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The objective of the present work is to develop an automated numerical method for the analysis of thin
masonry shells. The material model for masonry that we adopt is the so-called “normal rigid no-tension”
(NRNT) material; and for such a material, the kinematical and the safe theorems of limit analysis are
valid. The present study focuses on the application of the second theorem to masonry vaults and domes,
being devoted to the determination of a class of purely compressive stress regimes, which are balanced
with the load. The mere existence of such a class is a proof that the structure is safe, and members of
this class may be used to assess the geometric degree of safety of the structure and to estimate bounds on
the thrust forces exerted by the structure on its boundary. The problem is reduced to the equilibrium of
a membrane S and can be formulated in terms of projected stresses defined on the planform � of S. The
search of the stress reduces to the solution of a second-order pde, in terms of the stress potential F . In
order that the membrane stress on S be compressive, the potential F must be concave. As for the thrust
line in an arch, the surface S is not fixed and may be changed, given that it remains inside the masonry.
Under these simplifying assumptions, the whole class of equilibrated stress regimes for a masonry shell
is obtained by moving and deforming S inside the masonry, and also, for any fixed shape, by changing the
boundary data for F , that is the distribution of thrust forces along the boundary. The search for a feasible
stress state on a convenient membrane surface, to be chosen with a trial and error procedure, requires a
substantial effort and may be unrewarded. Then, the main object of the present work, is to produce a
computer code that can handle numerically the interplay of the shape controlled by a function f , and of
the stress potential F , by developing a convergent optimization scheme able to give a safe state under
the given material and geometrical constraints, namely the concavity of F and the inclusion of f within
the masonry. Two simple cases, are exposed in detail to illustrate the method.

1. Introduction

A particularly simple and efficient way to approach the structural analysis of masonry is to adopt for the
material the model of Heyman [1966]. This model is based on three strong simplifying assumptions: the
material is unilateral (no-tension), it cannot slide, and is infinitely rigid and resistant in compression. In
this context there are a number of themes that are still at cutting edge of research, namely: doing unilateral
with a computer (see [Angelillo et al. 2010; Bruggi and Taliercio 2015]), studying the effects of settle-
ments [Cennamo et al. 2017], predicting fracture patterns produced by settlements in masonry structures
and, vice versa, identifying the causes of a given fracture pattern (see [Iannuzzo et al. 2018]), assessing
the equilibrium of masonry vaults under vertical and horizontal forces [Angelillo and Fortunato 2004;
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Block et al. 2006], studying dynamical effects as in [DeJong and Dimitrakopoulos 2014] or in [Monaco
et al. 2014; Gesualdo et al. 2014; 2018a; 2018b]. The formulation of the boundary value problem for
unilateral masonry materials (that is, the NRNT materials for which the latent strains, known as fractures,
satisfy a normality condition with respect to the admissible stresses) can be found in [Angelillo 2014].
For such a material, the kinematical and the safe theorems of limit analysis are valid and can be applied
to different structures as can be seen in [Heyman 1966; Kooharian 1952; Livesley 1978] as well as in
[Como 1992; Angelillo 2014; 2015; Brandonisio et al. 2015; Gesualdo et al. 2017; Angelillo et al. 2014;
2016; Fortunato et al. 2014; 2016; 2018; Iannuzzo et al. 2018].

Indeed, the more efficient tool that can be introduced for applying the unilateral no-tension model to
masonry structures is the systematic use of singular stress and strain fields, within the framework defined
by the two theorems of limit analysis (see [Angelillo et al. 2014], for applications of the safe theorem
and [Fortunato et al. 2014], for applications of the kinematic theorem to walls).

The objective of the present work is to develop an automated numerical method for the analysis of
thin masonry shells made of NRNT materials.

The more recent literature on masonry-like vaults is rather vast; apart from the production of the school
of Salerno, originated by the paper on the lumped stress method [Fraternali et al. 2002a], and applied
to vaults in [Fraternali et al. 2002b; Block et al. 2006; Fraternali 2010], and recently in [Angelillo et al.
2013; Marmo and Rosati 2017; Marmo et al. 2018], we recall the pioneering work by O’Dwyer [1999],
and the works in [Block 2009; Block et al. 2006; Vouga et al. 2012; De Goes et al. 2013; Block and
Lachauer 2014; Miki et al. 2015]. The case of spiral stairs, treated with a classical elastic membrane
model by Calladine [2005], was also considered with the unilateral model in [Block 2009; Angelillo
2015; 2016; De Serio et al. 2018; Gesualdo et al. 2017].

In the spirit of the safe theorem, the vault structure is stable if a statically admissible stress field
can be constructed. On allowing for singular stresses, here we consider statically admissible stress
fields concentrated on surfaces or lines lying inside the masonry vault. Such structures are unilateral
membranes/arches, whose geometry is described as Monge, and the equilibrium of them is formulated
in Pucher form, that is, in terms of the so-called projected stresses over the planform �.

In particular, the method we propose is devoted to the determination of a class of purely compressive
stress regimes, which are balanced with the load. The mere existence of such a class is a proof that the
structure is safe, and members of this class may be used to assess the geometric degree of safety of the
structure and to estimate bounds on the thrust forces exerted by the structure on its boundary.

The main simplifications we make to conduct our analysis concern the load and the type of internal
stress that we consider: (i) the main part of the internal stress is a membrane stress concentrated on a
surface S located inside the masonry, and (ii) the external load is lumped in such a way that it can be
transferred to the surface S as a distributed load per unit area.

Under these simplifying assumptions, the equilibrium problem for the membrane S can be formulated
in Pucher form (see [Angelillo and Fortunato 2004; Angelillo et al. 2013; Pucher 1934; Heyman 2012]),
in terms of projected stresses defined on the planform � of S. The search for the stress reduces to the
solution of a second-order pde, in terms of the stress potential F . In order that the membrane stress on S
be compressive, the potential F must be concave [Angelillo et al. 2010; Fraternali et al. 2002a].

As for the thrust line in an arch, the surface S is not fixed and may be changed, given that it remains
inside the masonry. Under these simplifying assumptions, the whole class of equilibrated stress regimes
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for a masonry shell, is obtained by moving and deforming S inside the masonry, and also, for any fixed
shape, by changing the boundary data for F , that is, the distribution of thrust forces along the boundary.

A masonry shell is a 3D structure which is somehow thin, the usual slenderness (span/thickness ratio)
ranging between 20 and 50. Despite this relative slenderness, given that the shape enters the second-order
pde with its Hessian, even small changes of the shape of S in a neighbourhood of the middle surface,
may alter sensibly the solution in terms of F , that is, of the resulting stresses.

2. Outline of the method

The unilateral restrictions require that the membrane surface lies in between the extrados and intrados
surfaces of the vault and that the stress function be concave. Such last constraint is, in general, not
satisfied on a given shape for given loads: in such a case, the shape has to be modified to fit the constraint.
In a sense, the unilateral assumption renders the membrane an underdetermined structure that must adapt
its shape in order to satisfy the unilateral restrictions. The search for a feasible stress state on a convenient
membrane surface has been conducted so far iteratively by trial and error; this sort of manual procedure,
based on a skillful ansatz either on the initial shape (that is, on the function f describing S) or on the
initial projected stress (that is, on F), requires a substantial effort and may be unrewarded. Therefore, the
main object of the present work is to produce a computer code that can handle numerically the interplay
of the shape f and the stress potential F by developing a convergent optimization scheme capable of
producing a safe state under the given material and geometrical constraints, namely the concavity of F
and the inclusion of f within the masonry.

The way we propose here for constructing a convergent iterative scheme, stems from the variational
approximation of the transverse equilibrium equation, obtained by discretizing both the shape f and
the stress potential F on the same grid. On adopting a simplicial representation of both surfaces, the
curvature of these surfaces is singular, and an efficient method of approximating the Hessian is required;
we adopt a lumped stress method (LSM) type approximation (see [Fraternali et al. 2002a]). One may start
the iterative procedure by giving either an initial tentative simplicial shape f 0 or a tentative simplicial
stress potential F0. If f 0 is assigned and the boundary values F∗ of F are prescribed, the solution of
the approximate variational equation will give a corresponding potential F( f 0, F∗), balanced with the
transverse loads. Since the problem at hand is linear, it can be formalized as

A( f 0)F = b(F∗), (1)

A( f 0) being a linear operator. By solving for F one obtains

F( f 0, F∗)= A−1( f 0) b(F∗). (2)

An objective function Conc(F), measuring the degree of concavity of the stress potential F( f 0, F∗)
over the domain, can be introduced. By assuming that the shape f 0 is fixed and the boundary data F∗

are unknown, if one makes explicit Conc(F) in terms of F∗, say C(F∗) = Conc(A−1( f 0) b(F∗)), the
optimum problem for the objective function C(F∗), can be formulated, and the best choice for the
datum F∗ for the given discretization and the given shape f 0 can be determined. If the resulting solution
Fopt is concave, the iterative procedure stops, otherwise, the stress potential Fopt is concavified into a
new concave stress potential F0 with a convex hull type technique; the resulting stress potential F0 is
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used as the starting point for a second step in which the roles of f and F are interchanged. In this second
step, the objective function to be optimized in terms of the boundary state f ∗ is changed into a norm of
the distance of the form f from the mean surface.

3. Equilibrium formulation

3.1. Geometry. The geometry of a vault can be described by its intrados and extrados surfaces and by
the geometry of the filling. With our model, it is assumed that the load applied to the vault is carried by
a membrane structure S of thickness s. The geometry of the membrane S is not fixed, in the sense that it
can be displaced and distorted, provided that it lays inside the masonry. The surface S that we consider,
is continuous but not necessarily smooth, and to describe it we can adopt Monge representation.

The unit vectors associated to the fixed Cartesian reference system are denoted as {ê1, ê2, ê3}. The
position vector x of a point of the surface is given by

x = x1 ê1+ x2 ê2+ f (x1, x2) ê3, {x1, x2} ∈�, (3)

where � is a plane two-dimensional connected domain, called the planform of S, whose boundary ∂� is
composed of a finite number of closed curves, of outer normal n; {x1, x2} are the Cartesian coordinates
of S in the planform �, and the curvilinear coordinates on S; x3 = f (x1, x2) is the rise of the membrane
with f ∈ C0(�).

A three-dimensional view of S is shown in Figure 1 (left). A couple of coordinate lines x1 and x2 are
depicted in Figure 1, along with a magnified view of a differential element of the shell bounded by arcs
of coordinate lines (Figure 1, right). The membrane is loaded by the external forces q per unit area of S
and held in equilibrium by the membrane stresses T (for the components of T see Figure 1, right). The
natural or covariant base vectors ai tangent to S are represented in Figure 1 (middle). With ai we denote
the dual bases.

3.2. Membrane equilibrium in Pucher form. Here we follow essentially the developments contained
in [Fortunato et al. 2014], repeating the essential ingredients of the analysis only for completeness. The
generalized membrane stress on S is defined by the surface stress tensor T , represented in the covariant
base as

T = Tαβ aα ⊗ aβ . (4)
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Figure 1. Membrane and surface stresses (left), covariant basis (middle), shell element
and stresses (right).
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In (4), Tαβ are the contravariant components of T and the summation convention over repeated Greek
indices: α, β, γ, . . .= 1, 2, has been adopted. Contravariant components of stress are convenient but are
nonphysical, and we will need to transform them into Cartesian ones in order to read more easily the
results of the analysis.

In the equilibrium equations, the divergence of the generalized surface stress T balances the load
q = {q1, q2, q3}, defined per unit surface area on S:

∂

∂xγ

(
Tαβ aα ⊗ aβ

)
aγ + q = 0. (5)

The most efficient way to describe membrane equilibrium of a thin shell under a load q is due essen-
tially to Pucher [1934]. The generalized contravariant stress components Tαβ on the membrane surface
are transformed into projected stress components Sαβ = J Tαβ in the planform, being J =

√
1+ f 2

,1+ f 2
,2

the Jacobian determinant, that is, the ratio between the differential surface area on S and its projection
on the planform �. Denoting p= J q the load per unit projected area. In the case of pure vertical loading
p= {0, 0,−p}, and the problem may be solved by introducing the Airy stress function F(x1, x2) (here
we assume only continuous surfaces) in the form

S11 = F,22, S22 = F,11, S12 = S21 =−F,12. (6)

The first two equilibrium equations are identically solved by (6), and we are left with a single equation
in the transverse direction as reported with more details in [Gesualdo et al. 2014; Angelillo et al. 2013].

The transverse equilibrium equation corresponds to the balance of the vertical component of the force
p3 =−p with the scalar product of the Pucher stress matrix times the Hessian of the function f in its
covariant form. In terms of the Airy’s stress function, it can be written as

F,22 f,11+ F,11 f,22− 2F,12 f,12 = p. (7)

3.3. Singular stress and the equilibrium of unilateral membranes. We describe the masonry as a con-
tinuum made of NRNT materials in the sense of Heyman, therefore the following material restrictions
are imposed: the generalized stress T is a negative semidefinite and does no work for the corresponding
strain E, that is, a positive semidefinite:

T ∈ Sym−, E ∈ Sym+, T · E = 0. (8)

The first application of Pucher’s transformation for NT masonry vaults can be found in [Angelillo and
Fortunato 2004], where it is shown that, due to the NT constraint, both the surface stress tensor and the
matrix of the projected stresses must be negative semidefinite. In terms of the stress function F , this
condition can be written as

F,11+ F,22 ≤ 0, F,11 F,22− F2
,12 ≥ 0, (9)

hence F(x1, x2) is concave.
If F is only continuous, it may exhibit folds; if so, the projected stress is a line Dirac delta with support

along the projection 0 of the fold on �. The Hessian H of F is singular transversely to 0, namely a
uniaxial singular part parallel to the unit vector h normal to 0. Correspondingly the directional derivative
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of F in the direction of h, denoted Fh , presents a jump. Therefore, the singular part of the Hessian H
of F can be written as

Hs = δ(0)1Fh h⊗ h, (10)

δ(0) being the unit line Dirac delta on 0 and 1Fh the jump of slope along the direction h. Due to the
relation (6), the singular part of the projected stress, corresponding to F , is a line Dirac delta on 0 of the
form

Ss = δ(0)1Fh k⊗ k, (11)

where k is the unit vector tangent to 0. The concavity of F implies the concavity of the fold 0. Then
1Fh is negative and the corresponding projected singular stress concentrated on 0 is compressive.

As a consequence of the previous analysis, the equilibrium problem for the unilateral membrane S,
under pure vertical loading, consists in finding a concave stress function F(x1, x2) satisfying equation (7),
with boundary conditions of Dirichlet or Neumann type, namely

F
(
x1(s), x2(s)

)
= g(s), or

d F
dn

(
x1(s), x2(x)

)
= h(s), on ∂�, (12)

s being the parametrization of the boundary ∂� with the arc length, and g(s), h(s) the contact internal
moment and axial force produced by the allied tractions, on a 1D beam structure having the shape of the
curve ∂�. We also notice that the normal and shear components σ , τ of the tractions applied along the
boundary, can be defined in terms of the boundary data g, h, as

σ(s)= g/ss(s), τ (s)= h/n(s), (13)

where / denotes the covariant derivative with respect to s, n along the boundary.

4. Computational scheme

4.1. Simplicial approximation of f 0. To illustrate the procedure, we consider two examples: a cloister
vault and a domical vault, both based on a rectangular planform �. As initial shape function f 0, an
approximation of the middle surface of the vault, obtained by discretizing the Monge description of this
surface over a triangular grid (described below), is considered (Figure 2).

 

 

 
Figure 2: Initial choice for the shape function. 

4.2 Variational formulation of the equilibrium 

For approximating the solution of the equilibrium problem, we refer to the variational formulation 

of equation (7). Namely, as can be seen in Giaquinta and Giusti [42] and more specifically for vaults 

in Angelillo and Fortunato [6] and Fraternali [27], we impose the stationarity of the functional: 
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4.3 Definition of the meshes 
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number of nodes of the primal mesh (Fig. 3.b). In our examples, the primal mesh is a regular triangular 

mesh, the dual mesh is formed by equal hexagons whose centroids are the nodes of the primal mesh. 

The skeleton of the primal mesh is used to approximate the stress field through uniaxial singular 

stresses, while the dual mesh is used to average such singularities in the neighborhood of each primal 

node with an LSM-type approximation (see [25]). In this way the final description of the stress field 

is a piecewise constant field over the dual mesh. 

Figure 2. Initial choice for the shape function.
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4.2. Variational formulation of the equilibrium. For approximating the solution of the equilibrium
problem, we refer to the variational formulation of equation (7). As can be seen in [Giaquinta and
Giusti 1985] and more specifically for vaults in [Angelillo and Fortunato 2004] and [Fraternali 2010],
we impose the stationarity of the functional:

E(F)=
1
2

∫
�

aαβ F,α F,β da+
∫
�

pF da, (14)

where the matrix {aαβ} is the π/2 rotation of the Hessian H of f 0.
Indeed, it is easy to show that equation (8)3 can be obtained as the Euler equation associated to the

condition
δE(F)= 0, (15)

if Dirichlet type boundary conditions are considered.

4.3. Definition of the meshes. The region � is discretized considering two complementary and overlap-
ping meshes, the primal mesh: 5M = {�i , i ∈ 1, . . . ,M}, M being the number of triangular elements of
the mesh (Figure 3, left), and the dual mesh: 5N = {�i , i ∈ 1, . . . , N }, N being the number of elements
of the dual mesh, that is, the number of nodes of the primal mesh (Figure 3, right). In our examples, the
primal mesh is a regular triangular mesh, the dual mesh is formed by equal hexagons whose centroids
are the nodes of the primal mesh. The skeleton of the primal mesh is used to approximate the stress
field through uniaxial singular stresses while the dual mesh is used to average such singularities in the
neighborhood of each primal node with an LSM-type approximation (see [Fraternali et al. 2002a]). In
this way the final description of the stress field is a piecewise constant field over the dual mesh.

In order to allow the calculation of both the Hessian H of f and F on the boundary of the vault, we
enlarge the domain for the two meshes with respect to the actual planform. To this end, a one element
strip of fictitious elements is added all around the original domain. Therefore, we have an additional
mesh: 5′M ′ = {�i , i ∈ 1, . . . ,M ′}, M ′ being the number of triangular elements of the fictitious part of
the mesh.
 

 

   
Figure 3: Primal mesh(left) and dual mesh (right), (mesh1). 
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Figure 3. Primal mesh (left) and dual mesh (right) for the mesh 1.
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4.4. Approximation of the curvature of f 0. Once the initial shape f 0 is chosen and approximated over
the given triangular grid, we use the same mesh to discretize problem (15). The surface S0 (and any
other surface S obtained during the iteration process) is piecewise linear, the simplicial surface being
generated by the list as the values that f 0 takes at the nodes of the primal mesh:

Ŝ0 = {x1(i), x2(i), f 0(i)}, i ∈ {i, 2, . . . , N }. (16)

We also introduce the list of nodal values:

f̂ 0 =


f 0(1)
f 0(2)
· · ·

f 0(N )

 . (17)

The Hessian of f 0 is singular, being represented by line Dirac deltas δ(0), applied along the skeleton
of the mesh. Such singular field is transformed into a piecewise constant field over the dual mesh through
a LSM type approximation scheme as

H
(

f̂ 0
)

j =

∑
i1 f 0(i) l(i) ĥ(i)⊗ ĥ(i)

area(�̂ j )
, j ∈ {1, 2, . . . , N }, i ∈ {1, 2, . . . ,m j }, (18)

1 f 0(i) being the jump of the gradient of f across the edge i , in the direction orthogonal to the edge,
and l(i) the length of the edge i , ĥ(i) the unit normal vector of the edge i , m j the number of the edges
of the dual element at the generic node j (in our case, m j = 6 for the inner nodes).

To reduce the apparent anisotropy effect introduced by the mesh, especially for rough discretizations,
we consider two different primal meshes (mesh 1, mesh 2) characterized by opposite diagonals. The final
solution, reached at the end of each step of the iteration, will then be averaged by combining linearly the
results obtained by employing mesh 1 and mesh 2. To completely formulate the discretized problem, we
have to impose the boundary conditions for the stress function F .

4.5. Variational approximation of ∇F. The gradient list associated to the primary mesh is defined by

∇F =



[
F,1
F,2

]
1[

F,1
F,2

]
2

· · ·[
F,1
F,2

]
M


, (19)

denoting 1, 2, 3 the nodes of a generic primal element, for each triangle the gradient is calculated as

fun F = F(1)+α
(
F(2)− F(1)

)
+β

(
F(3)− F(1)

)
, ∇F =

∂ fun F
∂α

b1
+
∂ fun F
∂β

b2, (20)

where b1, b2 are the base vector dual to the vectors b1, b2 shown in Figure 4 and F(i) the values that the
stress function assumes at the nodes of the considered triangle (see Figure 4).
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4.6 Dirichlet data 

We choose Dirichlet type boundary conditions, namely we consider that value of F at the boundary 

as given. In particular we approximate   (see (161)) with the following polynomial expression: 
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from which *F  can be obtained by integrating (13). 

4.7 Energy in discrete form 

From (14) we obtain a linear problem for F in the form (1) as described below. Considering the 

discretization on the mesh the equation (14) can be transformed into: 
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= +   (22) 

4.8 Stationarity in discrete form 

Considering condition (15), we obtain: 
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N

n
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=
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A system of the form (1) can be obtained from (23) considering that the matrix A is the coefficient 

matrix of F for the internal part of the mesh, that is the part where the values of F are unknown, and 

the vector b is the coefficient vector of * /F F =  to which the load p is subtracted. 

For the evaluation of the term 
,1

( ) ( )
N

n
a n F n = , of the equation (23) we considered that, for each 

node, we have: 
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Figure 4. Natural element base.

4.6. Dirichlet data. We choose Dirichlet type boundary conditions considering the value of F at the
boundary. In particular, we approximate σ (see (16)1) with a polynomial expression:

σ = a0+ c1x2
1 + c1x2

2 + c2x4
1 + c2x4

2 + c3 x6
1 + c3 x6

2 , (21)

from which F∗ can be obtained by integrating (13).

4.7. Energy in discrete form. From (14) we obtain a linear problem for F in the form (1) as described
below. Considering the discretization on the mesh, equation (14) can be transformed into

E(F)=
1
2

N∑
n=1

aαβ(n) F,α(n) F,β(n)+
N∑

n=1

p(n) F(n). (22)

4.8. Stationarity in discrete form. Considering condition (15), we obtain

N∑
n=1

aαβ(n) F,β(n)+ p(n)= 0. (23)

A system of the form (1) can be obtained from (23) considering that the matrix A is the coefficient
matrix of F for the internal part of the mesh, that is the part where the values of F are unknown, and the
vector b is the coefficient vector of F∗ = F/∂� to which the load p is subtracted.

For the evaluation of the term
∑N

n=1 aαβ(n) F,β(n) in (23), we considered for each node:

aαβ F,α F,β =
f̂ 0
,22
∑

m F,1 F,1+ f̂ 0
,11
∑

m F,2 F,2+ 2 f̂ 0
,12
∑

m F,1 F,2
area(� j )

, j ∈ {1, 2, . . . , n}, (24)

where f̂ 0
,i j is the Hessian matrix at the node, and F,α, F,β are the covariant component of the gradient

of F evaluated in the triangular element of the mesh that are partially included in the dual element of the
node (Figure 5).
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Figure 4: Curvature approximation. 
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denoting 1, 2, 3 the nodes of a generic primal element, for each such triangle the gradient is calculated 

as follows: 

 

 1 2

(1) ( (2) (1)) ( (3) (1))

,

funF F F F F F

funF funF
F

 

 

= + − + −
 

 = +
 

b b
 (20) 

 

where 
1 2,b b  are the base vector dual to the vectors 1 2,b b  shown in Fig. 5 and ( )F i  the values that 

the stress function assumes at the nodes of the considered triangle (see Fig. 5). 

 

Figure 5. Curvature approximation.

4.9. Stress optimization. To find the best equilibrium solution, the boundary values will be selected by
an optimization procedure. The optimization function density we select, encouraging the concavity of
the stress function, is (see Figure 6)

9(x1, x2)=


0 x1 ≤ 0, x2 ≤ 0

x2
1 x1 > 0, x2 < 0

x2
2 x1 < 0, x2 > 0

x2
1 + x2

2 x1 > 0, x2 > 0,

(25)

with

x1 =
H11+ H22

2
+

√(
H11+ H22

2

)2

+ H 2
12 , x2 =

H11+ H22

2
−

√(
H11+ H22

2

)2

+ H 2
12 , (26)

where Hi j are the components of the Hessian of the stress function F .
The objective function to minimize is

8F =

∫
�

9(x1, x2) d�. (27)

The smaller the value found during the optimization process, the more the Hessian matrix will be closer
to being a negative semidefinite matrix. In Figure 6 the objective function is depicted.
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4.9 Stress optimization 

To find the best equilibrium solution, the boundary values will be selected by an optimization 

procedure. The optimization function density we select, encouraging the concavity of the stress 

function, is (see Fig. 6): 

 

 

1 2

2

1 1 2

1 2 2

2 1 2

2 2

1 2 1 2

0 0, 0

0, 0
( , )

0, 0

0, 0

x x

x x x
x x

x x x

x x x x

 
   =   
 +  

 (25) 

 

with: 

 

 

2

211 22 11 22
1 12

2

211 22 11 22
2 12

2 2

,
2 2

H H H H
x H

H H H H
x H

+ + = + + 
 

+ + = − + 
 

 (26) 

 

where ijH  are the components of the Hessian of the stress function F. 

The objective function to minimize is: 
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By means of equation (2) we can evaluate the stress function F. Having adopted two different 

meshes, two stress functions are obtained. Therefore, F will be evaluated by superimposing these two 

functions. If the deducted stress function is concave, then the vault is purely compressed and the 

current solution is accepted. Otherwise, we start a new iteration process considering the form function 

as the unknown. With a similar procedure as described above by changing the role of the form and 

of the stress function, a new form is obtained. In this case, the objective function to be optimized is: 

Figure 6. Density 9(x1, x2) of the objective function 8F .
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By means of equation (2) we can evaluate the stress function F . Having adopted two different meshes,
two stress functions are obtained. Therefore, F will be evaluated by superimposing these two functions.
If the deducted stress function is concave, then the vault is purely compressed and the current solution
is accepted. Otherwise, we start a new iteration process considering the form function as the unknown.
With a similar procedure as described above by changing the role of the form and of the stress function,
a new form is obtained. In this case, the objective function to be optimized is

8 f =

∫
�

( f − f 0)2 d�, (28)

that is, the mean squared deviation from the middle surface.

5. Examples

To illustrate the method, we consider two simple examples: a cloister vault and a cross vault.

5.1. Cloister vault. The optimization procedure exposed in Section 4 is adapted for the cloister vault
starting with an initial form, that is, the middle surface of the vault structure in Figure 7 (see [Angelillo
et al. 2013]):

f 0
=


L
R

√
R2− x2

1 , |x1| ≥ |x2|,

L
R

√
R2− x2

2 , |x1|< |x2|,
(29)

taking the geometrical parameters L = 5 and R = 5.5 as the dimensions of the square planform and the
apical rise of the cloister vault.

Two primal meshes of the form (see Figure 3) are introduced on the planform with e = 0.5. The
domain of the vault and the meshes are extended with a strip of elements of width 0.5 on all sides. The
applied transverse load is uniform with p =−1. By using the objective function (25), the optimization
process at the first iteration gives 8F = 236. By means of equation (2) we obtain the stress functions
associated to the two primal meshes (Figure 8).

Superimposing linearly the two stress functions, we have the resulting stress function (Figure 9, left).
By taking the convex hull, we transform this surface into a concave function (Figure 9, right).
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Two primal meshes of the form represented in Fig. 3 are introduced on the planform with size 

0.5e = . The domain both of the vault and of the meshes are extended with a strip of elements of 

width 0.5 on all sides. The applied transverse load is uniform with value 1p = − . By using the 

objective function (25), the optimization process at the first iteration gives 236
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equation (2) we obtain the stress functions represented in Fig. 8, associated to the two primal meshes. 
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Figure 7. Starting form function f 0.
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By taking the convex hull, we transform this surface into a concave function (see Fig. 10). 
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In Fig. 11, the stress function obtained after the convex hull and the uniform load superposition, 

is compared with the one corresponding to the convex hull procedure. In Fig. 12 the final stress 

function is depicted. 
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Figure 10. Initial convexified stress function (light blue points), and final stress function
considering the uniform load superposition (orange points).

To avoid flat areas, where the curvature vanishes (giving possible numerical problems in the subsequent
evaluations) we increase the stress function by a uniform pressure tuned by coefficient β:

Fnew = F −
[

1
2
βFmed

(
x2

1 + x2
2
)]
. (30)

In particular, we take β = 0.1.
In Figure 10, the stress function obtained after the convex hull and the uniform load superposition, is

compared with the one corresponding to the convex hull procedure. In Figure 11 (left) the final stress
function is depicted.

In the second step, this stress function F is considered as assigned and the form function f as the
unknown. In this phase, the optimization function (28) is considered. As a result of the optimization
we have, in this case, 8 f = 18. The results for the optimized form function are displayed in Figure 11
(right). In Figure 12 (left) such surface is compared with the starting shape f .

To improve the result, a new optimization cycle is performed. The new optimization cycle on the
stress functional (27) gives 8F = 186 and after the convex hull, the final stress function of Figure 12
(right) that we use for the evaluation of the form function is obtained.

Therefore, a new iteration adopting the optimization functional (28), whose unknown is the form
function, is executed. Performing the optimization, we get 8 f = 2. As a result, Figure 13 (left) shows
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Figure 11. Left: final stress function at step 1. Right: optimized form function.
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Figure 13. Left: final form function. Right: comparison between the final form function
(blue) and the starting form f 0.

the final optimized form, while in Figure 13 (right) this surface is compared with the starting surface.
We can observe that the form function is very close to the surface of the vault and that a tolerance value
of less than 0.1 is verified at each point. Finally, Figure 14 shows the envelope field of the principal
direction of stress corresponding to the final stress function represented in Figure 12 (right).
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Figure 16. Stress functions due to mesh 1 and mesh 2.

5.2. Cross vault. As in the previous case, for the cross vault we choose the middle surface of the same
vault as the initial shape from which starting the optimization process as in Figure 15, as exposed in
[Angelillo et al. 2013]:

f 0
=


L
R

√
R2− x2

1 , |x1|< |x2|,

L
R

√
R2− x2

2 , |x1| ≥ |x2|.
(31)

for the side and the radius of the vault we put L = 5 and R = 7.
The procedure for this example is similar to the previous one, therefore the main features and results

will be summarized briefly in the following. We have two primal meshes with element size e = 0.5 and
a transverse load p =−1. The optimization at the first step gives 8F = 291. By using (2), the two stress
functions corresponding to the two primal meshes are depicted in Figure 16. Superimposing them we
obtain the stress function of Figure 17 (left). In Figure 17 (right) the stress function obtained through
the convex hull procedure is shown.

Figure 17. Left: optimized stress function F0 associate to f 0. Right: convex hull result
of the stress function.
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Figure 20. Left: optimized form function. Right: comparison between the new form
function (in blue) and the initial one.

The flat areas are eliminated adding to the stress function a uniform pressure (see (30)) and taking
β = 0.1. In Figure 18 the stress function obtained with the superposition is compared with the one
derived through the convex hull. In Figure 19 the final stress function is depicted.

In the second step, the optimization of the function (28) gives 8 f = 8. The results obtained for the
optimized form function are reported in Figure 20 (left); in Figure 20 (right), such form is compared
with the starting shape f 0.

The new optimization of the objective function (27) with respect to the stress function gives 8F = 256,
to which corresponds the stress function depicted in Figure 21.

The new optimization of the form function with respect to the objective function (28) gives 8 f = 1.
The final optimized form is displayed in Figure 22 (left); the two forms are compared in Figure 22 (right).
The isostatic stress lines corresponding to the final stress function are reported in Figure 23.
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6. Conclusions

The present work develops an automated numerical method for the analysis of thin masonry shells. The
model of material adopted for masonry is the NRNT, for which the limit analysis theorems are still valid.
Accordingly, the study focuses on the application of the static theorem to masonry vaults.

In detail, the proposed method is devoted to the automatic generation of a class of purely compressive
stress regimes, which are balanced with the load. As a consequence, the structure is safe and members
of this statically admissible stresses may be used to assess the geometric degree of safety of the structure
and to estimate bounds on the thrust forces exerted by the structure on its boundary.
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By taking up the simplified model of Heyman, the equilibrium problem for the membrane has been
formulated in terms of projected stresses defined on the planform of the vault. The search for the stresses
reduces to the solution of a second-order pde, in terms of the stress potential F . In order that the
membrane stress on S be compressive, the potential F must be concave. As for the thrust line in an arch,
the surface S is not fixed and may be changed, given that it remains inside the masonry.

Under these assumptions, the whole class of equilibrated stress regimes for a masonry shell, is obtained
by moving and deforming S inside the masonry, and also, for any fixed shape, by changing the boundary
data for F , that is the distribution of thrust forces along the boundary. The unilateral NT condition require
that F lies in between the extrados and intrados surfaces of the vault and that be moreover concave. Such
last constraint is, in general, not satisfied on a given shape for given loads. In such a case, the shape has
been modified to fit the constraint.

The search for a feasible stress state on a convenient membrane surface, has been conducted so far
iteratively, by trial and error; this sort of manual procedure, based on a skillful ansatz either on the initial
shape (that is, on f ) or on the initial projected stress (that is, on F), requires a substantial effort and may
be unrewarded.

Thus, the development of a computer code capable of handling numerically the interplay of the shape f
and the stress potential F , has been the main object of the present work.

In particular, in the present work, the cases of cloister and cross vaults are considered as examples of
application of the method. For such a special case, easy and efficient methods to evaluate the equilibrium
do not exist, and the simplified slicing technique gives rather inaccurate estimates of the geometrical
factor of safety. The proposed method, in these simple cases, appears to be rather efficient.
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