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EXTENDED HIGHER-ORDER SANDWICH PANEL THEORY FOR
PLATES WITH ARBITRARY ASPECT RATIOS

FAISAL SIDDIQUI AND GEORGE A. KARDOMATEAS

A new extended higher-order sandwich panel theory (EHSAPT) for orthotropic elastic sandwich plates
is formulated. This new theory extends the one-dimensional extended higher-order sandwich panel beam
theory to two dimensions and applies it to plate structures. In this theory, the compressibility of the soft
core in the transverse direction is taken into consideration. The in-plane displacements are third-order
and the transverse displacement is second-order in the transverse coordinate respectively. This arrange-
ment allows the theory to take the axial, shear and transverse normal stresses in the core in considera-
tion. In order to derive the governing equations and associated boundary conditions, eleven generalized
coordinates are considered. Each face sheet has three generalized coordinates (two in-plane and one
transverse displacement respectively) and the core has five generalized coordinates which include three
displacements and two independent rotations. The governing equations and boundary conditions are
derived using a variational approach such that all core/face sheet displacement compatibility conditions
are satisfied.

1. Introduction

Typical sandwich panels consist of two metallic or composite thin face sheets separated by a honeycomb
or foam core. This configuration gives the sandwich panel high stiffness and strength, and enables
excellent energy absorption capabilities with little resultant weight penalty. This makes the sandwich
structure a preferred material of choice in a lot of applications including aerospace, naval, wind turbines
and civil industries. Many of the currently used methods of analysis on sandwich structures assume a
noncompressible core and are categorized as the classical and the first-order shear models when shear
effects are taken into consideration [Plantema 1966; Allen 1969]. The assumptions on these theories
are only adequate if the core is made of a high-strength and stiff material; but in many cases when the
core is a more compliant and softer material, the predictions from these theories become more and more
inaccurate especially under quasistatic loading [Phan et al. 2012]. Experimental results have also shown
that the core can undergo significant transverse deformation under a sudden impulsive load [Gardner
et al. 2012; Jackson and Shukla 2011; Nemat-Nasser et al. 2007; Tekalur et al. 2009; Wang et al. 2009].
This implies that in order to get accurate results the transverse deformation and shear stresses in the core
must be taken into consideration.

Keeping in view the importance of accurate prediction of failure modes, some of the recent compu-
tational models have considered transverse compressibility in the core. Frostig et al. [1992] proposed a
theory for sandwich panels in which the resulting shear strain in the core is constant and the resulting
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transverse normal strain in the core is linear in z; however, this model was only formulated for a one-
dimensional beam (HSAPT). Hohe et al. [2006] developed a model for sandwich plates in which the
transverse normal strain is constant along the transverse coordinate z, and the shearing strains are first-
order in z. Also, Li and Kardomateas [2008] explored a higher-order theory for plates in which the
transverse normal strain in the core is of third-order in z, and the shear strains in the core are of fourth-
order in z.

The accuracy of any of these models can be readily assessed because an elasticity solution already
exists. Pagano [1970] presented a three-dimensional elasticity solution for laminated rectangular plates
for the following cases:

(1) Orthotropic material: the cubic characteristic equation has a negative discriminant and results in
real and unequal roots.

(2) Isotropic material: the cubic characteristic equation has a zero discriminant and results in real and
equal roots.

Kardomateas [2008] then presented the solution for the case of positive discriminant, in which two of
the roots are complex conjugates. This is actually a case frequently encountered in sandwich construction
in which the orthotropic core is stiffer in the transverse direction than the in-plane directions.

In this paper we present an advanced new extended higher-order sandwich panel theory (EHSAPT),
which is a two-dimensional extension of the EHSAPT beam model presented in [Phan et al. 2012]. In
that reference the authors extended the HSAPT given in [Frostig et al. 1992] for beams, to allow for the
transverse shear distribution in the core to acquire the proper distribution as the core stiffness increases
as a result of nonnegligible in-plane stresses. The current paper extends the concept of Phan et al. [2012]
and applies it to two-dimensional plate structures. The theory assumes a transverse displacement in the
core that varies as a second-order equation in z, and in-plane displacements that are of third-order in z.
The novelty of this approach is that it allows for five generalized coordinates in the core (the in-plane
and transverse displacements and two independent rotations).

The theory is formulated for a sandwich panel with a symmetric layout. The major assumptions of
the theory are as follows:

(1) The face sheets satisfy the Kirchhoff assumptions, and their thicknesses are small compared with the
overall thickness of the sandwich section; they undergo large displacements with moderate rotations.

(2) The core is compressible in the transverse and axial directions (transverse displacement is second-
order in z and in-plane displacements are third-order in z); it has in-plane, transverse and shear
rigidities; and it undergoes large displacements.

(3) The bonding between the face sheets and core is assumed to be perfect.

2. Derivation of EHSAPT theory

We consider a sandwich plate with two identical face sheets of thickness f and a core of thickness 2c.
The cartesian coordinate system is placed in the middle plane of the sandwich plate as shown in Figure 1.

The corresponding displacements are denoted by (u, v, w). Subscript t , b and c refer to the top face
sheet, bottom face sheet and core. Subscript 0 refers to the middle surface of the respective phase. The
total thickness of the plate is given by htot = 2 f + 2c.
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Figure 1. Geometric configuration of the plate.

2A. Displacements and strains. It is highlighted that the following functions depend on x , y, z and t
and this functional dependence will not be explicitly written in the equations that follow in favor of
conserving writing space:

ut,b,c
= ut,b,c(x, y, z, t), ut,b,c

0 = ut,b,c
0 (x, y, t), ψc

0 = ψ
c
0(x, y, t), uc

2 = uc
2(x, y, t),

uc
3 = uc

3(x, y, t),

vt,b,c
= vt,b,c(x, y, z, t), v

t,b,c
0 = v

t,b,c
0 (x, y, t), φc

0 = φ
c
0(x, y, t), vc

2 = v
c
2(x, y, t),

vc
3 = v

c
3(x, y, t),

wt,b,c
= wt,b,c(x, y, z, t), wc

1 = w
c
1(x, y, t), wc

2 = w
c
2(x, y, t).

2A.1. Displacements of the face sheets. The face sheets are assumed to satisfy the Kirchhoff–Love as-
sumptions and their thickness is assumed to be small as compared to the overall thickness of the plate.
The displacements are represented as

ut
= ut

0− ζ
twt

,x , (2-1a)

vt
= vt

0− ζ
twt

,y , (2-1b)

wt
= wt . (2-1c)

Similarly, for the bottom face sheet,

ub
= ub

0− ζ
bwb

,x , (2-2a)

vb
= vb

0 − ζ
bwb

,y , (2-2b)

wb
= wb , (2-2c)

where ζ t,b
= z∓ (c+ f t,b/2).
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The nonlinear strain-displacement relations are

[
εt,b

]
=

ε
t,b
xx

εt,b
yy

γ t,b
xy

= [ε0
]
+ ζ

[
κ
]
=

 ε0x + ζκx

ε0y + ζκy

γ0xy + ζκxy

 , (2-3a)

[ε0] =

 ε0x

ε0y

γ0xy

=
 u0,x +

1
2w

2
,x

v0,y +
1
2w

2
,y

u0,y+v0,x+w,xw,y

 . (2-3b)

Moreover, [κ] is the curvature matrix and can be given as

[κ] =

 κx

κy

κxy

=
−w,xx

−w,yy

−2wxy

 . (2-3c)

2A.2. Displacements for the higher-order core. First-order approximation of the classical sandwich
panel theory neglects the transverse deformation of the core and leads to erroneous results in many
practical cases. However, in many instances it becomes essential to capture the core compressibility
effects and thus we use a higher-order definition of the in-plane and transverse deformation of the core
in terms of the transverse coordinate:

uc
= uc

0+ψ
c
0 z+ uc

2z2
+ uc

3z3, (2-4a)

vc
= vc

0−φ
c
0z+ vc

2z2
+ vc

3z3, (2-4b)

wc
= wc

0+w
c
1z+wc

2z2. (2-4c)

In these equations uc
0, v

c
0 and wc

0 are the in-plane and transverse displacements and φc
0 and ψc

0 are the
rotations about the x-axis and y-axis, respectively. Also, uc

2, uc
3, vc

2, vc
3, wc

1 and wc
2 are the in-plane and

transverse unknown functions to be determined by enforcing displacement compatability conditions at
the core/face sheets interface. We therefore enforce compatability at z =±c and after some algebraic
calculations, the following core displacement field is obtained:

uc
= uc

0+ zψc
0 −

z3

4c3 [2ub
0− 2ut

0+ 4cψc
0 − f bwb

,x − f twt
,x ]

−
z2

4c2 [−2ub
0− 2ut

0+ 4uc
0+ f bwb

,x − f twt
,x ], (2-5a)

vc
= vc

0− zφc
0 −

z3

4c3 [2v
b
0 − 2vt

0− 4cφc
0 − f bwb

,y − f twt
,y]

−
z2

4c2 [−2vb
0 − 2vt

0+ 4vc
0+ f bwb

,y − f twt
,y], (2-5b)

wc
= wc

0−
z2

2c2 [−w
b
−wt
+ 2wc

0] −
z

2c
[wb
−wt
]. (2-5c)

It is highlighted that in developing their higher-order theories, Li and Kardomateas [2008] and Phan
et al. [2012] assumed that the core undergoes large rotation with a small displacement and therefore
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neglected the in-plane strains. However, the current theory does not make any such assumptions and we
consider all six strains in the core. This leads to the following six strain-displacement relations for the
core:

εc
xx = uc

0,x + zψc
0 ,x −

z3

4c3 [2ub
0,x − 2ut

0,x + 4cψc
0 ,x − f bwb

,xx − f twt
,xx ]

−
z2

4c2 [−2ub
0,x + 4uc

0,x − 2ut
0,x + f bwb

,xx − f twt
,xx ]ψ

c
0 ,x , (2-6a)

εc
yy = v

c
0,y − zφc

0,y −
z3

4c3 [2v
b
0 ,y − 2vt

0,y − 4cφc
0,y − f bwb

,yy − f twt
,yy]

−
z2

4c2 [−2vb
0 ,y + 4vc

0,y − 2vt
0,y + f bwb

,yy − f twt
,yy], (2-6b)

εc
zz =−

z
c2 [2w

c
0−w

b
−wt
] −

1
2c
[wb
−wt
] (2-6c)

γ c
xy = uc

0,y + zψc
0 ,y + v

c
0,x − zφc

0,x −
z3

4c3 [2ub
0,y − 2ut

0,y + 4cψc
0 ,y − f bwb

,xy − f twt
,xy]

−
z3

4c3 [2v
b
0 ,x − 2vt

0,x − 4cφc
0,x − f bwb

,xy − f twt
,xy]

−
z2

4c2 [−2ub
0,y + 4uc

0,y − 2ut
0,y + f bwb

,xy − f twt
,xy]

−
z2

4c2 [−2vb
0 ,x + 4vc

0,x − 2vt
0,x + f bwb

,xy − f twt
,xy], (2-6d)

γ c
xz = ψ

c
0 +w

c
0,x −

z2

2c2 [2w
c
0,x −w

b
,x −w

t
,x ] −

z
2c
[wb

,x −w
t
,x ]

−
3z2

4c3 [2ub
0− 2ut

0+ 4cψc
0 − f bwb

,x − f twt
,x ]

−
z

2c2 [−2ub
0+ 4uc

0− 2ut
0+ f bwb

,x − f twt
,x ], (2-6e)

γ c
yz =−φ

c
0 +w

c
0,y −

z2

2c2 [2w
c
0,y −w

b
,y −w

t
,y] −

z
2c
[wb

,y −w
t
,y]

−
3z2

4c3 [2v
b
0 − 2vt

0− 4cφc
0 − f bwb

,y − f twt
,y]

−
z

2c2 [−2vb
0 + 4vc

0− 2vt
0+ f bwb

,y − f twt
,y]. (2-6f)

2A.3. Constitutive relations. We assume that the face sheets are composite laminates and the core is
fully orthotropic. The stress-strain relations for the top and bottom sheets read asσ

t,b
xx

σ t,b
yy

τ t,b
xy

=
C t,b

11 C t,b
12 C t,b

16

C t,b
12 C t,b

22 C t,b
26

C t,b
16 C t,b

26 C t,b
66


ε

t,b
xx

εt,b
yy

γ t,b
xy

 , (2-7a)

where Ci j (i, j = 1, 2, 6) are the plane stress reduced stiffness coefficients. The core is considered to be
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fully orthotropic: 

σ c
xx

σ c
yy

σ c
zz

τ c
yz

τ c
xz

τ c
xy


=



Cc
11 Cc

12 Cc
13 0 0 0

Cc
12 Cc

22 Cc
23 0 0 0

Cc
13 Cc

23 Cc
33 0 0 0

0 0 0 Cc
44 0 0

0 0 0 0 Cc
55 0

0 0 0 0 0 Cc
66





εc
xx

εc
yy

εc
zz

γ c
yz

γ c
xz

γ c
xy


. (2-7b)

Since the face sheets are laminated composite plates with the face sheets composed of multiple laminas,
each fiber angle of an individual lamina can be chosen independently. The following constitutive relations
are defined:

χ(θ)=



1 1 cos θ cos 4θ
1 1 −cos θ cos 4θ
1 −1 0 −cos 4θ
0 1 0 −cos 4θ
0 0 1

2 sin 2θ sin 4θ

0 0 1
2 sin 2θ −sin 4θ


. (2-8)

Similarly, the following four material invariants are defined:

α1 =
E1+ E2+ 2ν12 E2

4α0
, α2 =

E1+ E2− 2ν12 E2

8α0
+

G12

2
,

α3 =
E1− E2

2α0
, α4 =

E1+ E2− 2ν12 E2

8α0
−

G12

2
,

where α0 = 1− ν12 E2/E1. Next, we define an array of the lamina stiffness coefficients such that

C = {C11, C22, C12, C66, C16, C26}
T . (2-9)

We then define an array of the material invariants as

α = {α1, α2, α3, α4}
T . (2-10)

Therefore

[C(θ)] = [χ(θ)]{α}. (2-11)

Hence depending upon the angle of individual laminas, the material coefficients for the face sheets are
defined. Next, the stress and moment resultants for the facesheets are defined as

[N t,b
] =

N t,b
xx

N t,b
yy

N t,b
xy

=
N t,b1

xx

N t,b1

yy

N t,b1

xy

+
N t,b2

xx

N t,b2

yy

N t,b2

xy

= ∫ c+ f t,b/2

c
[σ t,b1

] dz+
∫ c+ f t,b

c+ f t,b/2
[σ t,b2

] dz. (2-12)
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Similarly

[M t,b
] =

M t,b
xx

M t,b
yy

M t,b
xy

=
M t,b1

xx

M t,b1

yy

M t,b1

xy

+
M t,b2

xx

M t,b2

yy

M t,b2

xy

= ∫ c+ f t,b/2

c
[σ t,b1

] ζ t,b dz+
∫ c+ f t,b

c+ f t,b/2
[σ t,b2

] ζ t,b dz. (2-13)

For the core the following resultants are defined:

[N c
] =



N c
xx

N c
yy

N c
zz

N c
xy

Qc
x

Qc
y


=

∫ c

−c



σ c
xx

σ c
yy

σ c
zz

σ c
xy

σ c
xz

σ c
yz


dz, for the core. (2-14a)

Similarly, the following resultants are also defined for the core:

Mc
xx

Mc
yy

Mc
zz

Mc
xy

Mc
yz

Mc
xz


=

∫ c

−c



σ c
xx

σ c
yy

σ c
zz

σ c
xy

σ c
yz

σ c
xz


z dz,


Rc

xx

Rc
yy

Rc
xy

Rc
yz

Rc
xz

=
∫ c

−c


σ c

xx

σ c
yy

σ c
xy

σ c
yz

σ c
xz

 z2 dz,

Pc
xx

Pc
yy

Pc
xy

= ∫ c

−c

σ
c
xx

σ c
yy

σ c
xy

 z3 dz. (2-14b)

Also

Ii =

∫ h/2

−h/2
ρ(z)i dz (i = 0, 1, 2, 3, . . . , 6). (2-15)

2B. Governing differential equations. The governing differential equations and associated boundary
conditions can be derived using the Hamilton’s principle. The sandwich panel is subjected to a transverse
load q(x, y, t) on the top and bottom face sheets. Let the strain energy be denoted by U , the kinetic energy
by K and the external work by W . The variational principle states that

δ[T − (U −W )] = 0, (2-16)

in which the first variation of the energy functionals can be written as

δU =
∫ t

0

∫ b

0

∫ a

0

[ ∫ c+ f t

c

(
σ t

xxδε
t
xx + σ

t
yyδε

t
yy + τ

t
xyδγ

t
xy
)

dz

+

∫ c

−c

(
σ c

xxδε
c
xx + σ

c
yyδε

c
yy + σ

c
zzδε

c
zz + τ

c
xyδγ

c
xy + τ

c
xzδγ

c
xz + τ

c
yzδγ

c
yz
)

dz

+

∫
−c

−c− f b

(
σ b

xxδε
b
xx + σ

b
yyδε

b
yy + τ

b
xyδγ

b
xy
)

dz
]

dx dy, (2-17)
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δT =
∫ t

0

∫ b

0

∫ a

0

[∫ c+ f t

c
ρt(u̇tδu̇t

+ v̇tδv̇t
+ ẇtδẇt) dz+

∫ c

−c
ρc(u̇cδu̇c

+ v̇cδv̇c
+ ẇcδẇc) dz

+

∫
−c

−c− f b
ρb(u̇bδu̇b

+ v̇bδv̇b
+ ẇbδẇb)

]
dz, (2-18)

and the work done by external forces is

δW =
∫ t

0

∫ b

0

∫ a

0
q t(x, y, t) δwt

+ qb(x, y, t) δwb dx dy dt, (2-19)

where ρ is the mass density and dot above the variables represents differentiation with respect to time;
q t(x, y, z) and qb(x, y, z) are the distributed transverse load on top and bottom face sheets, respectively;
δwt and δwb represents the virtual transverse displacements of top and bottom face sheets, respectively.
Equating time derivatives equal to zero would recover the governing differential equations and associated
boundary conditions for a static case.

2B.1. Equations of motion. The governing equations and associated boundary conditions can be ob-
tained by substituting the strain-displacement relations ((2-3) and (2-6)) and stress-strain relations (2-7)
in the first variations of the energy functionals. We make use of the stress and moment resultants defined
by using (2-12), (2-13) and (2-14), respectively. We then employ Green’s theorem to relieve the primary
variables of derivatives. This results in eleven governing equations: three for each face sheet and five for
the core. Also, boundary conditions are acquired as a result of the process:

δub
0 : 4α2 Mc

xz − 6α3 Rc
xz − N b

xy,y + 2α3 Pc
xy,y − 2α2 Rc

xy,y − N b
xx,x + 2α3 Pc

xx,x

− 2α2 Rc
xx,x +β1üb

0− 2β2üc
0+ 4β3üt

0+ 2β5ψ̈
c
0 −β4ẅ

b
,x + 2 f tβ3ẅ

t
,x = 0, (2-20a)

δvb
0 : 4α2 Mc

yz − 6α3 Rc
yz − N b

yy,y + 2α3 Pc
yy,y − 2α2 Rc

yy,y − N b
xy,x + 2α3 Pc

xy,x

− 2α2 Rc
xy,x +β1v̈

b
0 + 2β2v̈

c
0+ 4β3v̈

t
0− 2β5φ̈

c
0 −β4ẅ

b
,y + 2 f tβ3ẅ

t
,y = 0, (2-20b)

δwb
: 4α2 Mc

zz −α1 N c
zz + (α1+ 2 f bα2)

(
Mc

xz,x +Mc
yz,y

)
− 2Mb

xy,xy
−Mb

xx,xx

+ f bα3
(
Pc

xx,xx
+ Pc

yy,yy
+ 2Pc

xy,xy

)
− f bα2

(
Rc

xx,xx
+ Rc

yy,yy
+ 2Rc

xy,xy

)
− Rc

xz,x (2α2+ 3 f bα3)+β6ẅ
b
−β7ẅ

c
0−β8ẅ

t
+β4

(
üb

0,x + v̈
b
0,y

)
+ f bβ2

(
üc

0,x + v̈
c
0,y

)
+ 2 f bβ3

(
üt

0,x + v̈
t
0,y

)
+ f bβ5

(
ψ̈c

0,x − φ̈
c
0,y

)
+ f b f tβ3

(
ẅt
,xx + ẅ

t
,yy
)
−β9

(
ẅb
,xx + ẅ

b
,yy
)
= qb
[x, y, t], (2-20c)

δut
0 : 4α2 Mc

xz + 6α3 Rc
xz − N t

xy,y − 2α3 Pc
xy,y − 2α2 Rc

xy,y − N t
xx,x − 2α3 Pc

xx,x

− 2α2 Rc
xx,x + 4β3üb

0+ 2ξ2üc
0+ ξ1üt

0+ 2ξ5ψ̈
c
0 − 2 f bβ3ẅ

b
,x + ξ4ẅ

t
,x = 0, (2-20d)

δvt
0 : 4α2 Mc

yz + 6α3 Rc
yz − N t

yy,y − 2α3 Pc
yy,y − 2α2 Rc

yy,y − N t
xy,x − 2α3 Pc

xy,x

− 2α2 Rc
xy,x + 4β3v̈

b
0 + 2ξ2v̈

c
0+ ξ1v̈

t
0− 2ξ5φ̈

c
0 − 2 f bβ3ẅ

b
,x + ξ4ẅ

t
,x = 0, (2-20e)
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δwt
: 4α2 Mc

zz +α1 N c
zz − (α1+ 2 f tα2)

(
Mc

yz,y −Mc
xz,x

)
− 2M t

xy,xy
−M t

xx,xx

+ f tα3
(
Pc

yy,yy
+ Pc

xx,xx
+ 2Pc

xy,xy

)
+ f tα2

(
Rc

yy,yy
+ 2Rc

xy,xy
+ Rc

xx,xx

)
− Rc

xz,x (2α2+ 3α3 f t)−β8ẅ
b
+ ξ7ẅ

c
0+ ξ6ẅ

t
+ f b f tβ3

(
ẅb
,yy + ẅ

b
,xx
)

− 2 f tβ3
(
üb

0,x + v̈
b
0,x

)
− f tξ2

(
üc

0,x + v̈
c
0,y

)
− ξ4

(
üt

0,x + v̈
t
0,y

)
− f tξ5

(
φ̈c

0,y + ψ̈
c
0,x

)
− ξ9

(
ẅt
,yy + ẅ

b
,xx
)
= q t
[x, y, t], (2-20f)

δuc
0 : 8α2 Mc

xz + N c
xy,y − 4α2 Rc

xy,y + N c
xx,x − 4α2 Rc

xx,x − 2β2üb
0−11üc

0− 2β2üt
0

−12ψ̈
c
0 +β2 f bẅb

,x −β2 f t ẅt
,x = 0, (2-20g)

δvc
0 : 8α2 Mc

yz + N c
yy,y − 4α2 Rc

yy,y + N c
xy,x − 4α2 Rc

xy,x − 2β2v̈
b
0 −11v̈

c
0− 2β2v̈

t
0

+12φ̈
c
0 +β3 f bẅb

,y −β3 f t ẅt
,y = 0, (2-20h)

δwc
0 : 8α2 Mc

zz + Qc
y,y − 4α2 Rc

yz,y + Qc
x,x − 4α2 Rc

xz,x +β7ẅ
b
−11ẅ

c
0− ξ7ẅ

t
= 0, (2-20i)

δφc
0 : − Qc

y + 12Rc
yz −Mc

xy,x +Mc
yy,y − 4α2 Pc

yy,y − 4α2 Pc
xy,x − 2β5v̈

b
0 −12v̈

c
0

+ 2ξ5v̈
t
0+14φ̈

c
0 + f bβ5ẅ

b
,y + f tξ5ẅ

t
,y = 0, (2-20j)

δψc
0 : Qc

x − 12Rc
xz −Mc

xy,y −Mc
xx,x + 4α2 Pc

xx,x + 4α2 Pc
xy,y + 2β5üb

0+12üc
0

+ 2ξ5üt
0+14ψ̈

c
0 − f bβ5ẅ

b
,x + f tξ5ẅ

t
,x = 0, (2-20k)

where α1 = 1/2c, α2 = 1/4c2, α3 = 1/4c3, and

β1 =
4c6 I b

0 + c2 I c
4 − 2cI c

5 + I c
6

4c6 , β2 =
c4 I c

2 − c3 I c
3 − c2 I c

4 + cI c
5

4c6 , β3 =
c2 I c

4 − I c
6

16c6 ,

β4 =
8c7 I b

0 + 4c6 f b I b
0 + 8c6 I b

1 + c2 f b I c
4 − 2c f b I c

5 + f b I c
6

8c6 , β5 =
c3 I c

3 − c2 I c
4 − cI c

5 + I c
6

4c5 ,

β6 =
4c4 I b

0 + c2 I c
2 − 2cI c

3 + I c
4

4c4 , β7 =
c3 I c

1 − c2 I c
2 − cI c

3 + I c
4

2c4 , β8 =
c2 I c

2 − I c
4

4c4 ,

β9 =
16c8 I b

0 + 16c7 f b I b
0 + 4c6 f b2 I b

0 + 32c7 I b
1 + 16c6 f b I b

1 + 16c6 I b
2 + c2 f b2 I c

4 − 2c f b2 I c
5 + f b2 I c

6

16c6 ,

11 =
c4 I c

0 − 2c2 I c
2 + I c

4

c4 , 12 =
c4 I c

1 − 2c2 I c
3 + I c

5

c4 , 14 =
c4 I c

2 − 2c2 I c
4 + I c

6

c4 ,

ξ1 =
4c6 I t

0 = c2 I c
4 + 2cI c

5 + I c
6

4c6 , ξ2 =
c4 I c

2 + c3 I c
3 − c2 I c

4 − cI c
5

4c6 ,

ξ4 =
8c7 I t

0 + 4c6 f t I t
0 − 8c6 I t

1 + c2 f t I c
4 + 2c f t I c

5 + f t I c
6

8c6 ,
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ξ5 =
c4 I c

3 + c3 I c
4 − c2 I c

5 − cI c
6

4c6 , ξ6 =
4c4 I t

0 + c2 I c
2 + 2cI c

3 + I c
4

4c6 , ξ7 =
c3 I c

1 + c2 I c
2 − cI c

3 − I c
4

2c4 ,

ξ9 =
16c8 I t

0 + 16c7 f t I t
0 + 4c6 f t 2 I t

0 − 32c7 I t
1 − 16c6 I t

1 + 16c6 I b
2 + c2 f t 2 I c

4 + 2c f t 2 I c
5 + f t 2 I c

6

16c6 .

The associated boundary conditions at x = 0, a read as

ub
0 = ũb, or Ñ b

xx ,= N b
xx − 2α3 Pc

xx + 2α2 Rc
xx ,

uc
0 = ũc, or Ñ c

xx ,= N c
xx − 4α2 Rc

xx ,

ut
0 = ũt , or Ñ t

xx ,= N t
xx + 2α3 Pc

xx + 2α2 Rc
xx ,

vb
0 = ṽ

b, or Ñ b
yy,= N b

xy − 2α3 Pc
xy + 2α2 Rc

xy,

vc
0 = ṽ

c, or Ñ c
yy,= N c

xy − 4α2 Rc
xy,

vt
0 = ṽ

t , or Ñ t
yy,= N t

xy + 2α3 Pc
xy + 2α2 Rc

xy,

wb
= w̃b, or Q̃x

b
=−α1 Mc

xz − 2α2 f b Mc
xz + 2α2 Rc

xz + 3α3 f b Rc
xz −β4üb

0− f bβ2üc
0

− 2β3 f büt
0−β5ψ̈

c
0 +Mb

xy,y − f bα3 Pc
xy,y +α2 f b Rc

xy,y

+Mb
xx,x −α3 f b Pc

xx,x +α2 f b Rc
xx,x +β9ẅ

b
,x + f b f tβ3ẅ

t
,x ,

wb
,y = w̃

b
,y, or M̃xy

b
=−Mb

xy +α3 f b Pc
xy −α2 f b Rc

xy,

wc
0 = w̃

c, or Q̃x
c
= Qc

x − 4α2 Rc
xz,

ψc
0 = ψ̃

c
0

c
, or M̃xx

c
= Mc

xx − 4α2 Pc
xx ,

φc
0 = φ̃

c
0

c
, or M̃xy

c
=−Mc

xy + 4α2 Pc
xy,

wt
= w̃t , or Q̃x

t
= α1 Mc

xz + 2α2 f t Mc
xz + 2α2 Rc

xz + 3α3 f t Rc
xz + 2 f tβ3üb

0+ f tξ2üc
0

+ ξ4üt
0+ ξ5ψ̈

c
0 +M t

xy,y − f tα3 Pc
xy,y − f tα2 Rc

xy,y

+M t
xx,x − f tα3 Pc

xx,x − f tα2 Rc
xx,x − f b f tβ3ẅ

b
,x + ξ9ẅ

t
,x ,

wt
,y = w̃

t
,y, or M̃xy

t
=−M t

xy +α3 f t Pc
xy +α2 f t Rc

xy,

where the tilde accent denotes the known external boundary values. Similar equations can be written for
y = 0, b.

3. Conclusion

In this paper, a new higher order sandwich panel plate theory (EHSAPT) is presented. This is a two
dimensional extension of the one dimensional theory presented in [Phan et al. 2012]. In this derivation
both the core compressibility effects and the core shear stresses are considered, the theory also allows
for nonzero axial stresses in the core. In order to capture all these effects, eleven generalized coordinates
are defined with five generalized coordinates for the core and three each for the two face sheets. The
equations are derived using a variational approach and associated boundary conditions are presented.
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Thermal stress around an arbitrary shaped nanohole with surface elasticity in a

thermoelectric material
KUN SONG, HAO-PENG SONG, PETER SCHIAVONE and CUN-FA GAO 587

1559-3959(2019)14:4;1-U

JournalofM
echanics

ofM
aterials

and
Structures

2019
V

ol.14,N
o.4


	1. Introduction
	2. Derivation of EHSAPT theory
	2A. Displacements and strains
	2A.1. Displacements of the face sheets
	2A.2. Displacements for the higher-order core
	2A.3. Constitutive relations

	2B. Governing differential equations
	2B.1. Equations of motion


	3. Conclusion
	References
	
	

