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FAILURE PATTERN PREDICTION IN MASONRY

GIANMARCO DE FELICE AND MARIALAURA MALENA

The structural assessment of masonry remains an open challenge due to its intrinsic nonhomogenous
nonisotropic and nonlinear behavior. Aiming at providing a tool for structural applications, this paper
presents the formulation and implementation in a FE code of a simple constitutive model to describe
the behavior of masonry walls regarded as elastoplastic homogenized anisotropic plates. The model is
based on few geometrical and mechanical parameters that can be easily detected from masonry typology.
Nonetheless, it can capture the essential features of the structural behavior of ancient masonry, i.e., the
failure in traction and the anisotropic behavior deriving from the joints layout. The model succeed
in predicting the failure mechanism and load carrying capacity under different boundary and loading
conditions, including soil settlement and seismic loading. Its validation is finally carried out for some
selected case studies.

1. Introduction

The response of ancient masonry structures under foundation settlements or seismic events is usually
affected by local failure modes which typically involve both in-plane and out-of-plane collapse mech-
anisms. The prediction of the failure patterns associated with these mechanisms can be carried out
using different analysis and modelling approaches [de Felice et al. 2017]. When numerical analysis is
adopted, an adequate constitutive law for the masonry is requested. Considering the uncertainties that
typically affect the detection of the structural properties of historical constructions, numerical models
suitable for analyses should be as simple as possible and based on few mechanical parameters. In the
meantime, the model should be able to describe some essential features of masonry behavior, such as:
the ability to capture the failure in traction, the inclusion of the anisotropic behavior, at least in terms of
failure condition, and the capability to reproduce the failure pattern under different boundary and loading
conditions.

A considerable number of nonlinear models have been developed for masonry, aiming at capturing the
essential no-tensile strength under traction [Angelillo 1993; Angelillo et al. 2010], according to the well-
known Heyman hypothesis [Heyman 1966], or the complex interaction between masonry units, resulting
in an overall anisotropic behavior [Page 1978; de Buhan and de Felice 1997; Sacco 2009; Zucchini and
Lourenço 2002; Massart et al. 2005; Sab 2003; Stefanou et al. 2015; Amorosi et al. 2012; 2014; Roselli
et al. 2018]. More complex three-dimensional models have been proposed in the framework of either
continuum [Milani et al. 2006a; 2007], or discrete limit analysis [Livesley 1978; Portioli et al. 2014], or
resorting to a discrete macroelements approach [Calió et al. 2012].
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In this work, an elastic perfectly-plastic plate model able to describe the nonlinear behavior of masonry
walls subject to both in-plane and out-of-plane loads is proposed. The model is an extension of a previous
formulation in which only the in-plane behavior was considered [de Felice et al. 2010].

The proposed model represents the masonry wall as an elastoplastic homogenized Love–Kichhoff
plate, with associated flow-rule. The macroscopic elastic properties are obtained through a micro me-
chanical approach, while the strength domain is assumed to coincide with the one defined in [Sab 2003;
Sab et al. 2007], derived by a homogenization procedure on a thin periodic heterogeneous plate made of
3D infinitely resistant blocks connected by Mohr–Coulomb interfaces.

In the present case, the cohesive contribution of the mortar joints is practically neglected. This hy-
pothesis, widely used in modelling masonry after Heyman’s contribution, seems appropriate for old
structures, since the joints have experienced loss of mortar or degradation of its mechanical properties,
due to environmental ageing conditions. Accordingly, the old masonry structure becomes similar to a dry
joints masonry structure. On the other hand, material crushing under compression is neglected as well,
since masonry units are supposed having infinite compressive strength. This hypothesis, in agreement
with Heyman’s assumptions, appears justified for the problems at hand (soil settlement and earthquake
loads in low-rise buildings), for which material crushing does not occur since the compressive stress
remains much lower than the material strength. It should be pointed out that the no-tensile and infinite
compression hypotheses do not yield to the well known no-tension model since the model, according
to the homogenization approach, includes a pseudo tensile strength in the horizontal direction deriving
from the interlocking of masonry blocks and the presence of friction at the interfaces.

The model has been implemented in the Finite Element code Abaqus in the context of perfect plasticity
theory, aiming at carrying out path-following nonlinear analyses of masonry structures under various
loading and boundary conditions. If on the one hand, a path-following analysis requires a computation
cost higher than the limit analysis, on the other hand, it provides the whole equilibrium path under external
loads that, for instance, can be used for the seismic assessment through pushover analysis [Acito et al.
2016]. It is worth noting that, according to experimental evidences [Lourenço and Ramos 2004], material
behavior of masonry constituents is not perfectly plastic, but generally exhibit a softening behavior both
in compression, once crushing is attained, and in traction, one the tensile strength is reached. However,
in the present case, as both, joint cohesion and crushing in compression, are neglected, there is no reason
to include the softening behavior, that would induce computational problems of mesh dependence and
difficulties in convergence. The hypothesis of associated plastic flow-rule does not completely reflect the
behavior of masonry since, especially in presence of high compressive stresses, sliding in mortar joints
occur without dilatancy. This hypothesis could represent a serious drawback for the case of masonry
constructions having boundary conditions constraining the joint dilatation. Hence, in general terms, the
proposed model provides only an upper bound prediction of the failure load, that should be prudently
adopted. However, as usually masonry walls are simply subjected to self-weight, for current problems,
the hypothesis of associated flow-rule does not significantly affect the prediction of failure load. More-
over, the hypothesis is straightforward to apply the Haar–Karman’s principle in the solution procedure.

A further drawback of the proposed model is that, since a Love–Kirchhoff plate is adopted, the shear
deformation and the possible disaggregation of the wall in out-of-plane bending are neglected. Both these
phenomena that may occur in thick walls, are therefore disregarded, since the model more accurately
describes the behavior of thin walls. In fact, according to [Cecchi et al. 2007] there are no meaningful
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differences between the Love–Kirchhoff model and the Reissner–Mindlin model when thin walls are
considered.

This model has been also adopted in a previous work of Malena et al. [2019], where a comparison
with the results of limit analysis of structures made of rigid blocks is presented in the way to highlight
the weakness and the potentiality of continuous versus discrete formulations.

In the first section, the model is formulated in terms of elastic properties, strength conditions and
elastic-plastic constitutive law. Then, in Section 2, the results of numerical simulations of masonry walls
under foundation settlements are presented and compared with the outcomes of a more accurate discrete
model [Malena et al. 2019; Portioli and Cascini 2016]. Finally, in Section 3, the numerical simulations of
a prototype consisting of three U-shaped connected walls subjected to horizontal loads are presented and
compared with experimental outcomes presented in [Restrepo Vélez et al. 2014], to assess the capability
of the model to predict the failure patterns resulting from seismic action.

2. Masonry model

Let us consider the masonry wall in Figure 1, made of parallelepiped blocks having thickness h, hight a
and length b, arranged in a regular pattern and bonded with mortar joints. Mortar joints are viewed as
interfaces forming a regular network of two sets of orthogonal planes: horizontal bed joints (parallel to the
Ox1x3 plane) are continuous, while vertical head joints (parallel to the Ox2x3 plane) are discontinuous,
as a result of the running bond pattern.

If the dimensions of the blocks are small when compared with the sizes of the wall L , H , and if the
actions are characterized by a wavelength much larger than the size of the blocks, according to [Caillerie
1984], the masonry wall can be represented as a homogenized continuum Love–kichhoff plate. In this
case, the masonry wall occupies the domain �×]−h/2; h/2[ (Figure 1), where � is its middle plane
and h the corresponding out-of-plane thickness.

2A. Macroscopic elastic properties. The elastic properties of masonry may be derived from the proper-
ties of its constituents according to the homogenization theory for periodic media, through the resolution
of a boundary value problem on the unit cell with periodicity conditions. By adopting reasonable sim-
plifications on the geometry of the unit cell, a closed form solution is available. In most contributions

Figure 1. Block structure.
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in the literature, only the in-plane behavior of masonry was investigated: in [de Felice 1995] the elastic
macroscopic properties have been deduced under condition that the blocks behave as rigid bodies and
the joints are simply interfaces that control the deformability of the assembly; in [de Felice 2001; Cecchi
and Sab 2002] the contribution in deformation provided by the blocks has been accounted for, assuming
a constant strain field; in [Milani et al. 2006b] an affine displacement field has been assumed in both, the
blocks and the joints, taking into account the finite thickness of these latter. Whenever addressed, the
out-of-plane behavior refers either to the shear deformation of masonry bulk, [Zucchini and Lourenço
2002; Pande et al. 1989; Pietruszczak and Niu 1992], or to the joint contribution to bending [Cecchi and
Sab 2002; Mistler et al. 2007; Taliercio 2016].

In this work, according to [Mistler et al. 2007], the orthotropic equivalent elastic properties of ma-
sonry are based on the following macroscopic parameters: the Young’s moduli in the horizontal and
vertical directions E1 and E2, the Poisson ratios ν12, ν21 and the shear modulus G12, which are based on
mechanical and geometrical properties of the constituents as shown hereafter. Let us define the vector
t = (N, M) collecting, for the homogenized plate, the macroscopic in-plane (membrane) forces N = Nαβ
and out-of-plane bending moments M = Mαβ , and the vector ε = (E,χ) collecting the corresponding
in-plane strain E = Eαβ and out-of-plane curvature χ = χαβ , for α, β = 1, 2. The flexibility matrix A
relating the membrane strains and curvatures to the membrane forces and bending moments is given by

E11

E22

2E12

χ11

χ22

2χ12


=



1/hE1 −ν12/hE1 0 0 0 0
−ν21/hE2 1/hE2 0 0 0 0

0 0 1/hG12 0 0 0
0 0 0 12/h3 E1 −12ν12/h3 E1 0
0 0 0 −12ν21/h3 E2 12/h3 E2 0
0 0 0 0 0 12/h3G12





N11

N22

N12

M11

M22

M12


. (2-1)

The coefficients in (2-1), as shown in the previous work [de Felice et al. 2010], depend on the elastic
properties of blocks (λ′b, µb) and joints (Kn, Kt) and on the dimensions of the blocks (a, b) as

1
E1
=

4a
4abKn + b2Kt

+
1

4µb
+

1
4(λ′b+µb)

, (2-2)

1
E2
=

1
aKn
+

1
4µb
+

1
4(λ′b+µb)

, (2-3)

1
G
=

1
aKt
+

4a
b2Kn + 4abKt

+
1
µb
, (2-4)

ν12

E1
=
ν21

E2
=

λ′b

4µb(λ
′

b+µb)
. (2-5)

As pointed out in [Mistler et al. 2007], the out-of-plane constants in (2-1) should be different from the
in-plane ones, but the approximation introduced when considering the in-plane constants is reasonable.

2B. Macroscopic strength condition. A homogenization procedure for determining the overall yield
strength properties of a thin periodic heterogeneous plate was proposed in [Sab 2003; Sab et al. 2007], and
applied to masonry walls made of 3D infinitely resistant blocks connected by Mohr–Coulomb interfaces.
The procedure provides a smooth representation of the piecewise kinematics of block masonry through



FAILURE PATTERN PREDICTION IN MASONRY 667

an average strain field. According to these works, the macroscopic strength domain G t can be written
as

G t := {t | f i (t)≤ 0, ∀ i ∈ [1, . . . ,m]}, (2-6)

where f i (t) are m independent planes intersecting in a nonsmooth way:

f i (t) := ni
: t − ci , i ∈ [1, . . . ,m]. (2-7)

and the vector ni
:= ∂ f i/∂ t collects the normal to the yield surfaces.

The yield surface comprises m = 8 planes which can be written in terms of stress components in the
Ox1x2 plane as

f 1
:= µN11+ tg(φ)N22+

(
1+ tg(φ)µ

)
N12− h

(
c+

cµ
tg(φ)

)
≤ 0,

f 2
:= µN11+ tg(φ)N22−

(
1+ tg(φ)µ

)
N12− h

(
c−

cµ
tg(φ)

)
≤ 0,

f 3
:= N22+

1
tg(φ)N12

−
hc

tg(φ)
≤ 0,

f 4
:= N22−

1
tg(φ)N12

−
hc

tg(φ)
≤ 0,

f 5
:= N22+

2
h

M22−
hc

tg(φ)
≤ 0,

f 6
:= N22−

2
h

M22−
hc

tg(φ)
≤ 0,

f 7
:= (p+ q)N22+

2
h

M11−
2
h
(q − p)M22−

h(p+ q)c
tg(φ)

≤ 0,

f 8
:= (p+ q)N22−

2
h

M11−
2
h
(q − p)M22−

h(p+ q)c
tg(φ)

≤ 0,

(2-8)

where p = (tg(φ)/µ) · (b/4h) and q = (tg(φ)/µ)
√

1+ (b/4h)2. The macroscopic strength condition
explicitly depends on the aspect ratio µ= 2a/b of the blocks, the friction angle φ and the cohesion c of
the joints. This latter is included into the formulation and, generally, provided with a very small value, to
ensure convergence of the numerical simulations. The strength condition is anisotropic as a consequence
of the arrangement of the blocks within the assembly and is unbounded in the direction of compression,
according to the hypothesis of infinite crushing strength. As expected, the four planes defining the
in-plane strength condition correspond to the macroscopic strength domain obtained in [de Buhan and
de Felice 1997].

2C. Macroscopic elastoplastic constitutive law. Aiming at building up a constitutive law, let us assume
that masonry behaves as an elastic-perfectly plastic homogeneized medium with associated flow-rule,
having the elastic properties defined in Section 2A and the elastic domain coinciding with the macro-
scopic strength condition given by (2-6). The model is thus formulated in the framework of infinitesimal
multisurface rate-independent elastoplasticity. The total strain ε is decomposed additively in an elastic



668 GIANMARCO DE FELICE AND MARIALAURA MALENA

(reversible) part εe and a plastic (irreversible) part ε p:

ε = εe
+ ε p. (2-9)

By (2-9), the stress-strain relationship can be written as

t = C : (ε− ε p), (2-10)

where C = A−1 is the elastic stiffness tensor equal to the inverse of the flexibility matrix defined in (2-1).
The previously defined macroscopic strength domain given by equations (2-6)–(2-8) is assumed to

coincide with the elastic domain E t :

E t ≡ G t = {t | f i (t) := ni
: t − ci

≤ 0, ∀ i ∈ [1, . . . ,m]}. (2-11)

Accordingly, the boundary of the domain is given by

∂E t := {t | f i (t) := ni
: t − ci , ∀ i ∈ [1, . . . ,m]}. (2-12)

The evolution of plastic strain ε p is controlled by the associated flow-rule expressed as proposed in
[Koiter 1960]:

ε̇ p
:=

m∑
i=1

γ̇ i ∂ f i (t)
∂ t

, (2-13)

where γ̇ i are the m plastic multipliers, subjected to the Kuhn–Tucker conditions for i ∈ [1, . . . ,m]:

γ̇ i
≥ 0, f i (t)≤ 0, γ̇ i f i (t)≡ 0, (2-14)

and to the consistency condition γ̇ i ḟ i (t)≡ 0.
Equations (2-9)–(2-13) define the constitutive behavior of the material but in order to be used inside the

FEM framework, they have to be integrated (see [Simo et al. 1988] for details), obtaining the following
equations in terms of finite increments:

tn+1 = C :
(
εn+1− ε

p
n+1

)
, (2-15)

ε
p
n+1 = ε

p
n +

m∑
i=1

1γ i
n+1

∂ f i (tn+1)

∂ tn+1
, (2-16)

where n + 1 denotes the new solutions {tn+1, ε
p
n+1} to be determined with respect to the known state

{tn, ε
p
n } and the assigned total strain {εn+1}. The Kuhn–Tucher conditions in discrete form are expressed

as
1γ i

n+1 ≥ 0, f i (tn+1)≤ 0, 1γ i
n+1 fi (tn+1)= 0, for i ∈ [1, . . . ,m]. (2-17)

As pointed out in [Simo et al. 1988], the solution of the system of equations (2-15)–(2-17), according
to the Haar–Karman’s principle, coincides with the following minimization problem:{

minimize: 5H K [1tn+1] =
1
2

(
1tn+1 : C−1

:1tn+1
)
,

subject to: f i (1tn+1) := −ni
:1tn+1− bi

n+1 ≥ 0, for i ∈ [1, . . . ,m].
(2-18)
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Here 1t := t− t E , where t E the elastic predictor related to the strain increment through the elastic matrix
C , while bi

:= ci
− ni
: t E .

Equation (2-18) represents a standard strictly convex quadratic programming problem expressed in the
so-called primal form, where 1tn+1 are the primal variables and the plastic multipliers 1γn+1 the dual
ones. The approach adopted here for its solution, called dual active set method, was originally proposed
in [Goldfarb and Idnani 1983] and then adopted in [Malena and Casciaro 2008] to solve a shakedown
structural problem.

3. Cracking due to settlement

In this section, the failure pattern in the masonry structure due to ground surface differential settlement
is investigated referring to both, a bidimensional façade and a tridimensional building. As suggested in
[Portioli and Cascini 2016] and [Mastrodicasa 1993], the foundation settlement is simulated by substitut-
ing a part of the foundation by a movable rigid block, connected to the masonry above by a no-tension
frictional interface allowing for the possible detachment. By imposing a downward vertical displacement
to the movable rigid block, the masonry structure experiences a progressive reduction of the reaction at
the basis, up to a limit value corresponding to the self-weight of the portion of the wall involved in the
settlement (Figure 4). The resulting failure pattern of masonry is then represented by the plastic strain
fields provided by the analyses (Figures 2 and 3). The choice of such a rough simulation of settlement
has the advantage of reproducing the same boundary conditions of the well-known experiments carried
in [Mastrodicasa 1993] allowing for a direct comparison with them.

3A. Plane wall. The first considered masonry wall has a length of 10 m, height of 5 m and a thickness
of 0.5 m, while the blocks have a length of 0.5 m, height of 0.25 m and thickness of 0.5 m. The friction
coefficient and the unit volume weight are set equal to 0.5 kN/m3 and 18.0 kN/m3, respectively.

Two different settlement configurations were adopted (Figure 2), with a portion of the foundation
undergoing a downward displacement having a length of 2 m (short settlement) and 5 m (long settlement).

The vertical reaction at the base of the movable block prior to the application of the settlement is equal
to 90.0 kN and 225.0 kN for the two walls, respectively. At failure, the base reactions become equal to
27.8 kN and 152.9 kN (see Figure 4), with a reduction of about 70% and 45%, respectively. The failure
patterns are shown in Figure 2 in terms of plastic strain depicted over the deformed configuration of the
wall.

The predicted failure patterns are in agreement with the experimental ones presented in [Mastrodicasa
1993]: in both cases the inelastic strain is localised over a diagonal band originating at the boundary
between the movable block and the fixed foundation, with an inclination that depends on the aspect ratio
of the blocks. In the case of the short settlement (Figure 2, left), the inelastic deformed band terminates
on the lateral edge of the wall, while, in case of the long settlement (Figure 2, right), terminates on the
top of the wall, with a larger portion of the wall mobilized by the settlemnt and a corresponding lower
decrease in the vertical reaction.

3B. Wall with openings. The second masonry wall taken into account has the same geometry as the
previous one, but is provided with three orders of openings spanning 1× 1 m2 (Figure 3). The end
settlement 1.5 m long, and the central settlement 5 m long were analyzed. As expected, the presence of
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Figure 2. Plastic strain distributions at failure: short (left) and long settlement for plane
wall (right).

openings introduces discontinuities that affect the strain pattern at failure. The inelastic strains always
originate at the boundaries of the portion of the foundation that displaces downwards, but end to localize
in the masonry strips over the openings (Figure 3). Clearly, the inelastic strain pattern depend on how the
lintels are modelled. In both cases the displacement of the wall can be described as a rigid body vertical
translation of the pier lying over the movable foundation. The relative displacement of the pier with the
rest of the structure is then accommodated through the inelastic strain concentrating over the horizontal
masonry strips between the openings adjacent to the pier.

The base reaction versus the vertical support displacement is plotted in Figure 4 (right): almost no
reduction is obtained in the case of the end settlement, since the subsidence of the pier does not involve
a significant redistribution of the load towards the adjacent masonry.

Figure 3. Plastic strain distributions at failure: end settlement for wall with openings
(left) and central settlement for wall with openings (right).
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Figure 4. Base reaction versus vertical support displacement for full wall (left) and wall
with openings (right).

3C. 3D building. Aiming at testing the capability of the proposed model to catch the three dimensional
behavior, a small two-story masonry building is considered made of four connected walls. The considered
3D building (Figure 5) is the same as the one proposed in [Portioli and Cascini 2016]. The front façade
includes two doors at the ground floor and two windows at the first floor having timber lintels above the
openings. The size of a single brick is 80 mm× 40 mm× 30 mm (length, height, thickness). The friction
coefficient is set equal to 0.5, while the unit weights of masonry and timber are equal to 26.8 kN/m3 and
6.0 kN/m3, respectively.

The settlement was imposed through the application of a vertical downward displacement at the right
corner of the building, including the central wall of the façade between the openings and half of the
lateral wall (see Figure 5, left). The inelastic strain field, as depicted in Figure 5 (right), results in a
good agreement with the corresponding analysis on the discrete masonry assembly shown in [Portioli
and Cascini 2016], demonstrating the capability of the proposed model to provide a reliable prediction
of the expected failure mode. The vertical reaction at the base of the movable support decreases from
1.027 kN, before the settlement, up to 0.659 kN when the plastic flow occurs.

Figure 5. 3D building subject to foundation settlement: geometrical characteristics (left)
and plastic strain distribution at failure (right).
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4. Cracking due to earthquake

This section aims at assessing the capability of the model in providing a prediction of the expected failure
modes of masonry buildings under earthquake loading. To this end, as frequently proposed in the litera-
ture, the earthquake load is simply represented by horizontal body forces increasing up to the attainment
of the failure mechanism. Some preliminary benchmark are carried out, aiming at describing how the
model behaves under out-of-plane loads, and then some more complex geometries are investigated and
the results compared to the tilting tests carried out in [Restrepo Vélez et al. 2014] on 1 : 5 scale on
dry-stone masonry.

4A. Preliminary benchmarks. The first benchmark, originally proposed in [Cecchi et al. 2007], consists
of a rectangular panel subjected to self-weight and to increasing horizontal out-of-plane distributed load.
The wall has a length of 3 m, height 3 m and a thickness of 30 cm. It is simply supported at the base and
restrained at the top against out-of-plane displacement. The blocks are 20 cm× 10 cm× 30 cm. The unit
weight of masonry is equal to 20 kN/m3, while the friction coefficient and the cohesion in the joints are
equal to 0.471 N/mm2 and 0.1 N/mm2, respectively.

The results of the analysis are provided in Figure 6 in terms of plastic strain component χ22, corre-
sponding to the curvature along the vertical direction, and in terms of vertical displacement u2. The
horizontal load at failure is equal to 1.421 N/cm2, while the plastic hinge develops at 184 cm from the
ground. The solution shows the uplift of the wall, as a consequence of the fact that the horizontal plastic
hinge does not arise in the middle-plane but on the external surface, as it actually occurs in masonry
walls. The results are well in accordance with those provided in [Cecchi et al. 2007].

As a second benchmark, two masonry panels experimentally tested in [Southcombe et al. 1995; Chong
et al. 1994] have been numerically simulated. The panels, having dimensions 5625 mm× 2465 mm×
102.5 mm, were loaded by air-bags up to failure with increasing uniform lateral pressure. They are fully
clamped at the base and free on the top, while both lateral edges are simply supported, as shown in
Figure 7 (second row).

Figure 6. Plastic strain distribution (left) and vertical displacement (right) at failure.



FAILURE PATTERN PREDICTION IN MASONRY 673

Figure 7. Masonry panels experimentally tested in [Southcombe et al. 1995; Chong
et al. 1994]: geometry (second row) and failure patters (third row).

Each panel consists of solid clay bricks having dimensions 215 mm× 65 mm× 102.5 mm, and mortar
joints with thickness 10 mm. The pressure at failure provided by the experiments is equal to 2.8 kN/m2

and 2.2 kN/m2 for the plane wall (SB01 test) and for the wall with the opening (SB04 test), respectively.
The numerical simulations have been carried out assuming a cohesion equal to 0.32 MPa and a friction
angle equal to 36◦. The pressure at failure provided by the model is equal to 2.71 kN/m2 and 2.49 kN/m2

for the SB01 and SB04 tests, respectively. The plastic strain component χ11, corresponding to the curva-
ture along the horizontal direction, is represented in Figure 8, showing a reasonable matching with the
experimental crack pattern (Figure 7, third row).

4B. Tilting tests. In this section, the capability of the model in reproducing the failure mechanisms
obtained in the experimental campaign carried out in [Restrepo Vélez et al. 2014] are described. The
experimental campaign consists in 1 : 5 scale dry-stone masonry walls built over a tilting table and tested
up to failure. Each prototype was first built under the self-weight and then brought up to failure by tilting
the table. The horizontal collapse multiplier is simply the tangent of the table tilt angle causing the
collapse. The walls are made of dry-stone bricks, with specific weight 26.8 kN/m3 and dimensions of
30 mm×80 mm×40 mm. The friction coefficient ranges from 0.67 to 0.77, as shown in [Restrepo Vélez
et al. 2014]. Several configurations were tested, consisting in three U-shaped walls made of an out-of-
plane loaded wall constrained at both lateral edges by in-plane loaded walls, having different length and
vertical loading at the top. The numerical simulations are carried out by reproducing the same geometry,
assuming a friction coefficient of 0.7 and neglecting the cohesion, while the load condition is enforced
by constraining the walls at their base, activating the self-weight and then applying increasing horizontal
body forces, up to failure, while recording the horizontal collapse multiplier λc equal to the ratio between
horizontal and vertical body forces.
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Figure 8. Plastic strain distributions at failure for tests SB01 (top) and SB04 (bottom).

4B.1. U-shaped walls loaded inward. The first experimental test named S1 [Restrepo Vélez et al. 2014]
consists of a wall with a length of 11 bricks and a height of 21 bricks, loaded inward and restrained by two
lateral side walls having the same height and a length of 4 bricks (Figure 9, top). The test was repeated
three times, providing an average value of the collapse multiplier equal to 0.241, while the numerical
prediction is equal to 0.284 with an overestimate of about 18%. The predicted versus experimental failure
modes are compared in Figure 9, resulting in a good reproduction of the failure pattern, with the inelastic
strain component χ11 corresponding to the opening of the head joints in the upper central portion of the
main wall and at the corner with the side walls.

4B.2. U-shaped walls loaded outward. The three experimental tests S7, S10 and S20 are similar to the
previous S1 test but with the front wall loaded outwards. The three specimens have the same height of
21 bricks but differ in the length of the walls: the specimen S7 has the out-of-plane loaded front wall
made of 8 bricks and the side walls of 7 bricks; the specimen S10 has the front wall made of 12 bricks
and the side walls of 10 bricks; the specimen S20 has the front wall made of 14 bricks and the side walls
of 10 bricks, with a further central transversal wall similar to the side walls (see the figures 10 (top),
11 (top) and 12 (top)). The experimental collapse horizontal multipliers are equal to 0.291, 0.231 and
0.285, while those predicted by the model are equal to 0.287, 0.241 and 0.262 for test S7, S10 and S20,
respectively, with a discrepancy of about −1%, +7% and −8%.

The failure modes depend on the length-to-height ratio of the front wall: for shorter wall length the
failure is driven by the in-plane diagonal cracking of the side walls, while for greater wall length the
failure is controlled by out-of-plane bending of the front wall. Both inelastic phenomena are correctly
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Figure 9. Test S1: experimental (λexp = 0.241) [Restrepo Vélez et al. 2014] (top) versus
numerical results (λ= 0.284) (bottom).

simulated by the numerical analyses as shown by the plastic strain field represented in figures 10, 11
and 12, resulting in a good agreement with experimental results. More precisely, in test S7, failure is
reached through overturning of the upper part of the front wall, with a horizontal hinge forming at about
half of its height, while the side walls display opening of the head joints and sliding of the bricks. Both
phenomena are nicely simulated by the inelastic strain components χ22 related to curvature in the vertical
direction and E11, related to the opening of the head joints, as shown in Figure 10. In test S10, the out-
of-plane displacement of the front wall is accompanied by a more pronounced bending deformation,
with the χ11 inelastic curvature localised at the upper central portion of the front wall (Figure 11). In
test S20, the failure pattern displays a mixed failure mode including both, overturning and out-of-plane
bending, associated with in-plane diagonal cracking in the transversal walls, especially in the central one
(Figure 12).

4B.3. Effect of vertical load. The Specimens S32 and S41 were tested to study the effect of overburden
forces and restrains coming from floor joists (figures 13, top and 14, top). The specimen S32 consists
in a simple wall with a length of 14 bricks and height of 21 bricks restrained at the top by means of the
floor joists which also apply a vertical load on the wall of about 181 N.

The specimen S41 consists in three U-shaped walls with a height of 21 bricks, comprising two side
walls with a length of 8 brick and a front wall with a length of 10 bricks restrained at the top, as in the
previous case, and subjected to a vertical load of about 115 N (Figure 14, top).
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Figure 10. Test S7: experimental (λexp = 0.291) [Restrepo Vélez et al. 2014] (top)
versus numerical results (λ= 0.287) (bottom).

The collapse multipliers resulting from the experiments are equal to 0.293 and 0.423, while the
numerical predictions are equal to 0.285 and 0.413, for tests S32 and S41, respectively, with a slight
underestimate of about 3% for both the simulations.

For the test S32, the failure pattern consists in the vertical bending around two horizontal hinges
forming at the base and at about 3/4 of the height of the wall. The numerical results (see Figure 13)
provide a strong concentration of the inelastic curvature χ22 that matches perfectly to the flexural opening
in the bed joints at the intermediate hinge.

Numerical and experimental results for test S41 are compared in Figure 14. The failure pattern on the
front wall is similar to the previous case, but the hinge is much higher, at about 80% of the height of the
wall. On the lateral side walls the bricks slide and the vertical joints open along a diagonal crack that is
well represented by the inelastic strain component E11 resulting from the numerical simulations.

4B.4. 3D Building. As a final benchmark, the test S42 was simulated by numerical analysis, aiming at
reproducing the behavior of a two-story 3D building. The geometry of the specimen consists in a masonry
cell made of four connected walls with a height of 42 bricks and a length of 10 and 13 bricks. Two
opposite walls are provided with four openings each. The collapse multiplier measured in the laboratory
was equal to 0.236, while the numerical prediction is equal to 0.226, with a slight underestimate of
about 4%.
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Figure 11. Test S10: experimental (λexp = 0.231) [Restrepo Vélez et al. 2014] (top)
versus numerical results (λ= 0.241) (bottom).

Figure 12. Test S20: experimental (λexp = 0.285) [Restrepo Vélez et al. 2014] (top)
versus numerical results (λ= 0.262) (bottom).
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Figure 13. Test S32: experimental (λexp = 0.293) [Restrepo Vélez et al. 2014] (top)
versus numerical results (λ= 0.285) (bottom).

Figure 14. Test S41: experimental (λexp = 0.423) [Restrepo Vélez et al. 2014] (top)
versus numerical results (λ= 0.413) (bottom).
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Figure 15. Test S42: experimental (λexp = 0.236) [Restrepo Vélez et al. 2014] (top)
versus numerical results (λ= 0.226) (bottom).

The failure pattern concentrates at the left upper top of the specimen, close to the opening, with the
appearance of a diagonal crack originating at the lower left corner and at the upper right corner of the
lateral opening (Figure 15). Once again, the crack pattern provided by the experiments is well reproduced
by the inelastic strain field predicted by the numerical analyses. Referring to Figure 15 (bottom), the
horizontal strain component E11 tends to localise in accordance with the opening of the head joints in the
in-plane loaded walls, while the vertical curvature χ22, reproduces the horizontal hinges corresponding
to the overturning of the upper part of the out-of-plane loaded walls.

As a summary of the tests under horizontal loading, it is worth noting that the numerical outcomes
of the tests controlled by the in-plane behavior (i.e., S7, S22, S32, S41 and S42) match quite well the
experimental results in terms of failure load. Conversely, the numerical outcomes for tests S1 and S10 are
affected by a larger discrepancy. The difference can be ascribed to the simplicity of the model adopted for
the definition of the strength domain [Sab 2003], which overestimate the load multiplier when torsional
behavior is involved.

5. Conclusion

A continuous finite element model for the nonlinear analysis of ancient masonry buildings is developed,
implemented in a finite element code and applied to the assessment of masonry buildings subjected
either to foundation settlements or to lateral seismic loads. The model is validated by comparison with
the experimental results in terms of failure pattern and ultimate live load. The comparison shows the
ability of the model in predicting the failure pattern with different loading and boundary conditions.
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Accordingly, the expected collapse mechanism is a result of the analysis and does not have to be a-
priori defined, as suggested by current assessment procedures. The model is based on few parameters,
namely a mechanical parameter consisting in the friction coefficient of the joints and a geometrical
parameter consisting in the aspect ratio of the blocks, that can be easily evaluated in existing masonry
structures. It should be noticed that more refined models are available in the literature that are based on
advanced constitutive laws including softening, cracking and describing more accurately the nonlinear
mechanical behavior of masonry. However, the use of such models generally requires many data input,
which are often hardly available in current practice and a strong computational effort for application to
reals structures. In this perspective, the nonlinear model presented in this study might represent a good
compromise in terms of accuracy of the results, available input data, and computational cost. For this
reason, the proposed numerical approach represent a promising tool for the analysis of historic masonry
buildings under foundation settlements or earthquake loads.
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