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LOCAL GRADIENT THEORY FOR THERMOELASTIC DIELECTRICS:
ACCOUNTING FOR MASS AND ELECTRIC CHARGE TRANSFER

DUE TO MICROSTRUCTURE CHANGES

OLHA HRYTSYNA AND VASYL KONDRAT

In this paper a complete set of nonlinear field equations of a gradient-type continuum theory for ther-
moelastic nonferromagnetic dielectrics is obtained. The specification of the mentioned set of equations
is based on the application of electrothermomechanical balance laws and takes into consideration the
polarization electric current and mass flux (of nondiffusive and nonconvective nature) associated with
microstructure changes. The electric current is caused by a change of both dipole and quadrupole
electric moments over time, whilst the mass flux is caused by a change of the vector of the local mass
displacement over time. The obtained set of equations accounts for the electromechanical coupling for
isotropic materials and describes the near-surface, size, flexoelectric and thermopolarization effects. The
classical theory of piezoelectrics is incapable of describing the mentioned phenomena. For isothermal
linear approximation, the proposed theory is used to investigate the effect of thin-film thickness as well
as of the diameter and surface curvature of a thin fiber and a cylindrical hole in elastic dielectrics on their
stationary stress-strain state, bound surface electric charge, surface energy of deformation and polariza-
tion, etc. It is shown that a disjoining pressure emerges in thin films. This pressure can affect the strength
and stability of nanoscale dielectric films. The results obtained in this paper are general and can be used
for designing new nanocomposite materials and devices utilizing the micro/nanoscale films, fibers, etc.

A list of symbols including the notations used in this paper can be found on page 566. In general, bold
symbols stand for vector quantities and bold symbols with caps denote second-order tensor quantities.

1. Introduction

The generalized theories of dielectrics have attracted the attention of many investigators. Extension
of the classical field theory was stimulated by intensive development of new technologies, in particular,
nanotechnologies, as well as by the availability of a number of inconsistencies in classical (local) theories.
For example, classical theories predict a singular solution in problems with concentrated sources, cracks,
and defects. Some experimental results (namely, polarization of a material with centrosymmetry under
nonuniform mechanical loads or temperature gradients [Kholkin et al. 1982; Zholudev 1966], nonlinear
dependence of capacitance of thin dielectric film on its thickness, known as Mead’s anomaly [Mead
1961], size effects [Axe et al. 1970; Nam et al. 2006; Tang and Alici 2011] etc.) are outside the scope of
classical theories of dielectrics.

There are several different ways of constructing extended theories of elastic dielectrics. One group of
theories considers the additional degrees of freedom (i.e., microrotations, microdeformations, etc.) for
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material points in order to model the contribution of the microstructure changes to the macroscopic behav-
ior of the body. In such a way there were developed more general theories, in particular, micromorphic,
microstretch, micropolar continua, etc. [Eringen 1966; 1999; Eringen and Suhubi 1964]. The nonlocal
and gradient theories form another group of extended theories of dielectrics. The nonlocal field theory
for piezoelectricity with functional constitutive relations was proposed in [Eringen 1984; 2002]. The
gradient-type theories were mainly formulated using the variation methods or methods of nonequilibrium
thermodynamics [Kalpakidis and Massalas 1993; Maugin 1980; Nowacki 1983; Papenfuss and Forest
2006; Ván 2003]. Such theories were developed by allowing the stored energy density to depend on the
gradient of some physical quantities, namely, the strain tensor gradient [Mindlin 1965], the polarization
gradient [Mindlin 1968], or the electric field gradient [Kafadar 1971; Kalpakides and Agiasofitou 2002;
Kalpakidis and Massalas 1993; Maugin 1988]. Note that the electric field gradient is a thermodynamic
conjugate of the electric quadrupole [Kafadar 1971]. For a more detailed description of these theories,
see monographs [Burak et al. 2011; Eringen 1999; 2002; Erofeyev 2003; Maugin 1988; Nowacki 1983;
1986] and reviews [Kondrat and Hrytsyna 2009; Yang 2006].

Burak et al. [2007; 2008] proposed a continuum-thermodynamical approach to the construction of
a gradient-type theory of electrothermoelasticity of polarized solids (local gradient electrothermome-
chanics of dielectrics, in the author’s terminology). The mentioned approach is based on accounting
for nondiffusive and nonconvective mass fluxes associated with changes in the material microstructure.
These fluxes are related to the process of local mass displacement [Burak et al. 2007; 2008].

The objective of this paper is to develop this approach and to construct the local gradient theory
of nonferromagnetic dielectrics that accounts for the above mass fluxes as well as for the polarization
currents. Here, we will consider the contribution of electric dipole and quadrupole moments to the
polarization current. The developed theory will be used for describing near-surface and size effects, in
particular, to investigate the surface energy of deformation and polarization, a disjoining pressure in thin
solid films, etc.

2. Investigation object and notations

We consider an electrically polarizable nonferromagnetic heat-conducting elastic body which occupies
the domain (V∗) of three-dimensional Euclidean space with a smooth surface (6∗). In view of the action
of external forces, electromagnetic field and heating of the body, mechanical, thermal, and electromag-
netic processes can occur within the solid. These processes may be accompanied by changes in the
microstructure of a small body element (dV ) (representative volume). We characterize these changes
by an electric flux Jes (polarization current) and a nonconvective and nondiffusive mass flux Jms . It
should be noted that Marchenko et al. [2009] observed the mentioned nondiffusive mass flux within the
near-surface domains of thin films during their formation. We relate the mass flux Jms to the process of
the local mass displacement [Burak et al. 2007; 2008].

All fields that characterize the processes occurring in the solid should obey the fundamental laws of
continuum physics, namely, the Maxwell equations and the corresponding balance laws (balances of
energy, mass, linear momentum, angular momentum, and entropy).
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3. Conservation laws of mass and induced mass

We separate from the body a fixed small volume (V ) bounded by closed surface (6). The interaction
of the microparticles of the considered volume (V ) with the exterior microparticles occurs through the
surface (6). The integral form of the mass balance equation for the considered volume can be written
as

d
dt

∫
(V )
ρ dV =−

∮
(6)

Jm∗ · n d6. (1)

Here, ρ is the mass density, Jm∗ is the density of mass flux, n is the outward unit normal to the surface (6),
and the dot denotes the scalar product.

We take into consideration that the mass-center displacement of the representative volume may be
induced not only by its convective displacement as a rigid entity (i.e., translational displacement of the
element geometric center) but also by the changes of the relative positions of microparticles within this
element, that is, the change of its microstructure (see Figure 1). In view of this, we represent the mass
flux Jm∗ as the sum of the convective component ρv∗ and component Jms related to the ordering of
microstructure of the representative volume, that is Jm∗ = ρv∗+ Jms . Here, v∗ = u̇∗ is the velocity vector
of convective displacement of the representative volume, u∗ = r∗− r0 (Figure 1). Hence, equation (1) in
the local form can be written as

∂ρ

∂t
+∇ · (ρv∗+ Jms)= 0, (2)

where ∇ is the Hamilton operator.
We introduce the velocity vector v of the center of mass by the formula [Burak et al. 2007; 2008]

v =
1
ρ
(ρv∗+ Jms). (3)

In view of formula (3), the equation of mass balance (2) can be written in the standard form

∂ρ

∂t
+∇ · (ρv)= 0. (4)

Following Burak et al. [2007; 2008], assume that the mass flux Jms is caused by a change over time
of the mass dipole moment 5m (i.e., the vector of local mass displacement):

Jms = ∂5m/∂t . (5)

To describe the local mass displacement by the formula∫
(V∗)
5m dV =

∫
(V∗)
ρmπ r dV, (6)

we also introduce the density of induced mass ρmπ [Burak et al. 2008]. In (6), we integrate over the
volume (V∗) of the solid body. Note that from the integral equation (6) the following useful relations can
be easily obtained: ∫

(V∗)
ρmπ dV = 0, (7)

ρmπ =−∇ ·5m . (8)
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Figure 1. Changing the center of mass of a small body element within the classical
theory (u = r − r0) (left), and local gradient theory taking the local mass displacement
into account (u = r∗+πm − r0, where πm =5m/ρ) (right).

Let’s derive the formula (8). To this end, we multiply the lefthand and righthand sides of the relation (6)
by an arbitrary constant vector a and use the identity a ·5m = (5m ·∇)(a · r). As a result, after some
algebra, we obtain∫
(V∗)
(a · r)ρmπ dV =

∫
(V∗)
(5m ·∇)(a · r) dV =−

∫
(V∗)

∇ · [5m(a · r)] dV −
∫
(V∗)
(a · r)(∇ ·5m) dV . (9)

Assume that the body comes in contact with vacuum. Since vector 5m is equal to zero outside the body,
then ∫

(V∗)
∇ · [5m(a · r)] dV = 0. (10)

Because vector a is arbitrary, from the expression (9) we get formula (8). Similarly, formula (7) can be
obtained [Burak et al. 2011].

By differentiating formula (8) with respect to time and taking relation (5) into account, one can obtain
a conservation law of an induced mass:

∂ρmπ

∂t
+∇ · Jms = 0. (11)

4. Electrodynamics equations

The Maxwell equations in the local form are given by [Landau and Lifshitz 1982]

∇× E =−
∂B
∂t
, ∇× H = Je f , (12)

∇ · B = 0, ∇ · D = ρe. (13)

Here Je f = Je + Jed + Jes , where Je is the density of the electric current (convection and conduction
currents), Jes is the polarization current, and Jed = ε0(∂E/∂t), ε0 is the electric permittivity of a vacuum.
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Assume that the polarization current Jes is caused by a change over time of both the dipole P and the
quadrupole Q̂ electric moments [Kondrat and Hrytsyna 2019], namely

Jes =
∂5e

∂t
, 5e = P −

1
6
∇ · Q̂. (14)

Here, 5e is the polarization vector, which can be thought of as a vector of the local displacement of
electric charges. Thus, using (14), one can write

Je f = Je+ ε0
∂E
∂t
+
∂5e

∂t
. (15)

For nonferromagnetic dielectrics, the constitutive equations for the vectors of magnetic B and elec-
tric D inductions look like

B = µ0 H, D = ε0 E+ P − 1
6
∇ · Q̂. (16)

Here, µ0 is the magnetic permeability in vacuum. We also introduce the density of an induced charge ρeπ

[Bredov et al. 1985] ∫
(V∗)
5e dV =

∫
(V∗)
ρeπ r dV . (17)

From (17) it follows that [Bredov et al. 1985]∫
(V∗)
ρeπ dV = 0, ρeπ =−∇ ·5e. (18)

The conservation law of induced electric charges looks like [Bredov et al. 1985]

∂ρeπ

∂t
+∇ · Jes = 0. (19)

Equations (12), (13), (15), and (16) yield the following balance law for the energy Ue of the electro-
magnetic field [Burak et al. 2011]:

∂Ue

∂t
+∇ · Se+

(
Je+

∂5e

∂t

)
· E = 0. (20)

Here, Ue = (ε0 E2
+µ−1

0 B2)/2, Se = µ
−1
0 E × B. Note that the last term in (20) describes the effect

of the electromagnetic field on a substance. Let us rewrite the above term in such a way that it contains
the quadrupole Q̂∗ and dipole P∗ electric moments, the electric field vector E∗, and the density of
the electric current Je∗ in the reference frame of the mass centers moving with a velocity v relative to
the laboratory reference frame. In this co-moving frame, the vectors E, P , Je and the tensor Q̂ are
transformed according to the relations: E = E∗− v× B, P = P∗, Je = Je∗ + ρev, Q̂ = Q̂∗. Here, the
vector Je∗ is the conduction current density. Substituting these equations into (20) and using the mass
conservation law (4), the balance equation for the energy of the electromagnetic field can be reduced to
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the following form:

∂Ue

∂t
+∇ · Se+ Je∗ · E∗+ ρ

D p
Dt
· E∗+ ρ

Dq̂
Dt
: (∇⊗ E∗)

+ v ·

[
ρe E∗+

(
Je∗ +

∂5e

∂t

)
× B+ ρ(∇⊗ E∗) · p− ρ(∇⊗∇⊗ E∗) : q̂

]
−∇ · {[ p · E∗+ q̂ : (∇⊗ E∗)]ρv} = 0. (21)

Here, p= P/ρ and q̂ = Q̂/6ρ, ⊗ is the tensor product, and D...
Dt =

∂...
∂t + v ·∇ . . . denotes the material

time derivative.

5. Equation of entropy balance

We used the approaches of classical nonequilibrium thermodynamics. Within the nonequilibrium ther-
modynamics, the entropy balance equation may be expressed in the local form as [de Groot and Mazur
1962]

ρ
Ds
Dt
=−∇ ·

(
Jq

T

)
+ η+ ρ

R

T
. (22)

Here, s is the specific entropy, Jq is the density of the heat flux, T is the absolute temperature, R denotes
the distributed heat source, and η is the entropy production per unit of volume and time.

6. Energy balance law for system “solid-electromagnetic field”

We assume that the total energy E is the sum of internal energy ρu (u is the specific internal energy),
kinetic energy ρv2/2, and the energy Ue of the electromagnetic field: E = ρu + 1

2ρv
2
+Ue. We also

assume that the change in the total energy is caused (i) by the convective energy transport ρ(u+ v2/2)
through the body surface, (ii) by the energy flux σ̂ · v due to the power of surface forces, (iii) by the heat
flux Jq , (iv) by the electromagnetic energy flux Se, (v) by the energy flux µJm linked with the mass
transport relative to the centre of mass of the small body element, (vi) by the energy flux µπ Jms related
to the material microstructure ordering (i.e., local mass displacement), as well as (vii) by the action of
mass forces F and (viii) by the action of distributed heat sources R. Thus, the law of the energy balance
can be written as

d
dt

∫
(V )

E dV =−
∮
(6)

[
ρ

(
u+

1
2
v2
)
v−σ̂ ·v+Se+Jq+µJm+µπ Jms

]
·n d6+

∫
(V )
(ρF·v+ρR)dV, (23)

where σ̂ is the Cauchy stress tensor, µ is chemical potential, µπ is an energy measure of the effect of
the local mass displacement on the internal energy and Jm = ρ(v∗− v) [Burak et al. 2008].

By the use of (4), (5), (8), (21), and (22), taking a time derivative of the righthand side of (23) and by
means of the divergence theorem, after some lengthy algebraic manipulations, we obtain the following
local form of the balance equation for the internal energy u:

ρ
Du
Dt
= ρT

Ds
Dt
+ σ̂∗ :

D ê
Dt
+ ρE∗ ·

D p
Dt
+ ρ∇⊗ E∗ :

Dq̂
Dt
+ ρµ′π

Dρm

Dt
− ρ∇µ′π ·

Dπm

Dt

+ Je∗ · E∗− Jq ·
∇T
T
− Tη+ v ·

[
−ρ

Dv
Dt
+∇ · σ̂∗+ Fe+ ρ(F+ Fm)

]
, (24)
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where πm = 5m/ρ; ρm = ρmπ/ρ; µ′π = µπ −µ. Here, ê, Fe, Fm , and σ̂∗ are the infinitesimal strain
tensor, ponderomotive force, additional mass force, and modified stress tensor that are defined by

ê= [∇⊗ u+ (∇⊗ u)T ]/2, (25)

Fe = ρe E∗+ ρ(∇⊗ E∗) · p+
(

Je∗ +
∂5e

∂t

)
× B+ ρ(∇⊗∇⊗ E∗)T (2,3) : q̂, (26)

Fm = ρm∇µ′π − (∇⊗∇µ′π ) ·πm, (27)

σ̂∗ = σ̂ − ρ[ p · E∗+ q̂ : (∇⊗ E∗)+ ρmµ
′

π −πm ·∇µ
′

π ] Î, (28)

where superscript 〈T 〉 denotes a transposed tensor and Î is the unit tensor.
Applying the principle of frame indifference in a rigid translation, from (21) we obtain the balance of

momentum in the form
ρ(Dv/Dt)=∇ · σ̂∗+ Fe+ ρ(F+ Fm). (29)

It is evident from (29), that the electric quadrupole and mass dipole moments induce nonlinear body
forces F′e = −ρ(∇⊗∇⊗ E∗) : q̂ and Fm and couple stresses σ̂ ′

∗
= −ρ[q̂ : (∇⊗ E∗)+ ρmµ

′
π − πm ·

∇µ′π ] Î within the body. Note that as evident from relation (25), we confined ourselves to linear strain-
displacement relations (i.e., geometric nonlinearity is neglected within the framework of constructed
mathematical model) whereas the balance equations (4), (11), (22), and (29) are nonlinear (the model
takes physical nonlinearity into account).

By means of the Legendre transformation f = u− T s− E∗ · p− q̂ : (∇⊗ E∗)+∇µ′π ·πm we define
the generalized Helmholtz free energy. Using this new thermodynamic function and the balance of linear
momentum (29), from (24) we obtain

ρ
D f
Dt
=−ρs

DT
Dt
+ σ̂∗ :

D ê
Dt
− ρ p ·

D E∗
Dt
− ρ q̂ :

D(∇⊗ E∗)
Dt

+ ρµ′π
Dρm

Dt
+ ρπm ·

D∇µ′π

Dt

+ Je∗ · E∗− Jq ·
∇T
T
− Tη. (30)

While inspecting (30), we assume that the Helmholtz free energy is a function of T , ê, E∗, ∇⊗ E∗,
ρm , and ∇µ′π that is f = f (T, ê, E∗,∇⊗ E∗, ρm,∇µ

′
π ). Note that the density of free energy depends

not only on temperature T , strain tensor ê, and electric field vector E∗, as it follows from the classical
theories, but also on the parameters ∇ ⊗ E∗, ρm = −∇ · (ρπm)/ρ, and ∇µ′π , related to the electric
quadrupole and mass dipole moments. Using (30), we get the expression

ρ

(
∂ f
∂T
+s
)

DT
Dt
+

(
ρ
∂ f
∂ ê
− σ̂∗

)
:

D ê
Dt
+ρ

(
∂ f
∂E∗
+ p

)
·

D E∗
Dt
+ρ

(
∂ f

∂(∇⊗ E∗)
+ q̂

)
:

D(∇⊗ E∗)
Dt

+ ρ

(
∂ f
∂ρm
−µ′π

)
Dρm

Dt
+ ρ

(
∂ f

∂∇µ′π
−πm

)
·

D∇µ′π

Dt
= 0, (31)

and the following relation for entropy production

η = Je∗ · E∗− Jq · (∇T/T ). (32)

Note that in relation (32) for entropy production, the terms caused by polarization and the local mass
displacement are absent because we describe these processes as reversible.
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7. Constitutive equations

Since parameters T , ê, E∗, ∇⊗ E∗, ρm , and ∇µ′π are independent, we obtain the following constitutive
equations from relation (31):

σ̂∗ = ρ
∂ f
∂ ê

∣∣∣∣
T,E∗,∇⊗E∗,ρm ,∇µ′π

, s =−
∂ f
∂T

∣∣∣∣
ê,E∗,∇⊗E∗,ρm ,∇µ′π

, p=−
∂ f
∂E∗

∣∣∣∣
ê,T,∇⊗E∗,ρm ,∇µ′π

, (33)

q̂ =−
∂ f

∂(∇⊗E∗)

∣∣∣∣
ê,T,E∗,ρm ,∇µ′π

, µ′π =
∂ f
∂ρm

∣∣∣∣
ê,T,E∗,∇⊗E∗,∇µ′π

, πm =
∂ f

∂(∇µ′π )

∣∣∣∣
ê,T,E∗,∇⊗E∗,ρm

. (34)

The specific electric quadrupole q̂, the potential µ′π , and the local mass displacement vector πm are
the thermodynamic conjugates of the electric field gradient, the specific induced mass, and the gradient
of modified chemical potential.

We can write (33) and (34) in an explicit form. In order to obtain the linear constitutive relations,
we expand f into a Taylor series about ê = 0, T = T0, E∗ = 0, ∇ ⊗ E∗ = 0, ρm = 0, µ′π = µ

′

π0,
and ∇µ′π = 0, where T0 is a reference temperature and µ′π0 is the potential µ′π of an infinite medium.
Denoting θ = T−T0, Ie1= ê : Î = e, Ie2= ê : ê, IE1= (∇⊗E∗) : Î =∇⊗E∗, IE2= (∇⊗E∗) : (∇⊗E∗)
and keeping linear and quadratic terms only, we can write the following for isotropic materials

f = f0− s0θ +µ
′

π0ρm +
1

2ρ0

(
K −

2
3

G
)

I 2
e1+

G
ρ0

Ie2−
CV

2T0
θ2
+

dρ
2
ρ2

m

−
χm

2
(∇µ′π )

2
−
χE

2
E2
∗
+
χq1

2
I 2

E1−χq2 IE2−
KαT

ρ0
Ie1θ −

Kαρ
ρ

Ie1ρm

−
KαE1

ρ0
Ie1 IE1−βTρρm θ +βTE IE1θ +βEρ IE1ρm

+χEm E∗ ·∇µ′π + 2G
αE2

ρ0
ê : (∇⊗ E∗). (35)

Here K , G, CV , dρ , αT , αρ , αE1, αE2, χE , χm , χEm , χq1, χq2, βTρ , βTE , βEρ are material characteristics.
Using the formulas (33), (34) and (35) we obtain the following constitutive relations for isotropic

dielectric materials

σ̂ = 2G ê+ 2GαE2∇⊗ E+
[(

K −
2
3

G
)

e− KαT θ − Kαρρm − KαE1∇ · E
]

Î, (36a)

s = s0+
CV

T0
θ +

KαT

ρ0
e+βTρρm −βTE∇ · E, (36b)

µ′π = µ
′

π0+ dρρm −
Kαρ
ρ0

e−βTρ θ +βEρ∇ · E, (36c)

p= χE E−χEm∇µ′π , (36d)

πm =−χm ∇µ′π +χEm E, (36e)

q̂ = 2χq2∇⊗ E− 2GαE2 ê−
(
χq1∇ · E−

KαE1

ρ0
e+βTE θ +βEρρm

)
Î . (36f)
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The constitutive equations describe an electromechanical interaction in isotropic (centrosymmetric)
materials. In the framework of the proposed theory, the body polarization is caused not only by the
electric field but also by the spatial nonhomogeneity of the field, as well as by the gradients of the strain,
and the temperature and density of induced mass. Hence, the constitutive equations (36) for isotropic
materials make it possible to describe both the flexoelectric and thermopolarization effects. Note that the
classical theories of dielectrics cannot describe these effects.

Now we shall specify the expressions for fluxes. We represent (32) for entropy production as follows:
η = 1

T

∑2
k=1 jk · Xk , where J1 = Je∗ , J2 = Jq , X1 = E∗, and X2 =−∇T/T are thermodynamic fluxes

and forces. Assuming that thermodynamic forces are the cause of the thermodynamic fluxes j1 and j2,
we can write ji = ji (X1, X2), i = 1, 2. In a linear approximation, we obtain the following equations for
fluxes

Je = ζE E− ζ∇T, Jq =−λ∇T + ζT Je, (37)

where ζE and λ are electric and thermal conductivity, respectively, and the coefficients ζT and ζ char-
acterize thermoelectric phenomena. Note that the Second Law of thermodynamics states that entropy
production is positive definite, i.e., η ≥ 0. In order to ensure the positive character of entropy production,
the coefficients λ, ζE , ζ , and ζT should be positive defined.

8. Key equations for isothermal approximation

Balance equations (11), (19), (22), (29), Maxwell’s equations (12), (13), constitutive relations (16), (36),
(37), and formulas (5), (14), (15), (25) form a complete set of field equations for the coupled problems
of local gradient electrothermoelasticity for nonferromagnetic dielectric solids.

In what follows, we shall consider an isothermal approximation. We obtain the final form of the key
equations by substituting the constitutive equations (16), (36), (37), geometric relations (25), and formu-
las (5), (14), and (15) into the balance of momentum (29), the conservation laws of induced mass (11),
and Maxwell’s equations (12), (13). The fundamental field equations for ideal dielectrics expressed in
terms of the displacement vector u, induced mass ρm , electric field E and magnetic induction B can be
written as

ρ0
∂2u
∂t2 =

(
K +

1
3

G
)

∇(∇ · u)+G1u− KαE1∇(∇ · E)+ 2GαE21E− Kαρ∇ρm + ρ0 F, (38)

1ρm −
1

χm dρ
ρm =

Kαρ
ρ0 dρ

1(∇ · u)−
βEρ

dρ
1(∇ · E)+

χEm

χm dρ
∇ · E, (39)

∇× E =−
∂B
∂t
, ∇ · B = 0, (40)

1
µ0

∇×B = σe E+ε
∂E
∂t
+ρ(χq1−βEρχEm)

∂∇(∇·E)
∂t

−2ρ0 χq2
∂1E
∂t
+ρ0(βEρ−dρχEm)

∂∇ρm

∂t

+(KαρχEm+ρ0 GαE2−KαE1)
∂(∇∇·u)

∂t
+ρ0GαE2

∂1u
∂t

, (41)

ε∇ · E+ ρ0(χq1− 2χq2−χEm βEρ)1(∇ · E)+ (2ρ0 GαE2− KαE1+ KαρχEm)1(∇ · u)
+ ρ0(βEρ − dρχEm)1ρm = ρe. (42)

Here, ε = ε0+ ρ0χE .
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Note that the ponderomotive Fe and additional mass Fm forces are absent in (38) because these forces
are nonlinear functions of the perturbations fields. Accounting for the local mass displacement yields
an additional equation (39) in the key set and suggests modifications of (38), (41) and (42), all of which
contain certain terms related to this process. Equation (39) is stationary because we consider the local
mass displacement as a reversible process. Its solution depends on the sign of the coefficient (dρχm)

−1.
From the estimation of coefficients dρ and χm it follows that these quantities are positive [Burak et al.
2011], thus, (dρχm)

−1
= λ2

µ. Here, λ−1
µ is the intrinsic length scale parameter (a material constant which

dimension is length). The emergence of such a constant is typical of the gradient-type theories [Mindlin
1972], while an intrinsic length scale is absent from classical theories. As a result of accounting for
the electric quadrupole, summands proportional to a second-order space partial derivative of the electric
field vector E appear in the balance of momentum (38). Equations (41) and (42) change too. Now they
contain summands proportional to a third-order mixed partial derivative of the electric field vector.

9. Surface energy of deformation and polarization

We apply the above relations to determine the surface energy of deformation and polarization. The notion
of surface energy of deformation and polarization was originally introduced in [Mindlin 1965; 1968].

Using the constitutive equations (36), we modify expression (35) as

f − f0 =
1

2ρ0
σ̂ : ê+ 1

2
µ′π0ρm +

1
2
µ′π ρm +

1
2
πm ·∇µ

′

π −
1
2

E · p− 1
2

q̂ : (∇⊗ E). (43)

Let us consider an equilibrium state of ideal dielectrics for which E = −∇ϕe, where ϕe is electric
potential. Using this formula, the equilibrium equation ∇σ̂ + ρ0 F = 0, the geometrical relation (25),
Gauss’s law (13)2, as well as the formulas (8) and (16), and after applying some algebra to (43), we can
express the perturbation of the total energy E as

E=
1
2
ρ0µ

′

π0ρm +
1
2
ρ0 F · u+ 1

2
∇ · (σ̂ · u)− 1

2
ρ0∇ · (πm µ̃

′

π )−
1
2
∇ · (ϕe D)+ 1

12
∇ · (E · Q̂). (44)

Here, µ̃′π = µ
′
π −µ

′

π0.
We integrate both parts of (44) over the region (V ′)= (V )∪ (Vν) occupied by the body (region (V ))

and vacuum (region (Vν)). Finally, using the divergence theorem, we obtain∫
(V ′)

E dV = 1
2
ρ0 µ

′

π0

∫
(V )
ρm dV+1

2
ρ0

∫
(V )

F·u dV+1
2

∫
(6)

(
σ̂·u−ρ0 πm µ̃

′

π−ϕe[D]+
1
6

E·Q̂
)
·n d6. (45)

Here, [D] denotes the finite jump of the electric induction over the surface (6).
Consider the solids with traction-free surfaces and in the absence of external forces (F = 0). Then,

we have ∀r ∈ (6) : σ̂ · n= 0, and [D] = 0. Hence, using formula (7), we get∫
(V )

E dV = 1
2
ρ0

∫
(6)

(E · q̂−πm µ̃
′

π ) · n d6. (46)

The righthand side of the above equality defines the surface energy of deformation and polarization U6 ,
for which in the framework of the proposed theory we obtain

U6 =
1
2
ρ0(E · q̂−πm µ̃

′

π ) · n
∣∣∣
r∈6

. (47)
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Thus, the specific surface energy of deformation and polarization is defined by the electric field vector E,
the quadrupole moment q̂, the local mass displacement vector πm and a perturbation of the modified
chemical potential µ̃′π .

10. Surface and size effects

The linear relations of the local gradient theory of dielectrics are tested on some simple problems. In
this section, they are used to study the effect of a free surface on the stress-strain state and polarization
of elastic bodies having plane and cylindrical surfaces.

We apply the key set of equations (38)–(42) to investigate the near-surface inhomogeneity of elec-
tromechanical fields (i) in an infinite layer (region |x | ≤ l), (ii) in a cylinder (region r ≤ R), and (iii) in an
elastic dielectric medium with a cylindrical hole (region r ≥ R). Let as these bodies are in contact with
vacuum. The body force is assumed to be zero. If we neglect the effect of electric quadrupole moments,
the key set of equations can be written as

(
K +

1
3

G
)

∇(∇ · u)+G1u− K
αρ

dρ
∇µ̃′π = 0, (48)

1µ̃′π − λ
2
µ µ̃
′

π = λ
2
µ

Kαρ
ρ0

∇ · u+
χEm

χm
∇ · E, (49)

∇ · E− κE1µ̃
′

π = 0. (50)

Since the body surfaces are traction-free, the boundary conditions on (6) (x =±l for a layer and r = R
for solids of a cylindrical geometry) are

σ̂ · n= 0, µ′π = 0, and [D] = 0. (51)

Here K = K − K 2α2
ρ/(ρ0 dρ), and κE = ρ0χEm/ε.

To determine the displacement field and density of induced mass, we formulate a stationary boundary
value problem, while the problem of electrodynamics is formulated as a contact problem. Therefore, the
Maxwell equations in vacuum as well as the radiation conditions [Bredov et al. 1985; Nowacki 1983]
should be considered together with (48)–(50).

We find analytical solutions to the problems formulated above. These solutions enable us (i) to de-
termine the surface stresses and the surface energy of deformation and polarization in solid dielectric
films and fibers, (ii) to investigate the effect of surface curvature on these values, (iii) to describe the size
effects, and (iv) to justify the occurrence of a bound charge on a free surface of dielectric bodies as well
as the emergence of disjoining pressure in thin solid films.

10.1. Layer with free boundaries. An analysis of the results obtained reveals that the near-surface re-
gions of the layer are characterized by an inhomogeneous distribution of the stresses σyy = σzz ≡ σ

(Figure 2), polarization p = (p(x), 0, 0), electric field E = (E(x), 0, 0) and modified chemical µ̃′π
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Figure 2. The distribution of the stresses σyy/σs in films of different thicknesses: l =
15l∗ (curve 1), l = 6l∗ (curve 2), l = 3l∗ (curve 3).

potentials [Burak et al. 2008]:

σ(x)=
2Gρ0 Mµ′π0

Kαρ

ch(λ̆x)

ch(λ̆l)
, p(x)= κE λ̆ µ

′

π0
ε0

ρ0

sh(λ̆x)

ch(λ̆l)
, (52)

µ̃′π (x)=−µ
′

π0
ch(λ̆x)

ch(λ̆l)
, E(x)=−κE λ̆ µ

′

π0
sh(λ̆x)

ch(λ̆l)
. (53)

Here,

λ̆= λµ

∣∣∣∣
√

1+M

(1− κE χEm/χm)

∣∣∣∣, M=
K 2α2

ρ

ρ0 dρ(K + 4G/3)
.

In this case, a bound electrical charge of density ϑse(±l) = ±ε0κEµ
′

π0 th(l/ l∗)/ l∗ is induced on the
surfaces of the layer x = ±l (see Figure 3, where ϑ∗ = ε0κEµ

′

π0, l∗ = λ̆−1). The factors M and
κE describe the coupling between the local mass displacement and the process of deformation and the
electric field, respectively [Burak et al. 2011]. Note that M and κE are small parameters. The analysis
of the results obtained also shows that layer thickness does not affect the value of surface stresses σs =

2Gρ0 Mµ′π0/(Kαρ), but it does affect the distribution of stresses within the body [Burak et al. 2008].
The interior regions of thick layer (line 1 in Figure 2) are stress-free, while the interior regions of thin

film (line 3 in Figure 2) are stressed: σ(0) = σs/ ch(l/ l∗) describes middle surface stresses. Here, we
define thin films as layers with the thickness of several characteristic lengths l∗. For such films, overlaps
of the regions of the near-surface inhomogeneity of fields are typical. One can see that a reduction in
the film thickness leads to an increase in the stress level in the film’s cross section. The dependence of
the stress distribution (Figure 2) and the bound electric charge (Figure 3) on the film thickness displays
their size effect.
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Figure 3. The dependence of the bound surface electric charge ϑse(l) on the film thick-
ness for different materials: l∗ = 1.3 Å (curve 1), l = 2.3 Å (curve 2), l = 4.6 Å (curve 3).
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Figure 4. The dependence of the surface energy of deformation and polarization on the
film thickness for different materials: l∗ = 1.3 Å (curve 1), l = 2.3 Å (curve 2), l = 4.6 Å
(curve 3).

Using (36e), (47), and (53) we obtain the formula U6(l)=U∞6 th(λ̆l) that describes the size effect of
surface energy of deformation and polarization in thin dielectric films. Here,

U∞6 =−ρ0 µ
′2
π0
χm − κEχEm

2l∗
,

is the surface energy of deformation and polarization in the half-space of the same material. The absolute
value of U6 decreases with a decrease in the thickness of the thin film (Figure 4).

10.2. Solids of cylindrical geometry. In this subsection, the effect of surface curvature on the equilib-
rium stress distribution, polarization, surface energy of deformation and polarization, and bond surface
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electric charge is studied for dielectric bodies free from external loads. To this end, the solutions to the
problems for a cylindrical fiber (region r ≤ R) and an infinite medium containing a thin cylindrical hole
(region r ≥ R) with traction-free surfaces at r = R are used. The axes of the fiber and cylindrical hole
coincide with the z axis. In this case the key functions u = (ur (r), 0, 0), E = (Er (r), 0, 0) and µ̃′π (r)
are functions of the space coordinate r only. Thus, the solution of boundary problem (48)–(51) is given
by

ur (r)= µ′π0
Kαρ

λ̆dρ(K + 4
3 G)

[
1
2

Qλ̆r − (1−MQ)
I1(λ̆r)

I0(λ̆R)

]
, (54)

µ̃′π (r)=−µ
′

π0

[
(1−MQ)

I0(λ̆r)

I0(λ̆R)
+MQ

]
, (55)

Er (r)=−κEµ
′

π0 λ̆(1−MQ)
I1(λ̆r)

I0(λ̆R)
, (56)

for cylindrical fiber (r ≤ R), and

ur (r)= µ′π0
Kαρ

λ̆ dρ(K + 4
3 G)

K1(λ̆R)

K0(λ̆R)

(
K1(λ̆r)

K1(λ̆R)
−

R
r

)
, (57)

µ̃′π (r)=−µ
′

π0
K0(λ̆r)

K0(λ̆R)
, (58)

Er (r)= µ′π0 κE λ̆
K1(λ̆r)

K0(λ̆R)
, (59)

for infinite medium with cylindrical hole (r ≥ R). Here, Ij and K j are the first- and second-kind modified
Bessel functions of the order j (Macdonald functions), and

Q =−
2G I1(λ̆R)

(K +G/3)λ̆RI0(λ̆R)− 2GM I1(λ̆R)
. (60)

The analysis of the obtained solutions shows that the surface curvature has important effects on thin
fibers. An increase in the surface curvature of thin fibers leads to a reduction in the density of the surface
bound charge:

ϑse(R)= κE λ̆ε0 µ
′

π0
(K +G/3)λ̆RI1(λ̆R)

(K +G/3)λ̆RI0(λ̆R)− 2GM I1(λ̆R)
, (61)

as well as to an increase of the levels of absolute value of the corresponding stresses (see Figure 5, where
M= 3 · 10−3, K/G = 2.79).

A formula that describes the influence of surface curvature on the density of the surface energy of
deformation and polarization is given by

U c
6

U∞6
=


K1(−1/κ)
K0(−1/κ) , κ < 0,

1, κ = 0,
I1(1/κ)

I0(1/κ)−2GMκ(K+G/3)−1 I1(1/κ)
, κ > 0.

(62)
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Figure 5. The effect of surface curvature on the stresses in fiber for λ̆R = 5 (curve 1)
and λ̆R = 15 (curve 2).

Here, κ =−(λ̆R)−1 for a dielectric medium with a cylindrical hole, κ = (λ̆R)−1 for a fiber, and κ = 0
for solids with plane surfaces. An increased surface curvature of a free cylinder leads to a decrease in the
absolute value of the surface energy compared to the body with a plane surface (Figure 6). By contrast,
in the infinite medium with a thin cylindrical hole, an increased curvature of the surface results in an
increased surface energy. Note that the characteristic lengths l∗ = 1.3 Å and l∗ = 1.89 Å correspond
to crystals NaCl and KCl [Askar et al. 1971; Mindlin 1972]. Thus, the value of the surface energy of
deformation and polarization for the body with a plane surface (κ = 0) is not the minimum of the surface
energy U6 as a function of surface curvature.
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Figure 6. The effect of surface curvature on the surface energy of deformation and
polarization for l∗ = 0.9 Å (curve 1) and l∗ = 1.3 Å (curve 2).
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Figure 7. The dependence of the disjoining pressure on the film thickness for different
materials: l∗ = 1.3 Å (curve 1), l∗ = 1.89 Å (curve 2), l∗ = 2.6 Å (curve 3).

10.3. Layer with clamped boundaries. Deryagin et al. [1985] show that a disjoining pressure emerges
in thin liquid films. We show that such a pressure can be present in thin solid films as well. Within the
framework of the developed theory, the emergence of the disjoining pressure is associated with changes
in the structure of the near-surface regions of the thin body (with the local mass displacement). To
demonstrate this, within this section, we study the near-surface inhomogeneity of electromechanical
fields in an infinite isotropic dielectric layer (|x | ≤ l) with clamped boundaries. Using the solutions to
(48)–(50) that satisfy the boundary conditions u = 0, µ′π = 0, and [D] = 0 on the surfaces x = ±l of
the layer, we investigate the stress-strain state, polarization, as well as electric and modified chemical
potentials in dielectric films. In particular, for the components σxx , σyy = σzz ≡ σ of the stress tensor we
obtain

σxx =
σ∗(1+M)

λ̆l cth(λ̆l)+M
, σyy = σzz = σ∗

λ̆l ch(λ̆x)+ (3K − 2G) sh(λ̆l)/6G

λ̆l ch(λ̆l)+M sh(λ̆l)
. (63)

Here, σ∗ = µ′π0 Kαρ/dρ .
One can see that in films with clamped boundaries the constant normal stresses σxx appear in addition

to the stresses σyy and σzz . In thick films, the stresses σxx are negligibly small, but a decreasing thickness
of thin films leads to an increase of the absolute value of these stresses (Figure 7). These stresses cause
a disjoining pressure in thin solid films:

pdis =
1
2l

∫ l

−l
σxx dx .

Note also that a positive disjoining pressure can prevent the reduction of the film thickness under the
effect of external forces, whereas a negative pressure can reduce the thickness of the film and thus may
lead to its destruction.
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11. Conclusions

It is shown that a local gradient theory of electrothermoelasticity for nonferromagnetic dielectric continua
can be formulated by considering the contribution of the electric charge and mass fluxes caused by
changes in material microstructure. These fluxes are (i) the nondiffusive and nonconvective mass flux,
caused by a change over time of the vector of the local mass displacement (the mass dipole moment) and
(ii) the electric polarization current, caused by the change over time of both the dipole and quadrupole
electric moments. The result of accounting for the mentioned fluxes is an extension of the phase space of
thermodynamic constitutive parameters by three additional pairs of conjugate parameters. Compared to
the classical theory of dielectrics, the space of constitutive variables additionally includes: (i) the specific
electric quadrupole moment q̂ and the gradient of the electric field vector ∇⊗ E∗; (ii) the specific density
of induced mass ρm and the modified chemical potential µ′π ; (iii) the specific vector of the local mass
displacement πm and the gradient of the modified chemical potential ∇µ′π . Moreover, accounting for
the mentioned fluxes results in a modification of the stress tensor σ̂∗ and in the emergence of a nonlinear
mass force Fm , in addition to the ponderomotive force Fe in the momentum equation. The effect of the
force Fm can be important for investigating nonlinear effects in nanoscale films, fibers, and wires, since
all of them are characterized by high gradients of physical and mechanical fields.

Within the classical linear theory of elastic dielectrics, there is no interaction between the mechanical
and electromagnetic fields if the material is isotropic. Hence, flexoelectric and thermopolarization effects
can occur in anisotropic materials only. Within the framework of the local gradient theory of dielectrics,
the electric and thermomechanical fields are coupled. Therefore, the constitutive equations describe
the polarization of the high symmetry dielectric materials (isotropic materials) caused by nonuniform
deformation or by the temperature gradient (i.e., flexoelectric and thermopolarization effects).

The near-surface effects in nonferromagnetic isotropic dielectric solids are investigated to illustrate
the efficiency of constructed theory. To this end, the equilibrium steady state of infinite bodies with
plane-parallel and cylindrical surfaces (film, fiber, and infinite medium with a cylindrical hole) is studied
within an isothermal approximation. The solutions to the formulated stationary problems allow us to
describe the experimental data reported in the literature, namely, the near-surface inhomogeneity of
electromechanical fields, the emergence of a bound electric charge on the free surfaces of the dielectric
bodies, as well as the size effects of the stresses, bound electric charge, surface energy of deformation
and polarization. It is established that the absolute value of the surface charge density decreases and
mechanical stresses increases when thin film thickness decreases. This effect became more significant
when the film thickness became comparable to the internal material length scale parameters.

As the curvature of the surface increases, its impact on the stressed state of thin fibers and on the value
of the bound charge on their surfaces becomes more significant. An increase in the surface curvature of
thin cylindrical fiber leads to increased levels of stresses and to a reduced density of the surface bound
charge. The influence of the curvature on the surface energy of deformation and polarization depends on
the curvature sign. Namely, an increase in the absolute value of a positive curvature leads to a decrease
in the absolute value of this energy. For a negative curvature, this dependence is reversed.

The theory also implies the emergence of disjoining pressure in thin solid films. The existence of
such pressure was previously anticipated in liquid films [Deryagin et al. 1985]. It is shown that in thin
solid films, whose thickness is comparable to the internal material length scale parameters, the disjoining
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pressure can appear. This pressure is proportional to the coefficient of volume dilatation caused by the
local mass displacement. The absolute value of disjoining pressure increases if the mentioned coefficient
increases. In light of this finding, during an investigation of the stiffness and strength of nanoscale thin
films, the effect of the disjoining pressure on the abovementioned parameters should be considered.

The results obtained in the paper are general and can be useful for the design of the devices utilizing
the micro/nanofilm elements.

List of symbols

ρ mass density
ρmπ density of induced mass
ρm specific density of induced mass
ρeπ density of induced charge
ρe density of free charges
T absolute temperature
t time variable
s specific entropy
R distributed heat source
η entropy production
E total energy
u specific internal energy
Ue electromagnetic field energy
U6 surface energy of deformation

and polarization
f Helmholtz free energy
µ chemical potential
µπ energy measure of the effect of the local

mass displacement on the internal energy
ϕe electric potential
ϑse density of bound electrical charge
Jq density of heat flux

Je f density of total electric current
Je density of electric current (convection

and conduction currents)
Jes polarization current
Jm∗ density of mass flux
Jms nonconvective and nondiffusive mass flux

related to local mass displacement
Se flux of electromagnetic energy
5m vector of local mass displacement

(mass dipole moment)
5e polarization vector
P, Q̂ dipole and quadrupole electric moments
E, H electric and magnetic fields
D, B electric and magnetic inductions
v∗ velocity vector of convective displacement

of the fixed body element
v velocity vector of the center of mass
r position vector
F mass forces
Fe ponderomotive force
σ̂ Cauchy stress tensor
ê infinitesimal strain tensor
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