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INSTABILITIES IN THE FREE INFLATION OF A
NONLINEAR HYPERELASTIC TOROIDAL MEMBRANE

SAIRAM PAMULAPARTHI VENKATA AND PRASHANT SAXENA

We study an incompressible nonlinear hyperelastic thin-walled toroidal membrane of circular cross-
section subjected to inflation due to a uniform pressure, comparing three elastic constitutive models
(neo-Hookean, Mooney–Rivlin, and Ogden) and different torus shapes. A variational approach is used to
derive the equations of equilibrium and bifurcation. An analysis of the pressure–deformation plots shows
occurrence of the well-known limit point (snap-through) instabilities in the membrane. Calculations are
performed to study the elastic buckling point to predict bifurcation of the solution corresponding to the
loss of symmetry. Tension field theory is employed to study the wrinkling instability that, in this case,
typically occurs near the inner regions of tori with large aspect ratios.

1. Introduction

Nonlinear elastic membranes are widely used to make engineering structures and occur naturally as
biological tissues. Air bags, diaphragm valves, balloons, and soft tissues like skin, arterial walls, and cell
walls are some examples. Large deformation due to inflation in membranes is typically associated with
several instability modes and the behaviour strongly depends on the geometric and material nonlinearities.
Here we study the inflation of an incompressible toroidal membrane under hydrostatic pressure and
the instabilities accompanying large deformation. We present new results and analyses for different
constitutive models, limit points, buckling, and wrinkling instabilities.

Axisymmetric deformations of toroidal membranes have been studied for several decades, for exam-
ple, see the early works [Clark 1950; Jordan 1962; Liepins and Sanders 1963]. By using perturbation
technique, an approximate solution for a thick-walled toroidal membrane made of neo-Hookean material
is given in [Kydoniefs and Spencer 1965] and for a thin-walled toroidal membrane in [Kydoniefs and
Spencer 1967]. Yang and Feng [1970] examined the problems concerning large axisymmetric defor-
mations of nonlinear membranes of Mooney–Rivlin type by employing standard numerical techniques.
Hill [1980] determined analytical solutions for a thick-walled toroidal membrane using the Mooney–
Rivlin model. Asymptotic behaviour of a nonlinear torus was studied in [Bonadies 1987] using an
assumption that overall radius of the torus is large in comparison to the radius of larger circle generating
the torus. Application of finite-element formulation to numerically analyse axisymmetric incompressible
nonlinear elastic membranes of general shape which exhibit finite strains can be found in the works
[Wriggers and Taylor 1990; Gruttmann and Taylor 1992; Başar and Itskov 1998]. Numerical studies
by Holzapfel et al. [1996] and Humphrey [1998] shine light on remarkable success of the finite-element
approach to understand axisymmetric nonlinear behaviour of anisotropic biomembranes and cells under
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finite strain. Shang and Cheng [1991] employed Runge–Kutta numerical method followed by Newton–
Raphson iterative technique to study axisymmetric deformation of hyperelastic toroidal membrane with
finite strains by considering the volume of the gas inside the torus (monotonic function) as a control
parameter instead of internal pressure (nonmonotonic function). Papargyri [1995] examined a pres-
surised compressible thin-walled nonlinear toroidal membrane by comparing the stability of analytical
solution obtained from perturbation approach with the numerical results. Papargyri and Stavrakakis
[2000] applied a numerical scheme to study an incompressible thin-walled nonlinear torus under in-
ternal pressure for different elastic constitutive models. Papargyri [2005] developed a finite-element
method to numerically determine stresses and deformations in both compressible and incompressible
thin-walled toroidal membrane under static inflation using Levenberg–Marquardt algorithm. By varying
the geometric and material parameters, Tamadapu and DasGupta [2012] studied in-plane deformations in
homogeneous inflated elastic toroidal membranes made of neo-Hookean and Mooney–Rivlin materials
using discretisation methods for both isotropic and anisotropic cases. A direct integration method coupled
with Nelder–Mead optimisation technique was formulated to determine numerical solutions for toroidal
membranes in [Tamadapu and DasGupta 2014; Roychowdhury and DasGupta 2015].

Typical deformation characteristics of membranes under inflation involve the phenomenon of limit
point or snap-through instability. A peak pressure is reached for a given deformation beyond which the
membrane inflates rapidly with the slightest increase in pressure. These instabilities have been widely
studied for membranes of various shapes [Benedict et al. 1979; Dreyer et al. 1982; Carroll 1987; Khayat
et al. 1992; Müller and Struchtrup 2002]. Kanner and Horgan [2007] investigated the effect of strain-
hardening on limit point instability in thin-walled spherical and cylindrical shells for different constitutive
models and material parameters. Tamadapu et al. [2013] analysed the effects of geometric and material
parameters on limit point pressure and the associated instabilities during inflation of incompressible
nonlinear elastic membranes of Mooney–Rivlin type, including the torus. Reddy and Saxena [2017;
2018] employed both analytical and numerical schemes to study limit point instability in toroidal and
cylindrical magnetoelastic membranes. Application of bifurcation theory to study buckling problems in
the case of a general elastic deformation is a well-developed research area; see, for example, the classical
works [Koiter 1945; Budiansky 1974].

During the process of stretching, a local structural instability in the form of wrinkling is typically
observed in thin-walled elastic membranes for certain geometries and material parameters [Harold 1970;
Szyszkowski and Glockner 1987; Jenkins et al. 1998]. Due to unequal stretching in the principal di-
rections during inflation, compressive stresses may develop in certain regions of the membrane causing
out of plane displacements. According to the tension field theory [Pipkin 1986], the wrinkles orient
along the direction of the positive principal stress and the wrinkling occurs in the direction of negative
principal stress. The component of principal stress along the direction of wrinkling is considered to
be zero by Pipkin [1986]. Steigmann [1990] extended this theory to nonlinear elastic membranes and
developed analytical functions to obtain information about stretch and the alignment of tension lines
in membranes undergoing wrinkling. It is to be noted that, as no bending stiffness is assigned to the
membrane, the amplitude and wavelength of the wrinkles cannot be computed by using this theory.
Research on the wrinkling of membranes include [Stein and Hedgepeth 1961; Wu 1974; 1978; Wu
and Canfield 1981; Mansfield 1981; Zak 1982; Haughton and McKay 1995; Epstein 1999; Saxena
et al. 2019], to name a few. Axisymmetric deformations of tense and wrinkled zones in thin-walled
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elastic isotropic membranes were found in Li and Steigmann [1995a; 1995b] using relaxed form of
Ogden’s three-terms strain energy model, by Roxburgh [1995] using relaxed form of Mooney–Rivlin
strain energy function, and by Steigmann [2005] using relaxed form of Varga strain energy function.
Wong and Pellegrino [2006] proposed an analytical method to determine the location of wrinkles and
quantify the geometrical patterns such as amplitude and wavelength in linear elastic membranes. Nayyar
et al. [2011] and Barsotti [2015] applied finite-element methods to study wrinkling in thin-walled elastic
membranes. Patil et al. [2015] used a combination of standard and relaxed strain energy density functions
to numerically determine the nonlinear axisymmetric deformations in tensed and wrinkled regions for an
incompressible cylindrical membrane with nonuniform thickness. The numerical analysis was performed
by applying finite difference method coupled with the Newton–Raphson iterative technique.

Here we analyse the influence of geometry and material parameters on axisymmetric deformations,
limit points, bifurcation points, and wrinkling of inflated isotropic hyperelastic toroidal membrane under
a uniform hydrostatic pressure. The two-point boundary value problem obtained from the equilibrium
equations is converted to an initial value problem. Then, for a given deformation of a point on the outer
equator of the membrane, the shooting method is employed to capture the unknown initial conditions
using Nelder–Mead optimisation coupled with direct integration to solve the resulting equilibrium equa-
tions. We apply the classical theory of instability developed by Koiter [1945] and Budiansky [1974] by
considering pressure as the loading parameter to compute the bifurcation point at which the symmetric
fundamental solution becomes unstable. It is observed that bifurcation for torus of neo-Hookean type
typically occurs very close to the limit point for the first mode except for the smallest aspect ratio case
in which it occurs post limit point for the second mode. Location of wrinkled region is computed using
an iterative process based on a kinematic condition that helps in an accurate recomputation of the entire
solution using a coupled form of standard and relaxed energy to determine the membrane deformation.

Remainder of this paper is organised as follows. In Section 2, we formulate the problem statement
along with the necessary kinematical equations for the reference and deformed configurations of the
toroidal membrane. In Section 3, we formulate the governing equations of elastic equilibrium using the
first variation of the total potential energy functional. We introduce three different elastic constitutive
models (Ogden, Mooney–Rivlin, and neo-Hookean) used for computations and also derive the governing
equations corresponding to wrinkling by using relaxed strain energy density. In Section 4, second vari-
ation of the strain-energy functional is derived for the neo-Hookean model to compute critical pressure
for buckling. We discuss the numerical procedure used for computations and present our results and
analysis in Section 5. Finally, we present the conclusions in Section 6.

2. Kinematics of deformation

Consider the reference and deformed configurations of an isotropic incompressible hyperelastic thin-
walled toroidal membrane of a circular cross-section as shown in Figure 1. Smaller radius is Rs and
the radius of revolution is Rb in the reference configuration. The toroidal membrane is inflated by an
internal hydrostatic pressure. Thickness of the undeformed and deformed membranes are denoted by
T and t , respectively related by the stretch ratio λ3 = t/T . The thinness assumption requires T � Rs .
Profile of the midsurface of torus in the deformed configuration can be traced using two functions %̃ and
η̃ as shown in the figure. The torus is symmetric about the Y 1-Y 2 plane, hence we constrain the solution
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Figure 1. Toroidal membrane. Left: reference configuration, before deformation, with a
circular cross-section highlighted. Right: slice of the membrane thickness acted upon by
an internal pressure P . Top middle: Cross-section after general deformation illustrated
through a point Q on Y i -Y 3 plane. The membrane at any instant is symmetric about
Y 1-Y 2 plane and about the Y 3 axis.

space and study only the deformations of the toroidal membrane with respect to the upper half of the
Y 1-Y 2 plane. The calculations and notation below closely follow those in [Reddy and Saxena 2017].

It can be shown that the covariant metric tensors Gi j and g̃i j in the reference and deformed configu-
rations, respectively, are given by

[Gi j ] =

R2
s 0 0

0 R2
b R2 0

0 0 1

 , [g̃i j ] =

 %̃2
θ+η̃

2
θ %̃θ %̃φ+η̃θ η̃φ 0

%̃θ %̃φ+η̃θ η̃φ %̃2
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2
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φ 0
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3

 , (1)

where R = [1+ Rs/Rb cos θ ], and a subscript θ or φ denotes partial differentiation in that variable.
Upon introducing the nondimensional parameters

γ = Rs/Rb, % = %̃/Rb, η = η̃/Rb, (2)

and applying the constraint of incompressibility det(F)= 1, F being the deformation gradient tensor,
we can write the principal stretch ratios λ1, λ2, λ3 as
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3. Energy considerations and governing equations

3.1. Potential energy and equilibrium equations. The total potential energy functional E of the system
of interest is given by

E[%, η] = T
∫
�

W d A−
∫ V0+1V

V0

P̂ dV, (4)

where T is the thickness of undeformed membrane, � represents the midsurface of the undeformed
membrane, V0 represents the enclosed initial volume and 1V measures the change in the enclosed
volume, W (%, %θ , %φ, ηθ , ηφ) is the strain energy per unit undeformed volume, and P̂ is the hydrostatic
pressure. Note that W has no explicit dependence on η since none of the principal stretch ratios depend
on η as seen from (3).

Equation (4) can be rewritten as

E[%, η] = T
∫ 2π

0

∫ 2π

0
W
√

G dθ dφ−
∫ 2π

0

∫ 2π

0
P̂n da · δ y, (5)

where
√

G =
√

det(Gi j ) = R Rs Rb and da =
√

g dθ dφ is the area of a differential element on the
deformed surface with the unit normal n. Note that the strain energy is calculated over the reference
configuration while the pressure work is evaluated over the deformed configuration.

First variation of the total potential energy is given as
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0
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+
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0
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0
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b[[%%θ ]δη− [%ηθ ]δ%] dθ dφ. (6)

From the principle of minimum potential energy, equilibrium states are attained when δE = 0 that results
in the following Euler equations to be satisfied for evaluating the principal solution of deformation:

∂
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√
G
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∂
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∂%φ

√
G
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−
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The fundamental solution is symmetric with respect to rotation about the Y 3 axis resulting in %φ = ηφ = 0.
Upon using this condition, (7a) is simplified to
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∂θ∂%θ
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and (7b) becomes
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T
%%θ = 0. (9)
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The governing equations (8) and (9) are solved using the boundary conditions which are determined
based on compatibility and symmetry of the cross-section of the torus

%θ (0)= %θ (π)= 0, η(0)= η(π)= 0. (10)

3.1.1. Elastic constitutive models. In order to demonstrate mechanical behaviour via computations we
use the three-term Ogden, Mooney–Rivlin, and neo-Hookean hyperelastic models for the elastic strain
energy density W in this work. These are three very commonly used hyperelastic energy density functions
in several computational studies [Holzapfel 2000]. The mathematical expressions and numerical values
of the material parameters are given below.

The strain energy density for the three-term Ogden model is given by

W ∗(λ1, λ2)=

3∑
j=1

µ j

α j

[
λ
α j
1 + λ

α j
2 +

[ 1
λ1λ2

]α j
− 3

]
, (11)

along with the conditions
∑

j µ jα j = 2µ and µ jα j > 0. The nondimensional parameters can be defined
as µ∗1 = µ1/µ, µ∗2 = µ2/µ, µ∗3 = µ2/µ, where µ is the baseline shear modulus.

Upon substituting α1 = 2, α2 =−2, and µ3 = 0 in (11), we arrive at the Mooney–Rivlin strain energy
density given by

W ∗(λ1, λ2)=
1
2µ1
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λ2

1+ λ
2
2+

1
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1λ
2
2
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]
−

1
2µ2
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1
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1
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2
+ λ2

1λ
2
2− 3

]
. (12)

Upon using α1 = 2, µ2 = µ3 = 0 in (11), we arrive at the neo-Hookean strain energy density given by

W ∗(λ1, λ2)=
1
2µ1

[
λ2

1+ λ
2
2+

1
λ2

1λ
2
2
− 3

]
. (13)

Upon substitution of the explicit expressions of each of the above energy density functions, the resulting
governing equations (8) and (9) can be rewritten as a system of first-order ODEs in matrix form as

1 0 0 0
0 S22 0 S24

0 0 1 0
0 S42 0 S44



U ′1
U ′2
U ′3
U ′4

=

U2

V1

U4

V2

 , (14)

where
U1 = %, U2 = %θ = U ′1, U ′2 = %θθ , U3 = η, U4 = ηθ = U ′3, U ′4 = ηθθ , (15)

and the remaining terms S22, S24, S42, S44,V1,V2 for each of the constitutive models are listed in Sections
A.1–A.3 in the Appendix.

3.2. Relaxed strain energy density. During the inflation of elastic membranes, compressive stresses
might develop for certain geometries as the membrane undergoes unequal stretching in the principal
directions. As membranes are no-compression structures, these in-plane negative stresses result in out of
plane deformations causing wrinkling instability. According to the tension field theory, with the absence
of bending stiffness in thin membranes, infinitesimally small and closely spaced wrinkles are formed
due to compressive stresses. We observe the compressive stresses for certain geometries and for specific
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material parameters in our study. Pipkin [1986] proposed the concept of “relaxed strain energy density”
by modifying the elastic constitutive relation based on principal stretches to study the wrinkling behaviour
in linear elastic membranes. This theory is extended to nonlinear elastic membranes by Steigmann [1990].
The relaxed strain energy density WR is represented as

WR =


W (λ1, λ2) if λ2 ≥ w(λ1) and λ1 ≥ w(λ2),

Wt(λ1) if λ2 ≤ w(λ1) and λ1 ≥ 1,
Wt(λ2) if λ1 ≤ w(λ2) and λ2 ≥ 1,
0 if λ1 ≤ 1 and λ2 ≤ 1,

(16)

where the function w(λ) is termed as the “natural width in simple tension” and defined below. For any
fixed value of λ1, the minimum of W with respect to λ2 is attained at

λ2 = λ
−1/2
1 =: w(λ1). (17)

Similarly, for any fixed value of λ2, the minimum of W with respect to λ1 is attained at

λ1 = λ
−1/2
2 = w(λ2). (18)

As compressive stresses develop in the region λ1 ≥ 1 and λ2 ≤ w(λ1), we can replace the original strain
energy density function W by Wt(λ1) as mentioned in (16).

The terms S22, S24, S42, S44,V1,V2 in the governing equation (14) for computations in the wrinkled
region should be modified according to the above-stated conditions and are given in Appendix A.4.

4. Second variation of total potential energy functional

In elastic solids, we often observe critical (buckling) points for certain load values at which the equilib-
rium path branches out into multiple stable and/or unstable paths. These critical points are of considerable
interest as the postbuckling response of the system is usually different from the initial response (principal
solution). Considering the hydrostatic pressure as a loading parameter, we adopt the procedure proposed
in [Budiansky 1974] to determine the critical pressure in our case of hyperelastic membrane beyond
which the symmetric fundamental solution is no longer the energy minimiser. To reduce the complexity
of long mathematical expressions, we study the critical pressure condition only for the neo-Hookean
material model.

4.1. Critical pressure. The fundamental solution for % and η is symmetric with respect to the Y 3 axis
and therefore has no dependence on φ. We define critical pressure as the point where the solution
loses this symmetry while retaining the symmetry with respect to the Y 1-Y 2 plane. Hence, we consider
the bifurcation branches that include perturbations in the φ direction. The following expansions are
considered for the variables % and η:

%(θ, φ)= %0(θ)+ %̂(φ)= %0(θ)+ϒ%1(φ)+ · · ·

η(θ, φ)= η0(θ)+ η̂(φ)= η0(θ)+ϒη1(φ)+ · · ·

ϒ = 〈%̂, %1〉 = 〈η̂, η1〉, 〈%i , % j 〉 = 〈ηi , η j 〉 =

{
1 if i = j,
0 otherwise, (19)
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where the scalar parameter ϒ � 1 measures the amount of bifurcation mode, 〈•〉 represents a suitable
inner product, and %1 and η1 represent the first bifurcation mode with %0 and η0 being the fundamental
states.

Bifurcation of the solution occurs when the second variation of the potential energy vanishes. For the
current scenario, it is given as

δ2 E = E ′′c U1δU = [E ′′cα1
+ E ′′cα2

− E ′′cα31
− E ′′cα32

+ E ′′cα33
+ E ′′cα34

]U1δU

+ [−E ′′cα35
+ E ′′cα36

+ E ′′cP
]U1δU = 0, (20)

where we have defined several terms as below

E ′′cα1
U1δU = 0, (21)

E ′′cα2
U1δU = 2µ̄T

∫ 2π

0

∫ 2π

0

%1φδ%φ + η1φδηφ + %1δ%

R2

√
G dθ dφ, (22)
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U1δU = 2µ̄T γ 2
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0

∫ 2π

0

EaaEab

E2
ac

√
G R2 dθ dφ, (23)

E ′′cα32
U1δU = 2µ̄T γ 2
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0

∫ 2π

0

[%θηφ − %φηθ ][η1φδ%θ − %1φδηθ ]

E2
ac

√
G R2 dθ dφ, (24)
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U1δU = 8µ̄T γ 2
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0
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0

[%θηφ − %φηθ ]
2EaaEab

E3
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√
G R2 dθ dφ, (25)
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U1δU = 8µ̄T γ 2
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0
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0

[%θηφ − %φηθ ]EadEab

E3
ac

√
G R2 dθ dφ, (26)

E ′′cα35
U1δU = 2µ̄T γ 2
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0
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0

%1[%
2
θ + η

2
θ ]δ%+ 2%%1[%θδ%θ + ηθδηθ ]

E2
ac

√
G R2 dθ dφ, (27)

E ′′cα36
U1δU = 8µ̄T γ 2

∫ 2π

0

∫ 2π

0

%%1[%
2
θ + η

2
θ ][[%θηφ − %φηθ ]Eaa + Ead ]

E3
ac

√
G R2 dθ dφ, (28)

E ′′cP
U1δU =

∫ 2π

0

∫ 2π

0
P̂ R3

b[%θη1δ%+ %η1δ%θ − ηθ%1δ%− %%1δηθ ] dθ dφ, (29)

with
Eaa = ηφδ%θ + %θδηφ − ηθδ%φ − %φδηθ , Eab = %θη1φ − ηθ%1φ , µ̄= 1

2µ1,

Eac = [%θηφ − %φηθ ]
2
+ %2
[%2
θ + η

2
θ ], Ead = %[%

2
θ + η

2
θ ]δ%+ %

2
[%θδ%θ + ηθδηθ ]. (30)

Upon separating the coefficients of δ% and δη, we obtain the following governing equations for the
bifurcated mode

Kaa%1+Kbb%1φφ +Kccη1φφ = 0, (31)

and

Laa%1+Lbb%1φφ +Lccη1φφ = 0, (32)
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Three-term Ogden model [1972]:
µ∗1 = 1.4910, µ∗2 = 0.0029, µ∗3 =−0.0236,
α1 = 1.3, α2 = 5.0, α3 =−2.0,

Mooney–Rivlin model: M=−
µ2

µ1
= 0.1 and 0.3.

Table 1. Nondimensional material parameters used for numerical computations.

where the bifurcation pressure is denoted as P̂c and

Kaa = Rγ %4N 3
+ 3R5γ 3N 2

+ 6%2
θ R5γ 3N − 2%%θθ R5γ 3N + 6%%θ R4γ 4N sin θ

+ 8%%θ [%θ%θθ + ηθηθθ ]R5γ 3
−

1
2 Pcηθ R2%4N 3,

Kbb =−%
4γ RN 3

+ η2
θ R5γ 3N , Kcc =−%θηθ R5γ 3N ,

N = %2
θ + η

2
θ , Pc =

P̂c Rb

µ̄T
,

Laa = 6%θηθ R5γ 3N−2%ηθθ R5γ 3N+6%ηθ R4γ 4N sin θ+8%ηθ [%θ%θθ+ηθηθθ ]R5γ 3
+

1
2 Pc%

4%θ R2N 3,

Lbb =−%θηθ R5Nγ 3, Lcc =−γ R%4N 3
+ %2

θ R5γ 3N . (33)

Upon considering the following ansatz for %1 and η1:

%1 = %
0
1 exp(i nφ), η1 = η

0
1 exp(i nφ), where i =

√
−1. (34)

It can be shown that a nontrivial solution for the above system of equation exists when

Rres = [[KccLaa −KaaLcc] + n2
[KbbLcc−KccLbb]] = 0. (35)

The residue Rres defined above should be put to zero computationally in order to calculate the critical
pressure value.

5. Numerical procedure, results, and discussion

Computations are performed for numerical values of the material parameters presented in Table 1.

5.1. Calculation of fundamental solution. The governing equations (8) and (9) for fundamental solu-
tion are subjected to boundary conditions defined by (10). They are numerically solved for three elastic
constitutive models (Ogden, Mooney–Rivlin, and neo-Hookean) by following a method used for similar
problems in [Tamadapu and DasGupta 2014; Reddy and Saxena 2017]. The two point boundary value
problem is converted into an initial value problem with two unknown parameters (%(0), ηθ (0)) at a
particular nondimensional pressure P . For a given value of location of point on the outer equator of the
membrane (%(0) > 1+ γ ), we start with an initial guess for the pair (ηθ (0), P), and employ shooting
method to obtain the two boundary values %θ (π) and η(π) for the point on the inner edge. Ideally %θ (π)
and η(π) should be zero. The desired optimisation pair (ηθ (0), P) which reduces the value of the cost
function, [%θ (π)2 + η(π)2]1/2, to a sufficiently small quantity (< O(10−12)) is obtained by using the
Nelder–Mead simplex optimisation technique of two variables. This optimisation method is performed
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Figure 2. Deformation profiles of the membrane subject to inflation using Ogden energy
density function for aspect ratios γ = 0.2 and γ = 0.7. The nondimensional coordinates
% and η are introduced in (2). Due to symmetry, only the upper half is plotted.

using fminsearchbnd function with lower bounds on the guess pair ({ηθ (0), P}> 0) in Matlab R2017b.
As we capture the desired pair, we use a strong mass-state dependent ode45 solver in Matlab R2017b
to solve the set of equilibrium equations in order to obtain the values of %, %θ , η, ηθ over the domain
θ ∈ [0, π] which is finely divided into 2000 intervals.

5.1.1. Fundamental solution, deformation profiles, and validation. We plot the inflation profiles of the
toroidal membrane for the Ogden model in Figure 2 for the aspect ratios γ = 0.2 and γ = 0.7. Similar
profiles are obtained for all the models, aspect ratios, and pressure values but not shown here for brevity.
It can be seen from Figure 2, left, that for the small aspect ratio (γ = 0.2), both the inner and the outer
ends move outwards while for higher aspect ratio (γ = 0.7) and Figure 2, right, inner end remains at
almost the same position while the outer end moves outwards upon the increase of pressure.

Plots of %(π) (inner end) vs. %(0) (outer end) for all the three material models and several aspect
ratios {γ ∈ (0.2, 0.7) for Ogden and Mooney–Rivlin, γ ∈ (0.2, 0.8) for neo-Hookean} are presented in
Figure 3. For the Ogden and neo-Hookean models, it is clearly seen that upon the increase of inflation
(moving rightwards on the %(0) axis), the inner end first moves slightly inwards and then moves outwards
for almost all values of γ . Only for large aspect ratios (γ = 0.7 for Ogden and γ = 0.7, 0.8 for neo-
Hookean), the inner end undergoes very small changes in its position. This is also expected physically
since tori with large γ have very little room for movement of the inner end. The behaviour is different
for the two Mooney–Rivlin material models as shown in Figure 3, bottom. For the cases {γ = 0.2 to 0.5,
M= 0.1} and {γ = 0.2, M= 0.3}, with an increase in pressure the inner edge moves outwards before
moving inwards again for higher inflation. For all other cases, the inner edge moves further inwards
monotonically upon increase of pressure.

These considerable differences in behaviours of constitutive models demonstrate the importance of
selecting the right model for the material at hand. For example, behaviour of natural rubbers can usually
be explained by the three-term Ogden model [1972] while that of certain soft biological tissues can be
simulated by the neo-Hookean model [Horný et al. 2006]. Our results for the Mooney–Rivlin model
match those presented in [Tamadapu and DasGupta 2014] for M= 0.3, γ = 0.2 and 0.5 cases, and those
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Figure 3. Movement of end points for different hyperelastic constitutive models during
inflation of the membrane for various aspect ratios γ . The end %(0) represents the
inflation as explained in Section 5.1 and %(π) is the inner end of the torus profile.

presented in [Reddy and Saxena 2017] for M= 0.1, γ = 0.2 and 0.5; thus providing a validation of the
formulation and the computations.

5.1.2. Limit point and Cauchy stress. We compute the pressure-deformation and pressure-stress charac-
teristics for all the three material models for the aspect ratios lying in the range γ ∈ (0.2, 0.8). Variation
of nondimensional pressure (P) with the relative increase in volume (1V/V ) of torus for three repre-
sentative aspect ratios γ = 0.2, 0.4, and 0.6 is shown in Figure 4. In each of these curves we observe
the classical limit point as the point at which pressure stops increasing monotonically. In a pressure
controlled experiment, this generally results in a snap-through instability causing uncontrolled increase
in membrane’s volume likely leading to failure. However, the states beyond limit point can be reached
in a volume controlled experiment.

It is evident from these curves that tori with small aspect ratios γ can sustain much higher pressure
values for the same relative increase in volume. This effect is also visible in the limit point pressure Plim

plotted in Figure 5. Higher values of γ result in lower values of corresponding Plim. We also note that
with comparable values of shear modulus µ used in the computations, Ogden material has the smallest
value of Plim followed by neo-Hookean and Mooney–Rivlin materials, respectively. We note that upon
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Figure 4. Pressure vs. volume curves for all the three material models for three different
aspect ratios γ = 0.2, 0.4, 0.6.

increasing volume beyond the limit point, there is a consistent decline in pressure for the neo-Hookean
model whereas opposite happens for Mooney–Rivlin (M= 0.3, γ = 0.6) case where pressure increases
monotonically. In all the other cases (Ogden model, Mooney–Rivlin (M = 0.1) and Mooney–Rivlin
(M= 0.3, γ = 0.2, 0.4)) pressure rises with volume after an initial fall at the limit point.

We also study the variation of Cauchy stresses in the membrane with inflation as computed using (43),
(49), and (53). The behaviour is almost similar for all the three models and we plot a few representative
results for Ogden model in Figure 6. Variation of the principal stresses σθθ and σφφ at the inner equator
(θ = π) with the internal pressure is shown. Typically the magnitude of principal stresses along the
minor circumference (σθθ ) is larger than that of the principal stresses along the major circumference
(σφφ). For most cases, the stresses increase monotonically with inflation, the exception being σφφ(θ = π)
at γ = {0.6, 0.7}. Beyond the limit point, the stresses increase rapidly upon slight changes in pressure,
likely leading to failure.

We further observe in Figure 6 that σφφ attains a negative value for certain values of pressure for torus
with γ = 0.7. Similar observations are made for the neo-Hookean model (γ = 0.8) and Mooney–Rivlin
model ({M= 0.1; γ = 0.4, 0.5, 0.6, 0.7} and {M= 0.3; γ = 0.2, 0.3, 0.4, 0.5, 0.6}) but those results are
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Figure 6. Variation of the principal stresses σθθ and σφφ with pressure at the inner
equator (θ = π) of the torus for the Ogden material model.

not plotted here for the sake of brevity. Negative values of the principal stress indicate the occurrence of
wrinkling instability and this is further explored in Section 5.3.

5.2. Calculation of critical pressure. The fundamental solution obtained for the variables %θ and ηθ is
used in calculating second order derivatives of % and η with respect to the variable θ . The values of %θθ
and ηθθ in each interval are calculated by using forward difference method, i.e., %θθ i = (%θi+1 − %θi )/1θ

where 1θ = π/2000 and i = 1, 2, . . . , 2000. The variables (%, η) and their derivatives are calculated at
each θi for all the values of pressure during inflation process of a membrane with an aspect ratio γ . These
values are substituted in (35) and by changing the values of the mode number n from 1 to 5, we calculate
Rres at each θi for all the values of pressure and for a given aspect ratio γ . We repeat this process for all the
values of γ ∈ (0.2, 0.8) considered in our study for the neo-Hookean material. Zeros of Rres are searched
by computing the value of pressure at which it changes sign. Only a change of order (> O(10−4)) in
the residual value is considered to be admissible to avoid numerical errors; if the value of Rres does not
fall in the desired range we do not assign any critical value of pressure for that case. This procedure is
repeated for the entire domain θ ∈ [0, π] and the corresponding critical pressure for the point located
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Figure 7. First critical points on the pressure-volume curves for the neo-Hookean model
are marked with dots. For γ = 0.3, critical point is achieved for n = 2 and occurs
significantly after the limit point, while for all other cases it is achieved at n = 1 very
close to the limit point.

at θi on the membrane is noted. The lowest of all the critical pressure values occurring at or before the
limit point for a given aspect ratio is termed as critical point pressure for that membrane under inflation.

Based on our computations, we obtain critical (bifurcation) points for the cases {n = 1, γ = 0.4, 0.5,
0.6, 0.7, 0.8} and {n = 2, γ = 0.3}. All other cases lead to no solution of (35). The critical point for
γ = 0.3 occurs well after the limit point and although this configuration is difficult to access in a pressure
controlled experiment, it can be achieved in a volume or mass controlled experiment [Wang et al. 2017].
For all other γ values, the critical points are very close (albeit not equal) to the limit point. These points
are depicted graphically in Figure 7.

5.3. Computation of wrinkling instability. Wrinkling is achieved when the in-plane stress in any direc-
tion in the membrane reaches zero. In the negative-stress regions, we use the relaxed form of the strain
energy density and the subsequently modified equations in Section 3.2 to recompute the solutions with
a method similar to that employed in Section 5.1.

We start with an initial guess value for the location of onset of wrinkling region θwr taken to be
the starting location of the region σφφ < 0. We employ standard strain energy density in the region
0 ≤ θ ≤ θwr to calculate the variables %, %θ , η, and ηθ at θwr and use these as the initial conditions to
determine the solution in the region θwr ≤ θ ≤ π employing the relaxed strain energy density function.
Next, we minimise the cost function [%θ (π)2+ η(π)2]1/2 to a sufficiently small quantity (<O(10−12))

by using the Nelder–Mead simplex optimisation technique of two variables (ηθ (0), P) and determine
the variables over the domain θ ∈ [0, π]. Then, we calculate λ2

2λ1 − 1 obtained at θwr to check if the
value is in order of (< O(10−10)) and this process is repeated by varying θwr in the range

( 1
2π, π

)
till

we get the desired solution set (λ1, λ2) at θwr, since we observe that both the principal stretch ratio
values are greater than one for the points on the boundary in the range 0 ≤ θ ≤ 1

2π . The coordinate
θ = θwr at which λ2

2λ1 − 1 < O(10−10) represents the starting location of wrinkles on the membrane.
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Figure 8. Membrane profiles upon wrinkling computed using relaxed strain energy den-
sity. Left: Ogden constitutive model (inflating pressure = 1.46, %(0) = 2.20). Right:
Mooney–Rivlin model (inflating pressure= 7.62, %(0)= 6.05).

This numerical scheme is implemented in Matlab R2017b. We note that this scheme is an improvement
over the traditional case where θwr would simply be taken as the first point where σφφ < 0 based on
computations made using the standard energy density function.

Wrinkling analysis is carried out for Ogden material with aspect ratio γ = 0.7, for Mooney–Rivlin
material with γ = 0.4, M= 0.3, and for neo-Hookean material with aspect ratio γ = 0.8 after observing
negative σφφ stress values as discussed in Section 5.1.2. We observe that wrinkling occurs only in a small
region near the inner equator on the membrane for all the above-mentioned cases whenever σφφ < 0. Thus,
according to the tension field theory, wrinkling happens along the φ direction while the wrinkle lines
ought to appear along the θ direction. Membrane profiles upon wrinkling for two cases of Ogden and
Mooney–Rivlin models are plotted in Figure 8.

Once the onset of wrinkling is confirmed by observing negative circumferential stress values, we
recompute the entire solution using the combination of relaxed and total strain energy densities using
the numerical scheme described earlier in this section. We observe that this updated solution (membrane
profile and location of wrinkling) is different from the one in which θwr is obtained using the standard
strain energy. Values obtained by both the solutions and relative errors are presented in Table 2. Here
θ = θwr is the starting point of wrinkles in the reference configuration. Maximum error in the calculations
of θwr is 0.77% or 1.3◦ for the Mooney–Rivlin material at the pressure P = 7.62. Although the error
between these two approaches in this case of toroidal geometry is small, the difference in solutions is
still noteworthy and might be more relevant in other constitutive models or membrane geometry.

6. Conclusions

In this work we have presented new analysis and results in the study of free inflation of a nonlinear hyper-
elastic toroidal membrane. To analyse the deformation behaviour and instabilities in free inflation of a
torus under a hydrostatic pressure, toroidal membranes made of three materials (Ogden, Mooney–Rivlin,
and neo-Hookean) are considered and a comparative study is conducted amongst them. We observe
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model %(0) P
standard energy

density
relaxed energy

density error %

Ogden
(γ = 0.7)

2.01 1.41 173.97◦ 172.98◦ 0.57
2.20 1.46 173.07◦ 171.81◦ 0.73

Mooney–Rivlin
(γ = 0.4,M= 0.3)

5.55 7.23 176.13◦ 175.41◦ 0.41
6.05 7.62 174.42◦ 173.07◦ 0.77

neo-Hookean
(γ = 0.8)

2.21 1.84 175.41◦ 174.60◦ 0.46
2.31 1.87 175.41◦ 174.60◦ 0.46

Table 2. Error in the prediction of the parameter θwr by standard strain energy density function.

strain-hardening behaviour in Ogden and Mooney–Rivlin material models after the limit point pressure.
For the neo-Hookean model bifurcation of solution occurs well post limit point for γ = 0.3 corresponding
to the second mode, and very close to the limit point for all other aspect ratios for the first mode.

We notice that limit point pressure decreases with increase in aspect ratio and increases with increase
in stiffness of the membrane. We also notice that for Mooney–Rivlin model with higher aspect ratio and
a stiffer material, nondimensional pressure increases monotonically with inflation. In the compressive
stress regions, we use the concept of relaxed strain energy density to study wrinkling behaviour and we
observe differences between the wrinkled configuration predicted by standard strain energy density and
its relaxed form.

Based on our results on critical point bifurcation and wrinkling, it can be claimed that the predicted
behaviour of membrane in Figure 4 and Figure 6 for large volume cases is most likely inaccurate. The
fundamental solution does not hold for the postinstability regime and a recalculation of configuration/
stress/ pressure needs to be performed. This postbuckling analysis to understand membrane’s behaviour
will be undertaken as future work.

Appendix: Matrix coefficients of governing equations for various constitutive models

A.1. Coefficients for Ogden model. For Ogden constitutive model, the governing equation (8) gives

3∑
j=1

µ j

λ
α j+3
1 λ

α j+1
2 γ 2α j+2 R2α j+2[%2

θ + η
2
θ ]

3/2
[ Â j%θθ + B̂ jηθθ + Ĉ j ] +

[
P̂ Rb

T

]
%ηθ = 0, (36)

while the governing equation (9) results in

3∑
j=1

µ j

λ
α j+3
1 λ

α j+1
2 γ 2α j+2 R2α j+2[%2

θ + η
2
θ ]

3/2
[D̂ j%θθ + Ê jηθθ + F̂ j ] −

[
P̂ Rb

T

]
%%θ = 0, (37)

where

Â j =
[
[α j − 1][%2

θ + η
2
θ ]
α j%α j Rα j + [α j + 1]γ 2α j R2α j

]
%2
θ [%

2
θ + η

2
θ ]%R2

+ [[%2
θ + η

2
θ ]
α j%α j Rα j − γ 2α j R2α j ]η2

θ [%
2
θ + η

2
θ ]%R2,
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B̂ j =
[
[α j − 1][%2

θ + η
2
θ ]
α j%α j Rα j + [α j + 1]γ 2α j R2α j
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2
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and
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The components of matrices in (14) for the Ogden energy density are given by
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[V3
]U2[U2

2 +U2
4 ]

2]λα1+α3+6
1 λ

α1+α3+2
2 γ 2α1+2α3+4 R2α1+2α3+4
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+µ∗3
[
[V6
]U1U2[U2

2 +U2
4 ]

2γ R sin θ + [V9
][U2

2 +U2
4 ]

3 R2]λα1+α2+6
1 λ

α1+α2+2
2 γ 2α1+2α2+4 R2α1+2α2+4

−µ∗3
[
[V5
]U2[U2

2 +U2
4 ]

2]λα1+α2+6
1 λ

α1+α2+2
2 γ 2α1+2α2+4 R2α1+2α2+4

−
1
2µ
∗

1 PU1U4[U2
2 +U2

4 ]
3/2λ

α1+α2+α3+9
1 λ

α1+α2+α3+3
2 γ 2α1+2α2+2α3+6 R2α1+2α2+2α3+6,

V2 = µ
∗

1
[
[V2
]U1U4[U2

2 +U2
4 ]

2γ R sin θ
]
λ
α2+α3+6
1 λ

α2+α3+2
2 γ 2α2+2α3+4 R2α2+2α3+4

−µ∗1
[
[V1
]U4[U2

2 +U2
4 ]

2]λα2+α3+6
1 λ

α2+α3+2
2 γ 2α2+2α3+4 R2α2+2α3+4

+µ∗2
[
[V4
]U1U4[U2

2 +U2
4 ]

2γ R sin θ
]
λ
α1+α3+6
1 λ

α1+α3+2
2 γ 2α1+2α3+4 R2α1+2α3+4

−µ∗2
[
[V3
]U4[U2

2 +U2
4 ]

2]λα1+α3+6
1 λ

α1+α3+2
2 γ 2α1+2α3+4 R2α1+2α3+4

+µ∗3
[
[V6
]U1U4[U2

2 +U2
4 ]

2γ R sin θ
]
λ
α1+α2+6
1 λ

α1+α2+2
2 γ 2α1+2α2+4 R2α1+2α2+4

−µ∗3
[
[V5
]U4[U2

2 +U2
4 ]

2]λα1+α2+6
1 λ

α1+α2+2
2 γ 2α1+2α2+4 R2α1+2α2+4

+
1
2µ
∗

1 PU1U2[U2
2 +U2

4 ]
3/2λ

α1+α2+α3+9
1 λ

α1+α2+α3+3
2 γ 2α1+2α2+2α3+6 R2α1+2α2+2α3+6, (41)

along with

S1
= [α1− 1][U2

2 +U2
4 ]
α1Uα1

1 Rα1 + [α1+ 1]γ 2α1 R2α1, S2
= [U2

2 +U2
4 ]
α1Uα1

1 Rα1 − γ 2α1 R2α1,

S3
= [α2− 1][U2

2 +U2
4 ]
α2Uα2

1 Rα2 + [α2+ 1]γ 2α2 R2α2, S4
= [U2

2 +U2
4 ]
α2Uα2

1 Rα2 − γ 2α2 R2α2,

S5
= [α3− 1][U2

2 +U2
4 ]
α3Uα3

1 Rα3 + [α3+ 1]γ 2α3 R2α3, S6
= [U2

2 +U2
4 ]
α3Uα3

1 Rα3 − γ 2α3 R2α3,

V1
= α1[U2 R+U1γ sin θ ]γ 2α1 R2α1+1, V2

= [U2
2 +U2

4 ]
α1Uα1

1 Rα1 − γ 2α1 R2α1,

V3
= α2[U2 R+U1γ sin θ ]γ 2α2 R2α2+1, V4

= [U2
2 +U2

4 ]
α2Uα2

1 Rα2 − γ 2α2 R2α2,

V5
= α3[U2 R+U1γ sin θ ]γ 2α3 R2α3+1, V6

= [U2
2 +U2

4 ]
α3Uα3

1 Rα3 − γ 2α3 R2α3,

V7
= [U2

2 +U2
4 ]
α1/2U2α1

1 γ α1 − γ 2α1 R2α1, V8
= [U2

2 +U2
4 ]
α2/2U2α2

1 γ α2 − γ 2α2 R2α2,

V9
= [U2

2 +U2
4 ]
α3/2U2α3

1 γ α3 − γ 2α3 R2α3,

P =
2P̂ Rb

µ1T
. (42)

Nondimensional principal Cauchy stresses in the θ - and φ-directions are computed as

σθθ =

[
λ3α1

µ∗1

][ 3∑
j=1

µ∗jλ
α j
1 −

3∑
j=1

µ∗jλ
α j
3

]
, σφφ =

[
λ3α1

µ∗1

][ 3∑
j=1

µ∗jλ
α j
2 −

3∑
j=1

µ∗jλ
α j
3

]
. (43)

A.2. Coefficients for Mooney–Rivlin model. The components of matrices in (14) for the Mooney–
Rivlin energy density are given by

S22 =
[
U1 R2
[U2

2 +U2
4 ]
[
[S1

m]U
2
2 + [S

2
m]U

2
4
]]
λ4

1

−M
[
U1 R2
[U2

2 +U2
4 ]
[
[S3

m]U
2
2 + [S

4
m]U

2
4
]]
λ8

1λ
4
2γ

8 R8,

S24 =
[
U1 R2
[U2

2 +U2
4 ]
[
[S1

m]U2U4− [S2
m]U2U4

]]
λ4

1

−M
[
U1 R2
[U2

2 +U2
4 ]
[
[S3

m]U2U4− [S4
m]U2U4

]]
λ8

1λ
4
2γ

8 R8,
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S42 = S24,S44 =
[
U1 R2
[U2

2 +U2
4 ]
[
[S1

m]U
2
4 + [S

2
m]U

2
2
]]
λ4

1

−M
[
U1 R2
[U2

2 +U2
4 ]
[
[S3

m]U
2
4 + [S

4
m]U

2
2
]]
λ8

1λ
4
2γ

8 R8, (44)

and

V1 =
[
[V2

m]U1U2[U2
2 +U2

4 ]
2γ R sin θ + [V5

m][U
2
2 +U2

4 ]
3 R2]λ4

1−
[
[V1

m]U2[U2
2 +U2

4 ]
2]λ4

1

−M
[
[V4

m]U1U2[U2
2 +U2

4 ]
2γ R sin θ + [V6

m][U
2
2 +U2

4 ]
3 R2]λ8

1λ
4
2γ

8 R8

+M
[
[V3

m]U2[U2
2 +U2

4 ]
2]λ8

1λ
4
2γ

8 R8
−

1
2 PU1U4[U2

2 +U2
4 ]

3/2λ9
1λ

3
2γ

6 R6,

V2 =
[
[V2

m]U1U4[U2
2 +U2

4 ]
2γ R sin θ

]
λ4

1−
[
[V1

m]U4[U2
2 +U2

4 ]
2]λ4

1

−M
[
[V4

m]U1U4[U2
2 +U2

4 ]
2γ R sin θ

]
λ8

1λ
4
2γ

8 R8

+M
[
[V3

m]U4[U2
2 +U2

4 ]
2]λ8

1λ
4
2γ

8 R8
+

1
2 PU1U2[U2

2 +U2
4 ]

3/2λ9
1λ

3
2γ

6 R6, (45)

along with

S1
m = [U

2
2 +U2

4 ]
2U2

1 R2
+ 3γ 4 R4, S2

m = [U
2
2 +U2

4 ]
2U2

1 R2
− γ 4 R4,

S3
m =−3[U2

2 +U2
4 ]
−2U−2

1 R−2
− γ−4 R−4, S4

m = [U
2
2 +U2

4 ]
−2U−2

1 R−2
− γ−4 R−4, (46)

V1
m = 2[U2 R+U1γ sin θ ]γ 4 R5, V2

m = [U
2
2 +U2

4 ]
2U2

1 R2
− γ 4 R4,

V3
m =−2[U2 R+U1γ sin θ ]γ−4 R−3, V4

m = [U
2
2 +U2

4 ]
−2U−2

1 R−2
− γ−4 R−4,

V5
m = [U

2
2 +U2

4 ]U
4
1γ

2
− γ 4 R4, V6

m = [U
2
2 +U2

4 ]
−1U−4

1 γ−2
− γ−4 R−4, (47)

P =
P̂ Rb

1
2µ1 T

, M=−
µ2

µ1
. (48)

Nondimensional principal Cauchy stresses in the θ - and φ-directions are computed as

σθθ = 2
[
λ1

λ2
−

1
λ3

1λ
3
2

]
[1+Mλ2

2], σφφ = 2
[
λ2

λ1
−

1
λ3

1λ
3
2

]
[1+Mλ2

1]. (49)

A.3. Coefficients for neo-Hookean model. The components of matrices in (14) for the neo-Hookean
energy density are given by

S22 =
[
U1 R2
[U2

2 +U2
4 ][[S

1
n ]U

2
2 + [S

2
n ]U

2
4 ]
]
λ6

1λ
2
2γ

4 R4,

S24 =
[
U1 R2
[U2

2 +U2
4 ][[S

1
n ]U2U4− [S2

n ]U2U4]
]
λ6

1λ
2
2γ

4 R4,

S42 = S24,

S44 =
[
U1 R2
[U2

2 +U2
4 ][[S

1
n ]U

2
4 + [S

2
n ]U

2
2 ]
]
λ6

1λ
2
2γ

4 R4, (50)

and

V1 =
[
[V2

n ]U1U2[U2
2 +U2

4 ]
2γ R sin θ + [V3

n ][U
2
2 +U2

4 ]
3 R2]λ6

1λ
2
2γ

4 R4

−
[
[V1

n ]U2[U2
2 +U2

4 ]
2]λ6

1λ
2
2γ

4 R4
−

1
2 PU1U4[U2

2 +U2
4 ]

3/2λ11
1 λ

5
2γ

10 R10,

V2 =
[
[V2

n ]U1U4[U2
2 +U2

4 ]
2γ R sin θ

]
λ6

1λ
2
2γ

4 R4
−
[
[V1

n ]U4[U2
2 +U2

4 ]
2]λ6

1λ
2
2γ

4 R4

+
1
2 PU1U2[U2

2 +U2
4 ]

3/2λ11
1 λ

5
2γ

10 R10, (51)
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along with

S1
n = [U

2
2 +U2

4 ]
2U2

1 R2
+ 3γ 4 R4, S2

n = [U
2
2 +U2

4 ]
2U2

1 R2
− γ 4 R4,

V1
n = 2[U2 R+U1γ sin θ ]γ 4 R5, V2

n = [U
2
2 +U2

4 ]
2U2

1 R2
−γ 4 R4, V3

n = [U
2
2 +U2

4 ]U
4
1γ

2
−γ 4 R4,

P =
P̂ Rb

1
2µ1T

. (52)

Nondimensional principal Cauchy stresses in the θ - and φ-directions are computed as

σθθ = 2
[
λ1

λ2
−

1
λ3

1λ
3
2

]
, σφφ = 2

[
λ2

λ1
−

1
λ3

1λ
3
2

]
. (53)

A.4. Matrix coefficients for wrinkled region. In the wrinkled region, using the relaxed energy density
obtained by substituting λ2 = 1/

√
λ1, we find that the terms S22, S24, S42, S44, V1, V2 for each of the

material models discussed above are modified as below.
For Ogden energy density, we get

S22 = µ
∗

1 R
[
%2
θ

[
[α1− 1]λ3α1/2

1 +
[ 1

2α1+ 1
]]
+ η2

θ [λ
3α1/2
1 − 1]

]
λ
(α2+α3)/2+8
1

+µ∗2 R
[
%2
θ

[
[α2− 1]λ3α2/2

1 +
[1

2α2+ 1
]]
+ η2

θ [λ
3α2/2
1 − 1]

]
λ
(α1+α3)/2+8
1

+µ∗3 R
[
%2
θ

[
[α3− 1]λ3α3/2

1 +
[ 1

2α3+ 1
]]
+ η2

θ [λ
3α3/2
1 − 1]

]
λ
(α1+α2)/2+8
1 ,

S24 = µ
∗

1 R
[
%θηθ

[
[α1− 2]λ3α1/2

1 +
[ 1

2α1+ 2
]]]
λ
(α2+α3)/2+8
1

+µ∗2 R
[
%θηθ

[
[α2− 2]λ3α2/2

1 +
[ 1

2α2+ 2
]]]
λ
(α1+α3)/2+8
1

+µ∗3 R
[
%θηθ

[
[α3− 2]λ3α3/2

1 +
[ 1

2α3+ 2
]]]
λ
(α1+α2)/2+8
1 ,

S42 = S24,

S44 = µ
∗

1 R
[
η2
θ

[
[α1− 1]λ3α1/2

1 +
[ 1

2α1+ 1
]]
+ %2

θ [λ
3α1/2
1 − 1]

]
λ
(α2+α3)/2+8
1

+µ∗2 R
[
η2
θ

[
[α2− 1]λ3α2/2

1 +
[ 1

2α2+ 1
]]
+ %2

θ [λ
3α2/2
1 − 1]

]
λ
(α1+α3)/2+8
1

+µ∗3 R
[
η2
θ

[
[α3− 1]λ3α3/2

1 +
[ 1

2α3+ 1
]]
+ %2

θ [λ
3α3/2
1 − 1]

]
λ
(α1+α2)/2+8
1 , (54)

along with

V1 =
[
µ∗1[λ

3α1/2
1 −1]λ(α2+α3)/2+10

1 +µ∗2[λ
3α2/2
1 −1]λ(α1+α3)/2+10

1

+µ∗3[λ
3α3/2
1 −1]λ(α1+α2)/2+10

1

]
γ 3U2 sin θ

−
1
2µ
∗

1 PU1U4λ
(α1+α2+α3)/2+12
1 γ 3,

V2 =
[
µ∗1[λ

3α1/2
1 −1]λ(α2+α3)/2+10

1 +µ∗2[λ
3α2/2
1 −1]λ(α1+α3)/2+10

1

+µ∗3[λ
3α3/2
1 −1]λ(α1+α2)/2+10

1

]
γ 3U4 sin θ

+
1
2µ
∗

1 PU1U2λ
(α1+α2+α3)/2+12
1 γ 3,

P =
2P̂ Rb

µ1T
. (55)
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For Mooney–Rivlin energy density, we get

S22 = R
[
%2
θ [λ

4
1+2λ1+3M]+η2

θ [λ
4
1−λ1+M[λ

3
1−1]]

]
,

S24 = R[%θηθ [3λ1+4M−Mλ3
1]],

S42 = S24,

S44 = R
[
η2
θ [λ

4
1+2λ1+3M]+%2

θ [λ
4
1−λ1+M[λ

3
1−1]]

]
, (56)

along with
V1 = [λ

4
1−λ1+M[λ

3
1−1]]γ 3λ2

1U2 sin θ−
[[ 1

2 P
]
U1U4λ

6
1γ

3],
V2 = [λ

4
1−λ1+M[λ

3
1−1]]γ 3λ2

1U4 sin θ+
[[1

2 P
]
U1U2λ

6
1γ

3]. (57)

For neo-Hookean energy density, we get

S22 = R[%2
θ [λ

4
1+2λ1]+η

2
θ [λ

4
1−λ1]], S24 = R[%θηθ [3λ1]],

S42 = S24, S44 = R[η2
θ [λ

4
1+2λ1]+%

2
θ [λ

4
1−λ1]], (58)

and

V1 = [λ
4
1−λ1]γ

3λ2
1U2 sin θ−

[[1
2 P
]
U1U4λ

6
1γ

3], (59)

V2 = [λ
4
1−λ1]γ

3λ2
1U4 sin θ+

[[ 1
2 P
]
U1U2λ

6
1γ

3]. (60)
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