f = f (T, ê, E∗,∇⊗ E∗, ρm,∇µ

′
π ). Note that the density of free energy depends

not only on temperature T , strain tensor ê, and electric field vector E∗, as it follows from the classical
theories, but also on the parameters ∇ ⊗ E∗, ρm = −∇ · (ρπm)/ρ, and ∇µ′π , related to the electric
quadrupole and mass dipole moments. Using (30), we get the expression

ρ

(
∂ f
∂T
+s
)

DT
Dt
+

(
ρ
∂ f
∂ ê
− σ̂∗

)
:

D ê
Dt
+ρ

(
∂ f
∂E∗
+ p

)
·

D E∗
Dt
+ρ

(
∂ f

∂(∇⊗ E∗)
+ q̂

)
:

D(∇⊗ E∗)
Dt

+ ρ

(
∂ f
∂ρm
−µ′π

)
Dρm

Dt
+ ρ

(
∂ f

∂∇µ′π
−πm

)
·

D∇µ′π

Dt
= 0, (31)

and the following relation for entropy production

η = Je∗ · E∗− Jq · (∇T/T ). (32)

Note that in relation (32) for entropy production, the terms caused by polarization and the local mass
displacement are absent because we describe these processes as reversible.
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7. Constitutive equations

Since parameters T , ê, E∗, ∇⊗ E∗, ρm , and ∇µ′π are independent, we obtain the following constitutive
equations from relation (31):

σ̂∗ = ρ
∂ f
∂ ê

∣∣∣∣
T,E∗,∇⊗E∗,ρm ,∇µ′π

, s =−
∂ f
∂T

∣∣∣∣
ê,E∗,∇⊗E∗,ρm ,∇µ′π

, p=−
∂ f
∂E∗

∣∣∣∣
ê,T,∇⊗E∗,ρm ,∇µ′π

, (33)

q̂ =−
∂ f

∂(∇⊗E∗)

∣∣∣∣
ê,T,E∗,ρm ,∇µ′π

, µ′π =
∂ f
∂ρm

∣∣∣∣
ê,T,E∗,∇⊗E∗,∇µ′π

, πm =
∂ f

∂(∇µ′π )

∣∣∣∣
ê,T,E∗,∇⊗E∗,ρm

. (34)

The specific electric quadrupole q̂, the potential µ′π , and the local mass displacement vector πm are
the thermodynamic conjugates of the electric field gradient, the specific induced mass, and the gradient
of modified chemical potential.

We can write (33) and (34) in an explicit form. In order to obtain the linear constitutive relations,
we expand f into a Taylor series about ê = 0, T = T0, E∗ = 0, ∇ ⊗ E∗ = 0, ρm = 0, µ′π = µ

′

π0,
and ∇µ′π = 0, where T0 is a reference temperature and µ′π0 is the potential µ′π of an infinite medium.
Denoting θ = T−T0, Ie1= ê : Î = e, Ie2= ê : ê, IE1= (∇⊗E∗) : Î =∇⊗E∗, IE2= (∇⊗E∗) : (∇⊗E∗)
and keeping linear and quadratic terms only, we can write the following for isotropic materials

f = f0− s0θ +µ
′

π0ρm +
1

2ρ0

(
K −

2
3

G
)

I 2
e1+

G
ρ0

Ie2−
CV

2T0
θ2
+

dρ
2
ρ2

m

−
χm

2
(∇µ′π )

2
−
χE

2
E2
∗
+
χq1

2
I 2

E1−χq2 IE2−
KαT

ρ0
Ie1θ −

Kαρ
ρ

Ie1ρm

−
KαE1

ρ0
Ie1 IE1−βTρρm θ +βTE IE1θ +βEρ IE1ρm

+χEm E∗ ·∇µ′π + 2G
αE2

ρ0
ê : (∇⊗ E∗). (35)

Here K , G, CV , dρ , αT , αρ , αE1, αE2, χE , χm , χEm , χq1, χq2, βTρ , βTE , βEρ are material characteristics.
Using the formulas (33), (34) and (35) we obtain the following constitutive relations for isotropic

dielectric materials

σ̂ = 2G ê+ 2GαE2∇⊗ E+
[(

K −
2
3

G
)

e− KαT θ − Kαρρm − KαE1∇ · E
]

Î, (36a)

s = s0+
CV

T0
θ +

KαT

ρ0
e+βTρρm −βTE∇ · E, (36b)

µ′π = µ
′

π0+ dρρm −
Kαρ
ρ0

e−βTρ θ +βEρ∇ · E, (36c)

p= χE E−χEm∇µ′π , (36d)

πm =−χm ∇µ′π +χEm E, (36e)

q̂ = 2χq2∇⊗ E− 2GαE2 ê−
(
χq1∇ · E−

KαE1

ρ0
e+βTE θ +βEρρm

)
Î . (36f)
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The constitutive equations describe an electromechanical interaction in isotropic (centrosymmetric)
materials. In the framework of the proposed theory, the body polarization is caused not only by the
electric field but also by the spatial nonhomogeneity of the field, as well as by the gradients of the strain,
and the temperature and density of induced mass. Hence, the constitutive equations (36) for isotropic
materials make it possible to describe both the flexoelectric and thermopolarization effects. Note that the
classical theories of dielectrics cannot describe these effects.

Now we shall specify the expressions for fluxes. We represent (32) for entropy production as follows:
η = 1

T

∑2
k=1 jk · Xk , where J1 = Je∗ , J2 = Jq , X1 = E∗, and X2 =−∇T/T are thermodynamic fluxes

and forces. Assuming that thermodynamic forces are the cause of the thermodynamic fluxes j1 and j2,
we can write ji = ji (X1, X2), i = 1, 2. In a linear approximation, we obtain the following equations for
fluxes

Je = ζE E− ζ∇T, Jq =−λ∇T + ζT Je, (37)

where ζE and λ are electric and thermal conductivity, respectively, and the coefficients ζT and ζ char-
acterize thermoelectric phenomena. Note that the Second Law of thermodynamics states that entropy
production is positive definite, i.e., η ≥ 0. In order to ensure the positive character of entropy production,
the coefficients λ, ζE , ζ , and ζT should be positive defined.

8. Key equations for isothermal approximation

Balance equations (11), (19), (22), (29), Maxwell’s equations (12), (13), constitutive relations (16), (36),
(37), and formulas (5), (14), (15), (25) form a complete set of field equations for the coupled problems
of local gradient electrothermoelasticity for nonferromagnetic dielectric solids.

In what follows, we shall consider an isothermal approximation. We obtain the final form of the key
equations by substituting the constitutive equations (16), (36), (37), geometric relations (25), and formu-
las (5), (14), and (15) into the balance of momentum (29), the conservation laws of induced mass (11),
and Maxwell’s equations (12), (13). The fundamental field equations for ideal dielectrics expressed in
terms of the displacement vector u, induced mass ρm , electric field E and magnetic induction B can be
written as

ρ0
∂2u
∂t2 =

(
K +

1
3

G
)

∇(∇ · u)+G1u− KαE1∇(∇ · E)+ 2GαE21E− Kαρ∇ρm + ρ0 F, (38)

1ρm −
1

χm dρ
ρm =

Kαρ
ρ0 dρ

1(∇ · u)−
βEρ

dρ
1(∇ · E)+

χEm

χm dρ
∇ · E, (39)

∇× E =−
∂B
∂t
, ∇ · B = 0, (40)

1
µ0

∇×B = σe E+ε
∂E
∂t
+ρ(χq1−βEρχEm)

∂∇(∇·E)
∂t

−2ρ0 χq2
∂1E
∂t
+ρ0(βEρ−dρχEm)

∂∇ρm

∂t

+(KαρχEm+ρ0 GαE2−KαE1)
∂(∇∇·u)

∂t
+ρ0GαE2

∂1u
∂t

, (41)

ε∇ · E+ ρ0(χq1− 2χq2−χEm βEρ)1(∇ · E)+ (2ρ0 GαE2− KαE1+ KαρχEm)1(∇ · u)
+ ρ0(βEρ − dρχEm)1ρm = ρe. (42)

Here, ε = ε0+ ρ0χE .
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Note that the ponderomotive Fe and additional mass Fm forces are absent in (38) because these forces
are nonlinear functions of the perturbations fields. Accounting for the local mass displacement yields
an additional equation (39) in the key set and suggests modifications of (38), (41) and (42), all of which
contain certain terms related to this process. Equation (39) is stationary because we consider the local
mass displacement as a reversible process. Its solution depends on the sign of the coefficient (dρχm)

−1.
From the estimation of coefficients dρ and χm it follows that these quantities are positive [Burak et al.
2011], thus, (dρχm)

−1
= λ2

µ. Here, λ−1
µ is the intrinsic length scale parameter (a material constant which

dimension is length). The emergence of such a constant is typical of the gradient-type theories [Mindlin
1972], while an intrinsic length scale is absent from classical theories. As a result of accounting for
the electric quadrupole, summands proportional to a second-order space partial derivative of the electric
field vector E appear in the balance of momentum (38). Equations (41) and (42) change too. Now they
contain summands proportional to a third-order mixed partial derivative of the electric field vector.

9. Surface energy of deformation and polarization

We apply the above relations to determine the surface energy of deformation and polarization. The notion
of surface energy of deformation and polarization was originally introduced in [Mindlin 1965; 1968].

Using the constitutive equations (36), we modify expression (35) as

f − f0 =
1

2ρ0
σ̂ : ê+ 1

2
µ′π0ρm +

1
2
µ′π ρm +

1
2
πm ·∇µ

′

π −
1
2

E · p− 1
2

q̂ : (∇⊗ E). (43)

Let us consider an equilibrium state of ideal dielectrics for which E = −∇ϕe, where ϕe is electric
potential. Using this formula, the equilibrium equation ∇σ̂ + ρ0 F = 0, the geometrical relation (25),
Gauss’s law (13)2, as well as the formulas (8) and (16), and after applying some algebra to (43), we can
express the perturbation of the total energy E as

E=
1
2
ρ0µ

′

π0ρm +
1
2
ρ0 F · u+ 1

2
∇ · (σ̂ · u)− 1

2
ρ0∇ · (πm µ̃

′

π )−
1
2
∇ · (ϕe D)+ 1

12
∇ · (E · Q̂). (44)

Here, µ̃′π = µ
′
π −µ

′

π0.
We integrate both parts of (44) over the region (V ′)= (V )∪ (Vν) occupied by the body (region (V ))

and vacuum (region (Vν)). Finally, using the divergence theorem, we obtain∫
(V ′)

E dV = 1
2
ρ0 µ

′

π0

∫
(V )
ρm dV+1

2
ρ0

∫
(V )

F·u dV+1
2

∫
(6)

(
σ̂·u−ρ0 πm µ̃

′

π−ϕe[D]+
1
6

E·Q̂
)
·n d6. (45)

Here, [D] denotes the finite jump of the electric induction over the surface (6).
Consider the solids with traction-free surfaces and in the absence of external forces (F = 0). Then,

we have ∀r ∈ (6) : σ̂ · n= 0, and [D] = 0. Hence, using formula (7), we get∫
(V )

E dV = 1
2
ρ0

∫
(6)

(E · q̂−πm µ̃
′

π ) · n d6. (46)

The righthand side of the above equality defines the surface energy of deformation and polarization U6 ,
for which in the framework of the proposed theory we obtain

U6 =
1
2
ρ0(E · q̂−πm µ̃

′

π ) · n
∣∣∣
r∈6

. (47)
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Thus, the specific surface energy of deformation and polarization is defined by the electric field vector E,
the quadrupole moment q̂, the local mass displacement vector πm and a perturbation of the modified
chemical potential µ̃′π .

10. Surface and size effects

The linear relations of the local gradient theory of dielectrics are tested on some simple problems. In
this section, they are used to study the effect of a free surface on the stress-strain state and polarization
of elastic bodies having plane and cylindrical surfaces.

We apply the key set of equations (38)–(42) to investigate the near-surface inhomogeneity of elec-
tromechanical fields (i) in an infinite layer (region |x | ≤ l), (ii) in a cylinder (region r ≤ R), and (iii) in an
elastic dielectric medium with a cylindrical hole (region r ≥ R). Let as these bodies are in contact with
vacuum. The body force is assumed to be zero. If we neglect the effect of electric quadrupole moments,
the key set of equations can be written as

(
K +

1
3

G
)

∇(∇ · u)+G1u− K
αρ

dρ
∇µ̃′π = 0, (48)

1µ̃′π − λ
2
µ µ̃
′

π = λ
2
µ

Kαρ
ρ0

∇ · u+
χEm

χm
∇ · E, (49)

∇ · E− κE1µ̃
′

π = 0. (50)

Since the body surfaces are traction-free, the boundary conditions on (6) (x =±l for a layer and r = R
for solids of a cylindrical geometry) are

σ̂ · n= 0, µ′π = 0, and [D] = 0. (51)

Here K = K − K 2α2
ρ/(ρ0 dρ), and κE = ρ0χEm/ε.

To determine the displacement field and density of induced mass, we formulate a stationary boundary
value problem, while the problem of electrodynamics is formulated as a contact problem. Therefore, the
Maxwell equations in vacuum as well as the radiation conditions [Bredov et al. 1985; Nowacki 1983]
should be considered together with (48)–(50).

We find analytical solutions to the problems formulated above. These solutions enable us (i) to de-
termine the surface stresses and the surface energy of deformation and polarization in solid dielectric
films and fibers, (ii) to investigate the effect of surface curvature on these values, (iii) to describe the size
effects, and (iv) to justify the occurrence of a bound charge on a free surface of dielectric bodies as well
as the emergence of disjoining pressure in thin solid films.

10.1. Layer with free boundaries. An analysis of the results obtained reveals that the near-surface re-
gions of the layer are characterized by an inhomogeneous distribution of the stresses σyy = σzz ≡ σ

(Figure 2), polarization p = (p(x), 0, 0), electric field E = (E(x), 0, 0) and modified chemical µ̃′π
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Figure 2. The distribution of the stresses σyy/σs in films of different thicknesses: l =
15l∗ (curve 1), l = 6l∗ (curve 2), l = 3l∗ (curve 3).

potentials [Burak et al. 2008]:

σ(x)=
2Gρ0 Mµ′π0

Kαρ

ch(λ̆x)

ch(λ̆l)
, p(x)= κE λ̆ µ

′

π0
ε0

ρ0

sh(λ̆x)

ch(λ̆l)
, (52)

µ̃′π (x)=−µ
′

π0
ch(λ̆x)

ch(λ̆l)
, E(x)=−κE λ̆ µ

′

π0
sh(λ̆x)

ch(λ̆l)
. (53)

Here,

λ̆= λµ

∣∣∣∣
√

1+M

(1− κE χEm/χm)

∣∣∣∣, M=
K 2α2

ρ

ρ0 dρ(K + 4G/3)
.

In this case, a bound electrical charge of density ϑse(±l) = ±ε0κEµ
′

π0 th(l/ l∗)/ l∗ is induced on the
surfaces of the layer x = ±l (see Figure 3, where ϑ∗ = ε0κEµ

′

π0, l∗ = λ̆−1). The factors M and
κE describe the coupling between the local mass displacement and the process of deformation and the
electric field, respectively [Burak et al. 2011]. Note that M and κE are small parameters. The analysis
of the results obtained also shows that layer thickness does not affect the value of surface stresses σs =

2Gρ0 Mµ′π0/(Kαρ), but it does affect the distribution of stresses within the body [Burak et al. 2008].
The interior regions of thick layer (line 1 in Figure 2) are stress-free, while the interior regions of thin

film (line 3 in Figure 2) are stressed: σ(0) = σs/ ch(l/ l∗) describes middle surface stresses. Here, we
define thin films as layers with the thickness of several characteristic lengths l∗. For such films, overlaps
of the regions of the near-surface inhomogeneity of fields are typical. One can see that a reduction in
the film thickness leads to an increase in the stress level in the film’s cross section. The dependence of
the stress distribution (Figure 2) and the bound electric charge (Figure 3) on the film thickness displays
their size effect.
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Figure 3. The dependence of the bound surface electric charge ϑse(l) on the film thick-
ness for different materials: l∗ = 1.3 Å (curve 1), l = 2.3 Å (curve 2), l = 4.6 Å (curve 3).
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Figure 4. The dependence of the surface energy of deformation and polarization on the
film thickness for different materials: l∗ = 1.3 Å (curve 1), l = 2.3 Å (curve 2), l = 4.6 Å
(curve 3).

Using (36e), (47), and (53) we obtain the formula U6(l)=U∞6 th(λ̆l) that describes the size effect of
surface energy of deformation and polarization in thin dielectric films. Here,

U∞6 =−ρ0 µ
′2
π0
χm − κEχEm

2l∗
,

is the surface energy of deformation and polarization in the half-space of the same material. The absolute
value of U6 decreases with a decrease in the thickness of the thin film (Figure 4).

10.2. Solids of cylindrical geometry. In this subsection, the effect of surface curvature on the equilib-
rium stress distribution, polarization, surface energy of deformation and polarization, and bond surface
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electric charge is studied for dielectric bodies free from external loads. To this end, the solutions to the
problems for a cylindrical fiber (region r ≤ R) and an infinite medium containing a thin cylindrical hole
(region r ≥ R) with traction-free surfaces at r = R are used. The axes of the fiber and cylindrical hole
coincide with the z axis. In this case the key functions u = (ur (r), 0, 0), E = (Er (r), 0, 0) and µ̃′π (r)
are functions of the space coordinate r only. Thus, the solution of boundary problem (48)–(51) is given
by

ur (r)= µ′π0
Kαρ

λ̆dρ(K + 4
3 G)

[
1
2

Qλ̆r − (1−MQ)
I1(λ̆r)

I0(λ̆R)

]
, (54)

µ̃′π (r)=−µ
′

π0

[
(1−MQ)

I0(λ̆r)

I0(λ̆R)
+MQ

]
, (55)

Er (r)=−κEµ
′

π0 λ̆(1−MQ)
I1(λ̆r)

I0(λ̆R)
, (56)

for cylindrical fiber (r ≤ R), and

ur (r)= µ′π0
Kαρ

λ̆ dρ(K + 4
3 G)

K1(λ̆R)

K0(λ̆R)

(
K1(λ̆r)

K1(λ̆R)
−

R
r

)
, (57)

µ̃′π (r)=−µ
′

π0
K0(λ̆r)

K0(λ̆R)
, (58)

Er (r)= µ′π0 κE λ̆
K1(λ̆r)

K0(λ̆R)
, (59)

for infinite medium with cylindrical hole (r ≥ R). Here, Ij and K j are the first- and second-kind modified
Bessel functions of the order j (Macdonald functions), and

Q =−
2G I1(λ̆R)

(K +G/3)λ̆RI0(λ̆R)− 2GM I1(λ̆R)
. (60)

The analysis of the obtained solutions shows that the surface curvature has important effects on thin
fibers. An increase in the surface curvature of thin fibers leads to a reduction in the density of the surface
bound charge:

ϑse(R)= κE λ̆ε0 µ
′

π0
(K +G/3)λ̆RI1(λ̆R)

(K +G/3)λ̆RI0(λ̆R)− 2GM I1(λ̆R)
, (61)

as well as to an increase of the levels of absolute value of the corresponding stresses (see Figure 5, where
M= 3 · 10−3, K/G = 2.79).

A formula that describes the influence of surface curvature on the density of the surface energy of
deformation and polarization is given by

U c
6

U∞6
=


K1(−1/κ)
K0(−1/κ) , κ < 0,

1, κ = 0,
I1(1/κ)

I0(1/κ)−2GMκ(K+G/3)−1 I1(1/κ)
, κ > 0.

(62)
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Figure 5. The effect of surface curvature on the stresses in fiber for λ̆R = 5 (curve 1)
and λ̆R = 15 (curve 2).

Here, κ =−(λ̆R)−1 for a dielectric medium with a cylindrical hole, κ = (λ̆R)−1 for a fiber, and κ = 0
for solids with plane surfaces. An increased surface curvature of a free cylinder leads to a decrease in the
absolute value of the surface energy compared to the body with a plane surface (Figure 6). By contrast,
in the infinite medium with a thin cylindrical hole, an increased curvature of the surface results in an
increased surface energy. Note that the characteristic lengths l∗ = 1.3 Å and l∗ = 1.89 Å correspond
to crystals NaCl and KCl [Askar et al. 1971; Mindlin 1972]. Thus, the value of the surface energy of
deformation and polarization for the body with a plane surface (κ = 0) is not the minimum of the surface
energy U6 as a function of surface curvature.
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Figure 6. The effect of surface curvature on the surface energy of deformation and
polarization for l∗ = 0.9 Å (curve 1) and l∗ = 1.3 Å (curve 2).
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Figure 7. The dependence of the disjoining pressure on the film thickness for different
materials: l∗ = 1.3 Å (curve 1), l∗ = 1.89 Å (curve 2), l∗ = 2.6 Å (curve 3).

10.3. Layer with clamped boundaries. Deryagin et al. [1985] show that a disjoining pressure emerges
in thin liquid films. We show that such a pressure can be present in thin solid films as well. Within the
framework of the developed theory, the emergence of the disjoining pressure is associated with changes
in the structure of the near-surface regions of the thin body (with the local mass displacement). To
demonstrate this, within this section, we study the near-surface inhomogeneity of electromechanical
fields in an infinite isotropic dielectric layer (|x | ≤ l) with clamped boundaries. Using the solutions to
(48)–(50) that satisfy the boundary conditions u = 0, µ′π = 0, and [D] = 0 on the surfaces x = ±l of
the layer, we investigate the stress-strain state, polarization, as well as electric and modified chemical
potentials in dielectric films. In particular, for the components σxx , σyy = σzz ≡ σ of the stress tensor we
obtain

σxx =
σ∗(1+M)

λ̆l cth(λ̆l)+M
, σyy = σzz = σ∗

λ̆l ch(λ̆x)+ (3K − 2G) sh(λ̆l)/6G

λ̆l ch(λ̆l)+M sh(λ̆l)
. (63)

Here, σ∗ = µ′π0 Kαρ/dρ .
One can see that in films with clamped boundaries the constant normal stresses σxx appear in addition

to the stresses σyy and σzz . In thick films, the stresses σxx are negligibly small, but a decreasing thickness
of thin films leads to an increase of the absolute value of these stresses (Figure 7). These stresses cause
a disjoining pressure in thin solid films:

pdis =
1
2l

∫ l

−l
σxx dx .

Note also that a positive disjoining pressure can prevent the reduction of the film thickness under the
effect of external forces, whereas a negative pressure can reduce the thickness of the film and thus may
lead to its destruction.
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11. Conclusions

It is shown that a local gradient theory of electrothermoelasticity for nonferromagnetic dielectric continua
can be formulated by considering the contribution of the electric charge and mass fluxes caused by
changes in material microstructure. These fluxes are (i) the nondiffusive and nonconvective mass flux,
caused by a change over time of the vector of the local mass displacement (the mass dipole moment) and
(ii) the electric polarization current, caused by the change over time of both the dipole and quadrupole
electric moments. The result of accounting for the mentioned fluxes is an extension of the phase space of
thermodynamic constitutive parameters by three additional pairs of conjugate parameters. Compared to
the classical theory of dielectrics, the space of constitutive variables additionally includes: (i) the specific
electric quadrupole moment q̂ and the gradient of the electric field vector ∇⊗ E∗; (ii) the specific density
of induced mass ρm and the modified chemical potential µ′π ; (iii) the specific vector of the local mass
displacement πm and the gradient of the modified chemical potential ∇µ′π . Moreover, accounting for
the mentioned fluxes results in a modification of the stress tensor σ̂∗ and in the emergence of a nonlinear
mass force Fm , in addition to the ponderomotive force Fe in the momentum equation. The effect of the
force Fm can be important for investigating nonlinear effects in nanoscale films, fibers, and wires, since
all of them are characterized by high gradients of physical and mechanical fields.

Within the classical linear theory of elastic dielectrics, there is no interaction between the mechanical
and electromagnetic fields if the material is isotropic. Hence, flexoelectric and thermopolarization effects
can occur in anisotropic materials only. Within the framework of the local gradient theory of dielectrics,
the electric and thermomechanical fields are coupled. Therefore, the constitutive equations describe
the polarization of the high symmetry dielectric materials (isotropic materials) caused by nonuniform
deformation or by the temperature gradient (i.e., flexoelectric and thermopolarization effects).

The near-surface effects in nonferromagnetic isotropic dielectric solids are investigated to illustrate
the efficiency of constructed theory. To this end, the equilibrium steady state of infinite bodies with
plane-parallel and cylindrical surfaces (film, fiber, and infinite medium with a cylindrical hole) is studied
within an isothermal approximation. The solutions to the formulated stationary problems allow us to
describe the experimental data reported in the literature, namely, the near-surface inhomogeneity of
electromechanical fields, the emergence of a bound electric charge on the free surfaces of the dielectric
bodies, as well as the size effects of the stresses, bound electric charge, surface energy of deformation
and polarization. It is established that the absolute value of the surface charge density decreases and
mechanical stresses increases when thin film thickness decreases. This effect became more significant
when the film thickness became comparable to the internal material length scale parameters.

As the curvature of the surface increases, its impact on the stressed state of thin fibers and on the value
of the bound charge on their surfaces becomes more significant. An increase in the surface curvature of
thin cylindrical fiber leads to increased levels of stresses and to a reduced density of the surface bound
charge. The influence of the curvature on the surface energy of deformation and polarization depends on
the curvature sign. Namely, an increase in the absolute value of a positive curvature leads to a decrease
in the absolute value of this energy. For a negative curvature, this dependence is reversed.

The theory also implies the emergence of disjoining pressure in thin solid films. The existence of
such pressure was previously anticipated in liquid films [Deryagin et al. 1985]. It is shown that in thin
solid films, whose thickness is comparable to the internal material length scale parameters, the disjoining
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pressure can appear. This pressure is proportional to the coefficient of volume dilatation caused by the
local mass displacement. The absolute value of disjoining pressure increases if the mentioned coefficient
increases. In light of this finding, during an investigation of the stiffness and strength of nanoscale thin
films, the effect of the disjoining pressure on the abovementioned parameters should be considered.

The results obtained in the paper are general and can be useful for the design of the devices utilizing
the micro/nanofilm elements.

List of symbols

ρ mass density
ρmπ density of induced mass
ρm specific density of induced mass
ρeπ density of induced charge
ρe density of free charges
T absolute temperature
t time variable
s specific entropy
R distributed heat source
η entropy production
E total energy
u specific internal energy
Ue electromagnetic field energy
U6 surface energy of deformation

and polarization
f Helmholtz free energy
µ chemical potential
µπ energy measure of the effect of the local

mass displacement on the internal energy
ϕe electric potential
ϑse density of bound electrical charge
Jq density of heat flux

Je f density of total electric current
Je density of electric current (convection

and conduction currents)
Jes polarization current
Jm∗ density of mass flux
Jms nonconvective and nondiffusive mass flux

related to local mass displacement
Se flux of electromagnetic energy
5m vector of local mass displacement

(mass dipole moment)
5e polarization vector
P, Q̂ dipole and quadrupole electric moments
E, H electric and magnetic fields
D, B electric and magnetic inductions
v∗ velocity vector of convective displacement

of the fixed body element
v velocity vector of the center of mass
r position vector
F mass forces
Fe ponderomotive force
σ̂ Cauchy stress tensor
ê infinitesimal strain tensor
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THE EFFECT OF BOUNDARY CONDITIONS ON THE
LOWEST VIBRATION MODES OF

STRONGLY INHOMOGENEOUS BEAMS

ONUR ŞAHIN

This paper investigates the influence of the boundary conditions on the lowest vibration modes of strongly
inhomogeneous beams. It is observed that the softer component of the composite beams asymptotically
contributes to an almost rigid-body motion of the stiffer parts and gives rise to one or two nonzero eigen-
frequencies contrary to a single beam with free end conditions. An asymptotic procedure is employed
to derive the eigenfrequencies as well as the eigenforms in the case of global low frequency regime.
The developed model is adapted for two and three-component beams with different end conditions. It
is also shown that all eigenforms corresponding to the stiffer components of the beams perform almost
rigid body motions. Comparisons of exact and approximate solutions are presented, demonstrating the
validity of the proposed approach.

1. Introduction

Low-frequency vibrations of inhomogeneous structural elements have been actively studied in recent
years due to their numerous applications in modern engineering; see, e.g., [Le 1999; Horgan and Chan
1999]. Among the latest technological developments, composite materials, each part of which possesses
high contrast mechanical and geometrical properties, have received an increased amount of attention
in various fields of civil and mechanical engineering; see [Milton 2002; Elishakoff 2005]. As typical
examples we refer to sandwich structures (see, e.g., [Vinson 1999; Reddy 2003; Zenkert 1995]), which
are widely used in aerospace, automation, naval architecture, etc., because of their conveniently combined
light weight and relatively large flexural stiffness properties; see [Kaplunov et al. 2017; Sorokin 2004].
The composite materials are also highly utilized in smart periodic structures [Ruzzene and Baz 2000];
laminated glass beams and plates [Viverge et al. 2016; Schulze et al. 2012] and photovoltaic panels
[Aßmus et al. 2017]. We also mention related problem of homogenisation of periodic media [Chered-
nichenko et al. 2006; Smyshlyaev 2009] and multiparametric asymptotic approach for inhomogeneous
layered plate; see [Kaplunov et al. 2017; Prikazchikova et al. 2018]. Metamaterials, which are employed
considerably in engineering with recent technological developments, may be given as another example for
multilayered structures; see [Martin et al. 2012]. Another promising application area of composite beam
structures is connected with soft robotics using deformable materials to construct compliant systems; see,
e.g., [Rus and Tolley 2015; Majidi 2014].

The high frequency vibrations in the multilayered structures are very inviting because they contain
high energy. However, the low-frequency vibrations are more attractive due to their omnipresent character
[Kudaibergenov et al. 2016]. This paper is devoted to analysis of low frequency vibrations of strongly

Keywords: composite beam, low frequency vibration, contrast, perturbation, rigid body motion.
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piecewise inhomogeneous beams. The analysis shows that the low eigenfrequencies of the considered
composite beam may be observed only when certain restrictions are imposed on the material properties
such as Young moduli, densities and lengths; see [Kaplunov et al. 2016; 2019]. It can also be observed
that the lowest natural frequencies tend to zero at high contrast of the material properties. An asymp-
totic approach relying on the concept of “almost rigid body motion” was also developed in [Kaplunov
et al. 2016] for strongly inhomogeneous elastic rods. Unlike a rod that has one rigid body motion, the
multicomponent beams may have two rigid body motions including translation and rotation.

The paper is organized as follows. In Section 2, a general concept for rigid body motions of a beam
with different end conditions is presented. Then, the governing equations of two and three component
beams with four types of end condition are introduced. The exact displacements for each problem and
exact natural frequencies of two component beams are also derived. In Section 3, an asymptotic procedure
is established with the help of a small parameter emerging due to high contrast of the material properties.
The restrictions on the material parameters, allowing low natural frequencies, are determined. Then, the
established perturbation procedure is applied to the aforementioned problems and approximate eigen-
frequencies and eigenforms are obtained. Section 4 contains numerical illustrations of the approximate
solutions and their comparison with the exact solutions. Conclusions are presented in the final section.

2. Statement of the problem

Consider a homogeneous beam with free ends. It is well known that such a beam possesses only double
zero eigenfrequencies, corresponding to rigid body translation and rotation; see Figure 1a. Changing
one of the free end condition of the beam with simply supported or dashed end condition results in only
one nonzero small eigenfrequency corresponding rotation or translation; see Figures 1b and 1c. In the
case of contact of stiff and soft components, it may be expected that the stiff component with free ends
has two small eigenfrequencies arising from perturbation of zero eigenfrequencies corresponding to the
limiting rigid body translation and rotation. A similar interpretation can be made for simply supported
and dashed end conditions and three component beam composed of two stiff and one soft parts.

The main purpose of the paper is to investigate the effect of the end conditions on the lowest vibration
modes of strongly inhomogeneous beams with the use of an asymptotic approach relying on the concept
of almost rigid body motion established in [Kaplunov et al. 2016]. In order to extract the effect of
boundary conditions two and three component beams with different boundary conditions will be studied.

Consider time harmonic vibrations of two and three component beams composed of alternating soft
and stiff parts of arbitrary lengths with different end conditions. For each problem considered, the beams
are supposed to be finite, having conventional continuity conditions between the components and have
local coordinates; see Figure 2.

The governing equations for each component of the beam are written as

d4 yi/dx4
i −ω

2/ak yi = 0, i = 1, 2, 3 and k = st, s f, (2-1)

where yi are displacements, ω is angular frequency, ak = ast and ak = as f correspond to stiff and soft
components, respectively, with ak =

√
Dk/Mk . Here Dk = Ek I is the flexural rigidity and Mk = ρk A is

linear mass density with I denoting the moment of inertia and A the cross-sectional area. It is clear that
all the soft components have the same Young’s modulus and density.
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Figure 1. Rigid body motion of beam.
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Figure 2. Two and three-component beams. Each 0 represents the origin of its local coordinates.

Let us first the define local dimensionless coordinates and scaled frequencies by

ξi = xi/li and �i = li
√
ω/ak, i = 1, 2, 3, k = st, s f. (2-2)

The equations of motion and the continuity conditions along the interfaces are expressed in terms of the
new variables as

d4 yi/dξ 4
i −�

4
i yi = 0, −1 6 ξi 6 1, i = 1, 2, 3, (2-3)

and

y1(1)= y2(−1), y3(−1)= y2(1), (2-4)

y′1(1)= (l1/ l2)y′2(−1), y′3(−1)= (l3/ l2)y′2(1), (2-5)

Dst y′′1 (1)= (l1/l2)
2 Ds f y′′2 (−1), Dst y′′3 (−1)= (l3/l2)

2 Ds f y′′2 (1), (2-6)

Dst y′′′1 (1)= (l1/l2)
3 Ds f y′′′2 (−1), Dst y′′′3 (−1)= (l3/l2)

3 Ds f y′′′2 (1). (2-7)
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In addition, we introduce the dimensionless quantities

D = Ds f /Dst , M = Ms f /Mst , a = as f /ast . (2-8)

The displacements for each component of the beam can be written from (2-3) as

yi (ξi )= Ai cos(�iξi )+ Bi sin(�iξi )+Ci cosh(�iξi )+ Di sinh(�iξi ), i = 1, 2, 3. (2-9)

In the following, we will consider combinations of four types of boundary conditions, namely clamped,
free, simply supported and dashed, for the two and three component beams.

In view of the development of new materials including soft robotics, the old problems for multispan
beams may take another flavour because of low frequency resonances related to almost rigid body motions
which are most harmful for the structures; see [Kaplunov et al. 2016; 2019; Rus and Tolley 2015; Majidi
2014]. In this context, throughout the paper, we assume that Young modulus of the stiff parts is much
greater than of the soft part, i.e.,

ε = Ds f /Dst � 1 (2-10)

is a small parameter signifying the high contrast material properties.

3. Asymptotic approach

In this section, an asymptotic approach is established for two and three-component beams in case of
different boundary conditions. As may be seen from the previous section analytical solutions for the
frequency and displacement of such problems cannot be obtained effortlessly. Therefore developing a
perturbation scheme which reduces the problem to a simple boundary value problem having solutions in
terms of elementary functions is highly important for analysing the frequencies and displacements. In this
framework, we develop an asymptotic approach leading to the estimation of the lowest eigenfrequencies
and eigenforms of the aforementioned problems.

Let us start by expanding the frequencies and displacements in the asymptotic series on using the
small parameter (2-10);

�4
i = ε(�

4
i,0+ ε�

4
i,1+ ε

2�4
i,2+ · · · ), yi = yi,0+ εyi,1+ ε

2 yi,2+ · · · , i = 1, 2, 3. (3-1)

which may also correspond to the low frequency regimes of the problems mentioned at the end of
Section 2. Since we consider the global low frequency behaviour, i.e., �4

1 ∼ �
4
2 ∼ �

4
3 ∼ ε, the ratio

of the masses and lengths have the following asymptotic equality

ε
Mst

Ms f
= M∗, M∗ ∼ 1, (3-2)

and
(l1/l2)

4
= δ4

1 ∼ 1, (l3/l2)
4
= δ4

3 ∼ 1. (3-3)

In case there are no considerable changes in the cross-sectional area A, the assumed contrast in Young’s
moduli and densities given in (2-10) and (3-2) occurs for photovoltaic panels; see, e.g., [Aßmus et al.
2017; Kaplunov et al. 2017; Schulze et al. 2012]. It can easily be observed from (3-1) that the scaled
frequencies are also related to each other by

�4
1 =�

4
2δ

4
1 M∗, �4

3 =�
4
2δ

4
3 M∗. (3-4)
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Figure 3. Types of boundary conditions.

3A. Perturbation scheme for a two component beam with clamped and free ends. We first consider
the two component beam with one end clamped and other free as depicted in Figure 3a. Bearing in
mind the definition of the small parameter and the relations between the lengths, see (3-3), the continuity
conditions at the interfaces and the boundary conditions take, respectively, form

y1(1)= y2(−1), y′1(1)= δ1 y′2(−1), εy′′1 (1)= δ
2
1 y′′2 (−1), εy′′′1 (1)= δ

3
1 y′′′2 (−1), (3-5)

y1(−1)= 0, y′1(−1)= 0, y′′2 (1)= 0, y′′′2 (1)= 0. (3-6)

On substituting the asymptotic expansions (3-1) into (2-3), the equations of motion, at the leading
order, become

d4 yi,0

dξ 4
i
= 0, i = 1, 2. (3-7)

Applying the asymptotic expansion for the displacements in (3-1) into equations (3-5) results in the
boundary conditions

y′′2,0(±1)= y′′′2,0(±1)= 0 (3-8)

for the stiff component. The solution of the boundary value problem (3-7) and (3-8) for the stiff compo-
nent may be written as

y2,0 = A2ξ2+ B2, (3-9)

which corresponds to the rigid body translation and rotation; see Figure 1a.
The soft part of the beam has governing equation (3-7) subject to the boundary condition

y1,0(1)= y2,0(−1), y′1,0(1)= δ1 y′2,0(−1), (3-10)
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and

y1,0(−1)= y′1,0(−1)= 0. (3-11)

Therefore, it can be easily shown from the solution of the boundary value problem (3-7) and (3-10),
(3-11) that the soft component, unlike the stiff component, undergoes an inhomogeneous deformation
given by

y1,0 = (ξ
3
1 − 3ξ1− 2)A1+ (ξ

2
1 + 2ξ1+ 1)B1. (3-12)

Using equations (3-10), (3-11) and displacements (3-9), (3-12) the coefficients of the soft and stiff dis-
placements are related by

A1 =
1
4((1+ δ1)A2− B2), B1 =

1
4 A2δ1. (3-13)

At next order, the problem for the stiff component of the beam is formulated as

d4 y2,1

dξ 4
2
−�4

2,0 y2,0 = 0, (3-14)

with the boundary conditions

d2 y2,1

dξ 2
2

∣∣∣∣
ξ2=−1

=
1
δ2

1

d2 y1,0

dξ 2
1

∣∣∣∣
ξ1=1

,
d3 y2,1

dξ 3
2

∣∣∣∣
ξ2=−1

=
1
δ3

1

d3 y1,0

dξ 3
1

∣∣∣∣
ξ1=1

, (3-15)

and
d2 y2,1

dξ 2
2

∣∣∣∣
ξ2=1
= 0,

d3 y2,1

dξ 3
2

∣∣∣∣
ξ2=1
= 0. (3-16)

Integrating (3-14) over ξ2 (−1≤ ξ2 ≤ 1) results in

3A1+�
4
2,0δ

3
1 B2 = 0. (3-17)

Next, multiplying (3-14) by ξ2 and integrating over the length of the right component gives

9A1+ 3δ1(3A1+ B1)−�
4
2,0δ

3
1 A2 = 0. (3-18)

Using the relations between the coefficients (3-13), equations (3-17) and (3-18) give the linear system
of equations in A2 and B2 as

1
4(3+ δ1)A2+

1
4(4δ

3
1�

4
2,0− 3)B2 = 0,

1
4(9+ 2(9+ 6δ1− 2δ2

1�
4
2,0))A2−

9
4(1+ δ1)B2 = 0.

(3-19)

Simultaneous equations possess nontrivial solutions provided that the associated determinant vanishes,
i.e.,

9
16δ

2
1 −

3
2δ

3
1(2+ δ1(3+ 2δ1))�

4
2,0+ δ

6
1�

8
2,0 = 0. (3-20)
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The frequency equation (3-20), corresponding to the second component of the beam, has two nonzero
eigenfrequencies given by

�4
2,0 =

3
(
2δ2

1 + 3δ1+ 2− 2(δ1+ 1)
√

δ2
1 + δ1+ 1

)
4δ3

1

,

�4
2,0 =

3
(
2δ2

1 + 3δ1+ 2+ 2(δ1+ 1)
√

δ2
1 + δ1+ 1

)
4δ3

1

.

(3-21)

As might be expected, the contact of a stiff component with a soft one perturbs the double zero eigenfre-
quencies to two lowest eigenfrequencies associated with the almost rigid translation and rotation.

3B. Perturbation scheme for a two component beam with clamped and simply supported ends. Let us
now study two component beam having clamped and simply supported ends. The continuity conditions
(2-4)–(2-7) assume the same forms given by (3-5) and the boundary conditions are as given in Figure 3b.

In this case, the leading order boundary conditions for the stiff component are

y′′2,0(−1)= y′′′2,0(−1)= 0, y2,0(1)= y′′2,0(1)= 0. (3-22)

whereas the soft component has, as boundary conditions, (3-10) and (3-11). Therefore, the leading order
displacements for the considered problem are written from (3-7) as

y1,0 = (ξ
3
1 − 3ξ1− 2)A1+ (ξ

2
1 + 2ξ1+ 1)B1, y2,0 = A2(ξ2− 1). (3-23)

The displacements (3-23) together with (3-10) and (3-11) imply

A1 =
1
4(δ1+ 2)A2, B1 =

1
4δ1 A2. (3-24)

At next order, the problem is formulated, once again, through equations (3-14), (3-15), and end conditions

y2,1(1)= 0,
d2 y2,1

dξ 2
2

∣∣∣∣
ξ2=1
= 0. (3-25)

Integrating (3-14) and using the end conditions (3-15) and (3-25) together with (3-24) result in

4δ3
1�

4
2,0− 3(δ2

1 + 3δ1+ 3)= 0. (3-26)

3C. Perturbation scheme for a two component beam with clamped and dashed ends. We now carry
our dispersion analysis on to a beam with clamped and dashed ends. Similar to the previous two cases,
the boundary value problem for the stiff component at the leading order is formulated by (3-7) and

y′′2,0(−1)= y′′′2,0(−1)= 0, y′2,0(1)= y′′2,0(1)= 0, (3-27)

from which displacements are obtained as

y1,0 = (ξ
3
1 − 3ξ1− 2)A1, y2,0 = A2, (3-28)

with relation
A1 =−

1
4 A2. (3-29)
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The next order problem for the stiff component is again formulated by equations (3-14), (3-15) and

dy2,1

dξ2

∣∣∣∣
ξ2=1
= 0,

d3 y2,1

dξ 3
2

∣∣∣∣
ξ2=1
= 0. (3-30)

the solution of which yields
δ3

1�
4
2,0−

3
4 = 0. (3-31)

3D. Perturbation scheme for a three component simply supported beam. We will now present asymp-
totic formulas for the displacements and frequencies for a three component beam with two stiff outer
components simply supported at both ends, shown in Figure 3d. Taking into account the definitions of
the small parameter (2-10) and the ratios of the lengths, δ1 and δ2, the continuity conditions may be
rewritten from equations (2-4)-(2-7) as

y1(1)= y2(−1), y3(−1)= y2(1),

y′1(1)= δ1 y′2(−1), y′3(−1)= δ3 y′2(1),

y′′1 (1)= εδ
2
1 y′′2 (−1), y′′3 (−1)= εδ2

3 y′′2 (1),

y′′′1 (1)= εδ
3
1 y′′′2 (1), y′′′3 (−1)= εδ3

3 y′′′2 (1),

(3-32)

and simply supported boundary conditions at both ends are, also, as presented in Figure 3d.
On substituting the asymptotic expansions (3-1) into equations of motion (2-3) we once again arrive at

the leading order (3-7). In this case, the stiff and soft components have leading order boundary conditions
given by

y1,0(−1)= y′′1,0(−1)= 0, y′′1,0(1)= y′′′1,0(1)= 0,

y′′3,0(−1)= y′′′3,0(−1)= 0, y3,0(1)= y′′3,0(1)= 0,
(3-33)

and
y2,0(−1)= y1,0(1), δ1 y′2,0(−1)= y′1,0(1),

y2,0(1)= y3,0(−1), δ3 y′2,0(1)= y′3,0(−1),
(3-34)

respectively. Thus, the leading order displacements can be written as

y1,0 = A1(ξ1+ 1), y2,0 = A2ξ
3
2 + B2ξ

2
2 +C2ξ2+ D2, y3,0 = A3(ξ3− 1), (3-35)

in which the coefficients are related as

A2 =
1
4(A1(2+ 1/δ1)+ A3(2+ 1/δ3)), B2 =

1
4(−A1/δ1+ A3/δ3),

C2 =−
1
4(A1(6+ 1/δ1)+ A3(6+ 1/δ3)), D2 = A1(1+ 1/(4δ1))− A3(1+ 1/(4δ3)).

(3-36)

Let us now proceed to the next order problem. For the first stiff component we have

d4 y1,1

dξ 4
1
−�4

1,0 y1,0 = 0, (3-37)

with the boundary conditions

d2 y1,1

dξ 2
1

∣∣∣∣
ξ1=1
= δ2

1
d2 y2,0

dξ 2
2

∣∣∣∣
ξ2=−1

,
d3 y1,1

dξ 3
1

∣∣∣∣
ξ1=1
= δ3

1
d3 y2,0

dξ 3
2

∣∣∣∣
ξ2=−1

, (3-38)
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and

y1,1(−1)=
d2 y1,1

dξ 2
1

∣∣∣∣
ξ1=−1

= 0. (3-39)

Multiplying (3-37) by ξ1 and integrating over −1 ≤ ξ1 ≤ 1, taking into account equations (3-38) and
(3-39), we arrive at

d3 y1,1

dξ 3
1

∣∣∣∣
ξ1=−1

=−6δ3
1 A2− δ

2
1(6A2− 2B2)+

2
3 A1�

4
1,0. (3-40)

Integrating (3-38) over −1≤ ξ1 ≤ 1 and using (3-40) results in

9δ2
1(2δ1+ 1)A2− 3δ2

1 B2− 4�4
1,0 A1 = 0. (3-41)

Similarly, we derive for the second stiff component, y3,1,

9δ2
3(2 δ3+ 1)A2+ 3δ2

3 B2− 4�4
3,0 A1 = 0. (3-42)

Equations (3-41) and (3-42) with the relations between the coefficients (3-36) lead to a frequency equation
given by

27δ1δ3(1+ δ1+ δ3)
2
− 48δ3(3δ2

3 + 3δ3+ 1)�4
1,0− 16(3δ1(3δ2

1 + 3δ1+ 1)− 4�4
1,0)�

4
3,0 = 0. (3-43)

Since the frequencies are related together as

�4
3,0/�

4
1,0 = δ

4
3/δ

4
1, (3-44)

see (3-4), �1,0 may be written as the roots of the frequency equation (3-43), that is

�4
1,0 =

3δ1

8δ3
3

(
δ3

3 + 3δ1δ
3
3 + 3δ2

1δ
3
3 + δ

3
1(1+ 3δ3(1+ δ3))

−

√
(δ3

3(1+ 3δ1(1+ δ1))+ δ
3
1(1+ 3δ3(1+ δ3)))

2
− 3δ3

1δ
3
3(1+ δ1+ δ3)

2), (3-45)

and

�4
1,0 =

3δ1

8δ3
3

(
δ3

3 + 3δ1δ
3
3 + 3δ2

1δ
3
3 + δ

3
1(1+ 3δ3(1+ δ3))

+

√
(δ3

3(1+ 3δ1(1+ δ1))+ δ
3
1(1+ 3δ3(1+ δ3)))

2
− 3δ3

1δ
3
3(1+ δ1+ δ3)

2). (3-46)

It can easily be seen that the simply supported end conditions for a three component beam do not support
pure rigid body motion with zero eigenfrequencies.

3E. Perturbation scheme for three component beam with simply supported and dashed ends. Finally,
consider a three component beam having two stiff outer and one soft central parts. Contrary to the
previous problem, in this case we have simply supported and dashed end conditions, stated in Figure 3e.
The continuity conditions at the interface given by (3-32) are still valid for this problem. The leading
order displacements may be written as

y1,0 = A1(ξ1+ 1), y2,0 = A2ξ
3
2 + B2ξ

2
2 +C2ξ2+ D2, y3,0 = A3, (3-47)
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with
A2 =

1
4δ1

(A1(1+ 2 δ1)− A3δ1), B2 =−
A1

4δ1
,

C2 =−
1

4δ1
(A1(1+ 6δ1)− 3A3δ1), D2 = A1

(
1+ 1

4δ1

)
+

1
2 A3.

(3-48)

The next order problem for the first component of the beam is formulated with the equations (3-37),
(3-38) and (3-39), which gives (3-41). For the next order problem of the third component of the beam
we have boundary conditions (3-38) and

dy3,1

dξ3

∣∣∣∣
ξ3=1
=

d3 y3,1

dξ 3
3

∣∣∣∣
ξ3=1
= 0. (3-49)

Integrating the next order governing equation for y3,1 over −1≤ ξ3 ≤ 1 and using the boundary conditions
given by (3-38) and (3-49), we get

3δ3
3 A2+�

4
3,0 A3 = 0. (3-50)

The equations (3-41) and (3-50) together with relations (3-48) imply the following frequencies

�4
3,0(4�

4
1,0− 3δ1(1+ 3δ1(1+ δ1)))− 3δ3

3�
4
1,0+

9
16δ1δ

3
3 = 0, (3-51)

resulting in

�4
1,0 =

3δ1

8δ3
(δ3

1 + δ3+ 3δ1δ3+ 3δ2
1δ3−

√
(δ3

1 + δ3+ 3δ1δ3(1+ δ1))
2
− δ3

1δ3), (3-52)

and
�4

1,0 =
3δ1

8δ3
(δ3

1 + δ3+ 3δ1δ3+ 3δ2
1δ3+

√
(δ3

1 + δ3+ 3δ1δ3(1+ δ1))
2
− δ3

1δ3). (3-53)

4. Numerical results

In this section, we illustrate numerically the comparisons of exact and asymptotic results for all of the
considered problems. Since all asymptotic estimates for the frequencies and displacements are valid in
case of the global low frequency regime, the numerical comparisons are presented when the parameters
are asymptotically related as Ds f /Dst ∼ Ms f /Mst ∼ ε and δ1 ∼ δ2 ∼ 1, see (3-2) and (3-3). which is a
requirement for the global low frequency regime,

Figures 4, 5 and 6 show the exact and asymptotic curves of the frequency equation for two component
beams with clamped-free, clamped-simply supported and clamped-dashed ends. In these figures in order
to display more clearly the extent of the validity region of the approximation full agreement regions
are chopped off. It can be easily seen from these figures that as the small parameter ε becomes smaller,
which corresponds a great contrast between the stiff and soft components, the curves corresponding to the
asymptotic solutions become highly compatible with the exact one. In Fig. different length components
of the beam are considered, i.e., l1 = l and l2 = 2l which gives δ1 = 0.5.

Figure 7 demonstrates the comparison of asymptotic curves of the frequency equations of two com-
ponent beams given by (3-20), (3-26) and (3-31). Thus, it can be observed how the eigenfrequencies
of a single beam are affected by the different boundary conditions. It is clear that the clamped-free
end condition causes lowest and highest eigenfrequencies compared to other boundary conditions by
perturbing the zero eigenfrequency of a beam with free-free end.
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Figure 4. Comparison of asymptotic (3-20) and exact (6-1) frequency equations for two
component beam with clamped and free ends at δ1 = 0.99.
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Figure 5. Comparison of asymptotic (3-26) and exact (6-2) frequency equations for two
component beam with clamped and simply supported ends at δ1 = 0.99.
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Figure 6. Comparison of asymptotic (3-31) and exact (6-3) frequency equations for two
component beam with clamped and dashed ends at δ1 = 0.99.
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Figure 7. Comparison of asymptotic curves of frequency equations (3-20), (3-26) and
(3-31) at ε = 0.1.
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Figure 8. Comparison of exact (2-9), with i = 2, and asymptotic (3-9), (3-12) displace-
ments at ε = 0.1, δ1 = 0.99. Left: eigenfrequency (3-21)1. Right: eigenfrequency (3-21)2.

The exact and asymptotic scaled displacements corresponding to eigenfrequencies (3-21); (3-26) and
(3-31) for the associated problems are demonstrated in Figures 8, 9 and 10. It can be observed from all
these figures that even for not very small value of ε = 0.1, the asymptotic formula (3-9), (3-12); (3-23)
and (3-28) present an excellent approximation to the exact displacements (2-9) with i = 2.

In Figure 11 comparisons of exact and asymptotic displacements of three component beam with simply
supported at both ends are presented when the length of the components are not equal to each other, e.g.,
δ1 = 1.5 and δ2 = 1.25. As can be easily seen from this figure that the approximate displacement (3-35)
is, again, in quite a good agreement with the exact one (2-9), with i = 3, for ε = 0.01. Similar results
follow for three component beam with simply supported and dashed ends illustrated in Figure 12.

5. Concluding remarks

The low-frequency vibrations in two and three-component beams with high contrast properties have been
studied. It is known that a stiff single component beam with free ends has double zero eigenfrequencies
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Figure 9. Comparison of exact (2-9), with i = 2, and asymptotic (3-23) displacements
at ε = 0.1, δ1 = 0.99.
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Figure 10. Comparison of exact (2-9), with i = 2, and asymptotic (3-28) displacements
at ε = 0.1, δ1 = 0.99.
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Figure 11. Comparison of exact (2-9), with i = 3, and asymptotic (3-35) displacements
for the eigenfrequency (3-45) at ε = 0.01, δ1 = 1.5 and δ2 = 1.25.
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Figure 12. Comparison of exact (2-9), with i = 3, and asymptotic (3-47) displacements
for the eigenfrequency (3-51) at ε = 0.01, δ1 = 4 and δ2 = 2.

corresponding to limiting rigid body translation and rotation. It is seen that the contact of a soft compo-
nent with a stiffer one and change in the other end condition cause one or two small eigenfrequencies.
It is shown that if the stiff component has a free end condition the beam possesses two nonzero lowest
eigenfrequencies corresponding to almost rigid body translation and rotation of the stiff part. On the
other hand, if the end condition of the stiff component is simply supported or dashed then the beam has
only one lowest eigenfrequency arising from perturbation of zero eigenfrequencies, which correspond to
rotation or translation. It is also demonstrated that among these three end conditions, free end condition
gives the lowest and highest eigenfrequencies.

The exact formulation of eigenfrequencies and eigenforms of such problems are generally given by
a sophisticated transcendental relation. Therefore an asymptotic procedure is established in order to
investigate near zero frequencies and corresponding displacements. The derived asymptotic formulae
are valid for certain conditions on the ratios of material and geometrical properties, which reveal the low
frequency vibrations. It may also be emphasized that the approximate formulation for the leading order
displacements of the stiffer parts carry out almost rigid body motion whereas the softer parts undergo
almost homogeneous deformation. Another point to note is that eigenfrequencies and eigenmodes might
have been calculated through a numerical procedure (such as FE method) however, in this case there is
a limited potential for physical insight. In particular, there is a risk to miss low frequency eigenforms
with polynomial but not expected sinusoidal behaviour.

The proposed perturbation approach may be generalised to multicomponent high-contrast structures
with different end conditions including an n component strongly inhomogeneous beam. The approach
may also be adapted for 2D and 3D eigenvalue problems for multilayered, high-contrast structures such as
plates and shells. Multiparametric structures, in which material parameters are dependent on coordinate
axis, are another promising research area which the established model can be applied.
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Appendix

The frequency equations for two component beams with end conditions given in Figures 3a, 3b and 3c
is given, respectively, by

cosh2(�1)
(
−4 sinh2(�2)(

√
a sin(�1) cos(�2)+D sin(�2) cos(�1))

×(a3/2 sin(�1) cos(�2)+D sin(�2) cos(�1))

+4 cosh2(�2)(D cos(�1) cos(�2)−
√

a sin(�1) sin(�2))

×(D cos(�1) cos(�2)−a3/2 sin(�1) sin(�2))

−(a−1)
√

aD sin(2�1) cos(2�2) sinh(2�2)
)

+sinh2(�1)
(
4 sinh2(�2)(

√
a cos(�1) cos(�2)−D sin(�1) sin(�2))

×(a3/2 cos(�1) cos(�2)−D sin(�1) sin(�2))

−4 cosh2(�2)(
√

a sin(�2) cos(�1)+D sin(�1) cos(�2))

×(a3/2 sin(�2) cos(�1)+D sin(�1) cos(�2))

−(a−1)
√

aD sin(2�1) cos(2�2) sinh(2�2)
)

+
√

aD sinh(2�1)
(
sinh(2�2)((a+1) cos(2�1) cos(2�2)−2

√
a sin(2�1) sin(2�2))

+(a−1) sin(2�2) cos(2�1) cosh(2�2)
)
= 0, (6-1)

sinh(2�2)
(
cosh(2�1)((−a2

− D2) cos(2�1) cos(2�2)+ 2
√

aD sin(2�1) sin(2�2))

+ (a− D)(a+ D) cos(2�2)

+ 2 sinh(2�1)(aD sin(2�1) cos(2�2)+
√

aD sin(2�2) cos(2�1))
)

+ 2 cosh(2�2)
(
sinh2(�1)(a3/2 D sin(2�1) cos(2�2)

+ sin(2�2)(a2 cos2(�1)− D2 sin2(�1)))

+ cosh2(�1)(a3/2 D sin(2�1) cos(2�2)

+ sin(2�2)(D2 cos2(�1)− a2 sin2(�1)))

+ aD sinh(2�1)(sin(2�1) sin(2�2)−
√

a cos(2�1) cos(2�2))
)
= 0 (6-2)

and

2 cosh2(�1) cosh2(�2)
(
2 sin(�2) cos(�2)(D2 cos2(�1)− a2 sin2(�1))

+
√

aD sin(2�1) cos(2�2)
)

+ 2 sinh2(�1) cosh2(�2)
(
2 sin(�2) cos(�2)(a2 cos2(�1)− D2 sin2(�1))

+
√

aD sin(2�1) cos(2�2)
)

+ sinh(�2)
(
(a2
+ D2) cos(2�1) cosh(2�1)(sin(2�2) sinh(�2)+ 2 cos(2�2) cosh(�2))

+ 2
√

aD sin(2�1) cosh(2�1)(cos(2�2) sinh(�2)− 2a sin(2�2) cosh(�2))

− (a− D)(a+ D)(sin(2�2) sinh(�2)+ 2 cos(2�2) cosh(�2))
)
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+
√

aD sinh(2�1)
(
−2
√

a sin(2�1) sin(2�2) cosh(2�2)

+ 2a sin(2�2) cos(2�1) sinh(2�2)

+ 2 cos(2�2)(
√

a sin(2�1) sinh(2�2)+ cos(2�1) cosh(2�2))
)
= 0. (6-3)

The related frequency equation for three component beam with simply supported both ends can be
obtained from the determinant of the following 12× 12 matrix which can be obtained by applying the
continuity, (2-4)–(2-7), and boundary conditions Figure 3d into the displacements (2-9).

−c1 −s1 −ch1 −sh1 c2 −s2 ch2 sh2 0 0 0 0
√

as1 −
√

ac1 −
√

ash1 −
√

ach1 s2 c2 −sh2 ch2 0 0 0 0
ac1 as1 −ach1 −ash1 −εc2 εs2 εch2 −εsh2 0 0 0 0

−a3/2s1 a3/2c1 −a3/2sh1 −a3/2ch1 −εs2 −εc2 −εsh2 εch2 0 0 0 0
c1 −s1 ch1 −sh1 0 0 0 0 0 0 0 0
−c1 s1 ch1 −sh1 0 0 0 0 0 0 0 0

0 0 0 0 c2 s2 ch2 sh2 −c3 s3 −ch3 sh3

0 0 0 0 −s2 c2 sh2 ch2 −
√

as3 −
√

ac3
√

ash3 −
√

ach3

0 0 0 0 −εc2 −εs2 εch2 εsh2 ac3 −as3 −ach3 ash3

0 0 0 0 εs2 −εc2 εsh2 εch2 a3/2s3 a3/2c3 a3/2sh3 −a3/2ch3

0 0 0 0 0 0 0 0 c3 s3 ch3 sh3

0 0 0 0 0 0 0 0 −c3 −s3 ch3 sh3



(6-4)

where
ci = cos(�i ), si = sin(�i ), chi = cosh(�i ), shi = sinh(�i ), i = 1, 2, 3.

Since the result of the determinant is quite messy an explicit expression of the frequency equation is not
presented.

The frequency equation of three component beam with simply supported and dashed ends, again, can
be expressed via the determinant of the coefficient matrix, which cannot be presented straightforwardly.
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THERMAL STRESS AROUND AN ARBITRARY SHAPED NANOHOLE
WITH SURFACE ELASTICITY IN A THERMOELECTRIC MATERIAL

KUN SONG, HAO-PENG SONG, PETER SCHIAVONE AND CUN-FA GAO

In response to the significance of the role of surface mechanics in continuum models of deformation at the
nanoscale, we consider the thermal stress distribution in the vicinity of an arbitrarily shaped nanohole in a
thermoelectric material by incorporating the contribution of surface elasticity. Accordingly, we develop
specific solutions describing the corresponding electric, temperature and elastic fields in the material.
Our results indicate that the contribution of surface elasticity is to generate considerable normal and
shear stress and to significantly influence hoop stress on the boundary of the nanohole. By controlling
the electric current applied to the material, the normal and shear stresses induced by surface elasticity can
be enhanced or decreased for various shaped nanoholes. It is also worth noting that the incorporation
of surface elasticity allows for the ability to suppress the maximum value of the von Mises stress on
the boundary of an arbitrarily shaped nanohole, particularly in the case of a triangular-shaped hole in
which case the maximum von Mises stress can be suppressed by up to 35% thereby dramatically improv-
ing the reliability of the corresponding thermoelectric device. Our investigations provide an important
theoretical basis for the design and manufacture of thermoelectric materials.

1. Introduction

Thermoelectric materials have the distinct capability of direct conversion between thermal and electrical
energy. This particular property makes them attractive for use in a variety of fields of application includ-
ing waste heat recovery [Yu et al. 2015], solid-state refrigeration [He and Tritt 2017] and solar energy
harvesting [Özdemir et al. 2015]. Furthermore, thermoelectric systems are environmentally friendly in
that they emit no gases, contain no pollutants, have no moving parts and operate quietly. One of the
major drawbacks in the use of thermoelectric materials and the main factor in preventing thermoelectric
devices from replacing traditional heat engines, however, is a low energy conversion efficiency.

The thermoelectric figure of merit Z T was introduced to characterize the conversion efficiency of
thermoelectric materials and much effort has been devoted recently towards its improvement. The most
effective and widely used method to improve the Z T value of a thermoelectric material involves the
introduction of nanosized holes or inclusions into the thermoelectric medium. This method has achieved
remarkable results in many mainstream thermoelectric materials [Yang et al. 2015; Xu et al. 2017; Kim
et al. 2006] but suffers from the fact that the operation of inserting an inhomogeneity (here taken to
represent a hole or inclusion) into thermoelectric materials generates an uneven temperature distribution
which leads to considerable thermal stress in the vicinity of the inhomogeneity [Kim et al. 2016].

Keywords: thermoelectric material, thermal stress, arbitrarily shaped hole, surface elasticity.
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The theoretical modelling of the behavior of thermoelectric materials presents formidable challenges
over the modeling of simple electric conduction or heat transfer processes mainly due to the coupled
transport of heat and electricity which results in nonlinear governing equations. Using complex variable
methods, Song et al. [2015] have succeeded in deriving the general solution of the two-dimensional
problem of a thermoelectric material containing a crack and discussed the field intensity factors at the
crack tip. Soon after, Wang and Wang [2017] used the same methods to construct a theoretical model for
the thermal stress distribution around an inclined elliptic hole in a thermoelectric material. Subsequently,
the model of a thin infinite plate containing a circular hole with a straight crack was analyzed and the stress
intensity factors near the crack tip obtained [Pang et al. 2018]. Furthermore, it has been demonstrated that
the thermal stress around a functional defect can easily exceed the yield stresses of many thermoelectric
materials [Song et al. 2019a]. These researches provide useful information regarding the mechanism
controlling thermal stress around a macroscale hole or inhomogeneity in a thermoelectric material. The
corresponding analysis focusing on a thermoelectric continuum at the nanoscale remains relatively absent
from the literature.

At the nanoscale, it is well-known that surface effects significantly influence the corresponding stress
distributions around an inhomogeneity as a result of the large surface-to-volume ratio of a representative
material element [Attia 2017]. Acknowledging the increasingly important role of the use of nanosized
inhomogeneities in improving the conversion efficiency of thermoelectric materials, it is important to
study the reliability of thermoelectric continuum models at the nanoscale. To this end, in this paper we
focus our attention on the thermal stress distribution in the vicinity of an arbitrarily shaped nanohole
in a thermoelectric material. General solutions describing thermal-electric and thermoelastic fields are
obtained via the use of complex variable methods. Our results indicate quite clearly that the incorporation
of surface elasticity generates considerable normal and shear stresses on the boundary of various shaped
nanoholes and that these stresses can be either increased or decreased by controlling the applied electric
current depending on the shape of nanohole. Furthermore, we find that surface elasticity has also a
remarkable effect on hoop stress around a nanohole and can dramatically suppress von Mises stress
induced by heat flux. For example, the incorporation of surface elasticity can suppress the maximum
von Mises stress around a particular triangular hole by about 35%. These results dramatically improve
the reliability of the corresponding thermoelectric devices.

2. Governing equations

2.1. Electric and thermal fields. The temperature field T (x, y) and electric potential φ(x, y) in a ther-
moelectric material represented by a Cartesian plane (described here by the generic point (x, y)) are
coupled through the Seebeck coefficient S. According to the theory of Thermodynamics, the equations
governing the electric current density J , heat flux Q and energy flux U are given by [Callen 1960]

−J = σ∇φ+ σ S∇T, (1)

Q = T S J − κ∇T, (2)

U = Q+φ J, (3)
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where σ and κ are the electric conductivity and thermal conductivity, respectively. In the case of a
conserved system, both the electric current density and energy flux are divergence-free:

∇ · J = 0, (4)

∇ · (Q+φ J)= 0. (5)

We assume that the parameters of our system are temperature-independent, so that (4)–(5) can be rewritten
with the aid of (1)–(2) as

∇
2(φ+ ST )= 0, (6)

∇
2
[σ

2
(φ2
+ ST )2+ κT

]
= 0. (7)

In the complex plane described by z = x + iy (i2
=−1), the temperature field and the electric potential

in (6) and (7) can be expressed as [Song et al. 2018]

T =−σ
κ

f (z) f (z)+ g(z)+ g(z)+M, (8)

φ =
σ S
κ

f (z) f (z)+ f (z)+ f (z)− S
(
g(z)+ g(z)

)
+ N , (9)

where f (z) and g(z) are complex analytic functions while M and N are real constants that denote
uniform temperature and electric potential fields, respectively. Note that the overhead bar denotes the
usual complex conjugate. Substituting (8)–(9) into (1)–(3), the components of electric current density,
heat flux and energy flux can be expressed as

Jx − i Jy =−2σ f ′(z), (10)

Qx − i Q y = 2σ f ′(z)
[
σ S
κ

f (z) f (z)+ f (z)+ f (z)− S
(
g(z)+ g(z)

)
+ N

]
− 2σ f (z) f ′(z)− 2κg′(z), (11)

Ux − iUy =−2σ f (z) f ′(z)− 2κg′(z). (12)

From (8)–(12), we see that the quantities corresponding to the thermal and electric fields are governed
entirely by the complex functions f (z) and g(z). As such, the temperature distribution, electric potential,
electric current, heat flow and energy flux in the thermoelectric material are known entirely if the two
complex functions f (z) and g(z) are determined.

2.2. Stress and displacement fields. Thermal stress induced by unmatched thermal expansion in a ther-
moelectric material depends linearly on the thermal expansion coefficient α, leading to the governing
equation coupling the stress function 8 and the temperature field T [Parkus 1968]:

∇
48+ Eα∇2T = 0, (13)

where E is Young’s modulus. The general solution of (13) is composed of a particular solution and the
general solution of the corresponding homogeneous equation which is given as [Song et al. 2019c]

8=
1
2
[
z̄ ϕ(z)+ z ϕ(z)+ϑ(z)+ϑ(z)

]
+

Eασ
4κ

F(z) F(z), (14)
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where ϕ(z) and ϑ(z) are complex analytic functions of z, and

F(z)=
∫

f (z) dz. (15)

We introduce ψ(z) to represent the derivative of ϑ(z). The stress and displacement components σx , σy ,
τxy ; u and v can then be derived from (14) as [Zhang and Wang 2016]

σx + σy = 4
∂28

∂z ∂ z̄
= 2

(
ϕ′(z)+ϕ′(z)

)
+

Eασ
κ

f (z) f (z), (16)

σy − σx + 2iτxy = 4
∂28

∂z2 = 2
(
z̄ϕ′′(z)+ψ ′(z)

)
+

Eασ
κ

f ′(z) F(z), (17)

u+ iv =
1

2G

[
Kϕ(z)− z ϕ′(z)−ψ(z)

]
+ 2α

∫
g(z) dz−

Eασ
4κG

F(z) f (z), (18)

where K = (3− µ)/(1+ µ) for the plane stress problem while G and µ are the shear modulus and
Poisson’s ratio, respectively. Note that E , µ and α are respectively replaced by E/(1−µ2), µ/(1−µ)
and (1+µ)α in the case of the plane strain problem.

2.3. Surface elasticity. The effects of surface elasticity are generally disregarded in the modelling of
thermoelectric materials at the macroscale. However, it is well-known that the incorporation of surface
elasticity into models of deformation significantly affects the stress distribution on the surface of a nanoin-
homogeneity due to the large surface to volume ratio of a representative material element. According to
the continuum theory of elastic material surfaces, the surface hoop stress σ s

θ is a critical quantity in the
description of surface elasticity and depends linearly on the hoop strain εs

θ , that is [Gurtin and Murdoch
1975]

σ s
θ = M sεs

θ , (19)

where M s
= 2µs

+ λs is a surface material constant incorporating µs and λs which are referred to as
surface Lame constants. Noting (16)–(18), εs

θ can be expressed as [Dai et al. 2017]

εs
θ =

1−µ
E

(
ϕ′(z)+ϕ′(z)+

Eασ
2κ

f (z) f (z)
)
+

Re
[(

z̄ϕ′′(z)+ψ ′(z)
)
e2iθ

]
2G

+
Eασ
4Gκ

Re[ f ′(z) F(z) e2iθ
] + 2αRe[g(z)], (20)

where the angle θ is measured from the x-axis, and “Re” denotes the real part of a complex function.

3. Solution for infinite thermoelectric plate containing an arbitrary shaped nanohole

We consider an infinite thermoelectric plate containing an arbitrarily shaped hole bounded by a simple
curve L . The plate is subjected to remote electric current density J∞x , J∞y and energy flux U∞x , U∞y .
Without loss of generality, the origin of the Cartesian coordinate system is placed at the centroid of the
hole, as shown in Figure 1 (left). The infinite thermoelectric matrix surrounding the hole can be mapped
into the external of a unit circle L ′ in the image w-plane (w= ξ + iη), as shown in Figure 1 (right), using
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Figure 1. Left: infinite thermoelectric plate containing an arbitrarily shaped nanohole.
Right: the image w-plane after conformal mapping.

the conformal mapping function ω(w) given by [Muskhelishvili 1975]

z = ω(w)= R
(
w+

n∑
j=1

m jw
− j
)
, (21)

where R is real number associated with the size of hole and the complex number m j is determined by
the shape of hole.

3.1. Boundary conditions. We assume that the boundary of the nanohole prevents the transport of both
electrons and heat, thus the boundary conditions for the normal electric current density Jr and energy
flux Ur can be written as [Song et al. 2019b]∫ Q

P
Jr ds = 0, (22)∫ Q

P
Ur ds = 0, (23)

where P and Q are arbitrary points on L .
As stated in Section 2.3, the presence of surface elasticity influences the stress field on the surface of

a nanohole. Since there is no additional loading on the boundary L , the stress boundary conditions can
be expressed as [Gurtin et al. 1998]

σr − iτrθ = kσ s
θ − i

dσ s
θ

ds
, (24)

where σr and τrθ are the normal and shear stresses on L , respectively, while k is the pointwise curvature
along L .

3.2. Solutions for electric and thermal fields. The functions f (z) and g(z) can be deduced from (10)
and (12) in terms of the remote current density and energy flux as

f (z)=−
1

2σ
(J∞x − i J∞y )z+ f0(z), (25)

g(z)=−
1

8σκ
(J∞x − i J∞y )

2 z2
−

1
2κ
(U∞x − iU∞y )z+ g0(z), (26)
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where f0(z) and g0(z) are analytic functions in the matrix. Noting the conformal mapping function
in (21) and adopting the notation that f (z)= f [ω(w)] and g(z)= g[ω(w)], equations (25) and (26) can
be expanded into series form as

f (z)= A1w+

n∑
j=0

A− jw
− j , (27)

g(z)= B2w
2
+ B1w+

n∑
j=0

B− jw
− j , (28)

where

A1 =−
R

2σ
(J∞x − i J∞y ), B1 =−

R
2κ
(U∞x − iU∞x ), B2 =−

R2

8σκ
(J∞x − i J∞y )

2. (29)

Substituting (27) and (28) into the boundary conditions in (22) and (23), f (z) and g(z) can be determined
as

f (z)= A1w+
A1

w
, (30)

g(z)= B2w
2
+ B1w+

B1

w
+

B2

w2 . (31)

The temperature, electric potential, electric current density, heat flux and energy flux around an arbitrarily
shaped nanohole in a thermoelectric material can then be totally determined by substituting (30) and (31)
into (8)–(12) as

T =−
σ

κ

∣∣∣∣A1w+
A1

w

∣∣∣∣2+ 2Re
[

B2w
2
+ B1w+

B1

w
+

B2

w2

]
+M, (32)

φ =
σ S
κ

∣∣∣∣A1w+
A1

w

∣∣∣∣2+ 2Re
[

A1w+
A1

w
− S

(
B2w

2
+ B1w+

B1

w
+

B2

w2

)]
+ N , (33)

Jx − i Jy =−
2σ
ω′(w)

(
A1−

A1

w2

)
, (34)

Qx − i Q y =
2σφ
ω′(w)

(
A1−

A1

w2

)
−

2σ
ω′(w)

(
A1w+

A1

w

)(
A1−

A1

w2

)
−

2κ
ω′(w)

(
2B2w+ B1−

B1

w2 −
2B2

w3

)
, (35)

Ux − iUy =
2σ
ω′(w)

(
A1w+

A1

w

)(
A1

w2 − A1

)
−

2κ
ω′(w)

(
2B2w+ B1−

B1

w2 −
2B2

w3

)
, (36)

where ω′(w)= dω(w)/dw.
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3.3. Solution for stress distributions. Substituting (30) and (31) into (16)–(18), the thermal stress and
displacement in the matrix can be expressed as

σx + σy =
Eασ
κ

∣∣∣∣A1w+
A1

w

∣∣∣∣2+ 2
(
ϕ′(z)+ϕ′(z)

)
, (37)

σy − σx + 2iτxy =
Eασ(A1w

2
− A1)

κw2ω′(w)

∫ [(
A1w+

A1

w

)
ω′(w)

]
dw+ 2

(
z̄ϕ′′(z)+ψ ′(z)

)
, (38)

u+ iv = 2α
∫ [(

B2w
2
+ B1w+

B1

w
+

B2

w2

)
ω′(w)

]
dw+

1
2G

(
Kϕ(z)− z ϕ′(x)−ψ(z)

)
−

Eασ
4κG

(
A1w+

A1

w

)∫ [(
A1w+

A1

w

)
ω′(w)

]
dw, (39)

while the hoop strain in (20) can be expressed as

εs
θ =

1−µ
E

(
ϕ′(z)+ϕ′(z)+

Eασ
2κ

∣∣∣∣A1w+
A1

w

∣∣∣∣2)+ Re
[(

z̄φ′′(z)+ψ ′(z)
)
e2iθ

]
2G

+
Eασ
4Gκ

Re
[
(A1w

2
− A1)

w2ω′(w)

∫ [(
A1w+

A1

w

)
ω′(w)

]
dwe2iθ

]
+ 2αRe

[
B2w

2
+ B1w+

B1

w
+

B2

w2

]
. (40)

The integrations in (38)–(40) will generate multivalued terms which can be eliminated by introducing
additional terms in ϕ(z) and ψ(z) as

ϕ(z)= χ1 lnw+
n∑

j=1

C− jw
− j , (41)

ψ(z)= χ2 lnw+
n∑

j=1

D− jw
− j . (42)

Here, we have disregarded C0 and D0 in (41) and (42) since they correspond to rigid displacement and
thus do not influence the stresses. Noting (21), the coefficients of the multivalued terms are now identified
as {

χ1 =
4GαR
K+1 (m1 B1+ 2m2 B2− B1),

χ2 = χ1+
Eασ R

2κ (A1−m1 A1)
(

A1w+
A1
w

)
.

(43)

Rewriting the boundary condition in (24), we have [Dai et al. 2016]

ϕ(z)+ z ϕ′(z)+ψ(z)+
Eασ
2κ

f (z) F(z)= M sεs
θ eiθ . (44)

Substituting (40)–(42) into (44), and noting that

eiθ
=
wω′(w)

ρ|ω′(w)|
, e2iθ

=
w2ω′(w)

ρ2 ω′(w)
, (45)
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we have

ϕ(w)+
ω(w)

ω′(w)
ϕ′(w)+ψ(w)+

Eασ
2κ

f (w) F(w)

= M s
{

1−µ
E

(
w

|ω′(w)|
ϕ′(w)+

wω′(w)

|ω′(w)|ω′(w)
ω′(w)+

Eασ
2κ

wω′(w)

|ω′(w)|
| f (w)|2

)
+ 4G

(
w3

ω′(w)
ϕ′′(w)−

w3ω′′(w)

ω′(w)
ϕ′(w)+

w3ω′(w)

|ω′(w)|ω′(w)
ψ ′(w)

+
ω(w)

w|ω′(w)|ω′(w)
ϕ′′(w)−

ω(w)ω′′(w)

w|ω′(w)|ω′(w)
ϕ′(w)+

1
w|ω′(w)|

ψ ′(w)

)
−

Eασ
8Gκ

wω′(w)

|ω′(w)|ω′(w)
(A1w

2
− A1)

∫ [(
A1

w
+

A1

w3

)
w′
(

1
w

)]
dw

+
8ασ
8Gκ

(A1− A1w
2)

w|ω′(w)|

∫ [(
A1w+

A1

w

)
ω′(w)

]
dw

+ 2α
wω′(w)

|ω′(w)|
Re
[

B2w
2
+ B1w+

B1

w
+

B2

w2

]}
. (46)

We introduce Fourier series expansions for the w-related terms as
1

ω′(w)
=
∑n′

j=−n′

(
1

2π

∫ 2π
0

ζ− j

ω′(ζ )
dθ
)
w j ,

1
|ω′(w)|

=
∑n′

j=−n′

(
1

2π

∫ 2π
0

ζ− j

|ω′(ζ )|
dθ
)
w j ,

1
|ω′(w)|ω′(w)

=
∑n′

j=−n′

(
1

2π

∫ 2π
0

ζ− j

|ω′(ζ )|ω′(ζ )
dθ
)
w j ,

(47)

where ζ = eiθ , and n′ is selected to cover the highest power of w in (46). Since the multivalued terms
in (46) will cancel each other on L , the stress boundary condition is successfully written in terms of
Fourier series using (47). Equating coefficients of w j ( j =−n, . . . ,−1, 1, . . . , n) in (46), we arrive at
a system of equations with respect to C− j and D− j ( j = 1, . . . , n). Solving this system numerically, the
complex functions ϕ(z) and ψ(z) are determined completely.

4. Numerical analyses and discussion

Numerical analysis is undertaken to illustrate the distribution of thermal stress around the nanohole using
the material parameters listed in Table 1. For illustrative purposes, we consider the stresses around an
elliptic hole, an approximately triangular hole (which we refer to as a ‘triangular hole’) and an approx-
imately square hole (similarly referred to as a ‘square hole’) and prescribe remote electric current and
energy flux in the y-direction. The conformal mapping functions corresponding to the three shapes are
given by [Savin 1961] 

ω(w)= R(w+ 1/3w), elliptic hole,

ω(w)= R(w+ 1/3iw2), triangular hole,

ω(w)= R(w− 1/8w3), square hole,

(48)
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sample σ (S/m) S (µV/K) κ (W/mK) E (GPa) α (/K) µ M s (N/m)

PbTe 104 300 1.5 58 2 · 10−5 0.29 10

Table 1. Material parameters of samples [Pei and Liu 2012; Ni et al. 2010].

with the area of these holes given by

s = πR2(1− jm2
j ), (49)

where j corresponds to w− j appearing in the conformal mapping function, and m j is the coefficient
of w− j .

Comparing the state of stress around a macrohole, we can see that the surface elasticity mainly induces
normal and shear stresses on the boundary of a nanohole. Consequently, we focus our investigation on
the effect of electric current on the normal and shear stresses induced by surface elasticity for holes of
different shapes as described in figures 2–4. In order to compare the stress fields for different shapes of
hole, we set the area of each hole to be uniform at s = 3 nm2 and subject the thermoelectric material to a
remote energy flux given by U∞y = 10−6 W/nm2. For the case of an elliptic hole, the maximum positive
and negative normal stresses induced by surface elasticity appear at the locations θ = 0.1π and −0.1π ,
respectively, while the maximum shear stress appears at θ = 0 (see Figure 2). The remote electric current
has considerable influence on the normal stress, but no influence on the shear stress. In addition, our
results also show that the remote electric current has the capability of suppressing the absolute value of
the negative normal stress and enhancing the positive normal stress around an elliptic hole.

For the same conditions used in Figure 2, the surface elasticity generates more than 10 times the
normal and shear stresses on the boundary of a triangular hole than the on the boundary of an elliptic
hole (see Figure 3). With the increase of remote electric current density, the maximum normal and shear
stresses transfer from the lower boundary (−π/2 < θ < 0) to the upper boundary (0 < θ ≤ π/2) of a
triangular hole and the maximum normal stress is enhanced by a factor of 3 when the remote electric
current density changes from 0 to 2 · 10−6 A/nm2. In contrast to the elliptic hole, the maximum shear
stress does not occur at the tip (the point of maximum curvature) of a triangular hole, as we can see from
Figure 3 (right). It is worth pointing out from Figure 3 (right) that an appropriate electric current density
can suppress the maximum shear stress on the boundary of the triangular hole. The remote electric

θ (×π rad)

σ
r

(×
10

M
Pa

)

θ (×π rad)

τ r
θ

(×
10

M
Pa

)

Figure 2. Normal stress (left) and shear stress (right) on the boundary of an elliptic hole.
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Figure 3. Normal stress (left) and shear stress (right) on the boundary of a triangular hole.

current suppresses maximum shear stress when J∞y = 10−6 A/nm2 but enhances maximum shear stress
for the case when J∞y = 2 · 10−6 A/nm2.

The normal and shear stresses around a square hole under various values of electric current are shown
in Figure 4. Comparing with figures 2 and 3 we see that the maximum normal and shear stresses induced
by surface elasticity around a square hole are higher than the maximum stress around an elliptic hole
although much lower than the case of a triangular hole which corresponds with the order of their maxi-
mum curvatures. Figure 4 (left) shows that the electric current greatly enhances the normal stress on the
lower boundary yet suppresses normal stress on the upper boundary of a square hole. In contrast, the
electric current decreases and increases shear stress on the lower and upper boundary of a square hole,
respectively, as shown in Figure 4 (right).

In Figure 5, σ (1)r and τ (1)rθ are the maximum normal and shear stresses on L when R = 1 nm. In figures
5 and 6, we further investigate the effect of surface elasticity on thermal stress with hole size. The value
of the prescribed energy flux is adjusted to control the maximum temperature difference on the boundary
of the hole at 1 K and the applied electric current density is adjusted to the optimal value around the hole.
As is clear from Figure 5 (left), all of the maximum normal stresses decrease sharply with the increase
in R, and tend to zero when R = 20 nm. The size of the hole has a stronger influence on the maximum
normal stress around a square hole than on that around a triangular hole. Figure 5 (right) shows that the
maximum shear stresses on the boundaries of elliptic and square holes decrease with the increase of R,
which is the same as for normal stress. However, in the case of a triangular hole, the maximum shear
stress increases in the initial phase of the increase in size of the hole: this is because the maximum shear
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Figure 4. Normal stress (left) and shear stress (right) on the boundary of a square hole.
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Figure 5. Maximum normal stress (left) and shear stress (right) versus R for different
shaped holes.

stress occurs at the point of lower curvature on the boundary of triangular hole. With further increase
of R, the effect of surface elasticity fades away, thus leading to a decrease of shear stresses for all shapes
of hole.

In Figure 6, σ (0)θ and σ (0)v are the maximum hoop and von Mises stresses on L when M s
= 0. We see

from Figure 6 that surface elasticity has the ability to suppress maximum hoop stress induced by heat
flux around nanoholes. This effect is more obvious around a triangular hole where the maximum hoop
stress can be decreased by more than 50% as a result of surface elasticity. Even for the case of a square
hole, the contribution of surface elasticity can decrease the maximum hoop stress by about 20%. Since
the von Mises fracture criterion is often used in semiconductors, we also illustrate the effect of hole size
on the von Mises stress σv using the expression [Yang 1980]:

σv =

√
σ 2

x − σx σy + σ 2
y + 3τ 2

xy . (50)

From Figure 6 (right) we see that surface elasticity can effectively suppress the maximum von Mises
stress for all shapes of nanoholes. However, a particular size of nanohole is required for maximum
effectiveness. For example, when R = 2.5 nm, the maximum von Mises stress generated by the heat flux
is reduced by no more than 65% around a triangular hole.
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Figure 6. Maximum hoop stress (left) and von Mises stress (right) versus R for different
shaped holes.
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5. Conclusions

In this paper, we analyze the effect of surface elasticity on the thermal stress distribution around an
arbitrarily shaped nanohole in a thermoelectric material. The electric, thermal and elastic fields in the
matrix surrounding the nanohole are calculated based on complex variable methods. For a given area of
nanohole, the surface elasticity generates higher normal and shear stresses around a triangular hole, but
lower stresses around an elliptic hole which corresponds to the sequence of maximum curvature of the
different hole shapes. The applied remote electric current can enhance or suppress the effect of surface
elasticity on the thermal stress, depending on the shape and position of the boundary of the nanoholes.
Detailed results show that surface elasticity has the ability of suppressing maximum hoop stress induced
by heat flux around a nanohole, thus leading to significant reduction in von Mises stress. Accompanied
by the appropriately chosen size of hole, surface elasticity can suppress the maximum von Mises stress
around a triangular hole only by around 65%.
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