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THERMAL STRESS AROUND AN ARBITRARY SHAPED NANOHOLE
WITH SURFACE ELASTICITY IN A THERMOELECTRIC MATERIAL

KUN SONG, HAO-PENG SONG, PETER SCHIAVONE AND CUN-FA GAO

In response to the significance of the role of surface mechanics in continuum models of deformation at the
nanoscale, we consider the thermal stress distribution in the vicinity of an arbitrarily shaped nanohole in a
thermoelectric material by incorporating the contribution of surface elasticity. Accordingly, we develop
specific solutions describing the corresponding electric, temperature and elastic fields in the material.
Our results indicate that the contribution of surface elasticity is to generate considerable normal and
shear stress and to significantly influence hoop stress on the boundary of the nanohole. By controlling
the electric current applied to the material, the normal and shear stresses induced by surface elasticity can
be enhanced or decreased for various shaped nanoholes. It is also worth noting that the incorporation
of surface elasticity allows for the ability to suppress the maximum value of the von Mises stress on
the boundary of an arbitrarily shaped nanohole, particularly in the case of a triangular-shaped hole in
which case the maximum von Mises stress can be suppressed by up to 35% thereby dramatically improv-
ing the reliability of the corresponding thermoelectric device. Our investigations provide an important
theoretical basis for the design and manufacture of thermoelectric materials.

1. Introduction

Thermoelectric materials have the distinct capability of direct conversion between thermal and electrical
energy. This particular property makes them attractive for use in a variety of fields of application includ-
ing waste heat recovery [Yu et al. 2015], solid-state refrigeration [He and Tritt 2017] and solar energy
harvesting [Ozdemir et al. 2015]. Furthermore, thermoelectric systems are environmentally friendly in
that they emit no gases, contain no pollutants, have no moving parts and operate quietly. One of the
major drawbacks in the use of thermoelectric materials and the main factor in preventing thermoelectric
devices from replacing traditional heat engines, however, is a low energy conversion efficiency.

The thermoelectric figure of merit Z7 was introduced to characterize the conversion efficiency of
thermoelectric materials and much effort has been devoted recently towards its improvement. The most
effective and widely used method to improve the ZT value of a thermoelectric material involves the
introduction of nanosized holes or inclusions into the thermoelectric medium. This method has achieved
remarkable results in many mainstream thermoelectric materials [ Yang et al. 2015; Xu et al. 2017; Kim
et al. 2006] but suffers from the fact that the operation of inserting an inhomogeneity (here taken to
represent a hole or inclusion) into thermoelectric materials generates an uneven temperature distribution
which leads to considerable thermal stress in the vicinity of the inhomogeneity [Kim et al. 2016].
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The theoretical modelling of the behavior of thermoelectric materials presents formidable challenges
over the modeling of simple electric conduction or heat transfer processes mainly due to the coupled
transport of heat and electricity which results in nonlinear governing equations. Using complex variable
methods, Song et al. [2015] have succeeded in deriving the general solution of the two-dimensional
problem of a thermoelectric material containing a crack and discussed the field intensity factors at the
crack tip. Soon after, Wang and Wang [2017] used the same methods to construct a theoretical model for
the thermal stress distribution around an inclined elliptic hole in a thermoelectric material. Subsequently,
the model of a thin infinite plate containing a circular hole with a straight crack was analyzed and the stress
intensity factors near the crack tip obtained [Pang et al. 2018]. Furthermore, it has been demonstrated that
the thermal stress around a functional defect can easily exceed the yield stresses of many thermoelectric
materials [Song et al. 2019a]. These researches provide useful information regarding the mechanism
controlling thermal stress around a macroscale hole or inhomogeneity in a thermoelectric material. The
corresponding analysis focusing on a thermoelectric continuum at the nanoscale remains relatively absent
from the literature.

At the nanoscale, it is well-known that surface effects significantly influence the corresponding stress
distributions around an inhomogeneity as a result of the large surface-to-volume ratio of a representative
material element [Attia 2017]. Acknowledging the increasingly important role of the use of nanosized
inhomogeneities in improving the conversion efficiency of thermoelectric materials, it is important to
study the reliability of thermoelectric continuum models at the nanoscale. To this end, in this paper we
focus our attention on the thermal stress distribution in the vicinity of an arbitrarily shaped nanohole
in a thermoelectric material. General solutions describing thermal-electric and thermoelastic fields are
obtained via the use of complex variable methods. Our results indicate quite clearly that the incorporation
of surface elasticity generates considerable normal and shear stresses on the boundary of various shaped
nanoholes and that these stresses can be either increased or decreased by controlling the applied electric
current depending on the shape of nanohole. Furthermore, we find that surface elasticity has also a
remarkable effect on hoop stress around a nanohole and can dramatically suppress von Mises stress
induced by heat flux. For example, the incorporation of surface elasticity can suppress the maximum
von Mises stress around a particular triangular hole by about 35%. These results dramatically improve
the reliability of the corresponding thermoelectric devices.

2. Governing equations

2.1. Electric and thermal fields. The temperature field 7' (x, y) and electric potential ¢ (x, y) in a ther-
moelectric material represented by a Cartesian plane (described here by the generic point (x, y)) are
coupled through the Seebeck coefficient S. According to the theory of Thermodynamics, the equations
governing the electric current density J, heat flux @ and energy flux U are given by [Callen 1960]

—J=0V¢+oSVT, (1)
Q=TSJ—«VT, )
U=0+4¢J, 3)
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where o and «k are the electric conductivity and thermal conductivity, respectively. In the case of a
conserved system, both the electric current density and energy flux are divergence-free:

V-J=0, 4
V-(Q+¢J)=0. )

We assume that the parameters of our system are temperature-independent, so that (4)—(5) can be rewritten
with the aid of (1)—(2) as

V(¢ + ST) =0, (6)
Vz[%(¢2+ST)2+KT] —0. %

In the complex plane described by z = x +iy (i> = —1), the temperature field and the electric potential
in (6) and (7) can be expressed as [Song et al. 2018]

T=-2f@) @ +86) +8@+M, ®)

6="21@ @+ f@+ @ - S(g) +5@) + V. ©

where f(z) and g(z) are complex analytic functions while M and N are real constants that denote
uniform temperature and electric potential fields, respectively. Note that the overhead bar denotes the
usual complex conjugate. Substituting (8)—(9) into (1)—(3), the components of electric current density,
heat flux and energy flux can be expressed as

Je—iJy ==20f"(2), (10)

0. —i0, =201 @[22 () @ + () + F@ - S(8(2) +8@) + N]
~20/() f'@-2%g@, (D)

Uy —iUy=—20f(z) f(2) — 2«5 (2). (12)

From (8)-(12), we see that the quantities corresponding to the thermal and electric fields are governed
entirely by the complex functions f(z) and g(z). As such, the temperature distribution, electric potential,
electric current, heat flow and energy flux in the thermoelectric material are known entirely if the two
complex functions f(z) and g(z) are determined.

2.2. Stress and displacement fields. Thermal stress induced by unmatched thermal expansion in a ther-
moelectric material depends linearly on the thermal expansion coefficient «, leading to the governing
equation coupling the stress function ® and the temperature field 7' [Parkus 1968]:

V4@ + EaV2T =0, (13)

where E is Young’s modulus. The general solution of (13) is composed of a particular solution and the
general solution of the corresponding homogeneous equation which is given as [Song et al. 2019c]

@ = %[w(z)ﬂmw(zwm] + Ef"

=22 F() F(2), (14)
K
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where ¢(z) and ¥ (z) are complex analytic functions of z, and

F(2) Z/f(z)dz. (15)

We introduce v (z) to represent the derivative of ¢(z). The stress and displacement components oy, oy,
Tyy; u and v can then be derived from (14) as [Zhang and Wang 2016]

2P , ——  Eac S
ortoy =47 =2(¢'(2) +¢' () + —— @ @), (16)
. GRS - , Eao ,, ——
Oy = Ox + 2Ty =455 = 220" @ +¥' @)+ —— @D FQ), (17)
L 1 % prreatiiryns BDS J EomF - 8
u+zv—E[ 0(2) —2¢' (D)~ Y (@)]+ afg(z) AR (18)

where K = (3 — u)/(1 4+ w) for the plane stress problem while G and w are the shear modulus and
Poisson’s ratio, respectively. Note that E, u and « are respectively replaced by E/(1 — u?), u/(1 — )
and (1 4+ p)« in the case of the plane strain problem.

2.3. Surface elasticity. The effects of surface elasticity are generally disregarded in the modelling of
thermoelectric materials at the macroscale. However, it is well-known that the incorporation of surface
elasticity into models of deformation significantly affects the stress distribution on the surface of a nanoin-
homogeneity due to the large surface to volume ratio of a representative material element. According to
the continuum theory of elastic material surfaces, the surface hoop stress oy is a critical quantity in the
description of surface elasticity and depends linearly on the hoop strain &, that is [Gurtin and Murdoch
1975]

oy = Mgy, (19)

where M*® =2u°® + A® is a surface material constant incorporating p* and A® which are referred to as
surface Lame constants. Noting (16)—(18), &; can be expressed as [Dai et al. 2017]

Zq)//(z) + w/(z))ezm]
2G

T E

, ——  Eao E— Re[(
<</> (@) +¢'(2)+ Tf(z) f(Z)) +

Eao 1N (o 5200
Re[f'(z) F(z) e”"14+2aRe[g(z)], (20)
4Gk

S
€y

+

where the angle 6 is measured from the x-axis, and “Re” denotes the real part of a complex function.

3. Solution for infinite thermoelectric plate containing an arbitrary shaped nanohole

We consider an infinite thermoelectric plate containing an arbitrarily shaped hole bounded by a simple
curve L. The plate is subjected to remote electric current density J¢°, Ji° and energy flux Ug®, UP*.
Without loss of generality, the origin of the Cartesian coordinate system is placed at the centroid of the
hole, as shown in Figure 1 (left). The infinite thermoelectric matrix surrounding the hole can be mapped
into the external of a unit circle L’ in the image w-plane (w = & +in), as shown in Figure 1 (right), using
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Figure 1. Left: infinite thermoelectric plate containing an arbitrarily shaped nanohole.
Right: the image w-plane after conformal mapping.

the conformal mapping function w(w) given by [Muskhelishvili 1975]

Z=a)(w)=R<w+ijw_j), 21
j=1

where R is real number associated with the size of hole and the complex number m; is determined by
the shape of hole.

3.1. Boundary conditions. We assume that the boundary of the nanohole prevents the transport of both
electrons and heat, thus the boundary conditions for the normal electric current density J, and energy
flux U, can be written as [Song et al. 2019b]

0
f J.ds =0, (22)
P

o
/ U, ds =0, (23)
P

where P and Q are arbitrary points on L.
As stated in Section 2.3, the presence of surface elasticity influences the stress field on the surface of
a nanohole. Since there is no additional loading on the boundary L, the stress boundary conditions can
be expressed as [Gurtin et al. 1998]
.doy

o, —itg =koy —i o (24)
s

where o, and 7,9 are the normal and shear stresses on L, respectively, while k is the pointwise curvature
along L.

3.2. Solutions for electric and thermal fields. The functions f(z) and g(z) can be deduced from (10)
and (12) in terms of the remote current density and energy flux as

1

f@ === =iI®) 2+ fol2), (25)
o

(D) == (S =i = (U iU 2+ 20(2), (26)
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where fy(z) and go(z) are analytic functions in the matrix. Noting the conformal mapping function
in (21) and adopting the notation that f(z) = flw(w)] and g(z) = glw(w)], equations (25) and (26) can
be expanded into series form as

n
f@Q=aw+)Y A juw, 27)
j=0
n
g(2)=Bw*+Biw+» B_jw/, (28)
j=0
where
R R R?
Ar=—o (X =iJ%), Bi=— (U¥—iUY), By= —80—’((1;o — I (29)

Substituting (27) and (28) into the boundary conditions in (22) and (23), f(z) and g(z) can be determined
as

Ay

f@Q=A1w+—, (30)
w

B,

B
g(z) = Byw* + Byw + —1+—2.
w w

(31
The temperature, electric potential, electric current density, heat flux and energy flux around an arbitrarily
shaped nanohole in a thermoelectric material can then be totally determined by substituting (30) and (31)
into (8)—(12) as

o A] 2 2 E] Ez
T=——|Ajw+ —| +2Re| Bw +Blw+—+—2 + M, (32)
K w w w
o A] 2 A] 2 El Ez
¢p=—|Aiw+—| +2Re|Ajw+ — —S{ Bow +Biw+—+— ) [+N, (33)
K w w w w
. 20 A]
Jx—ljyz—m A]-F , (34)
Q Q 20’d) A Al 20 A +Al A Al
_l , = —_—— [e— w — —_— —
* YT o\ w2 o' (w) ! w w2
2% (g — 21282 (35)
— w —_— —_— .
a)/(w) 2 1 2 w3

Uit =2 (aws A\ (A1 _4 % (yywyn - BL_2B (36)
* ly_a)’(w) )\ w2 ! o' (w) 2w T T wd )

where o' (w) = dw(w)/dw.
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3.3. Solution for stress distributions. Substituting (30) and (31) into (16)—(18), the thermal stress and
displacement in the matrix can be expressed as

Eom 2 , -
+2(¢'(2) +¢'(2)), 37)

oy toy,= A1w+—

EO[O’(A]U) — Al)

kw2 (w)

Oy — 0y +2ityy =

[(AluH—A )w/(w)]dmz(m”(z)+w’<z>), (38)

u+zv:2a/ (Bzw +Biw+— + 2)co(w) dw + 5= (K¢(2) —z2¢'(x) — ¥ (2))
woow 2G

Eaa(—_ Al) [( A), }
— Ajw~+ — / Alw+ — o' (w) [dw, (39)
4G w w

while the hoop strain in (20) can be expressed as

1 - —— E A Re[(z0" /() 9200
eéZTM(w/(Z)JFW(Z)JF—a ‘A1w+_1 >+ [z @ZEW (@)e™’]

Ea (Ayw® — Ay AL\ == | = 2i0

+4GKRe[ ww' (w) [<A1w+ )a)(w)]dwe :|

B, B
+2aRe[Bzw2 + Biw+ El + w—i} (40)

The integrations in (38)—(40) will generate multivalued terms which can be eliminated by introducing
additional terms in ¢(z) and ¥ (z) as

@) =xlnw+) C_jw, (41)
j=1
Y@ =xalnw+ Y D_jw. (42)

j=1
Here, we have disregarded Cy and Dy in (41) and (42) since they correspond to rigid displacement and

thus do not influence the stresses. Noting (21), the coefficients of the multivalued terms are now identified
as

_ 4GaR =
X1 = gy (mi By +2my B, — By), i 43)

o= X1+ BB (A —miAD(Ayw + L),
Rewriting the boundary condition in (24), we have [Dai et al. 2016]

TN L Al () Eao — K 19
w(z)+z<p’(z)+¢(z)+7f(z)F(z)= ‘epe (44)

Substituting (40)—(42) into (44), and noting that
0 wo' (w) 20 w?e' (w)

= , eV = —=, (45)
plo’(w)] p2 ' (w)
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we have

Ea
<p(w)+%<p (w)+w(w)+2—f(w) F(w)

_ M{l__“( Yy +—2 W)y Eao wo'w) If(w)lz)

E \|o(w) | (w)] o (w) 2% | (w)]
w? w3’ (w) w3’ (w) ,
4G B et e
" (w’(w)w(w) aw " ewiam ™

w(w) - o (w) " (w)

1
wla)’(w)la)/(w)(p _wla)’(w)la)’(w)w(w)—i_ wl|ow' (w )|W( ))
B Eao ww’(w) Aw A])/[(Al 1) (1)]dw
8Gk Iw/(w)lw/(w)
8o (A — Ajw?) Ar\
"8Gk wiw )] /[(AIMU)”('”)] aw

PLLACIEN [Bzw +Blw+ﬁ+32“. (46)
| (w)]

We introduce Fourier series expansions for the w-related terms as

/

1 _ n 1 2 g J j
e =X (0 S o) .

— 2r ¢

|’ (w) (w>| ZF—n (27r 0 T @] d‘g) 47)

o LS ) j

o’ (w)lw (w) Z/:_" (2” 0 o' @] (©) o) w’,
where ¢ = ¢, and n’ is selected to cover the highest power of w in (46). Since the multivalued terms
in (46) will cancel each other on L, the stress boundary condition is successfully written in terms of
Fourier series using (47). Equating coefficients of w/ (j = —n, ..., —1,1,...,n) in (46), we arrive at
a system of equations with respect to C_; and D_; (j =1, ..., n). Solving this system numerically, the
complex functions ¢(z) and v (z) are determined completely.

4. Numerical analyses and discussion

Numerical analysis is undertaken to illustrate the distribution of thermal stress around the nanohole using
the material parameters listed in Table 1. For illustrative purposes, we consider the stresses around an
elliptic hole, an approximately triangular hole (which we refer to as a ‘triangular hole’) and an approx-
imately square hole (similarly referred to as a ‘square hole’) and prescribe remote electric current and
energy flux in the y-direction. The conformal mapping functions corresponding to the three shapes are
given by [Savin 1961]

w(w) = R(w +1/3w), elliptic hole,

o(w) = R(w+1/3iw?), triangular hole, (48)

w(w) = R(w—1/8w?), square hole,



THERMAL STRESS AROUND AN ARBITRARY SHAPED NANOHOLE WITH SURFACE ELASTICITY 595

sample o (S/m) S (uV/K) « (W/mK) FE (GPa) o (/K) w  M* (N/m)
PbTe 10* 300 1.5 58 2-107° 0.29 10

Table 1. Material parameters of samples [Pei and Liu 2012; Ni et al. 2010].

with the area of these holes given by
s=nR*(1— jm}), (49)

where j corresponds to w™/ appearing in the conformal mapping function, and m; is the coefficient
of w=/.

Comparing the state of stress around a macrohole, we can see that the surface elasticity mainly induces
normal and shear stresses on the boundary of a nanohole. Consequently, we focus our investigation on
the effect of electric current on the normal and shear stresses induced by surface elasticity for holes of
different shapes as described in figures 2—4. In order to compare the stress fields for different shapes of
hole, we set the area of each hole to be uniform at s = 3 nm? and subject the thermoelectric material to a
remote energy flux given by UP® = 10~® W/nm?. For the case of an elliptic hole, the maximum positive
and negative normal stresses induced by surface elasticity appear at the locations 6 = 0.1 and —0.17,
respectively, while the maximum shear stress appears at 8 = 0 (see Figure 2). The remote electric current
has considerable influence on the normal stress, but no influence on the shear stress. In addition, our
results also show that the remote electric current has the capability of suppressing the absolute value of
the negative normal stress and enhancing the positive normal stress around an elliptic hole.

For the same conditions used in Figure 2, the surface elasticity generates more than 10 times the
normal and shear stresses on the boundary of a triangular hole than the on the boundary of an elliptic
hole (see Figure 3). With the increase of remote electric current density, the maximum normal and shear
stresses transfer from the lower boundary (—z/2 < 6 < 0) to the upper boundary (0 <0 < 7/2) of a
triangular hole and the maximum normal stress is enhanced by a factor of 3 when the remote electric
current density changes from 0 to 2- 107® A/nm?. In contrast to the elliptic hole, the maximum shear
stress does not occur at the tip (the point of maximum curvature) of a triangular hole, as we can see from
Figure 3 (right). It is worth pointing out from Figure 3 (right) that an appropriate electric current density
can suppress the maximum shear stress on the boundary of the triangular hole. The remote electric

o, (x 10 MPa)
7,5 (x 10 MPa)

f
~

-1.0{ - J*=1x10° A/nm’ |+ J7=1x10° A/nm’

1.5 |4 J7=2x10° A/nm’ O 4 7=2x10° A/nm? O

05 0.0 05 05 0.0 0.5
6 (xm rad) 0 (xm rad)

Figure 2. Normal stress (left) and shear stress (right) on the boundary of an elliptic hole.
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+Jy°°=()
| es=1x10° A’ f
21— J"=2x10° A/om’ /

] —-J=1x10° A/nm’

) '@ i
f Hﬁ/ J
+J;"=2x10'6 A/mm®
05 0.0

. 05 05 0.0 0.5
6 (xr rad) 6 (xu rad)

o, (x10*> MPa)

o
7,0 (x 10> MPa)
1

Figure 3. Normal stress (left) and shear stress (right) on the boundary of a triangular hole.

current suppresses maximum shear stress when J = 10~% A/nm? but enhances maximum shear stress
for the case when J2¥ =2- 107 A/nm?.

The normal and shear stresses around a square hole under various values of electric current are shown
in Figure 4. Comparing with figures 2 and 3 we see that the maximum normal and shear stresses induced
by surface elasticity around a square hole are higher than the maximum stress around an elliptic hole
although much lower than the case of a triangular hole which corresponds with the order of their maxi-
mum curvatures. Figure 4 (left) shows that the electric current greatly enhances the normal stress on the
lower boundary yet suppresses normal stress on the upper boundary of a square hole. In contrast, the
electric current decreases and increases shear stress on the lower and upper boundary of a square hole,
respectively, as shown in Figure 4 (right).

In Figure 5, ar(l) and r,%) are the maximum normal and shear stresses on L when R = 1 nm. In figures
5 and 6, we further investigate the effect of surface elasticity on thermal stress with hole size. The value
of the prescribed energy flux is adjusted to control the maximum temperature difference on the boundary
of the hole at 1 K and the applied electric current density is adjusted to the optimal value around the hole.
As is clear from Figure 5 (left), all of the maximum normal stresses decrease sharply with the increase
in R, and tend to zero when R = 20 nm. The size of the hole has a stronger influence on the maximum
normal stress around a square hole than on that around a triangular hole. Figure 5 (right) shows that the
maximum shear stresses on the boundaries of elliptic and square holes decrease with the increase of R,
which is the same as for normal stress. However, in the case of a triangular hole, the maximum shear
stress increases in the initial phase of the increase in size of the hole: this is because the maximum shear

O =
= 4l . Jj:lxlo"‘ A/mm’ E
& . ,
=, 4 =2x10° A/nm’ =
2 S
X 0] z
3 QE 6 2
© 5 B o] d=1x10° A
- J"=2x10° A/nm’
4 . : [ : ‘
0.5 0.0 0.5 0.5 0.0 0.5
6 (xm rad) 6 (xm rad)

Figure 4. Normal stress (left) and shear stress (right) on the boundary of a square hole.
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1.0 —Circle —Circle
—— Triangle 1.0+ —— Triangle
—Square — Square
% a3
b 0.5 &S 054
0.0~ ‘ ‘ : : 0.0+ ‘ : : ‘
0 5 10 15 20 0 5 10 15 20
R (nm) R (nm)

Figure 5. Maximum normal stress (left) and shear stress (right) versus R for different
shaped holes.

stress occurs at the point of lower curvature on the boundary of triangular hole. With further increase
of R, the effect of surface elasticity fades away, thus leading to a decrease of shear stresses for all shapes
of hole.

In Figure 6, 09(0) and ¢ are the maximum hoop and von Mises stresses on L when M* = 0. We see
from Figure 6 that surface elasticity has the ability to suppress maximum hoop stress induced by heat
flux around nanoholes. This effect is more obvious around a triangular hole where the maximum hoop
stress can be decreased by more than 50% as a result of surface elasticity. Even for the case of a square
hole, the contribution of surface elasticity can decrease the maximum hoop stress by about 20%. Since
the von Mises fracture criterion is often used in semiconductors, we also illustrate the effect of hole size
on the von Mises stress o, using the expression [ Yang 1980]:

Uv:\/af—oxay+oy2+3r3y. (50)

From Figure 6 (right) we see that surface elasticity can effectively suppress the maximum von Mises
stress for all shapes of nanoholes. However, a particular size of nanohole is required for maximum
effectiveness. For example, when R = 2.5 nm, the maximum von Mises stress generated by the heat flux
is reduced by no more than 65% around a triangular hole.

L
< 10\ ————————————————————————————————————————
%30'87 = 0.97

~

o -
0.7+ 0.8
0.6 — Circle —Circle
' — Triangle 0.74 — Triangle
0.5 — Square —Square
0 5 0 15 20 0 5 0 15 20
R (nm) R (nm)

Figure 6. Maximum hoop stress (left) and von Mises stress (right) versus R for different
shaped holes.
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5. Conclusions

In this paper, we analyze the effect of surface elasticity on the thermal stress distribution around an
arbitrarily shaped nanohole in a thermoelectric material. The electric, thermal and elastic fields in the
matrix surrounding the nanohole are calculated based on complex variable methods. For a given area of
nanohole, the surface elasticity generates higher normal and shear stresses around a triangular hole, but
lower stresses around an elliptic hole which corresponds to the sequence of maximum curvature of the
different hole shapes. The applied remote electric current can enhance or suppress the effect of surface
elasticity on the thermal stress, depending on the shape and position of the boundary of the nanoholes.
Detailed results show that surface elasticity has the ability of suppressing maximum hoop stress induced
by heat flux around a nanohole, thus leading to significant reduction in von Mises stress. Accompanied
by the appropriately chosen size of hole, surface elasticity can suppress the maximum von Mises stress
around a triangular hole only by around 65%.
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