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THE EFFECT OF BOUNDARY CONDITIONS ON THE
LOWEST VIBRATION MODES OF

STRONGLY INHOMOGENEOUS BEAMS

ONUR ŞAHIN

This paper investigates the influence of the boundary conditions on the lowest vibration modes of strongly
inhomogeneous beams. It is observed that the softer component of the composite beams asymptotically
contributes to an almost rigid-body motion of the stiffer parts and gives rise to one or two nonzero eigen-
frequencies contrary to a single beam with free end conditions. An asymptotic procedure is employed
to derive the eigenfrequencies as well as the eigenforms in the case of global low frequency regime.
The developed model is adapted for two and three-component beams with different end conditions. It
is also shown that all eigenforms corresponding to the stiffer components of the beams perform almost
rigid body motions. Comparisons of exact and approximate solutions are presented, demonstrating the
validity of the proposed approach.

1. Introduction

Low-frequency vibrations of inhomogeneous structural elements have been actively studied in recent
years due to their numerous applications in modern engineering; see, e.g., [Le 1999; Horgan and Chan
1999]. Among the latest technological developments, composite materials, each part of which possesses
high contrast mechanical and geometrical properties, have received an increased amount of attention
in various fields of civil and mechanical engineering; see [Milton 2002; Elishakoff 2005]. As typical
examples we refer to sandwich structures (see, e.g., [Vinson 1999; Reddy 2003; Zenkert 1995]), which
are widely used in aerospace, automation, naval architecture, etc., because of their conveniently combined
light weight and relatively large flexural stiffness properties; see [Kaplunov et al. 2017; Sorokin 2004].
The composite materials are also highly utilized in smart periodic structures [Ruzzene and Baz 2000];
laminated glass beams and plates [Viverge et al. 2016; Schulze et al. 2012] and photovoltaic panels
[Aßmus et al. 2017]. We also mention related problem of homogenisation of periodic media [Chered-
nichenko et al. 2006; Smyshlyaev 2009] and multiparametric asymptotic approach for inhomogeneous
layered plate; see [Kaplunov et al. 2017; Prikazchikova et al. 2018]. Metamaterials, which are employed
considerably in engineering with recent technological developments, may be given as another example for
multilayered structures; see [Martin et al. 2012]. Another promising application area of composite beam
structures is connected with soft robotics using deformable materials to construct compliant systems; see,
e.g., [Rus and Tolley 2015; Majidi 2014].

The high frequency vibrations in the multilayered structures are very inviting because they contain
high energy. However, the low-frequency vibrations are more attractive due to their omnipresent character
[Kudaibergenov et al. 2016]. This paper is devoted to analysis of low frequency vibrations of strongly
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piecewise inhomogeneous beams. The analysis shows that the low eigenfrequencies of the considered
composite beam may be observed only when certain restrictions are imposed on the material properties
such as Young moduli, densities and lengths; see [Kaplunov et al. 2016; 2019]. It can also be observed
that the lowest natural frequencies tend to zero at high contrast of the material properties. An asymp-
totic approach relying on the concept of “almost rigid body motion” was also developed in [Kaplunov
et al. 2016] for strongly inhomogeneous elastic rods. Unlike a rod that has one rigid body motion, the
multicomponent beams may have two rigid body motions including translation and rotation.

The paper is organized as follows. In Section 2, a general concept for rigid body motions of a beam
with different end conditions is presented. Then, the governing equations of two and three component
beams with four types of end condition are introduced. The exact displacements for each problem and
exact natural frequencies of two component beams are also derived. In Section 3, an asymptotic procedure
is established with the help of a small parameter emerging due to high contrast of the material properties.
The restrictions on the material parameters, allowing low natural frequencies, are determined. Then, the
established perturbation procedure is applied to the aforementioned problems and approximate eigen-
frequencies and eigenforms are obtained. Section 4 contains numerical illustrations of the approximate
solutions and their comparison with the exact solutions. Conclusions are presented in the final section.

2. Statement of the problem

Consider a homogeneous beam with free ends. It is well known that such a beam possesses only double
zero eigenfrequencies, corresponding to rigid body translation and rotation; see Figure 1a. Changing
one of the free end condition of the beam with simply supported or dashed end condition results in only
one nonzero small eigenfrequency corresponding rotation or translation; see Figures 1b and 1c. In the
case of contact of stiff and soft components, it may be expected that the stiff component with free ends
has two small eigenfrequencies arising from perturbation of zero eigenfrequencies corresponding to the
limiting rigid body translation and rotation. A similar interpretation can be made for simply supported
and dashed end conditions and three component beam composed of two stiff and one soft parts.

The main purpose of the paper is to investigate the effect of the end conditions on the lowest vibration
modes of strongly inhomogeneous beams with the use of an asymptotic approach relying on the concept
of almost rigid body motion established in [Kaplunov et al. 2016]. In order to extract the effect of
boundary conditions two and three component beams with different boundary conditions will be studied.

Consider time harmonic vibrations of two and three component beams composed of alternating soft
and stiff parts of arbitrary lengths with different end conditions. For each problem considered, the beams
are supposed to be finite, having conventional continuity conditions between the components and have
local coordinates; see Figure 2.

The governing equations for each component of the beam are written as

d4 yi/dx4
i −ω

2/ak yi = 0, i = 1, 2, 3 and k = st, s f, (2-1)

where yi are displacements, ω is angular frequency, ak = ast and ak = as f correspond to stiff and soft
components, respectively, with ak =

√
Dk/Mk . Here Dk = Ek I is the flexural rigidity and Mk = ρk A is

linear mass density with I denoting the moment of inertia and A the cross-sectional area. It is clear that
all the soft components have the same Young’s modulus and density.
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Figure 1. Rigid body motion of beam.
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Figure 2. Two and three-component beams. Each 0 represents the origin of its local coordinates.

Let us first the define local dimensionless coordinates and scaled frequencies by

ξi = xi/li and �i = li
√
ω/ak, i = 1, 2, 3, k = st, s f. (2-2)

The equations of motion and the continuity conditions along the interfaces are expressed in terms of the
new variables as

d4 yi/dξ 4
i −�

4
i yi = 0, −1 6 ξi 6 1, i = 1, 2, 3, (2-3)

and

y1(1)= y2(−1), y3(−1)= y2(1), (2-4)

y′1(1)= (l1/ l2)y′2(−1), y′3(−1)= (l3/ l2)y′2(1), (2-5)

Dst y′′1 (1)= (l1/l2)
2 Ds f y′′2 (−1), Dst y′′3 (−1)= (l3/l2)

2 Ds f y′′2 (1), (2-6)

Dst y′′′1 (1)= (l1/l2)
3 Ds f y′′′2 (−1), Dst y′′′3 (−1)= (l3/l2)

3 Ds f y′′′2 (1). (2-7)
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In addition, we introduce the dimensionless quantities

D = Ds f /Dst , M = Ms f /Mst , a = as f /ast . (2-8)

The displacements for each component of the beam can be written from (2-3) as

yi (ξi )= Ai cos(�iξi )+ Bi sin(�iξi )+Ci cosh(�iξi )+ Di sinh(�iξi ), i = 1, 2, 3. (2-9)

In the following, we will consider combinations of four types of boundary conditions, namely clamped,
free, simply supported and dashed, for the two and three component beams.

In view of the development of new materials including soft robotics, the old problems for multispan
beams may take another flavour because of low frequency resonances related to almost rigid body motions
which are most harmful for the structures; see [Kaplunov et al. 2016; 2019; Rus and Tolley 2015; Majidi
2014]. In this context, throughout the paper, we assume that Young modulus of the stiff parts is much
greater than of the soft part, i.e.,

ε = Ds f /Dst � 1 (2-10)

is a small parameter signifying the high contrast material properties.

3. Asymptotic approach

In this section, an asymptotic approach is established for two and three-component beams in case of
different boundary conditions. As may be seen from the previous section analytical solutions for the
frequency and displacement of such problems cannot be obtained effortlessly. Therefore developing a
perturbation scheme which reduces the problem to a simple boundary value problem having solutions in
terms of elementary functions is highly important for analysing the frequencies and displacements. In this
framework, we develop an asymptotic approach leading to the estimation of the lowest eigenfrequencies
and eigenforms of the aforementioned problems.

Let us start by expanding the frequencies and displacements in the asymptotic series on using the
small parameter (2-10);

�4
i = ε(�

4
i,0+ ε�

4
i,1+ ε

2�4
i,2+ · · · ), yi = yi,0+ εyi,1+ ε

2 yi,2+ · · · , i = 1, 2, 3. (3-1)

which may also correspond to the low frequency regimes of the problems mentioned at the end of
Section 2. Since we consider the global low frequency behaviour, i.e., �4

1 ∼ �
4
2 ∼ �

4
3 ∼ ε, the ratio

of the masses and lengths have the following asymptotic equality

ε
Mst

Ms f
= M∗, M∗ ∼ 1, (3-2)

and
(l1/l2)

4
= δ4

1 ∼ 1, (l3/l2)
4
= δ4

3 ∼ 1. (3-3)

In case there are no considerable changes in the cross-sectional area A, the assumed contrast in Young’s
moduli and densities given in (2-10) and (3-2) occurs for photovoltaic panels; see, e.g., [Aßmus et al.
2017; Kaplunov et al. 2017; Schulze et al. 2012]. It can easily be observed from (3-1) that the scaled
frequencies are also related to each other by

�4
1 =�

4
2δ

4
1 M∗, �4

3 =�
4
2δ

4
3 M∗. (3-4)



THE EFFECT OF BOUNDARY CONDITIONS ON THE LOWEST VIBRATION MODES 573

O O

-1 1

-1 1

O O

-1 1

-1 1

(a) clamped-free ends (b) clamped-simply supported ends
y1(−1)= y′1(−1)= 0, y′′2 (1)= y′′′2 (1)= 0 y1(−1)= y′1(−1)= 0, y2(1)= y′′2 (1)= 0

O O

-1 1

-1 1

O O O

-1 1

-1 1

-1 1

(c) clamped-dashed ends (d) simply supported at both ends
y1(−1)= y′1(−1)= 0, y′2(1)= y′′′2 (1)= 0 y1(−1)= y′′1 (−1)= 0, y3(1)= y′′3 (1)= 0

O O O

-1 1

-1 1

-1 1

(e) simply supported-dashed ends
y1(−1)= y′′1 (−1)= 0, y′3(1)= y′′′3 (1)= 0

Figure 3. Types of boundary conditions.

3A. Perturbation scheme for a two component beam with clamped and free ends. We first consider
the two component beam with one end clamped and other free as depicted in Figure 3a. Bearing in
mind the definition of the small parameter and the relations between the lengths, see (3-3), the continuity
conditions at the interfaces and the boundary conditions take, respectively, form

y1(1)= y2(−1), y′1(1)= δ1 y′2(−1), εy′′1 (1)= δ
2
1 y′′2 (−1), εy′′′1 (1)= δ

3
1 y′′′2 (−1), (3-5)

y1(−1)= 0, y′1(−1)= 0, y′′2 (1)= 0, y′′′2 (1)= 0. (3-6)

On substituting the asymptotic expansions (3-1) into (2-3), the equations of motion, at the leading
order, become

d4 yi,0

dξ 4
i
= 0, i = 1, 2. (3-7)

Applying the asymptotic expansion for the displacements in (3-1) into equations (3-5) results in the
boundary conditions

y′′2,0(±1)= y′′′2,0(±1)= 0 (3-8)

for the stiff component. The solution of the boundary value problem (3-7) and (3-8) for the stiff compo-
nent may be written as

y2,0 = A2ξ2+ B2, (3-9)

which corresponds to the rigid body translation and rotation; see Figure 1a.
The soft part of the beam has governing equation (3-7) subject to the boundary condition

y1,0(1)= y2,0(−1), y′1,0(1)= δ1 y′2,0(−1), (3-10)
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and

y1,0(−1)= y′1,0(−1)= 0. (3-11)

Therefore, it can be easily shown from the solution of the boundary value problem (3-7) and (3-10),
(3-11) that the soft component, unlike the stiff component, undergoes an inhomogeneous deformation
given by

y1,0 = (ξ
3
1 − 3ξ1− 2)A1+ (ξ

2
1 + 2ξ1+ 1)B1. (3-12)

Using equations (3-10), (3-11) and displacements (3-9), (3-12) the coefficients of the soft and stiff dis-
placements are related by

A1 =
1
4((1+ δ1)A2− B2), B1 =

1
4 A2δ1. (3-13)

At next order, the problem for the stiff component of the beam is formulated as

d4 y2,1

dξ 4
2
−�4

2,0 y2,0 = 0, (3-14)

with the boundary conditions

d2 y2,1

dξ 2
2

∣∣∣∣
ξ2=−1

=
1
δ2

1

d2 y1,0

dξ 2
1

∣∣∣∣
ξ1=1

,
d3 y2,1

dξ 3
2

∣∣∣∣
ξ2=−1

=
1
δ3

1

d3 y1,0

dξ 3
1

∣∣∣∣
ξ1=1

, (3-15)

and
d2 y2,1

dξ 2
2

∣∣∣∣
ξ2=1
= 0,

d3 y2,1

dξ 3
2

∣∣∣∣
ξ2=1
= 0. (3-16)

Integrating (3-14) over ξ2 (−1≤ ξ2 ≤ 1) results in

3A1+�
4
2,0δ

3
1 B2 = 0. (3-17)

Next, multiplying (3-14) by ξ2 and integrating over the length of the right component gives

9A1+ 3δ1(3A1+ B1)−�
4
2,0δ

3
1 A2 = 0. (3-18)

Using the relations between the coefficients (3-13), equations (3-17) and (3-18) give the linear system
of equations in A2 and B2 as

1
4(3+ δ1)A2+

1
4(4δ

3
1�

4
2,0− 3)B2 = 0,

1
4(9+ 2(9+ 6δ1− 2δ2

1�
4
2,0))A2−

9
4(1+ δ1)B2 = 0.

(3-19)

Simultaneous equations possess nontrivial solutions provided that the associated determinant vanishes,
i.e.,

9
16δ

2
1 −

3
2δ

3
1(2+ δ1(3+ 2δ1))�

4
2,0+ δ

6
1�

8
2,0 = 0. (3-20)
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The frequency equation (3-20), corresponding to the second component of the beam, has two nonzero
eigenfrequencies given by

�4
2,0 =

3
(
2δ2

1 + 3δ1+ 2− 2(δ1+ 1)
√

δ2
1 + δ1+ 1

)
4δ3

1

,

�4
2,0 =

3
(
2δ2

1 + 3δ1+ 2+ 2(δ1+ 1)
√

δ2
1 + δ1+ 1

)
4δ3

1

.

(3-21)

As might be expected, the contact of a stiff component with a soft one perturbs the double zero eigenfre-
quencies to two lowest eigenfrequencies associated with the almost rigid translation and rotation.

3B. Perturbation scheme for a two component beam with clamped and simply supported ends. Let us
now study two component beam having clamped and simply supported ends. The continuity conditions
(2-4)–(2-7) assume the same forms given by (3-5) and the boundary conditions are as given in Figure 3b.

In this case, the leading order boundary conditions for the stiff component are

y′′2,0(−1)= y′′′2,0(−1)= 0, y2,0(1)= y′′2,0(1)= 0. (3-22)

whereas the soft component has, as boundary conditions, (3-10) and (3-11). Therefore, the leading order
displacements for the considered problem are written from (3-7) as

y1,0 = (ξ
3
1 − 3ξ1− 2)A1+ (ξ

2
1 + 2ξ1+ 1)B1, y2,0 = A2(ξ2− 1). (3-23)

The displacements (3-23) together with (3-10) and (3-11) imply

A1 =
1
4(δ1+ 2)A2, B1 =

1
4δ1 A2. (3-24)

At next order, the problem is formulated, once again, through equations (3-14), (3-15), and end conditions

y2,1(1)= 0,
d2 y2,1

dξ 2
2

∣∣∣∣
ξ2=1
= 0. (3-25)

Integrating (3-14) and using the end conditions (3-15) and (3-25) together with (3-24) result in

4δ3
1�

4
2,0− 3(δ2

1 + 3δ1+ 3)= 0. (3-26)

3C. Perturbation scheme for a two component beam with clamped and dashed ends. We now carry
our dispersion analysis on to a beam with clamped and dashed ends. Similar to the previous two cases,
the boundary value problem for the stiff component at the leading order is formulated by (3-7) and

y′′2,0(−1)= y′′′2,0(−1)= 0, y′2,0(1)= y′′2,0(1)= 0, (3-27)

from which displacements are obtained as

y1,0 = (ξ
3
1 − 3ξ1− 2)A1, y2,0 = A2, (3-28)

with relation
A1 =−

1
4 A2. (3-29)



576 ONUR ŞAHIN

The next order problem for the stiff component is again formulated by equations (3-14), (3-15) and

dy2,1

dξ2

∣∣∣∣
ξ2=1
= 0,

d3 y2,1

dξ 3
2

∣∣∣∣
ξ2=1
= 0. (3-30)

the solution of which yields
δ3

1�
4
2,0−

3
4 = 0. (3-31)

3D. Perturbation scheme for a three component simply supported beam. We will now present asymp-
totic formulas for the displacements and frequencies for a three component beam with two stiff outer
components simply supported at both ends, shown in Figure 3d. Taking into account the definitions of
the small parameter (2-10) and the ratios of the lengths, δ1 and δ2, the continuity conditions may be
rewritten from equations (2-4)-(2-7) as

y1(1)= y2(−1), y3(−1)= y2(1),

y′1(1)= δ1 y′2(−1), y′3(−1)= δ3 y′2(1),

y′′1 (1)= εδ
2
1 y′′2 (−1), y′′3 (−1)= εδ2

3 y′′2 (1),

y′′′1 (1)= εδ
3
1 y′′′2 (1), y′′′3 (−1)= εδ3

3 y′′′2 (1),

(3-32)

and simply supported boundary conditions at both ends are, also, as presented in Figure 3d.
On substituting the asymptotic expansions (3-1) into equations of motion (2-3) we once again arrive at

the leading order (3-7). In this case, the stiff and soft components have leading order boundary conditions
given by

y1,0(−1)= y′′1,0(−1)= 0, y′′1,0(1)= y′′′1,0(1)= 0,

y′′3,0(−1)= y′′′3,0(−1)= 0, y3,0(1)= y′′3,0(1)= 0,
(3-33)

and
y2,0(−1)= y1,0(1), δ1 y′2,0(−1)= y′1,0(1),

y2,0(1)= y3,0(−1), δ3 y′2,0(1)= y′3,0(−1),
(3-34)

respectively. Thus, the leading order displacements can be written as

y1,0 = A1(ξ1+ 1), y2,0 = A2ξ
3
2 + B2ξ

2
2 +C2ξ2+ D2, y3,0 = A3(ξ3− 1), (3-35)

in which the coefficients are related as

A2 =
1
4(A1(2+ 1/δ1)+ A3(2+ 1/δ3)), B2 =

1
4(−A1/δ1+ A3/δ3),

C2 =−
1
4(A1(6+ 1/δ1)+ A3(6+ 1/δ3)), D2 = A1(1+ 1/(4δ1))− A3(1+ 1/(4δ3)).

(3-36)

Let us now proceed to the next order problem. For the first stiff component we have

d4 y1,1

dξ 4
1
−�4

1,0 y1,0 = 0, (3-37)

with the boundary conditions

d2 y1,1

dξ 2
1

∣∣∣∣
ξ1=1
= δ2

1
d2 y2,0

dξ 2
2

∣∣∣∣
ξ2=−1

,
d3 y1,1

dξ 3
1

∣∣∣∣
ξ1=1
= δ3

1
d3 y2,0

dξ 3
2

∣∣∣∣
ξ2=−1

, (3-38)
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and

y1,1(−1)=
d2 y1,1

dξ 2
1

∣∣∣∣
ξ1=−1

= 0. (3-39)

Multiplying (3-37) by ξ1 and integrating over −1 ≤ ξ1 ≤ 1, taking into account equations (3-38) and
(3-39), we arrive at

d3 y1,1

dξ 3
1

∣∣∣∣
ξ1=−1

=−6δ3
1 A2− δ

2
1(6A2− 2B2)+

2
3 A1�

4
1,0. (3-40)

Integrating (3-38) over −1≤ ξ1 ≤ 1 and using (3-40) results in

9δ2
1(2δ1+ 1)A2− 3δ2

1 B2− 4�4
1,0 A1 = 0. (3-41)

Similarly, we derive for the second stiff component, y3,1,

9δ2
3(2 δ3+ 1)A2+ 3δ2

3 B2− 4�4
3,0 A1 = 0. (3-42)

Equations (3-41) and (3-42) with the relations between the coefficients (3-36) lead to a frequency equation
given by

27δ1δ3(1+ δ1+ δ3)
2
− 48δ3(3δ2

3 + 3δ3+ 1)�4
1,0− 16(3δ1(3δ2

1 + 3δ1+ 1)− 4�4
1,0)�

4
3,0 = 0. (3-43)

Since the frequencies are related together as

�4
3,0/�

4
1,0 = δ

4
3/δ

4
1, (3-44)

see (3-4), �1,0 may be written as the roots of the frequency equation (3-43), that is

�4
1,0 =

3δ1

8δ3
3

(
δ3

3 + 3δ1δ
3
3 + 3δ2

1δ
3
3 + δ

3
1(1+ 3δ3(1+ δ3))

−

√
(δ3

3(1+ 3δ1(1+ δ1))+ δ
3
1(1+ 3δ3(1+ δ3)))

2
− 3δ3

1δ
3
3(1+ δ1+ δ3)

2), (3-45)

and

�4
1,0 =

3δ1

8δ3
3

(
δ3

3 + 3δ1δ
3
3 + 3δ2

1δ
3
3 + δ

3
1(1+ 3δ3(1+ δ3))

+

√
(δ3

3(1+ 3δ1(1+ δ1))+ δ
3
1(1+ 3δ3(1+ δ3)))

2
− 3δ3

1δ
3
3(1+ δ1+ δ3)

2). (3-46)

It can easily be seen that the simply supported end conditions for a three component beam do not support
pure rigid body motion with zero eigenfrequencies.

3E. Perturbation scheme for three component beam with simply supported and dashed ends. Finally,
consider a three component beam having two stiff outer and one soft central parts. Contrary to the
previous problem, in this case we have simply supported and dashed end conditions, stated in Figure 3e.
The continuity conditions at the interface given by (3-32) are still valid for this problem. The leading
order displacements may be written as

y1,0 = A1(ξ1+ 1), y2,0 = A2ξ
3
2 + B2ξ

2
2 +C2ξ2+ D2, y3,0 = A3, (3-47)
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with
A2 =

1
4δ1

(A1(1+ 2 δ1)− A3δ1), B2 =−
A1

4δ1
,

C2 =−
1

4δ1
(A1(1+ 6δ1)− 3A3δ1), D2 = A1

(
1+ 1

4δ1

)
+

1
2 A3.

(3-48)

The next order problem for the first component of the beam is formulated with the equations (3-37),
(3-38) and (3-39), which gives (3-41). For the next order problem of the third component of the beam
we have boundary conditions (3-38) and

dy3,1

dξ3

∣∣∣∣
ξ3=1
=

d3 y3,1

dξ 3
3

∣∣∣∣
ξ3=1
= 0. (3-49)

Integrating the next order governing equation for y3,1 over −1≤ ξ3 ≤ 1 and using the boundary conditions
given by (3-38) and (3-49), we get

3δ3
3 A2+�

4
3,0 A3 = 0. (3-50)

The equations (3-41) and (3-50) together with relations (3-48) imply the following frequencies

�4
3,0(4�

4
1,0− 3δ1(1+ 3δ1(1+ δ1)))− 3δ3

3�
4
1,0+

9
16δ1δ

3
3 = 0, (3-51)

resulting in

�4
1,0 =

3δ1

8δ3
(δ3

1 + δ3+ 3δ1δ3+ 3δ2
1δ3−

√
(δ3

1 + δ3+ 3δ1δ3(1+ δ1))
2
− δ3

1δ3), (3-52)

and
�4

1,0 =
3δ1

8δ3
(δ3

1 + δ3+ 3δ1δ3+ 3δ2
1δ3+

√
(δ3

1 + δ3+ 3δ1δ3(1+ δ1))
2
− δ3

1δ3). (3-53)

4. Numerical results

In this section, we illustrate numerically the comparisons of exact and asymptotic results for all of the
considered problems. Since all asymptotic estimates for the frequencies and displacements are valid in
case of the global low frequency regime, the numerical comparisons are presented when the parameters
are asymptotically related as Ds f /Dst ∼ Ms f /Mst ∼ ε and δ1 ∼ δ2 ∼ 1, see (3-2) and (3-3). which is a
requirement for the global low frequency regime,

Figures 4, 5 and 6 show the exact and asymptotic curves of the frequency equation for two component
beams with clamped-free, clamped-simply supported and clamped-dashed ends. In these figures in order
to display more clearly the extent of the validity region of the approximation full agreement regions
are chopped off. It can be easily seen from these figures that as the small parameter ε becomes smaller,
which corresponds a great contrast between the stiff and soft components, the curves corresponding to the
asymptotic solutions become highly compatible with the exact one. In Fig. different length components
of the beam are considered, i.e., l1 = l and l2 = 2l which gives δ1 = 0.5.

Figure 7 demonstrates the comparison of asymptotic curves of the frequency equations of two com-
ponent beams given by (3-20), (3-26) and (3-31). Thus, it can be observed how the eigenfrequencies
of a single beam are affected by the different boundary conditions. It is clear that the clamped-free
end condition causes lowest and highest eigenfrequencies compared to other boundary conditions by
perturbing the zero eigenfrequency of a beam with free-free end.
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Figure 4. Comparison of asymptotic (3-20) and exact (6-1) frequency equations for two
component beam with clamped and free ends at δ1 = 0.99.
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Figure 5. Comparison of asymptotic (3-26) and exact (6-2) frequency equations for two
component beam with clamped and simply supported ends at δ1 = 0.99.
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Figure 6. Comparison of asymptotic (3-31) and exact (6-3) frequency equations for two
component beam with clamped and dashed ends at δ1 = 0.99.
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Figure 7. Comparison of asymptotic curves of frequency equations (3-20), (3-26) and
(3-31) at ε = 0.1.
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Figure 8. Comparison of exact (2-9), with i = 2, and asymptotic (3-9), (3-12) displace-
ments at ε = 0.1, δ1 = 0.99. Left: eigenfrequency (3-21)1. Right: eigenfrequency (3-21)2.

The exact and asymptotic scaled displacements corresponding to eigenfrequencies (3-21); (3-26) and
(3-31) for the associated problems are demonstrated in Figures 8, 9 and 10. It can be observed from all
these figures that even for not very small value of ε = 0.1, the asymptotic formula (3-9), (3-12); (3-23)
and (3-28) present an excellent approximation to the exact displacements (2-9) with i = 2.

In Figure 11 comparisons of exact and asymptotic displacements of three component beam with simply
supported at both ends are presented when the length of the components are not equal to each other, e.g.,
δ1 = 1.5 and δ2 = 1.25. As can be easily seen from this figure that the approximate displacement (3-35)
is, again, in quite a good agreement with the exact one (2-9), with i = 3, for ε = 0.01. Similar results
follow for three component beam with simply supported and dashed ends illustrated in Figure 12.

5. Concluding remarks

The low-frequency vibrations in two and three-component beams with high contrast properties have been
studied. It is known that a stiff single component beam with free ends has double zero eigenfrequencies
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Figure 9. Comparison of exact (2-9), with i = 2, and asymptotic (3-23) displacements
at ε = 0.1, δ1 = 0.99.
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Figure 10. Comparison of exact (2-9), with i = 2, and asymptotic (3-28) displacements
at ε = 0.1, δ1 = 0.99.
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Figure 11. Comparison of exact (2-9), with i = 3, and asymptotic (3-35) displacements
for the eigenfrequency (3-45) at ε = 0.01, δ1 = 1.5 and δ2 = 1.25.
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Figure 12. Comparison of exact (2-9), with i = 3, and asymptotic (3-47) displacements
for the eigenfrequency (3-51) at ε = 0.01, δ1 = 4 and δ2 = 2.

corresponding to limiting rigid body translation and rotation. It is seen that the contact of a soft compo-
nent with a stiffer one and change in the other end condition cause one or two small eigenfrequencies.
It is shown that if the stiff component has a free end condition the beam possesses two nonzero lowest
eigenfrequencies corresponding to almost rigid body translation and rotation of the stiff part. On the
other hand, if the end condition of the stiff component is simply supported or dashed then the beam has
only one lowest eigenfrequency arising from perturbation of zero eigenfrequencies, which correspond to
rotation or translation. It is also demonstrated that among these three end conditions, free end condition
gives the lowest and highest eigenfrequencies.

The exact formulation of eigenfrequencies and eigenforms of such problems are generally given by
a sophisticated transcendental relation. Therefore an asymptotic procedure is established in order to
investigate near zero frequencies and corresponding displacements. The derived asymptotic formulae
are valid for certain conditions on the ratios of material and geometrical properties, which reveal the low
frequency vibrations. It may also be emphasized that the approximate formulation for the leading order
displacements of the stiffer parts carry out almost rigid body motion whereas the softer parts undergo
almost homogeneous deformation. Another point to note is that eigenfrequencies and eigenmodes might
have been calculated through a numerical procedure (such as FE method) however, in this case there is
a limited potential for physical insight. In particular, there is a risk to miss low frequency eigenforms
with polynomial but not expected sinusoidal behaviour.

The proposed perturbation approach may be generalised to multicomponent high-contrast structures
with different end conditions including an n component strongly inhomogeneous beam. The approach
may also be adapted for 2D and 3D eigenvalue problems for multilayered, high-contrast structures such as
plates and shells. Multiparametric structures, in which material parameters are dependent on coordinate
axis, are another promising research area which the established model can be applied.
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Appendix

The frequency equations for two component beams with end conditions given in Figures 3a, 3b and 3c
is given, respectively, by

cosh2(�1)
(
−4 sinh2(�2)(

√
a sin(�1) cos(�2)+D sin(�2) cos(�1))

×(a3/2 sin(�1) cos(�2)+D sin(�2) cos(�1))

+4 cosh2(�2)(D cos(�1) cos(�2)−
√

a sin(�1) sin(�2))

×(D cos(�1) cos(�2)−a3/2 sin(�1) sin(�2))

−(a−1)
√

aD sin(2�1) cos(2�2) sinh(2�2)
)

+sinh2(�1)
(
4 sinh2(�2)(

√
a cos(�1) cos(�2)−D sin(�1) sin(�2))

×(a3/2 cos(�1) cos(�2)−D sin(�1) sin(�2))

−4 cosh2(�2)(
√

a sin(�2) cos(�1)+D sin(�1) cos(�2))

×(a3/2 sin(�2) cos(�1)+D sin(�1) cos(�2))

−(a−1)
√

aD sin(2�1) cos(2�2) sinh(2�2)
)

+
√

aD sinh(2�1)
(
sinh(2�2)((a+1) cos(2�1) cos(2�2)−2

√
a sin(2�1) sin(2�2))

+(a−1) sin(2�2) cos(2�1) cosh(2�2)
)
= 0, (6-1)

sinh(2�2)
(
cosh(2�1)((−a2

− D2) cos(2�1) cos(2�2)+ 2
√

aD sin(2�1) sin(2�2))

+ (a− D)(a+ D) cos(2�2)

+ 2 sinh(2�1)(aD sin(2�1) cos(2�2)+
√

aD sin(2�2) cos(2�1))
)

+ 2 cosh(2�2)
(
sinh2(�1)(a3/2 D sin(2�1) cos(2�2)

+ sin(2�2)(a2 cos2(�1)− D2 sin2(�1)))

+ cosh2(�1)(a3/2 D sin(2�1) cos(2�2)

+ sin(2�2)(D2 cos2(�1)− a2 sin2(�1)))

+ aD sinh(2�1)(sin(2�1) sin(2�2)−
√

a cos(2�1) cos(2�2))
)
= 0 (6-2)

and

2 cosh2(�1) cosh2(�2)
(
2 sin(�2) cos(�2)(D2 cos2(�1)− a2 sin2(�1))

+
√

aD sin(2�1) cos(2�2)
)

+ 2 sinh2(�1) cosh2(�2)
(
2 sin(�2) cos(�2)(a2 cos2(�1)− D2 sin2(�1))

+
√

aD sin(2�1) cos(2�2)
)

+ sinh(�2)
(
(a2
+ D2) cos(2�1) cosh(2�1)(sin(2�2) sinh(�2)+ 2 cos(2�2) cosh(�2))

+ 2
√

aD sin(2�1) cosh(2�1)(cos(2�2) sinh(�2)− 2a sin(2�2) cosh(�2))

− (a− D)(a+ D)(sin(2�2) sinh(�2)+ 2 cos(2�2) cosh(�2))
)
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+
√

aD sinh(2�1)
(
−2
√

a sin(2�1) sin(2�2) cosh(2�2)

+ 2a sin(2�2) cos(2�1) sinh(2�2)

+ 2 cos(2�2)(
√

a sin(2�1) sinh(2�2)+ cos(2�1) cosh(2�2))
)
= 0. (6-3)

The related frequency equation for three component beam with simply supported both ends can be
obtained from the determinant of the following 12× 12 matrix which can be obtained by applying the
continuity, (2-4)–(2-7), and boundary conditions Figure 3d into the displacements (2-9).

−c1 −s1 −ch1 −sh1 c2 −s2 ch2 sh2 0 0 0 0
√

as1 −
√

ac1 −
√

ash1 −
√

ach1 s2 c2 −sh2 ch2 0 0 0 0
ac1 as1 −ach1 −ash1 −εc2 εs2 εch2 −εsh2 0 0 0 0

−a3/2s1 a3/2c1 −a3/2sh1 −a3/2ch1 −εs2 −εc2 −εsh2 εch2 0 0 0 0
c1 −s1 ch1 −sh1 0 0 0 0 0 0 0 0
−c1 s1 ch1 −sh1 0 0 0 0 0 0 0 0

0 0 0 0 c2 s2 ch2 sh2 −c3 s3 −ch3 sh3

0 0 0 0 −s2 c2 sh2 ch2 −
√

as3 −
√

ac3
√

ash3 −
√

ach3

0 0 0 0 −εc2 −εs2 εch2 εsh2 ac3 −as3 −ach3 ash3

0 0 0 0 εs2 −εc2 εsh2 εch2 a3/2s3 a3/2c3 a3/2sh3 −a3/2ch3

0 0 0 0 0 0 0 0 c3 s3 ch3 sh3

0 0 0 0 0 0 0 0 −c3 −s3 ch3 sh3



(6-4)

where
ci = cos(�i ), si = sin(�i ), chi = cosh(�i ), shi = sinh(�i ), i = 1, 2, 3.

Since the result of the determinant is quite messy an explicit expression of the frequency equation is not
presented.

The frequency equation of three component beam with simply supported and dashed ends, again, can
be expressed via the determinant of the coefficient matrix, which cannot be presented straightforwardly.
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