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ENERGY BASED FRACTURE IDENTIFICATION IN MASONRY STRUCTURES:
THE CASE STUDY OF THE CHURCH OF “PIETÀ DEI TURCHINI”

ANTONINO IANNUZZO

The present work deals with the identification of fractures in “old” masonry structures modelled by
extending the Heyman model to continua, particularly to 2D structures composed of normal rigid no-
tension material, and subjected to given loads and settlements. The equilibrium problem is formulated
as an energy minimum search and two numerical methods for approximating the solution are adopted,
namely the PRD method and the C0 method. By using the PRD method, the energy is minimized within
the set of piecewise rigid displacements (PRD), whilst with the second one, the search of the minimum
is restricted to continuous (C0) displacement fields. A case study, regarding the church of “Pietà dei
Turchini” (an XVII century church located in Naples), is here presented to illustrate how an admissible
class of kinematical data (i.e., foundation displacements) associated to a given crack pattern can be
identified by using an iterative procedure. Firstly, the analysis is conducted through the PRD method
and secondly, the C0 method is used to assess the quality of the first solution, and to make comparisons
between these two approaches showing pro and contra of both methods.

1. Introduction

The first to propose the application of limit analysis (LA) to voussoir arches was Kooharian [1952].
Some years later, Heyman [1966] laid a theoretical basis for the application of LA to generic masonry
structures through the clear and rigorous formulation of three basic material restrictions: (i) masonry has
no tensile strength, (ii) masonry has infinite compressive strength, (iii) sliding does not occur.

In his work, Heyman studied in deep the arch and extended the analysis to a wide range of masonry
structures, with particular reference to Gothic cathedrals and their peculiar structural elements.

The three assumptions of Heyman, on one hand, constitute the necessary ingredients for the application
of the two basic theorems of LA to masonry structures (see [Heyman 1998; Huerta 2006; 2008; Kurrer
2008]), and on the other hand give also a mathematical base to the equilibrium approach taken from
the study of Hooke [1676] and Gregory [1695] and used by many scientists in the past centuries, such
as Couplet [1729; 1730], Danyzy [1732/1778], Poleni [1748], Le Seur et al. [1742], Coulomb [1776],
Barlow and Yvon de Villarceau [Yvon Villarceau 1853; 1854].

The present paper deals with the application of Heyman’s theory to a real masonry structure, and in
particular, is concerned with the identification of the cracks appearing in the walls of the church of “Pietà
dei Turchini” in Naples. The material composing the structure is modelled as normal rigid no-tension
(NRNT). The NRNT material is rigid in compression, but extensional deformations, regular or singular,
are allowed at zero energy price.

Keywords: masonry, unilateral materials, settlements, piecewise rigid displacements, continuous displacements, concentrated
and smeared cracks.
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For discussion and applications of limit analysis to masonry-like structures the reader can refer to
[Livesley 1978; Castellano 1988; Como 1992; Di Pasquale 1984; Giuffrè 1991; Angelillo 1993; 2014;
2019; Bagi 2014; Block et al. 2006; Block and Lachauer 2013; 2014; Block 2009; Del Piero 1998;
Ochsendorf 2006; Sacco 2014; Angelillo et al. 2014; 2018; Brandonisio et al. 2015; 2017; Cennamo
et al. 2018; Gesualdo et al. 2017; Fortunato et al. 2018; Fraddosio et al. 2019; Marmo and Rosati 2017;
Marmo et al. 2018; Shin et al. 2016; Portioli et al. 2014; Romano and Romano 1979; Van Mele et al.
2012; Zuccaro et al. 2017].

Since in NRNT structures extensional deformation could appear as either diffuse (smeared cracks) or
concentrated (macroscopic cracks), and there is any reason to prefer one type of fractures upon the others,
on an energy ground, the crack pattern of the church is identified on adopting two different numerical
strategies, namely the PRD and C0 methods (for more examples the reader can refer to [Iannuzzo 2017;
Iannuzzo et al. 2018b; 2018c]). With both methods, the solution of the boundary value problem (BVP)
is searched by adopting a displacement approach, and by restricting to small displacement fields, it
reduces to the search of the minimum of a linear functional, namely the total potential energy (TPE).
With the PRD method, the search of the solution of the BVP is performed within the set of piecewise
rigid displacements: the strain admits only a singular part, represented by line Dirac deltas, and it is
concentrated along the skeleton of the mesh, that is along the element interfaces; the C0 method, instead,
approximates the solution within the set of continuous displacements and then the strain admits only a
regular part. The two methods represent two different numerical strategies to implement numerically
Heyman’s material restrictions to continua.

2. Material restrictions, BVP and the energy criterion for NRNT materials

NRNT materials. The Heyman’s constraints ((i), (ii), (iii)) can be extended to 2D continua on introduc-
ing suitable unilateral material restrictions on stress and strain. A 2D masonry structure is modelled
as a continuum occupying the region � of the Euclidean space R2. Restricting to small strain and
displacement fields, we denote T the stress inside �, u the displacement of material points x belonging
to � and E the infinitesimal strain adopted as the strain measure.

The so-called normal rigid no-tension (NRNT) material is defined by the following three restrictions:

T ∈ Sym−, E ∈ Sym+, T · E = 0, (1)

where Sym−, Sym+ are the mutually polar cones (see Figure 1) of negative and positive semidefinite
symmetric tensors.

The restrictions (1) are equivalent to the so-called normality conditions:

T ∈ Sym−, (T − T∗) · E ≥ 0, ∀T∗ ∈ Sym−, (2)

and to the dual normality conditions:

E ∈ Sym+, (E− E∗) · T ≥ 0, ∀E∗ ∈ Sym+. (3)

The restrictions defining the NRNT material are then the essential ingredients for the application of
the theorems of LA (see [Kooharian 1952; Giaquinta and Giusti 1985; Livesley 1978; Fortunato et al.
2014; 2016; Milani 2011; Angelillo et al. 2010; Addessi and Sacco 2018]).
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Figure 1. A three-dimensional geometrical representation of relation (1)2 in the space
(ε11, ε22,

√
2 ε12): the cone C : detE ≥ 0 and the plane π : trE = 0. A generic tensor

E ∈ Sym+ is represented. For the symbols adopted the reader can refer to (31) and (32),
and to the subsequent paragraph.

The boundary value problem. The equilibrium of a 2D masonry structure, modelled as a continuum
composed of NRNT material and subject to given loads and settlements, can be formulated as a Boundary
Value Problem (BVP) in the following form: “find a displacement field u and the corresponding strain E,
and a stress field T such that

E = 1
2(∇u+∇uT ), E ∈ Sym+, u = ū on ∂�D, (4)

divT + b= 0, T ∈ Sym−, T n= s̄ on ∂�N, (5)

T · E = 0, ” (6)

where n is the unit outward normal to the boundary ∂�, ū are the boundary displacements on the con-
strained part ∂�D and s̄ are the given tractions on the loaded part ∂�N (see [Angelillo and Fortunato
2004]).

Concentrated strain and stress. For NRNT materials, it has been shown (see [Giaquinta and Giusti
1985; Šilhavý 2014]) that the strain and stress are bounded measures and can be decomposed into the
sum of two parts:

E = Er
+ Es, T = T r

+ T s, (7)
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where ( · )r is the regular part (i.e., absolutely continuous with respect to the area measure) and ( · )s is
the singular part.

A nonzero singular part of the strain or of the stress corresponds to the possibility of admitting dis-
continuities of the displacement vector or of the stress vector across certain curves. For a more detailed
review about jump discontinuities of stress or of displacement for masonry-like material, the reader can
refer to [Angelillo et al. 2016].

Displacement approach. A solution of the BVP through the displacement approach consists in the
search of a displacement field u ∈ K for which there exists a stress field T ∈H such that T · E(u)= 0,
where K and H are the sets of kinematically admissible displacements and statically admissible stresses,
defined as

K= {u ∈ S/E = 1
2(∇u+∇uT ) ∈ Sym+ and u = ū on ∂�D}, (8)

H= {T ∈ S′/divT + b= 0, T ∈ Sym−, T n= s̄ on ∂�N}, (9)

where S, S′ are two suitable functional spaces (see [Angelillo and Rosso 1995; Chambolle et al. 2007]).
It is worth noting that, by adopting a displacement approach, the functional space S defines the set where
the solution has to be found: in particular, as shown in what follows, the two numerical approximations,
namely PRD and C0 methods, work on two different subsets of the starting set S.

Energy criterion. The energy P(u) for brittle materials is the sum of the potential energy of the applied
loads and of the elastic and interface ones, with this latter necessary to activate a crack system on a
set of internal surfaces (see [Gesualdo et al. 2018; Monaco et al. 2014; Angelillo et al. 2012; Gesualdo
and Monaco 2015]). For Heyman’s material the total potential energy is just the potential energy of the
external loads [De Serio et al. 2018], namely

P(u)=−
∫
∂�N

s̄ · u ds−
∫
�

b · u da. (10)

The search of a solution of the BVP through a displacement approach could be got by looking for the
minimizer u◦ of P(u) as in [Iannuzzo 2017], namely

P(u◦)=min
u∈K

P(u) with u ∈ K. (11)

It is worth noticing that the existence of a minimizer u◦ guarantees also the equilibrium of the loads
imposed on the structure.

3. The search for an approximate solution in two different subsets of K: PR and C0 methods

In this section, two possible approximations of the solution of the BVP, are introduced, namely the PRD
method and the C0 method. These approximations are obtained by restricting the search of the minimizer
to two suitable subsets of the set K. With the PRD method, the energy is minimized in the set SPRD ⊂ S

of piecewise rigid displacements, whilst with the C0 method the search of the minimum is restricted to
the space of continuous displacements C0

⊂ S.
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3.1. PRD method. The first approximated solution of problem (11) is obtained by restricting the search
of the minimum to the subset SPRD⊂S of piecewise rigid displacements, and then the set of kinematically
admissible displacements becomes

KPRD = {u ∈ SPRD/E ∈ Sym+ and u = ū on ∂�D} ⊂ K, (12)

where KPRD is an infinite-dimensional space and can be discretized by considering a proper finite subset,
namely KM

PRD, generated by a finite polygonal partition of the whole domain �:

(�i )i∈{1,2,...,M}. (13)

The minimizer u0
PRD ∈ KM

PRD of the total potential energy, namely

P(u0
PRD)= min

u∈KM
PRD

P(u), (14)

constitutes an approximation of the solution u0 of the exact problem (11), in the subset KM
PRD and, in

this sense, represents the approximate solution of the BVP obtained by using the PRD method. The
numerical way used to solve the discretized problem (14) under NRNT restrictions is briefly described
in what follows.

The boundary ∂�i of the generic (convex) polygon �i is composed of straight segments (from here
on called interfaces) of length ` and whose extremities are denoted generically 0 and 1. Each segment is
associated with a unit normal n and a tangent vector t . Since the number of elements of the partition (13)
is M , a generic piecewise rigid displacement u ∈ KM

PRD can be expressed through a vector U of 3M
components representing the 3M rigid body parameters of translation and rotation of each element. Then,
the set KM

PRD is in one-to-one correspondence with the set KM
PRD generated by U ∈ R3M .

For piecewise rigid displacements, the strain E coincides with its singular part Es concentrated along
the interfaces and can be written as

E = vδ(0) n⊗ n+ 1
2wδ(0)(t ⊗ n+ n⊗ t), (15)

where v, w are the normal and tangential components of the displacement jump across the interface 0.
The displacement jump is modelled through the use of the Dirac delta function δ(0) having 0 as support.
Relation (15) represents the most general form of the strain tensor in the subset KM

PRD. Nevertheless,
by taking into account the normality conditions (2) or equivalently the Heyman’s restrictions (1), it is
deduced that on each interface among blocks a condition of unilateral contact with no sliding must be
enforced, that is

v = [u] · n ≥ 0, (16)

w = [u] · t = 0, (17)

where [u] represents the displacement jump on the interfaces. On allowing for internal eigenstrains along
the interfaces the above conditions transform into the following nonhomogeneous relations:

v = [u] · n ≥1n, (18)

w = [u] · t =1t , (19)
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1n , 1t being given distortions. Due to conditions (16), (17) the strain must reduce to the following form:

E = vδ(0) n⊗ n. (20)

By calling N the number of the interfaces, and v(0), v(1), w(0), w(1) the normal and tangential
components of the relative displacements of the ends 0, 1 of any interface, restrictions [(18), (19)] are
equivalent to the 2N inequalities

v(0)≥10
n, v(1)≥11

n, (21)

and to the 2N equalities
w(0)=1t , w(1)=1t . (22)

Transforming identities (22) into double inequalities, restrictions (21), (22) can be expressed in terms
of U . In a matrix form (see [Iannuzzo et al. 2018a]) these inequalities can be written as

AU ≥1. (23)

Finally, the minimum problem (14) which approximates the minimum problem (11) can be trans-
formed into

P(U0)= min
U∈KM

PRD

P(U), (24)

where KM
PRD is the set

KM
PRD = {U ∈ R3M/AU ≥1}. (25)

Problem (24) is a standard linear finite-dimensional minimization problem, since the function P(U) is
a linear function of the 3M vector U , and all the constraints are represented by linear relations (25). It
is worth noticing that problem (24) transforms the original minimization problem (11) for a continuum,
into a minimization problem for a structure composed of rigid parts subject to unilateral contact condi-
tions along the interfaces. There exist many numerical methods to obtain the solution of this minimum
problem; in particular, for large problems, the solution can be searched with the interior-point algorithm
(see [Mehrotra 1992; Dantzig 1963]).

3.2. C0 method. A second approximation of the solution of problem (11) is obtained considering the
subset C0 (see [Iannuzzo et al. 2018c]) of S formed by continuous displacement fields, and then the set
of kinematically admissible displacements becomes

KC0 = {u ∈ C0/E ∈ Sym+ and u = ū on ∂�D} ⊂ K, (26)

where KC0 is an infinite-dimensional space and can be discretized by considering a finite partition of the
domain �:

(�i )i∈{1,2,...,M}, (27)

where each element �i is associated with a suitable Finite Element-like (FE) shape function. By calling
N the total number of nodes of the FE mesh associated with the partition (27), we denote KM

C0 the subset
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of KC0 generated by this discretization. The approximated solution in KM
C0 of the BVP obtained by

applying the energy criterion, is the minimizer u0
C0 of the total potential energy, namely

P
(
u0

C0

)
= min

u∈KM
C0

P(u). (28)

The minimizer u0
C0 represents the solution of the BVP with the C0 method. The approach adopted with

the C0 method, to implement the material restrictions and to preserve the linearity of the problem, is
briefly illustrated below.

Since it is assumed that FE mesh associated to the partition (27) is based on the hypothesis of continuity
of the displacement fields at the nodes, the strain (7)1 admits only a regular part. The NRNT material
restrictions have, then, to be enforced on the strain arising inside the elements: with the C0 method the
interfaces, i.e., the boundary edges between two finite adjacent elements, play a minor role.

The displacement field u generated by the chosen FE mesh is a function of the N nodes and then is
in a one to one correspondence with the nodal vector U ∈R2N collecting the displacement components
of the N nodes of the mesh. By recalling definition (1) the latent strain E has to belong to the positive
semidefinite cone

E ∈ Sym+. (29)

This restriction, for 2D problems, is equivalent to the two following inequalities:

trE ≥ 0, detE ≥ 0, (30)

and in a fixed Cartesian reference in which the strain can be represented as

E =
[
ε11 ε12

ε21 ε22

]
, (31)

conditions (30) can be written in terms of Cartesian components, as

ε11 ε22− ε
2
12 ≥ 0, ε11+ ε22 ≥ 0, (32)

which represent restrictions on the displacement u being E = Sym∇u. Geometrically, the nonlinear
relation (32)1 defines a double cone in the space Sym whilst condition (32)2 selects one of the two parts
of this cone (see Figure 1). With the aim of preserving the linearity of the problem, relation (32)1 is
approximated through a plane envelope (see Figure 2) and then restriction E ∈ Sym+ is enforced, in
all points of the mesh, by restricting E to belong to the envelope of a finite number of tangent planes
(Figure 2). Therefore, all the material restrictions are enforced by writing linear inequalities in all the
nodes and can be expressed as functions of the unknown nodal displacements U . Then, also in this case
these inequalities can be compactly expressed in a matrix form (for more details see [Iannuzzo 2017;
Iannuzzo et al. 2018c]):

AU ≥ 0. (33)

Finally, with the proposed FE approximation, the minimum problem (28) can be approximated by the
following discretized minimum problem:

P(U0)= min
U∈KM

C0

P(U), (34)
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Figure 2. An envelope formed by six tangent planes and the surface gradient vectors at
the tangent points are represented. The condition E ∈ Sym+ is discretized and written
as a system of inequalities by using these gradient vectors.

where KM
C0 is the set

KM
C0 = {U ∈ R2N/AU ≥ 0}. (35)

Like the previous problem (24), problem (34) is a standard linear finite-dimensional minimization
problem since P(U) is a linear functional of the 2N parameters of nodal displacements collected in U
whilst all the constraints (35) are represented by linear inequalities.

4. The church of “Pietà dei Turchini”

The two proposed numerical methods, that is PRD and C0 methods, are now applied to a real case, namely
the church of “Santa Maria Incoronatella della Pietà dei Turchini”, an XVII century building located in
Via Medina in Naples. During its life, a diffuse crack pattern due to foundation displacements interested
this church. The fractures, detected before the recent restoration works, are depicted in Figure 3. This
crack pattern was essentially the effect of a piecewise rigid body mechanism through which the masonry
structure responded to the ground displacements.

The main aim is to use both methods for finding the foundation displacements producing the observed
crack pattern. This case study was already analysed in [Iannuzzo et al. 2018a] by using the PRD method,
but here a developed version has been used.

A second aim of present paper, beyond testing this developed version of PRD method, is to simulate
the same problem with the C0 method to compare these two numerical approximations and to find if and
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Figure 3. Plan (top) and section A-A′ (bottom) of the church showing the crack pattern.

how is possible to relate this two methods to get information about the best discretization that one can
choose with the PRD method.

It is to be pointed out that though the crack pattern was fully manifested and consistent, the size of
the rigid body movements produced by the given settlements remained everywhere small with respect to
the overall size of the structure. Therefore, we can consider that the equilibrium state of the structure is
not sensibly affected by these displacements, and a linearized kinematic analysis can be adopted.

The problem studied concerns the left wall of the central nave including the big arch of the transept and
the left lateral wall of the apse (see Figure 3, bottom), treated as a plane case. The external loads acting
on the structure are the mass density (ρ = 1800 kg/m3) and uniformly distributed tractions, applied along
external and internal lines, and representing the load exerted by secondary structures (see Figure 4).

In what follows the plane wall reported in Figure 4 is analysed by using both PRD and C0 meth-
ods. Preliminarily the analysis is conducted by applying the PRD method and after some iterations, the
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0.7δq1 = 96.1 kN/m q2 = 57.7 kN/m

q3 = 96.1 kN/m q4 = 57.7 kN/m

Figure 4. Structural scheme of the left wall of the central nave of the church. Distributed
tractions due to the secondary structures and their values. Profile of the foundation
displacements.

optimal profile of foundation displacements (depicted in Figure 4) has been found. In both cases the
profile of foundation displacements has been used as boundary condition. The two numerical methods,
implemented in Mathematica®, consist of the following main steps:

(1) definition of the structural geometry and of its discretization;

(2) characterization of the displacement field with support in the given discretization;

(3) characterization of the potential energy as a linear functional of the displacement parameters;

(4) definition of the internal and external constraints;

(5) numerical solution of the problem with a linear programming routine;

(6) postprocessing (evaluation of the displacement and strains corresponding to the solution).

4.1. Analysis through the PRD method. In Figure 5 the discretization adopted to implement the PRD
method is shown. This real case was already analysed with the PRD method in [Iannuzzo et al. 2018a]. In
this reference the structural scheme was discretized by using quadrilateral elements having only potential
horizontal and vertical crack lines. In the present work, we redo the analysis by adopting a much richer
mesh. Particularly, the discretization has been refined by adopting different kinds of polygonal rigid
elements: starting from triangular elements going to hexagonal elements. Then, the discretization has
been further cut by using diagonal lines in order to allow many potential diagonal cracks but at the same
time without making any preferential choice.
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Figure 5. The rigid block discretization used with the PRD method: 2301 rigid polyg-
onal elements are used.

The analysis is performed on a mesh of 2301 (rigid) polygonal elements (see Figure 5) and by consid-
ering the effect of the self-weight and of the external line loads shown in Figure 4. The total number of
interfaces is 4650, of which 4068 are internal while the remaining 582 are external. Homogeneous condi-
tions (16) and (17) have to be written for each internal interface, whilst boundary conditions, expressing
the foundation settlements, have to be written at all external constrained interfaces.

The total number of unknowns is 6903; the number of restrictions (equalities and inequalities) is 16465.
The solution of the minimum problem (24) was obtained with the interior point method in 57 s (with an
Intel® Core™ i7-6700HQ) and, shown graphically in Figure 6.

0.2δ

0.7δ 2.2δ

Figure 6. Displacement of the blocks corresponding to the solution of the minimum
problem (11) obtained with the PRD method.
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The lateral section of Fig. 3b is here analysed with the �4 method. The structure composed of NRNT material is 

discretized into 677 9-node square elements (see [70]). The external loads reported in Fig. 4 and the self-weight applied 

at the centroid of each quadrilateral elements are considered. 

Figure 7. The internal interfaces on which there is a jump displacement are depicted
with a red thick line.

In Figure 7 the internal interfaces on which there is a nonzero jump of the displacement field (that is
the absolute values of the jump above a numerical threshold 10−2δ) are underlined with a red thick line.
The collection of such red lines gives a rough picture of the fracture pattern. The phenomenological ob-
servation that masonry structures, when subjected to settlements, exhibit a rigid macroblock mechanism,
is perfectly caught by the numerical solution produced by the PRD method: the cracks (displacement
jumps) concentrate on a selected set of a small number of interfaces and a rigid macroblock partition of
the structural domain form.
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Fig. 9 ± Displacement corresponding to the solution of the minimum problem (11) obtained with the C0 method. 

In this case, since the strain is purely regular (no singular strains are allowed), the strain is smeared and an indication 

of possible fractures is associated with zones where the displacement exhibits large gradients. In order to highlight such 

regions, the strain associated to the solution of the minimum problem (34) is graphically represented. A map of the regions 

over which the measure of q, namely �q�6 L PN:qqÍ;, is non-zero is reported in Fig. 10. From Fig. 11, where a contour 

plot of �q�6  by using 200 level lines is reported, it can be observed that such fractures tend to nucleate in the 

neighbourhood of some lines. The remaining part of the domain is almost undeformed being characterized by strains 

whose norm is close to zero. 

Figure 8. Plane section of Figure 3 (bottom) is here discretized into 677 square second-
order Lagrangian elements.
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Figure 9. Displacement corresponding to the solution of the minimum problem (11)
obtained with the C0 method.

4.2. Analysis through the C0 method. The lateral section of Figure 3 (bottom) is here analysed with the
C0 method. The structure composed of NRNT material is discretized into 677 nine-node square elements
(see [Bathe and Wilson 1976]). The external loads reported in Figure 4 and the self-weight applied at
the centroid of each quadrilateral elements are considered.

The solution of the minimum problem (34), obtained with the interior point method in 300 s (with an
Intel® Core™ i7-6700HQ) is shown graphically in Figure 9.

In this case, since the strain is purely regular (no singular strains are allowed), the strain is smeared and
an indication of possible fractures is associated with zones where the displacement exhibits large gradi-
ents. In order to highlight such regions, the strain associated to the solution of the minimum problem (34)
is graphically represented. A map of the regions over which the measure of E, namely |E|2 = tr(E ET ),
is nonzero is reported in Figure 10. From Figure 11, where a contour plot of |E|2 by using 200 level lines
is reported. It can be observed that such fractures tend to nucleate in the neighbourhood of some lines.
The remaining part of the domain is almost undeformed being characterized by strains whose norm is
close to zero.

5. Comparison between PRD and C0 methods

The safety assessment of masonry structures interested by a crack pattern and then, the understanding
of causes producing these effects, is one of the key issues in practical applications to real constructions.
Several times, if we are not facing problems due to horizontal actions, the causes are represented by
foundation displacements. However, these displacements cannot affect the stability of a structure and,
therefore, they cannot drive the structure to the collapse as long as they are “small” in a certain sense. In
fact, accommodating small changes of the external environment (in this case the kinematical data that is
the foundation displacements) through a stable rigid macroblock partition of the structural domain is the
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intrinsic unilateral behaviour of a masonry structure, the answer is not trivial and, so far, no computational tools, at least 

for generic structures, has been developed for this aim. 

To tackle this problem, and then for setting up a numerical model able to detect the rigid macro-block nucleation, it 

is reasonable to work with small displacements since the goal is to define a partition on the initial configuration. If the 

size of the displacements is small related to the overall size of the structure, the error made in considering small 

displacements rather than finite ones is small and,  one can also relate the size of the openings (cracks) to the foundation 

Figure 10. A map of the areas on which the norm of the strain E, namely |E|2 =
tr(E ET ), is greater than zero is reported: the remaining part of the domain, i.e., blue
areas, is characterized by strains whose norm is close to zero.
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are concentrated along certain lines.
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to foundation displacements? Because of the intrinsic unilateral behaviour of a masonry structure, the
answer is not trivial and, so far, no computational tools, at least for generic structures, has been developed
for this aim.

To tackle this problem, and then for setting up a numerical model able to detect the rigid macroblock
nucleation, it is reasonable to work with small displacements since the goal is to define a partition on the
initial configuration. If the size of the displacements is small related to the overall size of the structure,
the error made in considering small displacements rather than finite ones is small and, one can also relate
the size of the openings (cracks) to the foundation displacements.

Both the methods here presented, PRD and C0 methods, have been developed to answer this question
and are based on the small displacements assumption that also allows to make the optimization problem
linear and then to solve it in a few seconds. As a consequence of this fast calculation speed, particularly
for the PRD method, these are suitable tools for solving an inverse problem, since many trials in an
iterative procedure have to be performed for individuating the optimal profile of foundation displacements
giving the best qualitative fit with the actual crack pattern. In the case of small settlements, as stated
before, a reasonable estimation of their size can be achieved by relating them with the width of the cracks.

One of the main issues addressed in this paper was the definition of the partition adopted with the
PRD method. In fact, it is intuitively clear that the solution obtained with the PRD method depends on
the initial partition much more than the one got with C0 method. For instance, in [Iannuzzo et al. 2018a]
it has been shown a shortcoming of the PRD method: the solution cannot converge to a concentrated
crack whose support is not parallel to the skeleton of the mesh, that is, jump discontinuities along zigzag
lines are not kinematically admissible. The C0 method does not suffer from this defect, and though more
cumbersome from the numerical point of view, can converge to cracks whose support is not parallel to
the interfaces of the elements.

On the contrary, as shown with many benchmark cases in [Iannuzzo et al. 2018a], if an “optimal”
discretization of the domain is suggested by the stereotomy of the real structure (e.g., arched structures),
the results of the PRD method are impressive when compared to analytical ones.

However, in this case study no information about an opportune discretization into rigid blocks is
available, and the partition adopted with both methods has been driven by the detected crack pattern in
the sense that, as one can see from figures 5 and 9, the mesh is much more refined on areas interested by
the cracks. Whilst for the C0 method (see Figure 9) this was done only for reducing the computational
time, for the PRD method the need of taking into account also diagonal cracks was the main concern. In
fact, by looking at Figure 5 it is possible to see that many potential crack lines have been added in areas
where the mesh has been refined, but without doing any preferential choice on them.

In Figure 12, the overlap of the solutions got with the two methods is reported and a perfect concor-
dance of the displacements obtained with the two methods can be observed.

In Figure 13 the concentrated cracks obtained with the PRD method and the smeared cracks obtained
with the C0 method are compared. From this figure, again a good concordance between fractures obtained
with these two methods is detected. Furthermore, the solution got with C0 method, even if it is based on
continuous functions, concentrates smeared cracks in small areas returning an approximate partition of
the whole structure into rigid blocks, confirming the validity of the PRD approach.

In this respect, it is to point out that the appearance of piecewise rigid mechanisms (producing con-
centrated strains) rather than continuous mechanisms (entailing diffuse strains), is often due, in real
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displacements. 

Both the methods here presented, PRD and C0 methods, have been developed to answer this question and are based 

on the small displacements assumption that also allows to make the optimization problem linear and then to solve it in a 

few seconds. As a consequence of this fast calculation speed, particularly for the PRD method, these are suitable tools 

for solving an inverse problem, since many trials in an iterative procedure have to be performed for individuating the 

optimal profile of foundation displacements giving the best qualitative fit with the actual crack pattern. In the case of 

small settlements, as stated before, a reasonable estimation of their size can be achieved by relating them with the width 

of the cracks. 

One of main issue addressed in this paper was the definition of the partition adopted with the PRD method. In fact, it 

is intuitively clear that the solution obtained with the PRD method depends on the initial partition much more than the 

one got with C0 method. For instance, in [69] it has been shown a shortcoming of the PRD method: the solution cannot 

converge to a concentrated crack whose support is not parallel to the skeleton of the mesh that is, jump discontinuities 

along zig-zag lines are not kinematically admissible. The C0 method does not suffer this defect, and though more 

cumbersome from the numerical point of view, can converge to cracks whose support is not parallel to the interfaces of 

the elements. 
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suggested by the stereotomy of the real structural (e.g. arched structures), the results of the PRD method are impressive 

good if compared to analytical ones.  

However, in this case study no information about an opportune discretization into rigid blocks is available, and the 

partition adopted with both methods has been driven by the detected crack pattern in the sense that, as one can see from 

Fig. 5 and Fig. 9, the mesh is much more refined on areas interested by the cracks. Whilst for the C0 method (see Fig. 9) 

this was done only for reducing the computational time, for the PRD method the need of taking into account also diagonal 

cracks was the main concern. In fact, by looking at Fig. 5 it is possible to see that many potential crack lines have been 

added in areas where the mesh has been refined, but without doing any preferential choice on them.  

In Fig. 12, the overlap of the solutions got with the two methods is reported and a perfect concordance of the 

displacements obtained with the two methods can be observed.  
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Figure 12. Overlapping of the solutions obtained with the two methods: in the back-
ground in red the solution with the PRD method is represented, whilst the black skeleton
mesh represents the solution reached with the C0 method.

structures, to mechanical characteristics, such as cohesion, toughness and finite friction, which are not
accounted by the NRNT model.

This perfect concordance among the solutions in terms of both displacements and fractures, gives a
hint about a further potential use of C0 method: if no information on the discretization for PRD method
can be obtained from the actual stereotomy, beyond using a clever partition where any kind of potential
crack lines are allowed, the C0 method could be used for selecting the rigid macroblock discretization to
be fed into the PRD method.

  

Fig. 13 ± Overlapping of the solutions obtained with the two methods: in red the solution obtained in terms of cracks 

with the PRD method and in white the zones of smeared cracks. 

In this respect, it is to point out that the appearance of piecewise rigid mechanisms (producing concentrated strains) 

rather than continuous mechanisms (entailing diffuse strains), is often due, in real structures, to mechanical characteristics, 

such as cohesion, toughness and finite friction, which are not accounted by the NRNT model. 

This perfect concordance among the solutions in terms of both displacements and fractures, gives a hint about a further 

potential use of C0 method: if no information on the discretization for PRD method can be gotten from the actual 

stereotomy, beyond using a clever partition where any kind of potential crack lines are allowed, C0 method could be used 

for selecting the rigid macro-block discretization to be fed into the PRD method. 

6 Conclusions 

In practical applications to real structures, one of the main issues is to identify the optimal profile of foundation 

displacements that is, the settlements giving the best qualitative fit with the detected crack pattern. With this in mind, a 
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modelled as composed by NRNT material and two numerical methods, that is PRD and C0 methods, are applied. With 

both the methods the solution of the BVP is represented by the minimizer of the potential energy of the loads, and it is 

obtained by discretizing the problem in two different suitable functional spaces: with the PRD method the energy is 

minimized within the set of Piecewise Rigid Displacements whilst with the C0 method the search of the minimum is 

restricted to Continuous displacement fields.  

By using small displacements, the optimization problem becomes linear and can be solved with standard algorithms 

used for linear programming optimization, such as interior-point method (here adopted) allowing to reach solutions in a 

few seconds.  

The optimal profile of foundation displacements was found with the PRD method in an iterative procedure. The 

detected crack pattern drove the discretization, in the sense that the partition is much more refined in those areas where 

the cracks were observed and it is further cut by diagonal lines for reproducing other potential crack lines. This is due to 

a shortcoming of the PRD method: when the stereotomy of the structure does not suggest any particular partition (e.g. for 

arched structures), the best way to tackle the problem is to allow cleverly many kinds of potential crack lines but avoiding 

any a priori choice. 

Once the optimal profile of foundation displacements was found through the PRD method, the C0 has been applied 

by using this profile as boundary condition. The results in terms of displacements and fractures show an impressive 

concordance among these two different numerical approximations. In particular, the main result of the C0 method is that, 

even if continuous functions are considered, the solution returns an approximate partition of the whole structure into rigid 

blocks, confirming the validity of the PR method approach. 

Furthermore, these results suggest that C0 method, being more time consuming, is more appropriate in the analysis of 

simple structures or as a preliminary tool for defining the rigid macro-block partition to be implemented in the PRD 

method. 

 

Figure 13. Overlapping of the solutions obtained with the two methods: in red the
solution obtained in terms of cracks with the PRD method and in white the zones of
smeared cracks.



ENERGY BASED FRACTURE IDENTIFICATION IN MASONRY STRUCTURES 699

6. Conclusions

In practical applications to real structures, one of the main issues is to identify the optimal profile of
foundation displacements, that is, the settlements giving the best qualitative fit with the detected crack
pattern. With this in mind, a study concerning the “Chiesa di Santa Maria Incoronatella della Pietà dei
Turchini” is here proposed. The church is modelled as composed by NRNT material and two numerical
methods, that is PRD and C0 methods, are applied. With both the methods the solution of the BVP
is represented by the minimizer of the potential energy of the loads, and it is obtained by discretizing
the problem in two different suitable functional spaces: with the PRD method the energy is minimized
within the set of piecewise rigid displacements whilst with the C0 method the search of the minimum is
restricted to continuous displacement fields.

By using small displacements, the optimization problem becomes linear and can be solved with stan-
dard algorithms used for linear programming optimization, such as interior-point method (here adopted)
allowing to reach solutions in a few seconds.

The optimal profile of foundation displacements was found with the PRD method in an iterative
procedure. The detected crack pattern drove the discretization, in the sense that the partition is much
more refined in those areas where the cracks were observed and it is further cut by diagonal lines for
reproducing other potential crack lines. This is due to a shortcoming of the PRD method: when the
stereotomy of the structure does not suggest any particular partition (e.g., for arched structures), the best
way to tackle the problem is to allow cleverly many kinds of potential crack lines but avoiding any a priori
choice.

Once the optimal profile of foundation displacements was found through the PRD method, the C0

has been applied by using this profile as boundary condition. The results in terms of displacements
and fractures show an impressive concordance among these two different numerical approximations. In
particular, the main result of the C0 method is that, even if continuous functions are considered, the
solution returns an approximate partition of the whole structure into rigid blocks, confirming the validity
of the PR method approach.

Furthermore, these results suggest that the C0 method, being more time consuming, is more appropriate
in the analysis of simple structures or as a preliminary tool for defining the rigid macroblock partition to
be implemented in the PRD method.
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