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PLANE STRAIN POLAR ELASTICITY OF FIBRE-REINFORCED
FUNCTIONALLY GRADED MATERIALS AND STRUCTURES

KONSTANTINOS P. SOLDATOS, METIN AYDOGDU AND UFUK GUL

This study investigates the flexural response of a linearly elastic rectangular strip reinforced in a func-
tionally graded manner by a single family of straight fibres resistant in bending. Fibre bending resistance
is associated with the thickness of fibres which, in turn, is considered measurable through use of some
intrinsic material length parameter involved in the definition of a corresponding elastic modulus. Solution
of the relevant set of governing differential equations is achieved computationally, with the use of a well-
established semianalytical mathematical method. A connection of this solution with its homogeneous
fibre-reinforced material counterpart enables the corresponding homogeneous fibrous composite to be
regarded as a source of a set of equivalent functionally graded structures, each one of which is formed
through inhomogeneous redistribution of the same volume of fibres within the same matrix material.
A subsequent stress and couple-stress analysis provides details of the manner in which the flexural
response of the polar structural component of interest is affected by certain types of inhomogeneous
fibre distribution.

1. Introduction

Fibrous composites with either homogeneously or inhomogeneously distributed stiff fibres are increas-
ingly attracting attention and interest, particularly after carbon nanotube fibres were found suitable for
inclusion in their constituent phases (e.g., [Liew et al. 2015]). Despite their low density and nanometer
thickness, carbon nanotubes are known to exhibit remarkably high strength and stiffness, as well as
similarly high bending resistance.

Fibre bending stiffness of such a kind of stiff fibres is thus naturally required to be accounted for in
modelling and studying the behaviour of relevant composites, regardless of whether fibre reinforcement is
distributed in a homogeneous or in some inhomogeneous manner. This requirement becomes particularly
important in cases of high fibre concentration (either global or local), where fibre bending resistance gives
rise to a couple-stress field. The latter makes the stress field nonsymmetric, and endows the composite
characteristics of a polar material. It is recalled in this context that the conventional theory of fibre-
reinforced materials is built on the simplifying assumption of perfectly flexible fibres [Adkins and Rivlin
1955; Rivlin 1955; Spencer 1972], namely fibres that exhibit no bending resistance, and is therefore
inherently a nonpolar elasticity theory.

The study of polar material behaviour is naturally associated with modelling features falling into
the Cosserat theoretical framework [Cosserat and Cosserat 1909]. Linearly elastic behaviour of polar
fibrous composites may accordingly be attempted through use of either the polar linear elasticity theory

Keywords: cylindrical bending, elastic beams, elastic plates, fibre bending stiffness, fibre-reinforced structures, functionally
graded structures, plane strain elasticity, polar elasticity.
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proposed in [Mindlin and Tiersten 1962] for generally anisotropic materials or the linearised version of
the theory proposed in [Spencer and Soldatos 2007] for specific types of polar fibrous composites (see
also [Soldatos 2015]). It is recalled in this connection that the type of appropriate material anisotropy
that fits a relevant boundary value problem is dictated by the specific direction(s) that fibres are aligned
to in a fibrous composite.

However, as is also pointed out in [Soldatos 2018], there exists no evidence suggesting that the
anisotropic version of the Mindlin and Tiersten theory [Mindlin and Tiersten 1962] was motivated by
potential applications referring to linearly elastic composites having embedded fibres resistant in bending.
As a matter of fact, most of the polar linear elasticity analysis detailed in [Mindlin and Tiersten 1962] is
devoted to the isotropic version of that theory.

Motivated by these observations, the analysis presented in [Soldatos 2018]:

(1) underlined the principal equations of the Cosserat polar material framework (see also [Truesdell
and Toupin 1960]) that provide common ground for the theories proposed in [Mindlin and Tiersten
1962] and [Spencer and Soldatos 2007];

(i1) noted the manner in which the linear constitutive equation employed in [Mindlin and Tiersten 1962]
was obtained through a suitable truncation of the energy expansion proposed in [Toupin 1962];

(iii) enlarged and enriched the theoretical background through which both theories [Mindlin and Tiersten
1962; Spencer and Soldatos 2007] are valid and operate; and, within that enlarged background,

(iv) identified their similarities and potential differences without having the intention to either bridge or
eliminate the latter.

The principal relevant similarity recorded in [Soldatos 2018] refers to the fact that the governing
equations of either theory are generally nonelliptic. As a result, the solution to any well-posed boundary
value problem, attempted through use of either theory, may be not unique. There are basic historical
reasons (see [Soldatos 2018]) that prevented Mindlin and Tiersten from noticing this fact [Mindlin and
Tiersten 1962], where it is stated that such a potential solution, described by continuous displacements
possessing continuous derivatives of all orders, is the unique solution of the implied boundary value
problem.

However, reference [Soldatos 2018] has shown that such a solution, which will be termed as a “continu-
ous solution” in what follows, is in fact the only possible solution described by continuous displacements
possessing continuous displacements of all orders. Due to the observed “lack of ellipticity” of polar
elasticity equations, that continuous solution may be accompanied by a number of “weak discontinuity”
solutions of the same boundary value problem and may thus be not unique. These are solutions described
by continuous displacements that possess discontinuous derivatives, and may thus represent microscale
(fibre-thickness) material failure modes (e.g., [Soldatos 2015; Merodio and Ogden 2002; Merodio and
Ogden 2003]). Such kind of possible solutions are not observable in corresponding problems underpinned
by nonpolar linear elasticity principles, which always lead to elliptic governing differential equations.

The outlined observations raise immediately a question of whether the prevailing solution of a po-
lar elasticity boundary value problem is the continuous one or some of its possible weak discontinuity
counterparts. The task of seeking for an answer to this question is of paramount practical importance in
structural analysis applications.
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Such a challenging task may well depend on the particular polar elasticity problem of interest. More-
over, it seemingly requires some analytical or numerical/computational comparison of all relevant weak
discontinuity solutions among themselves, as well as against their common continuous counterpart. In
fact an appropriate comparison may also be required of the stored energy levels reached by all possible
solutions involved. The need becomes thus evident for the derivation of relevant continuous or weak
discontinuity solutions to a number of relatively simple or more difficult boundary value problems, with
the aim to reach afterwards a stage that makes the implied comparisons possible.

The present study is considered as an immediate continuation of an initial, relatively simple step made
already in that direction [Farhat and Soldatos 2015], in the sense that it complements the latter in the
search for continuous solutions to the plane strain bending problem of a simply supported, linearly elastic
rectangular strip reinforced by a single family of straight fibres resistant in bending. While Farhat and
Soldatos [2015] dealt with the case of either homogeneous or layer-wise inhomogeneous (laminated)
strips, this communication considers the more general case of material inhomogeneity due to continuous
through-thickness variation of the fibre-reinforcement.

The elastic strip of interest may be regarded as a rectangular beam made of functionally graded ma-
terial (FGM) having unit width, or as the cross-section of a corresponding rectangular plate having
infinite extent in the out-of-plane direction. The latter representation provides direct connection with the
relevant, nonpolar elasticity problem considered and solved in [Pagano 1969] but, here, the implied bend-
ing stiffness of functionally graded fibres furnishes the strip with polar material properties. Moreover,
material inhomogeneity features in the analysis through the variable form attained by the coefficients of
the corresponding set of Navier-type partial differential equations.

With the help of Appendix A, Section 2 thus provides a proper mathematical description of the plane
strain state of polar, linearly elastic structures reinforced in a functionally graded manner by a single
family of straight fibres resistant in bending. For simplicity, this description is based on the restricted
version of the polar elasticity theory presented in [Spencer and Soldatos 2007]. This version of the theory
(see also [Soldatos 2015]) involves only a single elasticity modulus of fibre bending resistance and, as
soon as certain additional conditions are met [Soldatos 2018], can establish connection with the theory
of Mindlin and Tiersten [1962].

Section 3 formulates the aforementioned bending problem of a simply supported prismatic beam (or
rectangular plate cross-section). Moreover, with use of Appendix B, it employs a suitable semianalytical
mathematical method (e.g., [Soldatos and Hadjigeorgiou 1990; Soldatos and Ye 1994; Shuvalov and
Soldatos 2003; Ye 2003; Dagher and Soldatos 2011; Brischetto 2019]), provides information that under-
pins its computational efficiency, and finalises the solution of the corresponding Navier-type equations.
With the help of appendices C and D, Section 4 connects afterwards the present problem of interest
with its homogeneous polar elasticity counterpart [Farhat and Soldatos 2015]. This connection enables
a homogeneous fibre-reinforced component [Farhat and Soldatos 2015] to be regarded as the source of
a set of equivalent functionally graded structures, each one of which is made through inhomogeneous
redistribution of the same volume of fibres within the same matrix material.

Three different types of such inhomogeneous fibre redistribution are thus selected in Section 4, and
are employed afterwards in Section 5, in the discussion of the numerical results presented there. The
latter thus examines in detail the manner in which each of the employed types of inhomogeneous fibre
distribution affects the flexural response of the composite structure. Finally, Section 6 summarises the
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main conclusions drawn and outlines directions on the manner in which the search for identification of
corresponding weak discontinuity solutions should be contacted.

2. Theoretical formulation

A linearly elastic fibre-reinforced plate has finite length, L, in the x direction, infinite extent in the
y direction, and finite thickness, #, in the z direction of a Cartesian coordinate system Oxyz (0 <x < L,
—00 <y < +o00, —h/2 <z < h/2). The plate material has embedded a single family of fibres which
are parallel to the x-axis, can resist bending, and are distributed in the z-axis direction in a continuous,
functionally graded manner. The plate is subjected to external loading that justifies plane strain response,
in the sense that the displacement component in the y direction is zero while the other two displacement
components, as well as all remaining physical quantities, are independent of the coordinate parameter y.
In the usual manner, the plate cross-section can thus be considered as a two-dimensional elastic strip or
as a prismatic beam having length L, thickness 4 and unit width (Figure 1). In this context, relevant
terminology of prismatic beams is also employed in what follows.

The through-thickness inhomogeneous distribution of the fibres is regulated by controlling their vol-
ume fraction, V/ (z), which requires from the material properties of the structural component to be known
functions of the z coordinate parameter. Every material property, P(z) say, of such a functionally graded
fibrous composite is usually expected to obey the mixture law

P =V @QP/ +V™P™, VI@+V"@)=1 0<V/ (2), V") <), (1)

where V" (z) is the volume fraction of the matrix phase, while P/ and P™ represent the corresponding
constant material property of the fibre and the matrix phase, respectively.

q(x)

Figure 1. Geometrical features and nomenclature of a prismatic beam.
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It is pointed out that the inequality conditions noted in (1) are imposed on the ground of evident
theoretical arguments that hold true regardless of the particular form of V/ (z) or, equivalently, V" (z).
In this context, the denoted upper limit of the fibre volume fraction, namely V/(z) = 1, is in principle
possible only in cases that fibres are assumed perfectly flexible and, having no thickness, can therefore
fill in completely the entire volume of the composite. However, fibres do have thickness in practice and,
due to the structural architecture of the fibrous composite, leave gaps among them which are filled in
with matrix material even in parts of the composite that fibres are distributed very densely.

A more realistic approach thus requires introduction of a maximum fibre volume parameter, Vlfmx say,
such that

0<V/ @)=V, <l )

max

This additional condition does not need to be discussed further at these early stages of the problem
formulation. However, it is reconsidered and discussed later, in sections 4 and 5, where determination
of a value for VI{MX becomes part of some specific applications.

In the implied plane strain state, the average fibre and matrix concentrations of the composite are
defined as

1 h2 1 [h/2
(V= / Vi@)ydz, (V") = —/ V'()dz, (V)4 (V™) =1. 3)
hJ_npn hJ_np»

The particular case of a homogeneous fibrous composite, where the fibre volume fraction is constant, is
thus characterised by the relationship V/ (z) = (V/) for all z. If the fibres resist bending and (V/) is
adequately high, say 40% to 60%, then the fibre response to mechanical loading generates considerable
couple-stress and nonsymmetric stress (e.g., [Spencer and Soldatos 2007; Soldatos 2015; 2018; Farhat
and Soldatos 2015]). In the case of FG fibrous composites with relatively low (V/), creation of a couple-
stress field is still possible locally, namely in specific parts of the composite where V/(z) anticipates
high fibre concentration.

The stress and couple-stress components that contribute actively in plane strain equilibrium are shown
schematically in Figure 2 (see also [Spencer and Soldatos 2007; Farhat and Soldatos 2015; Soldatos
2009]). The symmetric part of the stress tensor is given by the standard form of the generalised Hooke’s
law, which in the present, plane strain case acquires the form

Oy Cii Ciz O ey
o, |=|Ci3 C33 0 e: | “4)
'E(xy) 0 0 C55 26“

where the appearing linear strain components are
ex=Uy, 2e;=U.+W,, e=W_ (5

Here, U (x, z) and W (x, z) are the displacement components along the axial and transverse coordinate di-
rection, respectively, and a comma denotes partial differentiation with respect to the indicated coordinate
parameter(s).
The elastic moduli appearing in (4) vary in the transverse direction in accordance with the mixture
law (1), namely
Cij@ =V @) ¢l +vrcp. (6)
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Figure 2. Schematic representation of the active stress and couple-stress components.

As the matrix phase is naturally considered isotropic, the following relationships are assumed valid:
n=Clh=a+2u, Cli=1 Clh=(Ch-Ch)/2=p. ()

where XA and p are the constant Lamé moduli of the matrix material. In this context, Appendix A describes
an alternative manner in which the elastic moduli of the matrix and the fibre phases can be related, and
thus lead to the determination of their C;; counterparts appearing in (4).

The antisymmetric part of the stress tensor is defined as

1
Txz] = 3Mxy,x» (8)

where the only nonzero couple-stress component met in this plane strain problem (e.g., [Spencer and
Soldatos 2007; Farhat and Soldatos 2015]), namely

Myy = de; = _df W,xm 9

acts in the manner shown in Figure 2, and K{ represents the fibre curvature. Unlike C;;, which have
dimensions of stress, the fibre bending modulus d/ has dimensions of force. Like C; ; though, this is
also expected to obey the mixture law (1).

However, unlike the fibre phase, the isotropic matrix phase does not contribute to the bending stiffness
of the fibrous composite, and, as a result, the second term in the right-hand side of the corresponding
expression (1); is zero. Hence, in line with previous relevant studies [Farhat and Soldatos 2015; Soldatos
2009], where material homogeneity enabled the relevant constant value of d/ to be considered as a
product of the form C;;/L, the fibre bending modulus attains here the through-thickness variable form

d’ () =Vv/ (@) c]IL, (10)

where the intrinsic material length parameter / is connected with the fibre thickness. In this manner, [ =0
represents cases of nonpolar material behaviour, where fibres are perfectly flexible and the subsequent
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absence of couple-stress (m,y » = T(x;] = 0) enables the stress tensor to attain its conventional symmetric
form (4).
When [ is nonzero, the nonzero shear stresses are unequal, so that

Txz = Txg) + Tzl Tox = T(xz) — Txz]- (11D
In the absence of body forces, the equilibrium equations thus acquire the form
Oxx + Tz — Tazlz =00 Tg)x + Tazlx £ 02,2 =0, (12)
which, after appropriate use of equations (4)—(9), lead to the Navier-type equations:
C11U xx + (C13+ Cs5)W x: + CssU .. + Css . (U .+ W) + 5 [L lel VIW e
+IILC VLW o =0, (13
CssW x + (Ci3+ Cs5) U vo 4+ Cr3 .U s + C33 W, + C3sW o, — LILC VW 0 = 0.

The outlined polar elasticity formulation is general, in the sense that it applies to all cases that a
relevant FGM fibrous composite exhibits plane strain behaviour. For analytical purposes, it is found
convenient to rearrange equations (13) into the following matrix form

AX =0, (14)
where
— |:C1138—;z-l-Cssaa—;z-l-Css,zaiZ (C13+C55)%23Z+C55,Z%+%LC{1szlaa_;+%LC{lVflaxaT43zi|
- (C13+C55)%+C13,1% C55%+C33%+C33’Z3%_%Lclflvfl% |
x=[v w]",

3. Cylindrical bending of a simply supported plate

Attention is now confined into the particular case that deformation is due to external application of the
lateral boundary tractions:

Oz(x’h/z):q(x)v UZ(Xv_h/z):O’ sz(x’h/Q'):O’ tzx(x’_h/2)20~ (15)

The externally applied transverse load, g (x), is considered known and can, therefore, be represented in
the following Fourier-type sine-series form

q() = gusin(Mx), M=mr/L (m=12,...). (16)

m=1

It is further assumed that the longitudinal ends of the plate cross-section or prismatic beam (x =0, L)
are subjected to the following set of homogeneous boundary conditions:

0x(0,2) =0,(L,2) =0, W(0,2) =W(L,2)=0, my(0,z2)=my(L,z)=0, 17
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which is consistent with the symmetries of simply supported boundaries. In the particular case of a
homogeneous fibrous composite, where V/ and V™ are both known constants, the problem of present
interest thus reduces naturally to its polar elasticity counterpart studied in [Farhat and Soldatos 2015].

The simple support boundary conditions (17) are satisfied exactly by the following choice of a dis-
placement field:

U=hf()cos(mrnx/L), W =hg(z)sin(mrx/L) (m=1,2,...), (18)

where the functions f(z) and g(z) are to be determined. The expressions in (18) represent a potential
solution to the described boundary value problem when the external loading is identical with a single
term of the series expansion (16), namely

q(x) = gusin(Mx), M= ’% (19)

The linearity of the described boundary value problem, combined with the superposition principle of
relevant solutions, makes it then sufficient for someone to look only for a solution of the particular case
in which the external load is given according to (19), with m being an arbitrary positive integer.

Upon inserting (18) into (14), the latter equation is transformed into a fourth-order set of simultaneous
ordinary differential equations (ODEs) with variable coefficients. This can be expressed as

G(z,D)B=0, (20)
where
dy+d:D?>+d3D  (ds+di1)D +ds
G(Za D) = 2 2 4
—dysD*+d;  d¢D+dg+dyD*+d» (21)
T
D=d/dz, B=[f() g@] .
Due to the variable form of V/(z), the appearing coefficients, namely
di=—h’M?, dy=Css/Cpy, ds=Css./Cii,
dy=hM(Ci3+Css5)/Cr1, ds= (Mh/L)(lelDVf/Cll), de = DC33/Cqy,
(22)

Mh
d7=(T)DC13/C11, ds = —(Cssh*M?)/C1,
dy = C33/Cyy, d11=—%hM31L(C1f1Vf/C11), d12=—%hM41L(C1f1Vf/C11),

are, in general, functions of z.

Solution of (20) is here achieved with the use of a semianalytical method, which considers that the
inhomogeneous polar material strip of interest is essentially made of an infinite number of fictitious
layers having infinitesimally small thickness and constant material properties. As computational prac-
tice requires use of a finite number of such fictitious layers (see Figure 1), the larger the number of
those fictitious layers considered the nearer the obtained numerical results approach their exact elasticity
counterparts.

The implied “fictitious layers method” was initially introduced for the solution of nonpolar linear
elasticity problems dealing with the dynamic response of isotropic cylindrical components [Soldatos and
Hadjigeorgiou 1990]. In such problems, it is the geometry rather than the material inhomogeneity of
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the structure that spreads variable coefficients into the governing differential equations. The method
has since been applied successfully to both static and dynamic studies of homogeneous and laminated
composite components of cylindrical geometry (e.g., [Soldatos and Hadjigeorgiou 1990; Soldatos and
Ye 1994; Shuvalov and Soldatos 2003; Ye 2003; Dagher and Soldatos 2011] and relevant references
therein), and is proven capable to provide asymptotically identical results to those based on potential or
existing exact elasticity solutions.

Moreover, the numerical stability and the rate of convergence of the method are found in practice
superior to those of corresponding analytical solutions based on power-series methods (e.g., [Dagher
and Soldatos 2011]), where computational practice still requires some suitable finite term truncation of
ultimately infinite series solutions, and, hence, does not avoid the concept of an approximation. More
recently, the applicability of this fictitious layer method has successfully been extended towards solution
of relevant structural mechanics problems that involve even doubly curved functionally graded structural
components [Brischetto 2019].

Description of the solution thus obtained is facilitated by initially converting (20) into the following,
equivalent set of four first-order linear ODEs with variable coefficients:

DF =T F, (23)

where
F =[Df, f, Dg, g1",

—d3/dy —di/dy —(ds+d1)/d> —ds/d,
T 1 0 0 0 (24)
Z =
ds/dy —d7/do —dg/dog (—dg +di2)/dy
0 0 1 0

The implied solution then continues by resembling its counterparts described in [Soldatos and Hadjige-
orgiou 1990; Soldatos and Ye 1994; Shuvalov and Soldatos 2003; Ye 2003; Dagher and Soldatos 2011].
For self-sufficiency of this communication, further details are briefly presented in Appendix B.

4. Application for selected forms of the fibre volume fraction

As pointed out in Section 2, even in parts of the composite where fibres are distributed very densely, the
fibre structural architecture leaves gaps which are naturally filled in with matrix material. The inequality
conditions noted in (1) should accordingly be refined through use of the more realistic inequality (2),
provided that proper consideration of the fibre-scale structure can enable determination of the refined
upper bound parameter V£ax. This may be achieved with use of some appropriate representative volume,
or area elements (RVE) of the fibre distribution pattern [Gibson 1994]. Nevertheless, any Vr{lax-value
thus obtained depends on the chosen RVE discretisation, and may therefore be not unique.

Appendix C thus demonstrates the manner in which rectangular or triangular RVEs of the kind implied
in Figure 3 (bottom) can be used as reasonably simple examples in the present problem of interest,
where the direction of the considered uniaxial family of fibres in normal to the depicted yz-plane (see
also Figure 1). The two different values of maximum fibre volume fraction thus determined in (C.5)
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—y— 11 — -y

I/

Figure 3. Discretization of fibre representative elements: homogeneous composite, S, =
constant (top), inhomogeneous composite, S, = variable (middle), and rectangular and
triangular fibre representative elements (bottom).

and (C.6) are here conjoined as

o /4 =0.785, for rectangular RVEs,

N P /2+/3=0.907, for triangular RVEs. 25
4.1. Particular case: homogeneous composites [Farhat and Soldatos 2015]. In order to deal with appli-
cations of the outlined analysis, connection is initially established with the corresponding study detailed
in [Farhat and Soldatos 2015] for corresponding homogeneous fibrous composites. It is recalled in this
context that the effective material properties of the homogeneous fibrous composite employed in [Farhat
and Soldatos 2015] are

EL/ET = 40, GLT/ET = 05, VT = V1T = 0.25. (26)
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The analysis is evidently capable to consider homogeneous fibre distributions by using appropriate con-
stant values of the fibre volume fraction V/ and, upon taking (2) and (3) into consideration, it thus

requires
vh=vi<vl . (vmy=v"=vl —Vv/ (27)
Let us, for instance, consider the choice
Vi) =(V)=3, (28)

which refers to a homogeneous fibrous composite whose volume consists 50% homogeneously dis-
tributed fibres and 50% matrix material. Upon inserting

o01=79, waz=15 wm=owu=as5=1, v=0.25, (29)

into (A.3), and making use of (3), the mixture law (1) reveals that the effective material properties of
the corresponding homogeneous composite are those detailed in (26). With use of (A.2), the holding
relationships between the elastic moduli of the corresponding fibre and matrix phases are then found
to be

EJJE=1, E[/E} =19, G|;/E}=3% vl =v/,=v=025 G}, /Ej=2  (30)

It can then readily be verified that, in this particular case that the fibrous composite of interest is ho-
mogeneous and possesses effective material properties of the kind described in (26), the present analysis
produces identical displacement and stress distributions to those detailed in [Farhat and Soldatos 2015]
with its first iteration (N = 1). Further iterations are unnecessary in that case, as they naturally return
the same numerical results.

It is emphasised that the outlined verification of the present analysis is still possible for constant
choices of V7 that differ from (28), as soon as the values of the constants (29) and, subsequently, of the
ratios (30) are modified in a manner that enables the mixture law (1) to yield again to the effective elastic
moduli (26). A couple of specific, additional relevant cases are in fact identified in Section 4.3 below, in
connection with the form (35) of possible inhomogeneous fibre distribution.

4.2. Functionally graded, linear redistribution of the fibres. The connection established with the ho-
mogeneous fibrous composite considered in [Farhat and Soldatos 2015] is now exploited by considering
the following pair of linearly inhomogeneous fibre distributions:

Vi) =05+¢@/h) (O<e<emx=<1), 31)
Vi) =05—e(z/h) (0<é&<emy<l). (32)

As either of these return
(v =1, (33)

they both represent corresponding inhomogeneous composites consisting of 50% fibre and 50% matrix
material.

A schematic representation of the volume fraction of these inhomogeneous fibre distributions is de-
picted in Figure 4, along with their counterparts that represent the homogenous composite described
already in Section 4.1 (Figure 4, left). Both (31) and (32) are evidently fibre distributions which vary
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Figure 4. Schematic representation of fibre volume fractions of the type (28) (left),
(31) (second), (32) (third) and (35) (right).

linearly through the thickness, and are nonsymmetric with respect to the middle plane of the composite
beam. It is evident that (31) represents a top-stiff fibrous composite while (32) corresponds to a bottom-
stiff such.

When inserted into (31), the value &€ = ep,x refers to an inhomogeneous fibrous composite with maxi-
mum fibre volume fraction at the top (V/(h /2) = (14 &max)/2) and minimum at the bottom (VS (=h /2) =
(1 — emax)/2) lateral plane of the composite. The situation is evidently reversed (V/ (h /2) = (1 —emax)/2,
VI (=h/2) = (1 + emax)/2) When & = enay is inserted into (32). In principle, ema may be as high as
emax = 1 but the fibre-scale structure of a composite relates this parameter with V£ax. Hence, by virtue
of (25), the second part of Appendix C shows that

 10.5708, for rectangular RVEs,

= (34)
0.812,  for triangular RVEs.

Emax = 2V, —

The relevant numerical results presented in Section 5 below refer to inhomogeneous composites whose
effective material properties are evaluated with use of the mixture law (1), after each of (31) and (32) is
inserted into (A.3). This process requires also use of (29) and (30), so that the resulting inhomogeneous
composite is thought of as formed by a relevant redistribution into the same matrix of a same volume
of fibres (50%) possessing the material properties (30). It can indeed be readily verified that, in both
cases, the obtained through thickness average elastic moduli are still in exact agreement with the effective
material properties (26) of the homogeneous fibrous composite employed in [Farhat and Soldatos 2015].

4.3. Symmetric, piecewise linear redistribution of the fibres. The last fibre distribution of present in-
terest is associated with a class of inhomogeneous fibrous composites whose volume fraction varies
symmetrically with respect to the middle plane of the composite (see Appendix D). This class is described
as

VI (2) = alz/hl, (35)

where « is some real positive constant.

In this case, the fibre volume fraction increases in a piecewise linear manner with the increasing
distance from the middle plane (see Figure 4, right). As V/(0) =0 and V/ (h/2) = V/ (=h/2) = a/2,
equation (35) refers to a fibrous composite graded in a manner that maximum fibre volume fraction
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is attained at both lateral planes. As also noted in Appendix D, equation (35) yields the average fibre
volume fraction (33) when o = 2.

However, as shown next with the help of Appendix C, the types of fibre-scale structure considered
there make (33) incompatible with the fibre distribution (35). This is because the connection of (35)
with maximum volume fractions noted in (25) gives, respectively, the following maximum value of the
positive constant o:

o oyt 1.571, for rectangular RVEs, (36)
e max = 1.814, for triangular RVEs,
which, in either case is smaller than 2.
Indeed, the corresponding average volume fractions, namely

- {0.39, for rectangular RVEs,
(V)= (37)
0.45, for triangular RVEs,
verify that neither of the values of « noted in (36) enables consideration of an average fibre volume
fraction which is as high as its 0.5 counterpart assumed by the top- and bottom-stiff fibre distributions (31)
and (32).
Nevertheless, as also pointed out in Appendix C, a relevant inhomogeneous fibrous composite having
average volume fraction (V) = 0.45 and effective properties (26), is obtained by replacing all material
constants and moduli appearing in (A.3) and (30) with

o] =87.667, «3=1.55575, ary=as=a5=1, v=0.25,
El/E=1, E]J/E]=87.667, GJ,/E]=0.6223, (38)
vl =viy=v=025 G}, /E}="2.

A considerable part of the numerical results presented in the next section thus refers to the polar me-
chanical response of this inhomogeneous fibre-reinforced composite which, along with employing the
material properties (38), implies further that « = 1.814 in (35).

5. Numerical results and discussion

All numerical results presented and discussed in this section are obtained by setting m =1 in (19). These
results are presented in a nondimensional form, through use of the following dimensionless displacement
and stress parameters:

_ Er YW _ Er\U
W=(T) ’ U=(T) ’ 5'x=&, 6z=2»
Lq) Lq, Q1 q (39)
gt o T o Ty
X ql 3 XZ ql k) Xy qu .

By virtue of (33), these are seen equivalent to their counterparts employed for the corresponding case of a
homogenous fibrous composite in [Farhat and Soldatos 2015], where, however, an evident typographical
error is noticed in the couple-stress nondimensionalisation. The evident symmetries that (19) imposes
along the x-direction imply that the magnitude of displacements, stresses, and couple-stress have identical
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through-thickness distribution at x /L and 1 — x/L. Numerical results are accordingly presented for the
left half of the beam only.

All rectangular beams considered for the results shown next possess the same span ratio with their
homogeneous counterpart studied in [Farhat and Soldatos 2015], namely

h/L =0.25. (40)
For a natural connection with [Farhat and Soldatos 2015], the same notation, namely
r=1/h <1, 41)

is used for the nondimensional intrinsic material parameter that refers to fibre thickness. In this regard, a
note is made of the fact that this parameter should not be misinterpreted as denoting the Lamé modulus
employed in (7) and (A.1).

As [ is connected with the fibre thickness and, hence, cannot exceed the beam thickness, A acquires
naturally the upper bound value noted in (41) only if [ = h. However, connection of [ with the fibre thick-
ness is here refereed to only as an example of the manner in which one can handle the aforementioned
dimensions difference between the fibre bending modulus, d /. and the conventional elastic moduli met
in nonpolar elasticity.

If, for instance, one accepts that fibres are approximately arranged through the beam thickness in the
form of representative volume elements described in Appendix C, the estimated upper bound of A may
further be reduced considerably, or even be related to the V£3X-Values noted there. All numerical results
shown in what follows take this observation into careful consideration by using reasonably low values
of A.

However, in view of (10), equation (41) leads essentially to the following reparametrisation of the
fibre bending stiffness modulus:

d’ (z) = hLV/ (2) CY,. (42)

This relationship shows that, although useful on physical grounds, A is not necessarily the most influential
parameter for a proper determination of d/. In fact, determination of d/ in a structural component
should still be based on potential experimental work and observation, precisely as happens with the
determination of conventional elastic moduli.

By setting ¢ =0 in (31) or (32), it is thus made initially sure that the present analysis gives identical nu-
merical results, and is thus in complete agreement with its counterpart presented in [Farhat and Soldatos
2015]. This confirmation then enables the next consideration and study of corresponding numerical
results that refer to inhomogeneous relevant composites having fibre volume fraction of the type (31)
and (32) with € # 0, or (35) with o = 1.814.

5.1. Through-thickness displacements distributions. For several different values of the fibre inhomo-
geneity and the fibre bending stiffness parameters, Tables 1 and 2 present the nondimensional value of
the in-plane and the transverse (flexural) displacement, respectively, obtained at selected points through
the thickness of a top-stiff beam. To a considerable extent, these results are susceptible to comparison
with their counterparts presented in Table 1 and Table 2 of [Farhat and Soldatos 2015], respectively, for
corresponding homogeneous fibrous composites.



PLANE STRAIN POLAR ELASTICITY OF FIBRE-REINFORCED MATERIALS AND STRUCTURES 511

z/h A=0 A =0.004 A=0.01

e=0.01
0.50 0.011225 —0.025557 —0.047459
0.25 —0.097383 —0.063687 —0.044853
0 —0.114490 —-0.067416 —0.041244
—0.25 —0.131141 —-0.071387 —0.038791
—0.50 —0.228791 —0.104571 —0.038351

e =0.05
0.50 —0.427908 —0.292289 —0.219078
0.25 —0.522101 —-0.318635 —0.205783
0 —0.522724 —0.308312 —0.189578
—0.25 —0.527046 —0.302616 —0.178970
—0.50 —0.609684 —0.329450 —0.176406

e=0.1
0.50 —0.874707 —0.575411 —0.405471
0.25 —0.945979 —0.585632 —0.378715
0 —0.922377 —0.556283 —0.346454
—0.25 —0.907455 —0.536790 —0.325080
—0.50 —0.962171 —0.554231 —0.319076

& = €max = 0.812
0.50 —0.643334 —0.619429 —0.587989
0.25 —0.497675 —0.470583 —0.434870
0 —0.287050 —0.269299 —0.245997
—0.25 —0.141990 —-0.132669 —0.120484
—0.50 —0.086794 —0.080983 —0.073505

Table 1. Through-thickness in-plane displacement distributions U (0, z) of a top-stiff
beam with volume fraction Vy = 0.5+ ¢&(z/h).

In line with the relevant trend noted in [Farhat and Soldatos 2015], Table 2 thus confirms that the
magnitude of the flexural displacement decreases with increasing fibre bending stiffness parameter, A,
due to the additional flexural stiffness provided by the fibre bending resistance. However, it is seen here
further that the magnitude of the flexural displacement decreases further with the increase in inhomo-
geneity parameter, €. This is because, by increasing ¢, the bending stiffness of the beam is increasing
near the top lateral boundary where the external load is applied.

It is recalled on the other hand that the results presented in Table 1 and Table 2 of [Farhat and Soldatos
2015] show that, in the case of a homogeneous beam (¢ = 0), the in-plane displacement is always at
least an order of magnitude smaller than its flexural counterpart. However, upon increasing the nonzero
value of &, the increasing material inhomogeneity affects the existing local coupling between bending
and extension to such an extent that the magnitude of U becomes comparable to that of W.
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z/h A=0 A =0.004 A=0.01

e=0.01
0.50 —1.206993 —0.739809 —0.484421
0.25 —1.149196 —0.685004 —0.431542
0 —1.104615 —0.645031 —0.394655
—0.25 —1.078050 —0.620907 —0.372337
—0.50 —1.063969 —0.610125 —0.363511

e =0.05
0.50 —1.180509 —0.728882 —0.478972
0.25 —1.096412 —0.658369 —0.416258
0 —1.027262 —0.604367 —0.371167

—0.25 —0.976980 —0.567067 —0.341455
—0.50 —0.939239 —0.543660 —0.324820

e=0.1
0.50 —1.111774 —0.702100 —0.466968
0.25 —1.001214 —0.615004 —0.393610
0 —0.907888 —0.546501 —0.339828
—0.25 —0.834697 —0.495854 —0.302449
—0.50 —0.776832 —0.458180 —0.277773

& = €max = 0.812
0.50 —0.171586 —0.164078 —0.154164
0.25 —0.083960 —0.079280 —0.073117
0 —0.030777 —0.028854 —0.026333
—0.25 —0.006525 —0.006087 —0.005518
—0.50 0.002057 0.001928 0.001574

Table 2. Through-thickness deflection distributions W (L/2, z) of a top-stiff beam with
volume fraction Vy = 0.5+ ¢(z/h).

It is then not surprising that the values of U shown in Table 1 differ from those of their counterparts
presented in [Farhat and Soldatos 2015] even for ¢ = 0.01. In fact, for ¢ = 0.05 the values of U are
already comparable with their W counterparts (Table 2). Moreover, for & = eyax = 0.812, which is the
maximum value assigned to ¢ when fibre scale structure is designed with use of triangular RVEs, the
magnitude of the in-plane displacement parameter exceeds that of W, at least within the adopted region
of the A-variation. It is pointed out that, as all numerical results shown in this study refer to the left half
of the beam, the minus sign associated with almost all numerical values shown in Table 1 implies that
the beam deformation creates a predominantly tensile in-plane displacement.

Analogous conclusions may be drawn by observing and comparing the numerical results tabulated
in Tables 3 and 4 for corresponding U- and W-values of a bottom-stiff inhomogeneous beam. The
magnitude of displacements is again decreasing with increasing the value of the fibre bending stiffness
parameter, . However, the sign of almost all numerical values shown in Table 3 reveals that the beam
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z/h A=0 1=0004 »=0.01

e=0.01
0.50 0.250340 0.118811 0.045144
0.25 0.136190 0.075284 0.042483
0 0.112192 0.065065 0.039931
—0.25 0.090771 0.056854 0.038507
—0.50 —0.013041 0.021001 0.038125

e =0.05
0.50 0.748837 0.423789 0.242223
0.25 0.627284 0.370636 0.229269
0 0.592660 0.348727 0.214766
—0.25 0.564908 0.333408 0.206064
—0.50 0.452050 0.293394 0.204560

e=0.1
0.50 1.368695 0.821958 0.506558
0.25 1.244704 0.759189 0.481362
0 1.202953 0.725370 0.452783
—0.25 1.173460 0.703956 0.435998
—0.50 1.055960 0.661147 0.434126

& = €max = 0.812
0.50 2.811083 2.737809 2.637961
0.25 2.775249 2.680974 2.554224
0 2.784161 2.645146 2.461564
—0.25 2.854059 2.671874 2.433894
—0.50 2.877000 2.705601 2.480754

Table 3. Through-thickness in-plane displacement distributions U (0, z) of a bottom-
stiff beam with volume fraction V; = 0.5 —&(z/ h).

deformation creates now a predominantly compressive in-plane displacement.

Strong local inhomogeneity effects, of the type observed previously in Tables 1 and 2, have now
emerged mainly at the bottom part of the beam. It is instructive for someone to observe that for ¢ = 0.05
the magnitude of the in-plane displacement (Table 3) is again comparable with its flexural displacement
counterpart (Table 4). Moreover, for ¢ = enx = 0.812, the former parameter exceeds the latter to
such a substantial degree, that the deformation seems in this case to take mainly place through in-plane
extension rather than flexure. Nevertheless, Tables 1-4 suggest that, in general, top-stiff beams suffer
smaller flexure and, therefore, may generally be considered stronger than their bottom-stiff counterparts
at the same value of the inhomogeneity parameter, €.

The observed in-plane deformation dominance seems to increase with increasing ¢ to an extent that af-
fects substantially the detailed features of relevant stress distributions. This discussed later in Section 5.3,
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z/h A=0 A =0.004 A=0.01
e=0.01

0.50 —1.209372 —0.741459 —0.485668

0.25 —1.165977 —0.695181 —0.438107

0 —1.135000 —0.662904 —0.405705

—0.25 —1.121685 —0.646083 —0.387473
—0.50 —1.120934 —0.642795 —0.382980

e =0.05
0.50 —1.192043 —0.736960 —0.485114
0.25 —1.178822 —0.708742 —0.448893
0 —1.176597 —0.692904 —0.426143
—0.25 —1.191500 —0.691817 —0.416782
—0.50 —1.219350 —0.704768 —0.421728
e=0.1

0.50 —1.132737 —0.717222 —0.478691
0.25 —1.157282 —0.712660 —0.457720
0 —1.191433 —0.718584 —0.448099
—0.25 —1.242375 —0.738541 —0.450930
—0.50 —1.307130 —0.773375 —0.467856

& = €max = 0.812
0.50 —0.077214 —-0.077423 —0.077602
0.25 —0.203017 —0.197384 —0.189706
0 —0.337329 —0.321135 —0.299640
—0.25 —0.486706 —0.454688 —0.412841
—0.50 —0.657611 —0.609844 —0.547717

Table 4. Through-thickness deflection distributions W (L /2, z) of a bottom-stiff beam
with volume fraction Vy = 0.5 —e(z/h).

which illustrates the influence that the increasing value of ¢ exerts on the bending stress distribution
observed within both top- and bottom-stiff beams.

Under these considerations, the corresponding nondimensional displacement results shown in Tables 5
and 6 suggest that beams with through-thickness symmetric fibre distribution are similarly strong. Indeed,
the magnitude of the flexural displacements shown in Table 6 are comparable with their counterparts
shown in Table 2 for the largest value of the fibre inhomogeneity parameter, € = epx = 0.812, at least
within the top half of the beam. Moreover, while the top-stiff beam has higher average fibre volume
fraction, the difference observed between corresponding numerical results shown in Tables 2 and 6 is
decreasing at the top part of the beam with the increase in fibre bending stiffness parameter.

5.2. Through-thickness couple-stress and shear stress distributions. As transition from nonpolar to po-
lar material behaviour is caused by the emerging couple-stress field, immediate attention is next directed
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z/h A=0 A =0.004 A=0.01

0.50 —1.986187 —1.829115 —1.642851
0.25 —1.609659 —1.460507 —1.283656
0 —1.304430 —1.172045 —1.015665
—0.25 —-1.330097 —1.185678 —1.015671
—0.50 —1.394719 —1.242775 —1.063927

Table 5. Through-thickness in-plane displacement distributions U (0, z) of a beam with
volume fraction V/ = 1.814|z/h|.

z/h A=0  A=0.004 A=0.01

0.50 —0.227618 —0.209966 —0.188966
0.25 —-0.073957 —-0.066799 —0.058321
0 0.003799 0.003735 0.003642
—0.25  0.064515 0.057539 0.049324
—0.50  0.144491 0.127854 0.108322

Table 6. Through-thickness deflection distributions W (L /2, z) of a beam with volume
fraction V/ = 1.814|z/ h|.

towards the influence that couple-stress creation exerts on the shear stress components, giving thus rise
to nonsymmetric stress. Corresponding numerical results that show the manner in which normal stresses
are affected are also presented and discussed afterwards, in Section 5.3.

In this context, Figures 5 and 6 depict the through-thickness distribution of the nondimensional couple-
stress parameter 7, measured at selected axial positions of a top-stiff and a bottom-stiff beam, respec-
tively, when A = 0.006 and ¢ = 0.1. The sinusoidal form that 7., acquires in the axial direction enables
the couple-stress to satisfy the homogeneous boundary conditions (17)3 imposed at the beam ends. These
figures thus demonstrate the manner in which nonzero couple-stress distribution is created away from
those ends, as well as the manner in which the m,-magnitude increases with increasing distance from
the left end of the beam. As expected, the figures also show that, regardless of the value of x/L, the
magnitude of m,, attains a maximum on the top or on the bottom lateral plane of a top-stiff or a bottom-
stiff beam, respectively.

For different values of the fibre bending stiffness parameter, A, Figures 7 and 8 illustrate next the
through-thickness distribution of the shear stress 7, at the left end of a top- and a bottom-stiff beam,
respectively. In line with [Farhat and Soldatos 2015], all depicted distributions satisfy the zero shear
traction boundary conditions imposed on the upper and lower surface of the beam. Due to the relatively
small value of the material inhomogeneity parameter (¢ = 0.1), the depicted curves do not diverge
substantially from their counterparts shown in Figure 6 of [Farhat and Soldatos 2015]. However, they
have all lost their largely symmetric form observed in [Farhat and Soldatos 2015] with respect to the
beam middle axis, while their highest magnitude is moved towards the direction of increased fibre re-
inforcement; namely, upwards for the top-stiff and downwards for the bottom-stiff beam. As the beam
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Figure S. Through-thickness distribution of the couple-stress, m,,, at different axial
positions of a top-stiff beam (¢ =0.1).
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Figure 6. Through-thickness distribution of the couple-stress, m,,, at different axial
positions of a bottom-stiff beam (& = 0.1).
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becomes stiffer with increasing A, that highest magnitude of 7., decreases and moves naturally towards
zero. It comes, however, a little as a surprise that, in the case of the bottom-stiff beam (Figure 8) and
for the relatively large value A = 0.009 of the fibre thickness parameter, the relatively small value of that
highest 7,,-magnitude changes sign, along with the sign of the whole 7., -distribution.

Figures 9 and 10 show next the through-thickness distributions of the stresses 7., that correspond to
7, -distributions illustrated in Figures 7 and 8, respectively. Due to the symmetry of the stress tensor
when A = 0, the distributions drawn for A = 0 in Figures 7 and 8 are identical to their counterparts
shown in Figures 9 and 10, respectively. However, as generation of nonzero couple-stress destroys stress
symmetry, all 7., distributions associated with A # 0 in Figures 9 and 10 acquire nonzero values on the
lateral beam boundaries.

Due to the relatively small value of the fibre inhomogeneity parameter (¢ = 0.1) the depicted t,.-
distributions present again similarities with their counterparts shown in Figure 5 of [Farhat and Soldatos
2015]. Nevertheless, in almost all cases, the highest magnitude of the 7,,-value moves again towards the
stiffest part of the inhomogeneous structural component. An exception to this trend is again observed in
the case of the bottom-stiff beam (Figure 10) where, for the relatively large value A = 0.09 of the fibre
thickness parameter, the 7,,-distribution reverses hollows and attains highest magnitude on the bottom
lateral boundary.

Another remarkable observation relates to the fact that, like their counterparts depicted in Figure 6
of [Farhat and Soldatos 2015], all t,.-distributions shown in Figures 9 and 10 intersect at a certain
pair of material points located at the vicinity of z/h = +0.3. At those points, the value of 7,, thus

I? =0.5+¢(z/h)
0.5 T T T

0.4 - e

02 —

0.1 - m

z/h
(=]
T
1

~0.1 F .

03| —©—A=0 i
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_04 L A=0.006 _
—*—1=0.009
—-0.5 Il Il Il
-20 -15 -1.0 -05 0

Tox

Figure 7. Through-thickness distribution of the shear stress 7., at the left end of a top-
stiff beam (¢ =0.1).
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Figure 8. Through-thickness distribution of the shear stress 7., at the left end of a
bottom-stiff beam (¢ = 0.1).
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Figure 9. Through-thickness distribution of the shear stress 7, at the left end of a top-
stiff beam (¢ =0.1).
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Figure 10. Through-thickness distribution of the shear stress 7,, at the left end of a
top-stiff beam (¢ =0.1).

seems independent of the fibre thickness parameter, A, although it evidently still depends on the fibre
inhomogeneity parameter, €. At present, there seems no obvious explanation to this effect, which is
apparently due to the manner in which the couple-stress influences the values of ...

Under these considerations, Figures 11 and 12 depict the through-thickness 7,,- and 7, ,-distributions,
respectively, predicted at the left end of a beam reinforced in the symmetric, piecewise linear manner (35).
Remarkably, changes of the fibre bending stiffness parameter, A, do not seem to influence notably either
of these shear stress distributions. The considerable similarity observed between the 7,,-distributions
depicted in Figure 11 and their 7,, counterparts shown in Figure 12 is thus not surprising.

In fact, the principal difference between corresponding results demonstrated in those figures is that
all 7, -distributions (Figure 11) attain, naturally, a zero value at the top and bottom lateral plane. Like
their counterparts depicted previously in Figures 9 and 10, all different 7,,-curves shown in Figure 12
pass again through a certain pair of material points, which are now moved at the vicinity of z/h = £0.4.
Moreover, the lack of fibre-reinforcement on the middle-axis has apparently made z/ & = 0 a third point
of intersection for all 7,,- and 7,,-curves depicted in Figures 11 and 12. It is thus observed that, due
to low local fibre-reinforcement, the stress state is nearly symmetric within a certain material band that
surrounds the beam middle-axis.

5.3. Through-thickness normal stress distributions. Figures 13 and 14 depict the through-thickness
distribution of the nondimensional normal stresses o, and o, respectively, at the mid-span of a homo-
geneous fibre-reinforced beam (¢ = 0). Both figures depict in blue (A = 0) the known distribution of
the implied normal stress when fibres are perfectly flexible [Soldatos and Watson 1997]. The remaining
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Figure 11. Through-thickness distribution of the shear stress 7, at the left end of a
beam subjected to the symmetric, piecewise linear fibre reinforcement (35).
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Figure 12. Through-thickness distribution of the shear stress 7, at the left end of a
beam subjected to the symmetric, piecewise linear fibre reinforcement (32).
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Figure 13. Distribution of the normal stress , at the mid-span (x/L = 0.5) of a homo-
geneous beam (¢ =0).

curves then show the influence that fibre bending stiffness exerts on those known distributions upon
gradually increasing the value of L. Figure 13 thus makes it clear that fibre bending stiffness has marginal
effect on the transverse normal stress distribution.

However, Figure 14 reveals that, upon increasing A, the increasing resistance of the beam lowers the
magnitude of o, and, hence, decreases the influence that the depicted, well-known boundary layer effect
of the o, -distribution exerts on the strength of the structure. In fact, for A as small as 0.009, the influence
is decreased to such an extent that the value of the axial normal stress might be felt notable only within
a particularly narrow layer near the beam lateral boundary. Still though, every curve shown in Figure 14
evolves about a pivotal point, located at the vicinity of (o4, z) = (0, 0), in a manner that divides the
corresponding bending stress distribution into a compressive and a tensile part (top and bottom half of
the beam, respectively).

In the light of these observations, Figures 15 and 16 present next evidence of the fact that the combined
action of fibre bending stiffness and material inhomogeneity (¢ = 0.1) has still marginal effect on the
o.-distribution of a top- and a bottom-stiff beam, respectively. However, the same is not true for the
corresponding o, -distributions.

A search for the effect that combined action of fibre bending stiffness and material inhomogeneity has
on the o, -distribution is facilitated by initially considering that fibres are perfectly flexible (. = 0) and
varying only the value of the inhomogeneity parameter ¢. In this context, Figures 17 and 18 demonstrate
the manner in which the “blue” o, -distribution associated in Figure 14 with A = 0 evolves with increasing
inhomogeneity in a top- and a bottom-stiff beam, respectively. A thorough study of the results presented
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Figure 14. Distribution of the bending stress, o, at the mid-span (x/L = 0.5) of a
homogeneous beam (& = 0).
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Figure 15. Distribution of the normal stress o, at the mid-span (x/L = 0.5) of a top-stiff
beam (¢ =0.1).
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Figure 16. Distribution of the normal stress &, at the mid-span (x/L = 0.5) of a bottom-
stiff beam (¢ = 0.1).

in Figures 17 and 18 makes afterwards clearer the corresponding results depicted in Figures 19 and 20
for corresponding inhomogeneous beams with embedded fibres resistant in bending (A = 0.06).

Figure 17 thus reveals that, upon increasing &, the observed o, -distribution curve is initially transposed
to the right. This is due to the dominance the ¢ exerts on its linearly dependent elastic moduli for small
amounts of inhomogeneity. Hence, upon increasing & within a narrow interval of relatively small values,
the corresponding change of the elastic moduli suffices to “push” the depicted curve to the right, to
an extent that soon turns the whole o, -distribution completely tensile. Nevertheless, beyond the value
e = 0.083, which is still relatively small, the inhomogeneity difference between the top and the bottom
parts of the beam becomes very dominant. Upon increasing ¢ further, the ,-curve thus changes shape
and, while still moves to the right and hence stays tensile, reveals that it is the upper, rather than the
bottom part of the top-stiff beam that bares most of the externally applied loading.

Eventually, at about ¢ = (.25, the top part of the beam becomes so stiff that, while the value of the
tensile bending stresses start to decrease at the lower part of the beam, the value of o, approaches a
maximum on the top lateral plane. Further increase of the e-value and, hence, of the stiffness of top part
of the beam lowers the observed tensile bending stresses throughout the beam thickness. It is instructive
in this regard to note that the o,-curve in Figure 17 for & = 0.4 is essentially transposed to the left when
the inhomogeneity parameter is increased up to € = 0.5708, or further up to ¢ = 0.812. It is recalled that
(34) associates 0.5708 or 0.812 with the maximum value that ¢ may attain when the fibre-scale structure
is modelled with rectangular or triangular RVEs, respectively. It is thus observed that, upon increasing ¢
towards its maximum value, the decreasing tensile value of o, observed near the bottom boundary of the
top-stiff beam is naturally moving towards zero.
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Figure 17. Variation of the bending stress distribution at the mid-span (x/L = 0.5) with
increasing inhomogeneity of a top-stiff beam reinforced by perfectly flexible fibres (A = 0).
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Figure 18. Variation of the bending stress distribution at the mid-span (x/L = 0.5) with
increasing inhomogeneity of a bottom-stiff beam reinforced by perfectly flexible fibres
(A=0).
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Figure 18 demonstrates that the bending stress distribution of a bottom-stiff beam with embedded per-
fectly flexible fibres responds in an analogous manner. One of the evident principal differences with the
trends observed in Figure 17 is the fact that, upon increasing material inhomogeneity, the o, -distribution
curve that corresponds to A = 0 in Figure 14 moves towards the left, and thus soon turns completely
compressive. Moreover, the change of shape that the o, -curve observes for higher values of & suggests
that, naturally, it is now the bottom, rather than the upper part of the bottom-stiff beam that bares most
of the loading. Finally, the aforementioned observations, associated in Figure 17 with the top and the
bottom plane of a top-stiff beam, are naturally seen in Figure 18 associated with the bottom and the top
plane, respectively, of a bottom-stiff beam.

In the light of these observations, Figures 19 and 20 illustrate next the manner in which the “yellow’
oy -distribution curve, formed in Figure 14 by setting A = 0.006, evolves with increasing inhomogeneity
of a top- and a bottom-stiff beam, respectively. To a considerable extent, these results show substantial
quantitative similarity with their counterparts depicted in Figures 17 and 18 for corresponding beams
having embedded perfectly flexible fibres. However, and in close agreement with all previously observed
trends, the extra bending stiffness added now on the functional graded beam lowers significantly the
magnitude of the observed bending stresses.

Figures 21 and 22 depict the distribution of the normal stresses o, and o, respectively, at the mid-span
of a fibre-reinforced beam subjected to the symmetric, piecewise linear fibre reinforcement (35). In line
with the results depicted in Figures 11 and 12 for corresponding shear stress distributions, both stress
distributions attain a nearly symmetric form, with respect to the middle axis, within a narrow band of
weak local fibre-reinforcement. Regardless of the value of the fibre bending stiffness parameter, that
symmetry gradually fades outside that band around the middle axis.

The value of the bending stress at the top boundary of the beam, where the external load is applied,
thus becomes naturally bigger from its bottom boundary counterpart (see Figure 21). However, like the
top-stiff beam (see Figures 17 and 19 for ¢ # 0), the bending stress is always tensile throughout the beam
thickness. Unlike the corresponding results shown in Figures 17 and 19 though, the imposed lack of local
fibre-reinforcement at z/ 4 = 0 enables the beam middle axis to remain almost free of bending stress.
It is also noticeable in this regard that, regardless of the value of the fibre bending stiffness parameter,
the through-thickness shape of the o, -distribution resembles closely the form (35) of the corresponding
fibre volume fraction.

On the other hand, Figure 22 reveals that the weak reinforcement observed around the beam middle
axis and, hence, practically the negligible influence of &, is locally compensated by a sharp jump of the
transverse normal stress, 0;. The latter is seen positive and, therefore, tensile within the aforementioned
narrow band, as well as within the bottom part of the beam. Unlike its top- and bottom-stiff counterparts,
which are negative and therefore compressive throughout the beam thickness (see Figures 15 and 16),
the distribution of o, depicted in Figure 22 is compressive at and near the top beam boundary, where the
external load is applied, but turns tensile within the aforementioned band of weak fibre-reinforcement.
It then remains tensile in the bottom part of the beam, where it decreases and becomes finally zero on
the unstressed bottom beam boundary.

2
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Figure 19. Variation of the bending stress distribution at the mid-span (x/L = 0.5) with
increasing inhomogeneity of a top-stiff beam reinforced by fibres resistant in bending
(A =0.006).
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Figure 20. Variation of the bending stress distribution at the mid-span (x/L = 0.5)
with increasing inhomogeneity of a bottom-stiff beam reinforced by fibres resistant in
bending (A = 0.006).
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Figure 21. Variation of the bending stress distribution at the mid-span (x/L = 0.5) with
increasing fibre bending stiffness of a beam subjected to the symmetric, piecewise linear
fibre reinforcement (35).
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Figure 22. Variation of the distribution of the transverse normal stress, o, at the mid-
span (x/L = 0.5) of a beam subjected to the symmetric, piecewise linear fibre reinforce-
ment (35).
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6. Conclusions

This study aims initially to promote the need for extension into the regime of polar material response
of fibrous composites of relevant nonpolar linear elasticity solutions. Namely, existing solutions of well-
posed boundary value problems represented by continuous displacements having continuous derivatives
of all orders. As nonpolar elasticity of fibre-reinforced materials assumes that fibres embedded in a
structural component are perfectly flexible, the implied solution extensions will offer substantially better
understanding of the behaviour of composites reinforced by stiff fibres, such as carbon nanotubes, that
exhibit considerable bending resistance.

In serving the first of these aims, this study continued an initial relevant extension [Farhat and Soldatos
2015] of the well-known Pagano’s nonpolar plane strain elasticity solution [Pagano 1969], by considering
that the implied stiff fibres are redistributed within their matrix in an inhomogeneous, functionally graded
manner. Like in [Farhat and Soldatos 2015], the implied solution extension was based on the restricted
version of the polar elasticity theory presented in [Spencer and Soldatos 2007], namely a theory that
involves only a single elasticity modulus of fibre bending resistance. That extra elasticity modulus is
associated with the global response of the fibrous composite, rather than with the response of individual
fibres, but its involvement enables the theory to make use of an intrinsic length parameter that relates to
an average fibre thickness.

By setting that intrinsic length parameter and, therefore, the fibre thickness equal to zero, our theory
and analysis reduce naturally to their conventional, nonpolar elasticity counterparts. Thus content and
results of this article are useful even in cases of nonpolar material response, where the fibres embedded
in a relevant functionally graded fibrous composite are perfectly flexible. In this context, the parametric
studies performed in Section 5, along with their counterparts presented in [Farhat and Soldatos 2015],
enable better understanding of the influence that fibre bending resistance exerts on the plane strain be-
haviour of the implied class of fibrous composites, provided that the obtained, continuous solution of the
boundary value problem (Section 3) prevails over potential weak discontinuity solutions.

In this connection, it is reemphasised that this communication aims further to make it wider known
that, unlike its nonpolar linear elasticity counterpart, a corresponding fully continuous polar linear elas-
ticity solution is not necessarily the unique solution of the respective boundary value problem. Due to
the lack of ellipticity that linear elasticity equations suffer outside their nonpolar material regime, the
implied polar elasticity extension of a continuous solution may instead be accompanied by a number of
additional “weak discontinuity” solutions. Namely, solutions of the same boundary value problem that
may represent fibre-scale failure modes.

It is recalled in this context that a preliminary theoretical analysis that enables determination of weak
discontinuity surfaces in linearly elastic structural components reinforced by fibres resistant in bend-
ing is already available in [Soldatos 2014; 2015]. Reference [Soldatos 2015], in particular, makes use
of precisely the same, restricted theoretical background employed in the present study, but applies its
findings to three-dimensional study of composites reinforced by two families of straight uniaxial fibres.
Specialization of that analysis [Soldatos 2015] to the case of a single fibre family is currently under way.
This is expected to lead to weak discontinuity solutions that accompany potential three-dimensional
extensions of the continuous solution as detailed in Section 3. Identifications of weak discontinuity
solutions associated with the plane strain solution (Section 3) may then follow as particular cases.
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Appendix A: Determination of the elastic moduli appearing in (4)

The Young’s modulus and the Poisson’s ratio of the isotropic matrix phase are respectively given, in
terms of the Lamé moduli appearing in (7), by the standard formulas

3042 A
EzEsz'T":u, v=V"=—"
A+ 2+ )

The fibre phase of the composite can be either isotropic or anisotropic. For the purpose of the present
study, this is considered as transversely isotropic.

The elastic moduli of the fibre phase are accordingly considered to relate with their matrix phase
counterparts as

(A1)

fof f E
E; Er)=(a;,0)E, Gir.=azu=03———,
(E{,E7) = (a1, a2) LT = Q3 S0
E (A.2)
Foof Y Gf —
(vLT’ VTT) = (a4, as) v, TT = 7o
2(1+vyp)
where o, an, ..., as are considered as known dimensionless constants, and a subscript “L” or “T” in-

dicates the axis or the plane of transverse isotropy, respectively.
With use of the mixture law (1), the effective elastic moduli of the functionally graded fibrous com-
posite are obtained in the following form:

Ep=[14(a; — DV (IE, Er=[1+(c2a— DHV/(D]E,

_ _ f
Grr =[1+4 (a3 — HV/ (2)] TR (A3)
vir = [+ (@ — DV @lv, vrr =[1+(as — HV/ ()],
while it is still (e.g., [Jones 1998])
Grr=—"tT (A4)
R TR '

The elastic moduli appearing in (4) can then be obtained by inserting (A.3) and (A.4) into the standard
relevant formulas (e.g., [Jones 1998]), after aligning the longitudinal direction of transverse isotropy, L,
with the x-axis of the adopted Cartesian coordinate system.

Appendix B: Implementation of the fictitious layers method

For a sufficiently thin plate or beam (%#/L < 1), an approximate solution of (23) is obtained by replacing
the variable z appearing in (6) and, hence, in (22) with its middle-plane value, namely its value at z = 0.
In this manner, (23) is replaced by the following system of approximate linear ODEs:

DF =T(0)F, F =[Df, f, Dg,gl’. (B.1)
As this ODE system has constant coefficients, the exact form of its general solution can be expressed as

F(z) =S@)F(—%h), S =exp[(z+3h)T©0)] (—3h=<z<3h), (B.2)
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where the elements of the appearing exponential matrix S(z) are determined in the manner detailed in
[Ye 2003]. It is thus anticipated that the thinner is the inhomogeneous structural component of interest
the nearer (B.2) approximates the exact solution of (23) or, equivalently, (20).

When the thickness is not sufficiently small, the exact solution of (20) is approached computationally
very closely by dividing the structure into N successive fictitious layers (see Figure 1) having the same
constant thickness, 1) = h /N (j=1,2,..., N). Each individual fictitious layer is associated with a
local transverse coordinate parameter, z) = z — (j — 1)h/N + h/2, and, due to the FGM nature of the
plate, is itself materially inhomogeneous in the region 1/)/2 < z() < h()/2,

However, by choosing a suitably large value of N, each fictitious layer is itself regarded as a suf-
ficiently thin plate or beam whose mechanical response and behaviour are described satisfactorily by
an approximate solution of the form (B.2). The approximate solutions thus obtained for all N fictitious
layers are then suitably connected together by means of appropriate continuity conditions imposed on the
displacement and interlayer stress components. Upon increasing the value of N, this process provides a
sufficiently close solution to that of the exact governing equations (20) (see also [Shuvalov and Soldatos
2003]).

In more detail, the continuity conditions imposed on a generic j-th material interface (denoted by z;
in Figure 1) areas (j =1,2,..., N —1):

U(=hV*D2) =UmV72),  W(=hV*D2) =wh')2),

. . . . (B.3)
o (=hY*V12) = 0. (h72), o (—hYHD)2) = 7, (hY)2).
In matrix form, these are transformed into
F(j+1)(_h(j+1)/2) — R(j)F(j)(h(j)/Z), (B.4)
where
Fcih . . CYV 4dliV4 P a4
) ) )
Cs3 Css Cs3
R 0 1 0 0 B.5)
it e e : B
() () ()
Cs3 Gy Gy
| 0 0 0 1 ]
and Cé?, Cfé), ..., etc., signify the constant values that the implied elastic moduli acquire on the middle
plane, 70 =0, of the Jj-th fictitious layer (j =1, 2, ..., N). Application of the same notation is extended

to include the appearing fibre bending stiffness parameter, d//), where, however, it is also implied that
the previous use is made of (10).
Upon using successively (B.1), (B.2) and (B.4), one builds up the solution of the problem considered
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in a recursive manner. Hence, for the i-th layer, it is
F(z)= FO@") = S(i)(z(i))F(,-)<—h(i>> _ S(i)(z(i))R(i—l)F(i—l)(h(i—l))
2 2
. . . . i1 . i1
_ ),y pli-D gD N i-n( =h
R R (G PR S
_ S(z’)(z(i))(H(z’))F(l)<_g(1))’ (B.6)

where

1
HO = T] R(k)S(k)<¥>. (B.7)

k=i—1
The value of F(z) on the outer lateral surface is then obtained as
FMYRM 2y =HFV(—=nV/2), H=8SMHNM;2)HM. (B.8)

If this is connected with the lateral boundary conditions (15), then (B.6) yields a linear system of four si-
multaneous algebraic equations for the four unknown components of the vector F (—h WM /2) = F(=h/2).
Solution of that system of algebraic equations is then substituted back into (B.6) and it provides a semi-
analytical solution of the governing differential equations (23).

In the case of homogeneous fibrous composites, the first iteration of the outlined solution (N = 1)
provides naturally the exact elasticity results obtained in [Farhat and Soldatos 2015]. For inhomogeneous
composites, the number of iterations (N > 1) required for accurate prediction of displacement and stress
distributions depends on the degree of the assumed material inhomogeneity. As already mentioned, the
convergence behaviour and success of this fictitious layer method has been verified repeatedly in the
past (e.g, [Soldatos and Hadjigeorgiou 1990; Soldatos and Ye 1994; Shuvalov and Soldatos 2003; Ye
2003; Dagher and Soldatos 2011]) as well as most recently in [Brischetto 2019]. It accordingly suffices
here to note that the value of A does not seem to exert significant influence on the observed convergence
characteristics of the method, which thus remain essentially unchanged, regardless of whether the plate
is made of polar (A # 0) or nonpolar material (AL = 0).

All numerical results shown in this communication were obtained by setting N = 100. In general,
the maximum difference observed between corresponding results obtained on the basis of N = 100 and
N =70 iterations never exceeded 0.3%. It is worth noting that each iteration requires multiplication
of 4 x 4 matrices only. As a result, the implied hundreds of iterations involved in computations do not
require noticeable use of excessive computer time.

Appendix C: Consideration of the fibre-scale structure

It is assumed that fibres have circular cross-section of diameter d and, in the case of a homogeneous
plate [Farhat and Soldatos 2015] are distributed along the z-direction in a regular form of N equidistant
rows. The possible types of rectangular or triangular types RVEs depicted in Figure 3 consider that each
vertex of an element is the centre of a fibre cross-section. In either case, S, represents the distance of
two neighbouring fibres in the y-direction.
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Similarly, S, represents the aforementioned constant distance between two neighbouring fibre rows.
In this manner, S; is the distance of neighbouring fibres in the z-direction of the rectangular element
while, for a triangular RVE, it represents the height of the depicted isosceles triangle. In the particular
case that the depicted triangle is considered equilateral (S = S), itis S, = V3 Sy/2.

It becomes then readily understood that, necessarily, the following conditions always hold:

Sy>d, S;>d, (C.1)
for the rectangular element. For the triangular element, these are modified as
Sy>d, S=d. (C.2)

For the purposes of the present study, d may be considered identical with the intrinsic parameter /
introduced in (9). However, the adopted notation distinction of those two parameters is retained here, in
order to signify that (i) the shape of the fibre cross-section may be considered noncircular in different
applications, and (ii) the intrinsic length parameter / can acquire some different meaning in the theory
of polar elasticity for fibre-reinforced materials [Spencer and Soldatos 2007], such as the fibre spacing
for example.

Under these considerations, the fibre volume fraction of the RVE is defined as

Vi — area of fibers within the RVE (C.3)
~ area of rectangle or triangle ’

For a rectangular RVE, this definition leads directly to
2
y wd

=—, C4
48, S. (€D

but this result still holds true in the case a equilateral triangular RVE (§ = §,, S, = V3 Sy/2). It is
thus seen that the plane strain assumption which underpins the principal problem of present interest is
adequately and properly served by considering S, =d in (C.4), regardless of whether the implied element
is a rectangular or a triangular one.
It follows that the maximum fibre volume fraction in a rectangular RVE is achieved by setting S, =
S, =d in (C.4), thus leading to
v/ o= % ~().785. (C.5)
This value of VI{m necessarily coincides with the maximum possible value of V/ that the homogeneous
counterpart of the present problem [Farhat and Soldatos 2015] is associated with when the fibre-scale
structure is simulated with rectangular RVEs.
Similarly, maximum fibre volume fraction in a triangular RVE is achieved when § = §, = d. In that
case, (C.4) yields
vi = 2% =~ 0.907, (C.6)
which coincides with the maximum V/-value that the homogeneous version of the problem is associated
with if the fibre structure is simulated with equilateral triangular elements.
The values of V,{lax shown in either (C.5) or (C.6) thus also consist of their corresponding upper
limits such that the V/-value can attain in the present inhomogeneous version of the problem, where
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fibres are assumed redistributed in the manner described by (31), (32) or (35) within the same matrix
material. However, such an upper limit of V/ can here be associated only with the densest fibre part of
the inhomogeneous beam. Namely, the part located at the neighbourhood of z/h =1/2 0or z/h = —1/2
in top-stiff (31) or a bottom-stiff (32) beam, respectively, and the neighbourhood of both lateral planes
(z/h = £1/2) in the case of a beam reinforced in the symmetric manner (35). This is achievable by
considering that S. is a suitable function of z which takes its lowest value (namely S, =d or S, =+/3d/2
for rectangular or triangular elements, respectively), in those densest fibre parts of the composite.

Hence, by associating Vr{mx with the top (z/h = 1/2) or the bottom plane (z/h = —1/2) of a top- or
bottom-stiff beam, respectively, either of (31) or (32) yields the maximum value of the parameter &pax
provided in (34). The inhomogeneous fibre distributions proposed in (31) and (32) are accordingly
connected naturally with the present analysis when the fibre-scale structure is accurately simulated with
rectangular or triangular RVEs, as soon as the eny,x-value shown in (34) replaces the noted theoretical
upper bound ¢ = 1. It is recalled that, by virtue of (3);, both (31) and (32) will thus still return (VvIy=1/2.

However, in the case of the symmetric fibre distribution (35), association of Vd:ax with the densest fibre
part of the beam, z/h = £1/2, yields VI{lax = /2. By virtue of (C.5) and (C.6) (alternatively (25)), one
thus obtain the maximum values of & shown in (36). The corresponding average volume fractions noted
in (37) are then obtained by inserting each of those maximum «-values into (35) and, then, performing
the integration noted in (3).

Consideration of a fibrous composite having the effective properties (26) is still possible for (V/) =
0.39 in this case, after replacing (A.3) with

a1 =101, w3 =1.64165, wmy=as=0a5=1, v=0.25, (C.7
and simultaneously modifying (30) as
EJJE=1, EJ/E}=101, G} /E}=0.6566, v =vj,=v=025 G} /E}=2.(C8)

In a similar manner, a fibrous composite with effective properties (26) is obtained for (V/) = 0.45 when
all quantities appearing in (C.7) and (C.8) are replaced by their counterparts shown in (38).

Appendix D: A class of through-thickness symmetric fibre volume fractions
Consider a class of fibre volume fractions represented by the following even function of z:
Vi@ =aulz/hl" <1 (=h/2<z<h/2). (D.1)

Regardless of the value of the positive integer n, this form of V/ (z) is evidently symmetric with respect
to the middle axis, z = 0, of the composite. Consider further that

V(@) =ki/ka (ky=ki >0, ky #0), (D.2)

so that the known integers n, k| and k, are such that the inequalities noted in (1) are satisfied regardless
of the value of the variable z.
It is observed in this regard that the maximum value of the fibre volume fraction, namely

vl =VI(th/2)=a,/2" <1, (D.3)

max
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is attained at the lateral planes of the functionally graded fibrous composite. It follows that satisfaction
of the inequalities noted in (1) restricts the value of the coefficient «,, as

0<a, <2" D.4)

By introducing (D.1) into (3); and performing the denoted integration, one obtains

o =2+ 1) K o, D.5)
so that o Dk
V=20 chjpseshy). (D.6)
2

However, connection of (D.5) with (D.4) makes it clear that a fibre volume fraction of the form (D.6) is
admissible for all values of z only if

n<(ky/ky) =1 (kp =k >0). D.7)

For instance, in the particular case met in Section 4.2, where the composite contains 50% fibre and
50% matrix material, a combination of (D.2) with (33) suggests that

ki=1, k=2 (D.8)

Use of (D.7) makes it then further understood that, in that case, the only admissible value of the positive
integer n is
n=1, (D.9)

thus leading to o; = 2 and, hence, to the fibre volume fraction (35) with o = 2.

It becomes also understood that, in cases when the fibre volume fraction is such that k;/k; > 3,
(D.7) returns multiple admissible values of n and, therefore, multiple admissible forms of (D.1). However,
cases of volume fractions that admit multiple values of n are not considered in this investigation.
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