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LIMIT ANALYSIS OF CLOISTER VAULTS: THE CASE STUDY
OF PALAZZO CARACCIOLO DI AVELLINO

ANTONIO GESUALDO, GIUSEPPE BRANDONISIO, ANTONELLO DE LUCA,
ANTONINO IANNUZZO, ANDREA MONTANINO AND CARLO OLIVIERI

The equilibrium of cloister masonry vaults, treated as composed of unilateral material in the sense of
Heyman, is the topic of the present work. For such a material, the safe and the kinematic theorems
of limit analysis can be employed to detect equilibrium and nonequilibrium. In the spirit of the safe
theorem, the structure is stable if a statically admissible stress field can be detected. On allowing for
singular stresses, here we consider statically admissible stress fields concentrated on surfaces or lines
lying inside the masonry vault. Such structures are unilateral membranes, whose geometry is described
a la Monge, and the equilibrium of them is formulated in Pucher form, that is, in terms of the so-called
projected stresses over the planform �. The problem, under purely parallel loads, is reduced to a single
partial differential equation of the second-order, in two space variables, where the shape function f and
the stress function F appear symmetrically. The unilateral restrictions require that the membrane surface
S lies in between the extrados and intrados surfaces of the vault and that the stress function be concave.
In the present work, by starting with a sensible choice of a concave stress function F , the transverse
equilibrium equation is solved for f by imposing suitable boundary conditions. A cloister vault of
Palazzo Caracciolo di Avellino, a XIV century building located along via dell’Anticaglia in Naples, is
the case study. For two load conditions, membrane surfaces and geometrical safety factors are identified.

1. Introduction

The present work is concerned with the equilibrium of cloister masonry vaults, treated as composed
of no-tension material in the sense of Heyman [1966]. For such a material the safe and the kinematic
theorems of limit analysis can be employed to detect equilibrium and nonequilibrium, as originally shown
in [Heyman 1966; Kooharian 1952; Livesley 1978] and most recently in [Como 1992; Angelillo 2015;
2019; Gesualdo et al. 2017; 2019; Angelillo et al. 2010; 2014; 2016; 2018; Fortunato et al. 2014; 2016;
2018; Brandonisio et al. 2013; 2015; Iannuzzo et al. 2018a; 2018c; 2018b].

The method that we apply here is the so-called membrane equilibrium analysis (MEA), originated in
the papers on vaults [Angelillo and Fortunato 2004; Fraternali 2010; Fraternali et al. 2002; Angelillo
et al. 2013]. The MEA can be seen as the continuous counterpart of the method called thrust network
analysis, first proposed in a pioneering work by O’Dwyer [1999], and then developed in subsequent
works in [Block et al. 2006; Block and Lachauer 2014; Vouga et al. 2012; De Goes et al. 2013; Miki
et al. 2015; Marmo and Rosati 2017].

Keywords: limit analysis, vaults, masonry-like materials, Airy’s stress function.
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The classical Heyman hypotheses of null tensile strength, infinite compressive strength and no-sliding
are the basis of the present approach, together with the static theorem of limit analysis. Statically admis-
sible singular stress fields, in the form of surface and line Dirac deltas applied on material surfaces and
lines are involved. The support lines 0 and surfaces S of these Dirac deltas can be interpreted as arches
and membranes enclosed inside the vault thickness.

The unilateral assumption implies that the generalized stress on S be compressive, and restrict S to be
located in between the extrados and intrados surfaces of the vault. Then, as in the case of the thrust line 0
that we can devise inside a plane arch, the ideal structure S is not fixed, but forms inside the masonry, in
order to balance and transmit the external loads.

In the present paper, we essentially use the ideas put forward in [Angelillo and Fortunato 2004; An-
gelillo et al. 2013; Heyman 2012], by applying the method to cloister vaults of different geometry. The
geometry of the membrane is described by means of a Monge representation and the equilibrium is
expressed in Pucher form (see [Pucher 1934]). In this paper, by starting with a sensible choice of a
restricted class of concave stress functions, the transverse equilibrium equation is solved for the shape
by imposing suitable boundary conditions. In the flat part of the cloister vault, for example, the stress
function F is considered quadratic because the projected stress is assumed constant. The case study of
the cloister vaults of Palazzo Caracciolo di Avellino (an historical palace of Naples, whose basal part
was built in the XIV century) is considered. Geometrical safety factors are computed for different cases
of loading.

2. Mathematical preliminaries: Pucher stress

We study the equilibrium, under the action of given loads, of a membrane surface S contained inside the
thickness of the shell.

The formulation of membrane equilibrium that we consider is essentially the one proposed by Pucher
in his seminal paper [Pucher 1934], though here a more modern and straightforward formalism is adopted.
The symmetry of the problem with respect to the two numeric functions of two variables controlling
the shape and the stress is exploited by interchanging the role of data and unknowns with the aim of
generating shapes for given stresses.

2.1. Geometry. The particular geometry of typical shells and domes allows for the representation, in
Monge form, of a membrane surface S contained inside the structure, that is (see Figure 1)

x = x1 ê1+ x2 ê2+ f (x1, x2) ê3, (1)

where x is the position vector of points of S, {ê1, ê2, ê3} is the orthonormal triad coherent with a given
Cartesian frame {O; x1, x2, x3}, the couple (x1, x2) belongs to a region � of the plane {O; x1, x2} called
planform of S, and f = f (x1, x2) is a smooth function of its arguments. Summation convention over
repeated indices will be used throughout these notes, implying that Greek indices range over 1, 2 and
Latin indices over 1, 2, 3.

2.2. Forces and equilibrium. We consider the equilibrium of S subject to a given, possibly nonuniform,
load p per unit projected area of S:

p=−p ê3. (2)
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Figure 1. Monge representation of the membrane surface 5 of a spherical dome. Planform 3:(a), and 3d view with 

curvilinear coordinates :T5á T6; (b), base vectors on S (c). 
 

2.2 Forces and equilibrium 

We consider the equilibrium of S subject to a given, possibly non-uniform, load �  per unit 

Figure 1. Monge representation of the membrane surface S of a spherical dome. Plan-
form � (left), 3D view with curvilinear coordinates (x1, x2) (middle), and base vectors
on S (right).

Calling T the generalized surface stress (that is, the stress per unit length on S), that is, the membrane
stress on S, we can express it in the form

T = T αβaα ⊗ aβ, (3)

T αβ being the contravariant components of T in the covariant base {a1, a2} associated to the curvilinear
coordinates (x1, x2) (see Figure 1). The pseudostresses Sαβ (Pucher-stresses) can be introduced:

Sαβ = J T αβ, (4)

J being the ratio between the area on S and the corresponding projected area.
On introducing the stress potential F :

S11
= F,22, S22

= F,11, S12
= S21

=−F,12, (5)

the equilibrium problem is reduced to a single scalar equation in the unknown stress potential function F :

F,22 f,11+ F,11 f,22− 2F,12 f,12− p = 0. (6)

The boundary condition for this partial differential equation can be either of the Dirichlet or of the
Neumann type, that is,

F |∂� = m, or
d F
dn

∣∣∣∣
∂�

=−n, (7)

or of any combination of the two on a partition of the boundary ∂�.

2.3. Unilateral membranes and singular stresses. In the present study, we consider shells that are
purely compressed under the effect of the loads. Then we assume that the generalized stress T is negative
semidefinite: T ∈ Sym−.

The first application of Pucher’s transformation for compressed masonry vaults can be found in [An-
gelillo and Fortunato 2004], where it is shown that, due to the compression constraint, the matrix of
the projected stress components Sαβ = J T αβ must be also negative semidefinite. In terms of the stress
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function F , this condition transforms into

F,11+ F,22 ≤ 0, F,11 F,22− F,12 F,12 ≥ 0, (8)

hence, the surface described by F(x1, x2) must be concave.
We admit that F(x1, x2) be only continuous, that is, F may be folded. In this case the projected

stress is a line Dirac delta with support along the projection 0 of the fold. The Hessian H of F is
singular transversely to 0, that is, it has a uniaxial singular part parallel to the unit vector h normal
to 0. Correspondingly the directional derivative of F in the direction of h, called Fh , presents a jump.
Therefore, the singular part of the Hessian H of F can be written as

Hs = δ(0) Fh h⊗ h, (9)

δ(0) being the unit line Dirac delta on 0. Analogously, the singular part of the corresponding projected
stress (2) is a Dirac delta on 0:

Ts = δ(T ) Fh k⊗ k, (10)

k being the unit vector tangent to 0. The concavity of F implies the concavity of the fold, then Fh is
negative and the corresponding projected singular stress concentrated on 0 is compressive.

3. Equilibrium of cross and cloister vaults

The simplified equilibrium solution of a cross vault can be easily devised through the so-called slicing
technique (see [Heyman 1995]). The vault is sliced into strips parallel to the boundary arches and meeting
along the cross diagonals; such strips carry the load per unit area and transfer it as a load per unit length
to two diagonal cross arches discharging it as a vertical and horizontal load thrust to the four columns
(see Figure 2, left). The analytical MEA version of this simplified geometrical approach can be found in
[Angelillo and Fortunato 2004; Contestabile et al. 2016].

The slicing technique, that is, a method to reduce a 3D problem to a plane analysis, is applied to
cloister vault (for a discussion on the slicing method, see [Angelillo et al. 2013; Bloch and Ochsendorf
2007; Como 2013; Fang et al. 2019]). A schematic view of the planform of a typical cloister vault
is depicted in Figure 2 (right). Indeed, in this case, the slices should be taken orthogonally to the flat
boundary, but if these elementary arches are interrupted along the cross diagonals, they transfer to them
a load that pushes these cross arches upward, which means the concentrated force along them must be
tensile. If instead these parallel arches are not interrupted and are allowed to cross each other, they must
be fitted, in their central part, within two flat parallel boundaries (see Figure 2, right), a condition that,
to be satisfied, requires a large thickness in the upper 1/3 of the vault.

In order to optimize the equilibrium solution, we propose to slice the vault with nonparallel arches
in the lower 2/3 of the vault, making the arches cross each other in the upper central part (see Figure 3,
left). The mathematical construction through MEA of such equilibrium state is described in the following
paragraphs.

3.1. Equilibrium on the planform. To generate an equilibrium state of compression into the vault, we
start from the assumption of a particular equilibrated stress regime in the planform, corresponding to the
partition of the planform into zones of uniaxial and biaxial stress fields (see Figure 3, left). Referring
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Figure 2. Slicing technique for simplified equilibrium solutions for cross vaults (a) and for cloister vaults (b).
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Figure 2. Slicing technique for simplified equilibrium solutions for cross vaults (a) and for cloister vaults (b).Figure 2. Slicing technique for simplified equilibrium solutions for cross vaults (left)
and cloister vaults (right).
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Figure 3. Partition of the planform into uniaxial and biaxial stress zones (a), axial stress along the rays (b). 
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{ê1, ê2} being the orthonormal pair coherent with the given Cartesian frame. We also consider the dual
base vectors

b1
=

1
1+ y g′(x)

ê1−
g(x)

1+ y g′(x)
ê2, b2

= ê2. (14)

The uniaxial projected stress in the fan zone can be written as

S= s b2⊗ b2, (15)

s being the sole nonvanishing contravariant component of the projected stress in the curvilinear reference
{ϑ1, ϑ2

}. For the two equilibrium equations (12) to be satisfied, it must be

s =
q(x)

1+ y g′(x)
, (16)

q(x) being an arbitrary function of x , to be specified through the boundary conditions.
Calling k̂ the unit vector directed as b2, the physical stress component σ of this uniaxial stress field

can be obtained as
σ = S · k̂⊗ k̂, (17)

that is,

σ =−
q(x)

1+ y g′(x)
(1+ g2(x)). (18)

The emerging stress vector at the interface is then

t = (σ k̂⊗ k)(−ê2)= q(x) g(x) ê1+ q(x) ê2. (19)

The biaxial state in the central zone �1 is produced by the superposition of two orthogonal uniaxial
stress fields directed as the Cartesian axes. The kink of the compression rays at the straight interface
(y = 0) corresponds to a jump of the tangential component of stress producing a concentrated uniaxial
stress of the form (21) along such interface.

The axial force Fh(x) along the interface can be obtained by writing the equilibrium equation

F ′h(x)− q(x) g(x)= 0. (20)

Instead, the normal component of the stress vector emerging at the interface is transmitted to the part �11

as a vertical uniaxial stress state of the form

s = q(x) ê2⊗ ê2. (21)

3.2. Membrane form. The form of the surface S carrying the compressive membrane stress T can be
obtained by studying the transverse equilibrium equation (6). We rewrite such equation in the curvilinear
reference (θ1, θ2) in the form

Sαβ f/αβ = 0, (22)

where Sαβ are the contravariant component of the projected stress in the covariant base {b1, b2} and the
symbol “/” followed by an index, say α, denotes the covariant derivative with respect to the coordinate θα .
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Differentiating the base vectors and after some algebra, the equation (22) reduces to

q(x)
1+ y g′(x)

f,22− p(x, y)= 0, (x, y) ∈�21. (23)

In the part �11 the equilibrium equation (23) simplifies to

q(x) f,22(x, y)− p(x, y)= 0, (x, y) ∈�11. (24)

This equation can be easily integrated to obtain the shape f (x, y), once q(x) and p(x, y) are given.

3.3. Case study: Palazzo Caracciolo di Avellino in Naples. The Palazzo Caracciolo di Avellino, one of
the most ancient monumental buildings of Naples, is located in the Avellino Square and develops along
via dell’Anticaglia. It was built at the end of XIV century by the architect Giacomo de Santis, adapting
an existent convent as a residence of Gambacorta family. In the late Renaissance, it was inherited by
the great poet Torquato Tasso and by the prince Caracciolo di Avellino. The Palace was saved by the
destructions of the noble buildings in the revolt of Masaniello against the Spanish viceroyalty. In the
XIX century, the edifice was restored and used as condominium. Despite the historical vicissitudes and
the changes that have occurred over centuries, the palace is a fine example of Renaissance and Baroque
architecture within the historic city of Naples. The Palazzo Caracciolo di Avellino, constituted by two
levels with a central courtyard, has recently been undergone to an extensive restoration involving external
facades and ground and first floors (see Figure 5).

The form of the surface S carrying the compressive membrane stress T can be obtained by studying
the transverse equilibrium equation (24).

In particular, we study the vault 5 (see Figure 5, bottom left). The part of the vault that we analyze
is reported in a longitudinal section in Figure 5 (bottom right). The plan of the vault and the partition
of the planform into the zones �21, �11, �22 and �12, are depicted in Figure 6, to which we refer for
notations.

 

 

In the part 355 the equilibrium equation (26) simplifies to the form: 

 
 �M:T;�Bá66:Tá U;F L:TáU; L r��á :TáU; Ð 355 . (27) 
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Figure 5. Ground floor plan with vaulted structures (a), particular of analyzed cloister vault: plan (b), longitudinal 

section (c). 

 

In particular we study the vault nr. 5 (see Fig. 5b). The part of the vault that we analyze is reported 

in a longitudinal section in Fig. 5c. The plan of the vault and the partition of the planform into the 

zones 365, 355, 366 and 356, are depicted in Fig. 6, to which we refer for notations. 

 
Figure 6. Cloister vault nr. 5: plan dimensions and planform partition zones. 

 

We fix the orientation of the compression rays of Fig. 3a by giving (see Fig. 7a): 
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Figure 5. Main facade of the ground floor plan with vaulted structures (top), particular
of analyzed cloister vault plan (bottom left) and its longitudinal section (bottom right).

We fix the orientation of the compression rays of Figure 3 (left) by giving (see Figure 7):

g(x)= 3
ḡ
l

(
1−

4
3

x2

l2

)
x . (25)

We consider two types of load. Load 1 is the effect of the dead load in uniform force per unit area
p0 = 8 kN/m2, and of the weight w of the wall whose position in the plan is sketched in Figure 5 (top).
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Figure 6. Cloister vault 5: plan dimensions and planform partition zones.
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Figure 7. Orientation function (31) of the compressive rays of Fig. 3. 

 

We consider two types of load. Load 1 is the effect of the dead load in uniform force per unit area 

Lâ L z�G0�I6, and of the weight S of the wall whose position in the plan is sketched in Fig. 5a. As 

the load S, considering the smearing effect of the filling, we assume the following regularized form: 
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Figure 8. Representation of the load 1. 

 

By solving equation (26) and (27), the form B:TáU; depicted in Fig. 9 is obtained such a shape 

contained inside the masonry vault. 

 

 
 

Figure 9. Form function associated to load 1. 

 

Load 2 is the sum of the dead load Lâ and of the load LéÔå representing the effect of a live load. 

Figure 7. Orientation function (25) of the compressive rays of Figure 3.

As the load w, considering the smearing effect of the filling, we assume the following regularized form:

w(x, y)= p1 e−
1
2c (x−1x)2e−

1
2d (y−1y)2, (26)

represented in Figure 8 (left).
By solving (23) and (24), the form f (x, y) depicted in Figure 8 (right) is obtained in such a shape

contained inside the masonry vault.
Load 2 is the sum of the dead load p0 and of the load pvar representing the effect of a live load. The

live load we consider is the weight of a box of water which is 1 m wide, 1 m deep and 0.76 m high.
Taking into account the smearing effect of the filling, this load 2 can be sketched as in Figure 9 (left).

As in the previous load case, the shape f (x, y) associated to load 2 and contained inside the masonry
vault, is still deducted as solution of equations (26) and (27).

The Heyman geometrical safety factor (see [Heyman 1995; Huerta 2006]), can be assessed by the
ratio between the thickness of the real vault and the minimal thickness of a homothetic fictitious vault
containing the equilibrium membrane structure S. For both cases of figures 8 (right) and 9 (right), the
geometrical safety factor assumes a value near the following:

sH = s/smin = 20/11= 1.82. (27)
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Figure 8. Representation of the load 1 (left) and the form function associated to this load (right).
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The live load that we consider is the weight of a box of water s�I wide, s�I deep and räyx�I high. 

Taking into account the smearing effect of the filling, this load 2 can be sketched as in Fig. 10. 

As in the previous load case, the shape B:TáU; associated to load 2 and contained inside the 

masonry vault, is still deducted as solution of equations (29) and (30). 

 

 
Figure 10. Representation of the load 2. 

 

 

 
Figure 11. Form function associated to load 2. 

 

The Heyman geometrical safety factor (see [34], [39]), can be assessed by the ratio between the 

thickness of the real vault and the minimal thickness of a homothetic fictitious vault containing the 

equilibrium membrane structure 5 . For both cases of Figs. 9, 11, the geometrical safety factor 

assumes a value near the following: 
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An upper bound of the collapse load multiplier can be found using the kinematic theorem of Limit 

Analysis considering an efficient approach based on the Piecewise Rigid Displacement (PRD) 

method, see Iannuzzo et al. [19], [20] and De Serio et al. [40], to adapt at the cloister vault geometry. 
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Figure 9. Representation of the load 2 (left) and the form function associated to this load (right).

An upper bound of the collapse load multiplier can be found using the kinematic theorem of limit
analysis considering an efficient approach based on the piecewise rigid displacement (PRD) method
(see [Iannuzzo et al. 2018c; Iannuzzo et al. 2018b; De Serio et al. 2018]) to adapt at the cloister vault
geometry.

4. Concluding remarks

The paper has dealt with the equilibrium of cloister masonry vaults composed of no-tension Heyman
material for which the theorems of limit analysis can be still applied. The equilibrium has been expressed
as an extension of the Pucher’s method, so that convenient systems of coordinates for the formulation
of the stress problem and a concave stress function has been assumed. The problem, under purely
vertical loads, has turned into a single partial differential equation of the second-order where the shape
function f and the stress function F play symmetrical role. The unilateral restrictions have requested that
the membrane surface S lies in between the extrados and intrados surfaces of the vault and that the stress
function be concave. Making a sensible choice of a concave stress function F , the transverse equilibrium
equation has been solved with the unknown function f by imposing suitable boundary conditions. As
example, a cloister vault of the Palazzo Caracciolo di Avellino has been analyzed, whose membrane
surfaces and geometrical safety factors for two load conditions have been assessed.
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