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Masonry constructions activate rocking motions endeavouring to elude the action of horizontal impulse
accelerations, typical of seismic actions. They can reach the dynamical collapse under acceleration
impulse with intensity much higher than the one that causes the static collapse. Sudden changes of
mechanisms take place during the rocking with the occurrence of impacts and consequent energy losses.
Research on the topic has been generally carried out examining various schemes of structural compo-
nents, as a rule considered or as a solid block or subdivided in a sequence of blocks connected by
hinges. Innovative aspect of the paper, on the contrary, that collects also some results of the author, is
the analysis of the influence on the rocking motion at the onset of oblique cracks that sway diagonally
during the rocking of masonry walls.

1. Introduction

Masonry constructions behave under seismic actions very differently from reinforced concrete and steel
structures. Masonry constructions endeavour to elude the seismic action activating a rocking motion
rather than deforming with doubtful dissipating mechanisms.

Rocking is a direct consequence of the no-tension behavior of the masonry material. A masonry pier
or a masonry wall, hit by a sudden horizontal impulse, moves sideways and detaches from its bases and,
if does not overturn, once reached its maximum side displacement inverts its motion going back to the
initial position, and so on. The pier continues to move with oscillations of reducing amplitudes and
periods, until the stop of the motion.

The study of the rocking and the discovery of its importance in the seismic strength assessment of
masonry buildings started with a fundamental paper of Housner [1963], in which he studied the rocking
motion of a stone column resting on a rigid base. The Housner’s paper showed the reasons for which
tall and slender columns were able to survive severe ground shaking whereas more stable appearing
reinforced concrete structures were severely damaged.

Only more recently interest in the study of rocking increased noteworthy and many contributions,
involving the dynamical behavior of some simple masonry structures under various types of dynamical
actions, have been given [Yim et al. 1980; Hogan 1992; Giannini and Masiani 1996; Liberatore et al.
2002; Sorrentino et al. 2006; 2008; Peña et al. 2007; Di Carlo 2014; Coccia et al. 2016], generally
analysing models composed by rigid blocks.

Innovative aspect of the paper, on the contrary, that collects also some results of the author and others
[Coccia et al. 2016; Di Carlo et al. 2017], is the analysis of the influence of the onset of oblique cracks
swaying diagonally during the rocking of masonry piers and walls. In this context the present paper
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points out more clearly the differences existing between the rocking response of the solid column and
that of a masonry pier or of a masonry wall, composed by two piers and one spandrel, whose piers crack
diagonally during the motion.

Analysis of rocking requires the study of the impacts, that take place during the motion, to estimate
the corresponding energy losses. Still more exhaustively is here studied the problem of the localization
of points where impacts take place, as between piers and basement, and as between piers and spandrel.

The paper assumes, as dynamical action, the impulse of a constant horizontal acceleration A and dura-
tion t , particularly advantageous to deal with the response of structures to seismic actions via analytical
approach. This loading is the dynamical extension of the common pushover statical action. Thus, if the
magnitude of the acceleration impulse is higher than the limit value AL , obtained by limit analysis, the
cracked pier or the wall with openings, starts to move, overturning at base corner. By further increasing
the acceleration level A0 the pier, at a definite time t0, reaches a configuration at which the opposing
action of the weight vanishes and dynamically fails.

The research of the dependence of the ratio A0/AL upon the limit duration t0 is crucial to define
the seismic strength capacity of the masonry wall. This ratio A0/AL represents the strength reduction
factor q that has great importance in the assessment of the seismic strength of masonry constructions
[Peña et al. 2007; Sorrentino et al. 2008; Di Carlo 2014; Coccia et al. 2016; Di Carlo et al. 2017; ≥ 2019;
Heyman 1992; Ochserdorf 2002; Como 2016].

2. Recalls of the rocking of the solid column

The discovery of the importance of studying rocking in seismic strength assessments of masonry buildings
started with a fundamental paper of Housner [1963] in which he studied the rocking motion of a stone
column resting on a rigid frictional base. We will reassume and comment the main results of Housner
analysis.

A constant horizontal acceleration impulse of magnitude A1 has been chosen here to represent schemat-
ically the perturbing action that hits the column at its initial vertical position: varying the duration t1 of
the impulse, this condition can give a simple qualitative representation of the seismic action (Figure 1,
left).

Let us make reference to the Figure 1 (right) that shows the column in its rocking motion. The friction
coefficient between the column and its basement is sufficiently large to prevent sliding. The column,
at the position (1) (Figure 1, right), is falling down rotating around the base right corner O . When the
column reaches the vertical position (2), its left base corner impacts against the basement rigid plane and
an impulsive force suddenly takes place at the impact point O ′ and a change of motion suddenly occurs.
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Figure 2. Damped oscillations of the column with gradually reducing amplitudes [Di
Carlo 2014].

Just after the impact, the column begins to rotate now around the left base corner, the new point O ′,
the pivot of the new motion of the column. Dissipations of energy occur each time the column impacts
on its base.

The column develops its swaying rocking motion oscillating around O and O ′. Figure 2 shows this
motion, with reducing amplitudes and shorter periods: it is of the inverted pendulum type, not harmonic
but oscillatory, damped, in consequence of impacts. Rocking motion starts only if

A1 ≥ AL = g · tgα, (1)

where tgα = b/h defines the slenderness of the column having width b and height h.
Condition (1) shows that only if the magnitude A of the horizontal acceleration pulse A1 is larger than

AL = g · tgα— the magnitude of the acceleration that leads the pier to the limit equilibrium condition —
the column puts itself in motion. At this point the resultant of all vertical and horizontal forces passes
through the external edge O of the base section of the column, as shown in the left scheme of Figure 3.

The equation of the column motion hit by a constant horizontal acceleration impulse was firstly for-
mulated in Housner [1963] as

I0
d2θ

dt2 =−W R(α− θ)+
W A

g
R. (2)
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Figure 3. The solid column at the static failure and at the dynamical failure.
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That, solved, gives

θ(t)= α
(

A
AL
− 1

)
(cosh pt − 1),

A
AL

> 1, (3)

with

p =

√
W R
Io
=

√
3g

4h
√

1+ tg2α
. (4)

The column, forced by an acceleration impulse A0, larger than AL and of adequate duration t0, will
continue to move sideways until to the inversion of the motion or, on the contrary, if the impulse acceler-
ation and its duration are sufficiently high, until reaches the critical overturning configuration. This last
state is defined by inclination (α) of the column at which any increment of the opposing action of the
weight vanishes (Figure 3, right scheme).

The equation defining the intensity A0 of this impulse, together with the corresponding duration t0, is
obtained equating the work done by inertial force along the motion and during the whole time t0 to the
work required to raise the weight W of the column as far as to the limit position α:∫ t1

0

W
g

A0
ds
dt

dt =
W
g

A0 R
∫ t1

0
θ̇ (t) dt =WR(1− cosα). (5)

Solution of condition (5) gives the relation occurring between the intensity A0 of the acceleration impulse
and its duration t0 required to reach the critical dynamical overturning state [Housner 1963]

t0 =

√
4h
√

1+ tg2α

3g
cosh−1

(
1+

1
(2A0/AL)(A0/AL − 1)

)
. (6)

A scale effect is present in (6) because two columns have the same ratio b/h, the higher requires a larger
time duration t0 to reach the failure under the same acceleration intensity A0. From the inspection of
condition (6) we have

A1

AL
→∞, t1→ 0,

A1

AL
→ 1, t1→∞. (7)

3. The masonry wall pier

3.1. Rocking with diagonal cracking. The wall pier is the vertical element of masonry walls with open-
ings, the main resistant structural components of masonry buildings. Oblique cracking occurs in the
masonry hit by horizontal actions and influence rocking.

On the wake of the above study of the Housner’s solid column, let us examine the rocking motion of
a wall pier (Figure 4, left) hit by a short horizontal acceleration pulse. Figure 4 (right) shows the wall
pier at a generic cracked configuration, loaded by vertical forces — due to the self-weight of the element
as to the weight of spandrels — and by the corresponding horizontal inertia forces.

The wall pier behaves quite differently from the solid column. This last can in fact only detach from
its base while the masonry pier suffers from diagonal cracks.
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Figure 5. The typical X-shaped cracking pattern occurring in a wall pier.

Rocking of the cracked pier, on the other hand, can effectively occur only if the inactive detached
wedge of the block, represented by the dotted triangle in Figure 4 (right), does not crumble at the impacts
with the pier tag-end, coming back during the inverted oscillation.

Answer to this question can be obtained by inspecting Figure 5 that shows the typical X-shaped
cracking pattern occurred in a vertical pier, after the in-plane rocking of the wall. Analysis of the sequence
of the cracking geometries occurring during the shaking movement that affects the scheme of a wall pier
(see Figure 6) can better clarify the reasons of the development of these X-shaped cracks.

The first scheme (Figure 6) represents the undeformed configuration of the element. The second
scheme shows the compressed right pier wedge, at the onset of the wall rotation. It moves along the first
mechanism u− in the clockwise direction and detaches from the left wedge, that remains ineffective. The
third scheme shows the counter-clockwise rotation of the wedge that returns towards the vertical position
still following the first mechanism u−; the fourth scheme refers to the contact occurring between the two
wedges and to subsequent impact occurring at the left corner of the pier base. In the fifth scheme, the
left wedge, following the subsequent returning mechanism u+, is detaching from the right one, thereby
producing the other diagonal crack that, crossing with the first one, determines the detected X-shaped
cracking, observed at the stop of the motion.

A prospective masonry destruction at the contact of the inactive wedge could not permit the occurrence
of rocking. The presence of the X-shaped cracking, commonly detected in damaged walls of masonry
buildings, proves that inactive masonry wedges are generally able to sustain, during the rocking, contacts
with the other ones. At this contact the compression forces are, in fact, immediately conveyed as far as
to the opposite corner of the pier base. Impact occurs just at this corner, the new pivot of the subsequent
rotation mechanism u+. We remark that in both the Housner column and the masonry pier impact occurs
at the hinge of the returning mechanism.
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Figure 6. Sequence of the wall pier configurations during the formation of the X-shaped cracks.

3.2. Incipient rocking acceleration. As to the solid column, the rocking motion starts only if the mag-
nitude A of the horizontal acceleration pulse is larger than AL , the acceleration that leads the pier to the
limit static equilibrium condition. At this state, in fact, the resultant of all vertical and horizontal forces
passes exactly through the external edge O of the base section of the pier (Figure 7).

The value of the limit acceleration AL equals the failure multiplier λ0 of the horizontal inertia forces W/g,
that can be obtained as application of the limit analysis approach.

As shown in Figure 7, a fracture K O , approximately assumed straight, starts at the section K -K ′, at a
distance ξ from the top of the element and reaches the toe O of the pier. This fracture splits the masonry
block between the compressed portion and the ineffective one. The compressed region is composed
by the upper uncracked rectangular parallelepiped of weight W1 and by the lower triangular wedge of
weight W2. The other triangular lower region located at the left side of the element is ineffective.
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Figure 8. Incipient rocking acceleration AL versus the factor χ varying the pier wall geometry.

A vertical force χW is applied at the head of the pier, being W the weight of the whole pier and χ
a coefficient higher or equal to zero. The corresponding horizontal force is χW A/g, where A is the
acceleration that hits the wall and g the gravity acceleration.

The magnitudes of the weights W1 and W2 depend on the distance ξ and, with reference to Figure 7,
can be expressed as

W1(ξ)= γ bξ, W2(ξ)= γ
b
2
(h− ξ). (8)

The weight W of all masses taking part in the mechanism is

W (ξ)=W1(ξ)+W2(ξ). (9)

Defining the location of the gravity center C of all moving masses, the cracked configuration of the
masonry pier at the incipient overturning is defined by the distance ξ and the limit acceleration AL ,
which can be obtained by solving the following system of two equations:

W1(ξ)
AL

g
ξ

2
+χW (ξ)

AL

g
ξ =W1(ξ)

b
6
+χW (ξ)

2
3

b,

W1(ξ)
AL

g

(
h−

ξ

2

)
+W2(ξ)

AL

g
2
3
(h− ξ)+χW (ξ)

AL

g
h =W1(ξ)

b
2
+W2(ξ)

b
3
+χW (ξ)b,

(10)

respectively defining as the incipient cracking occurring at the section K -K ′, as the incipient failure of
the whole pier. The rocking of the pier, hit by a constant acceleration pulse of magnitude A, can actually
start if A > AL .

Figure 8 plots the incipient rocking acceleration AL versus the ratio χ — i.e., the ratio between the
load applied at the head and the whole weight of the pier — for the three considered geometries of the
wall pier: a pier of 3 m height and a width variable between 0.9 m, 1.2 m and 2 m [Di Carlo et al. 2017].

3.3. Overturning caused by a constant acceleration pulse of finite duration. As in the Housner col-
umn, let us valuate the relation occurring at the dynamical collapse between the constant overturning
acceleration A0 and the corresponding critical duration t0.

The pier, hit by the horizontal acceleration pulse A, starts its motion in the cracked configuration,
defined by the distance ξ : this last, together with the limit acceleration AL , obtained by solving the
system of (10).
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Let I0 be the moment of inertia around the point O of all the masses involved in the overturning of
the pier. Making reference to the motion of the center C of all masses engaged, the equation of motion
of the pier can be written as

I0(ξ) θ̈ =−W (ξ)R(ξ)[α(ξ)− θ ] +W (ξ)R(ξ) A
g
, (11)

that, with the position

p(ξ)2 =
W (ξ)R(ξ)

I0(ξ)
,

has the solution

θ(t)= [A/g−α(ξ)][cosh p(ξ)t − 1]. (12)

The magnitude A0 of an acceleration pulse having duration t0, required to overturn the block, is then
given, likewise (5), by the condition

W (ξ)

g
A0

∫ t0

0

ds
dt

dt =W (ξ)R(ξ)[1− cosα(ξ)], (13)

and we obtain

t0 =
1

p(ξ)
cosh−1

[
1+

1
2A0

AL (ξ)
( A0

AL (ξ)
− 1)

]
, (14)

that defines the dependence of the duration time t0 from the impulse acceleration A0 required to overturn
the block. As it can be noted, equation (14) is characterized by the existence of vertical and horizontal
asymptotes, being

lim
A0

AL (ξ)
→1

t0 =∞, lim
A0

AL (ξ)
→∞

t0 = 0. (15)

With reference, for instance, to a 3 meters high and 0.9 meters wide pier, Figure 9 shows the trend
of the overturning time t0 varying the magnitude A0 of the acceleration pulse, for different values of
the coefficient χ varying in the range from 0 to 4 [Di Carlo et al. 2017]. The intercepts of the vertical
asymptotes of the curves given by (14) with the horizontal axis give the corresponding magnitudes of
the limit accelerations AL(χ). The case χ = 0 corresponds to the pier without masses applied at its top.
This case is significant because is in direct correlation with the behavior of the Housner column.

Compared with the solid column, cracking occurring in the masonry pier implies either smaller dura-
tion t0 of pulses with a given acceleration A0 or, keeping fixed the duration t0, smaller magnitude of the
overturning acceleration A0.

It is worth to note that the duration of the impulse required to overturn the pier wall increases with the
increasing of the factor χ , i.e., of the magnitude of the mass applied at the pier top corner. It means that
the presence of a mass applied at the pier head has thus a stabilizing effect, in spite of the corresponding
increase in magnitude of the inertia horizontal force.
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Figure 9. Plot of t0 versus A0: varying the factor χ (left) and comparison with Housner’s
model (right).

4. Rocking of a masonry wall with opening and a steel tie

4.1. The limit static acceleration impulse. We will consider the scheme in Figure 10 as a simple wall
composed by two masonry piers and a spandrel, connected by a top steel tie, in the oscillating motion
activated by a sudden action of a constant horizontal impulse acceleration. It represents the simplest
model of the multistorey walls with openings, composed by piers and spandrels, the main resistant
structural components of the masonry building.

The acceleration impulse A induces on the wall a distribution of inertial horizontal loads. If the
magnitude of the impulse is sufficiently high, the wall will reach the limit state and will deform according
to the sideway swaying mechanism from the left to the right (Figure 11, left scheme). Cracking will
occur at the bases of piers and the determination of the cracked layout of the piers, together with the
limit horizontal acceleration AL , can be achieved by the limit analysis approach [Di Carlo et al. ≥ 2019].
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As shown in Figure 12, a fracture K1C1 (K2C2), assumed to be approximately straight, starts at the
section K1-K ′1 (K2-K ′2), at a distance ξ1 (ξ2) from the top of the element and reaches the toe C1 (C2) of
the pier. This fracture splits the masonry block into a compressed portion and in an ineffective part. The
compressed region is composed by the upper uncracked rectangular parallelepiped of weight W1 (W3)

and by the lower triangular wedge of weight W2 (W4). The other triangular lower region located at the
left side of the element is ineffective. The semi-weights of the spandrel WF/2 and the corresponding
horizontal force WF/2 · A/g are applied at hinges sections between piers and spandrel. The loading
pattern on each of the piers is completed by the inclined compressive reaction Ri of the central panel.
The magnitudes of the weights W1 (W3) and W2 (W4) depend on the distance ξ1 (ξ2) and, with reference
to Figure 12, can be expressed as

W1(ξ1)= γ B1ξ1, W2(ξ1)= γ
B1

2
(H − ξ1), (16)

and

W3(ξ2)= γ B2 ξ2, W4(ξ2)= γ
B2

2
(H − ξ2). (17)

The problem to define the cracked configuration of the masonry pier at the incipient overturning is a
function of four unknowns: the two distances ξ1 and ξ2, the reaction of the central panel Ri and the limit
acceleration AL . Two equations define the incipient cracking occurring at sections K1-K ′1 and K2-K ′2,
respectively and another equation defines the limit equilibrium of the first pier.

For a given value of the limit acceleration AL , let ξ̄1, ξ̄2 and Ri be the solutions of these three equations
that define the cracked zones of the piers and

W1 =W1(ξ̄1), W2 =W2(ξ̄1), W3 =W3(ξ̄2), W4 =W4(ξ̄2), (18)

are the weights of the four parts of the wall divided by cracks.
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Fig. 13 Geometry of the cracked swaying wall  
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Figure 13. Geometry of the cracked swaying wall.

We can lump the weights W1 and W2 of the parts corresponding to the same pier at the corresponding
centers G1 and G2 of the uncracked parts I and II. At the same time G3 will represent the center of the
spandrel where its weight W3 is applied. At the cracked state, the essential wall geometry is described in
Figure 13. Here the radii R1, R2 and R3 of vectors with their corresponding angles α1, α2 and α3 along
the vertical axis can be easily determined.

The condition of the static global failure of the wall at the admissible cracking state is due to the
action of a constant horizontal acceleration, acting so slowly on the wall to be represented by a static
force. Thus applying the virtual work principle at limit equilibrium of the cracked state of the wall at the
starting of the motion we get

〈g, du〉+ δL tie+〈ρA, du〉 = 0, t > 0, (19)

where, with reference to the cracked configuration of the wall:

〈g, δu〉 = −
3∑

i=1

Wi Ri sinαi dθi , (20)

is the resisting work of the dead loads g and dθ1, dθ2 and dθ3 are the small rotation increments of the
three parts I, II, and III of the wall divided by cracks:

δL tie =−T0 H dθ1(k21− 1), (21)

is the resisting plastic work in the steel tie:

δL A =
AL

g

3∑
i=1

Wi Ri dθi cosαi , (22)

is the work of pushing inertial forces AWi/g acting on the walls masses.
With the positions

µ21 =
W2

W1
, µ31 =

W3

W 1
, ρ21 =

R2

R1
, ρ31 =

R3

R1
, (23)
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we obtain the limit acceleration AL :

AL = g
σAL

χAL
, (24)

with

σAL = (sinα1+µ21ρ21 k21 sinα2+µ31ρ31 k31 sinα3)+ (T0 H/W1 R1)(k21− 1), (25)

χAL = (cosα1+µ21ρ21 k21 cosα2+µ31ρ31 k31 cosα3). (26)

It is worth to remark, on the other hand, that this result is valid if the stress state in the wall is statically
admissible. To satisfy this condition, some local reinforcements can be placed at the top of piers in order
to avoid local failures due to interactions between piers and spandrel.

4.2. Free rocking of the wall. Let us examine now the motion of the wall when, released at a sideways
deformed configuration, it puts itself in motion going back to its initial position (Figure 14). In this stage,
the motion is a fall and all the weights come down. The wall moves from the right to the left along the
failure mechanism u− before it is determined by means of the limit analysis approach. This motion ends
at the instant when simultaneous impacts occur between the piers with their basement as well as between
piers and the central spandrel.

The second step goes from the instant of the inversion of motion, along the subsequent mechanism u+,
the reverse of the previous mechanism u−, i.e., having a mirrored hinges layout. Piers continue to rotate
in clockwise direction while the spandrel, on the contrary, counter-clockwise. Impacts, between piers
and the spandrel as well as between piers and the basement, take place at the positions of the new hinge
of the mechanism u+ (Figure 14). Then the motion of the wall continues until the instant when the wall
reaches the maximum side deformation, before to go back again and so on.

Let us consider the dynamical equilibrium of the wall in the first phase of this motion. Piers I and
II are rotated of the angles θ1 and θ2 around their absolute centers C1 and C2, while the central panel
III is rotated of θ3 around C3, all quantities connected by means of suitable kinematical conditions.
This analysis is achieved by applying the principle of virtual displacements, evaluating, along a small
deformation increment δu of the wall, the works done by the various engaged forces, at the generic
deformed configuration of the wall, attained at the time t of the motion.

Application of the virtual work equation thus gives

〈g, δu〉+ δL tie−〈ρ ü(t), δu〉 = 0, t > 0, (27)

Figure 14. The motion of the wall at the instants just before and just after the impacts
and the position of impact points.
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where the work of the dead loads (g) is

〈g, δu〉 =
3∑

i=1

Wi Ri sin(α1− θ1) dθi , (28)

and the work of the inertial loads is

−〈ρ ü(t), δu〉 =
3∑

i=1

I (i)Ci θ̈i dθi , (29)

with I (1)C1 , I (2)C2 , I (3)C3 being the moments of inertia for the centers C1, C2, C3. The latter is the work of the
stretch force T0 in the steel tie. There is no release of energy in the steel tie with the assumed perfectly
rigid plastic constitutive law (Figure 16) and δL tie = 0. These works are all positive because all the
weights W1, W2 and W3 move down as the wall falls along the mechanism with the outcome of the
rotation increments dθ1, dθ2 and dθ3.

Continuing the analysis, whose development has been given in [Como 2016] we will reach the same
conclusions about the features of the free rocking motion as in the case of the Housner solid column
even if, in this case, the motion is influenced by cracking. These oscillations, that, due to the energy
losses occurring at the impacts, become step by step faster and present gradually smaller amplitudes, are
distinctive of the rocking motion.

Figure 15. Geometry of the falling down mechanism of the first stage of motion.

Figure 16. No release of energy in the steel tie at the unloading stage.
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4.3. Impacts. As in the case of the column, the falling motion of the wall that moves along the mech-
anism (Figure 17, first scheme), stops at the instant T/4 when the wall reaches the undeformed “zero”
configuration, a bit early than impacts will occur. At this instant all the hinges of the mechanism are
closed and the motion cannot proceed along the same mechanism. At the “zero” configuration, contact
will occur along the inclined fractures in the piers and along the connection sections piers/spandrel.

A compression flow thus immediately takes place along the ineffective masonry wedges and along the
side sections of the spandrel. Inertial forces push the wall to continue its side motion, from the left to the
right, so that it will activate a new mechanism with the formation of new hinges, placed in the “mirror”
position with respect to the hinges of the previous mechanism.

At the reaching of the “zero” configuration, impacts will thus occur at the right corners of the base
sections of the piers and at corners of the spandrel. In brief, impact points are thus spotted at the positions
of the new mechanism (Figure 17). The velocities of the wall masses immediately before the impact —
i.e., the rotational velocity θ̇1(T/4− ε) of the pier I around C1 and the velocities θ̇2 and θ̇3 — are known.
Unknown, on the contrary, is the velocity θ̇1p(T/4+ ε) immediately after the impact. The knowledge of
this velocity is on the other hand required to determine the second phase of the motion and the energy
loss due to the impact. The determination of this velocity can be performed by applying the principles
of impulse and angular momentum.

This application involves other unknown quantities, i.e., the impulses F1dt , F2dt , acting at the impact
points between the piers I and II and their base sections. It is thus necessary to consider suitable appli-
cations in sequence of the above principles. First, from the principle of the impulse applied to the whole
system of Figure 18, immediately before and immediately after the impact, in the coordinate directions
x and y, we have

mvx(T/4− ε)+ I M Px = mvx(T/4+ ε), (30)

mvy(T/4− ε)+ I M Py = mvy(T/4+ ε). (31)

Likewise, from the principle of the angular momentum applied to the whole system around the impact
point A of the first pier with the basement (Figure 18), we have

3A(T/4− ε)+MA dt =3A(T/4+ ε). (32)

Figure 17. wall configuration just before impacts, impacts, wall configuration subse-
quent impacts.



THE ROCKING: A RESOURCE FOR THE SIDE STRENGTH OF MASONRY STRUCTURES 765

 18 

 

Figure 18. Application of the impulse principle to the whole system 
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Figure 18. Application of the impulse principle to the whole system.

Similarly, applying to the first pier the principle of the angular momentum around the impact point B
with the central panel (Figure 19, left), we have

3
(1)
B (T/4− ε)+M(1)

B dt =3(1)B (T/4+ ε). (33)

Finally, applying to the second pier the principle of the angular momentum around the impact point C
with the central panel (Figure 19, right), we have

3
(2)
C (T/4− ε)+M(2)

C dt =3(2)C (T/4+ ε). (34)

Taking into account that

θ̇2 = k21 θ̇1, θ̇3 = k31 θ̇1, θ̇2p = k21p θ̇1p, θ̇3p = k31p θ̇1p, (35)

with the suitable connection factors k21, k31, k21p and k31p, the five equations (30), (31), (32), (33)
and (34) can be solved, determining the five unknowns F1x , F1y , F2x , F2y and θ̇1p(T/4+ε). A numerical
application has been performed considering a simple masonry wall composed by 2 m wide piers and one
spandrel, having a length of 2 m and a height of 1.2 m.

Two values of the height of the piers have been considered, 4 m and 6 m, respectively. The ratio
between the rotational velocities immediately after and immediately before the impact results to be 0.181
and 0.413, respectively.

As in the Housner column [Housner 1963], the coefficient of restitution increases with the increasing
of the slenderness of the system.

Figure 19. The principle of angular momentum: on the first pier around the impact
point B (left) and on the second pier around the impact point C (right).
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4.4. Forced motion of the wall hit by an acceleration impulse of given duration. Let us consider now
a generic deformed configuration of the wall while it is pushed by a constant horizontal acceleration
impulse A of given duration t . The corresponding motion of the wall is achieved as an application of
the principle of virtual displacements, evaluating, along a small deformation increment δu, the works
done by the various engaged forces, at the generic deformed configuration of the wall — defined by the
rotation angles θ1, θ2, θ3, occurring around the absolute centers of the three panels in which the wall is
subdivided — attained at time t of the motion (Figure 20). We get

〈g, δu〉+ δL tie−〈ρ ü(t)+ ρA, δu〉 = 0, t > 0, (36)

where the work of the dead loads is

〈g, δu〉 = −W1 ds1 sin(α1− θ1)−W2 ds2 sin(α2− θ2)−W3 ds3 sin(α3+ θ3), (37)

where, with reference to Figure 20 ds1 = R1 dθ1, ds2 = R2 dθ2, ds3 = R3 dθ3 and

〈g, δu〉 = −W1 R1 dθ1 sin(α1− θ)−W2 R2 dθ2 sin(α2− θ2)−W3 R3 dθ3 sin(α3+ θ3). (36′)

During the increasing wall sideways displacement, the steel tie stretches at the yielding state. We have

δL pl =−T0(k21− 1)H δθ1. (38)

Summing up all the works, with the positions

λA = (cosα1+µ21ρ21k21 cosα2+µ31ρ31k31 cosα3)= χAL , (39)

σA = sinα1+µ21ρ21k2
21 sinα2−µ31ρ31k2

31 sinα3, (40)

σAasc = sinα1+µ21ρ21k21 sinα2+µ31ρ31k31 sinα3+ To H(k21− 1)/W1 R1 = σAL , (41)

χAasc =
(
cosα1+µ21ρ21k2

21 cosα2−µ31ρ31k2
31 cosα3

)
, (42)

p2
∗
=

W1 R1

I ∗C
χAasc, (43)

Figure 20. The wall in an ascending motion dragged by the horizontal acceleration
impulse A.
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the equation of the forced motion of the wall simplifies and becomes

θ̈1− p2
∗
θ1 =−

p2
∗

χAasc

(
σAL −

A
g
χAL

)
, (44)

whose solution, satisfying the initial conditions θ1(0)= θ̇1(0)= 0, is

θ1(t)=8(cosh p∗ t − 1), (45)

where

8=
1

χAasc

(
A
g
χAL − σAL

)
. (46)

4.5. Dynamical collapse. There is a configuration C0 of the wall along the side motion θ = θ1(t) at
which the potential energy of all the weights acting on the wall reaches its maximum. When the wall
reaches this configuration, weights no longer oppose any displacement increment starting from C0. The
dynamical collapse of the wall is thus attained if the acceleration impulse has sufficient intensity A1 and
sufficient duration t0 so that the inertial forces, induced by A1, move, just in the time t0, the wall along
motion θ = θ1(t) as far as the configuration C0 has been reached. Hence, taking into account that

θ̇1(t)=8p∗ sinh p∗ t, θ̇2(t)= k21 θ̇1(t), θ̇3(t)= k31 θ̇1(t), (47)

and with reference, for the sake of simplicity, to Figure 21, that shows the raising of the weight W1, we
get that the difference in potential energy between the deformed and the initial configurations of the wall,
can be evaluated as

1E =
3∑

i=1

Wi Ri [cos(αi − θi )− cosαi ]. (48)

At the same time the work done along the motion by the horizontal push due to the acceleration
impulse, making reference to Figure 20, is

L IMP =
A0

g

3∑
i=1

Wi Ri

∫ t0

0

dsi

dt
cos(αi − θi ) dt. (49)
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Figure 22. The raising of the weight W1 of the pier I 
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Evaluating the integrals up to the time to, the dynamical failure condition is: 
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correlating the magnitude of the acceleration impulse Ao with its duration to. 

We point out that when 
o

t of , 0)o . In this case the value of the acceleration 

impulse Ao coincides with the value of the acceleration impulse AL, determining 

the statical failure of the wall. We have in fact, with (55): 
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matching (25). A numerical investigation is carried out in order to clarify the 

described procedure and to practically show how to evaluate both incipient 

rocking and collapse accelerations. For sake of simplicity, a simple geometry of 

the wall, characterized by two piers and one storey, is considered in the following. 

The side view of the active wall is shown in Fig. 23, together with the indication 

of the main geometrical parameters. Both piers and spandrel have the same 

Figure 21. The raising of the weight W1 of the pier I.
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Finally, the balance between the work of the inertial forces and the potential energy increment, gives

L IMP =
A0

g

3∑
i=1

Wi Ri

∫ t0

0

dsi

dt
cos(αi − θi ) dt =1E =

3∑
i=1

Wi Ri [cos(αi − θi )− cosαi ]. (50)

Evaluating the integrals up to the time t0, the dynamical failure condition is

L IMP =8
A0

g
1
p∗

(
{w1 R1 cosα1+w2 R2k21 cosα2+w3 R3k31 cosα3}(cosh p∗t0−1)

+
{
w1 R1 sinα1+w2 R2k2

21 sinα2−w3 R3k2
31 sinα3

}[sinh2 p∗t0
2

−cosh p∗t0+1
])

= M AX W1 R1[cos(α1−θ1)−cosα1]+W2 R2[cos(α2−θ2)−cosα2]

+W3 R3[cosα3−cos(α3+θ3)], (51)

correlating the magnitude of the acceleration impulse A0 with its duration t0.
We point out that when t0 → ∞, 8→ 0. In this case the value of the acceleration impulse A0

coincides with the value of the acceleration impulse AL , determining the statical failure of the wall. We
have in fact, with (51)

8−→ 0⇔
1

χAasc

(
A
g
χAL − σAL

)
−→ 0⇔

A
g
χAL −→ σAL ⇔

A
g
−→

σAL

χAL
= AL , (52)

matching (24). A numerical investigation is carried out in order to clarify the described procedure and
to practically show how to evaluate the incipient rocking and collapse accelerations. For the sake of
simplicity, a simple geometry of the wall, characterized by two piers and one storey, is considered in the
following.

The side view of the active wall is shown in Figure 22 (left), together with the indication of the main
geometrical parameters. Both piers and the spandrel have the same thickness. In particular, the widths
of the two piers are equal to 2 m and 2.5 m, while their height is equal to 6 m. The spandrel is 2 m wide
and 1.5 m high.

The specific weight of the masonry material is taken to be equal to 16 kN/m3. The incipient rocking
acceleration value AL is evaluated and it is equal to 3 m/s2. The cracked configuration is defined by the
distances ξ1 and ξ2 of the sections in which the cracks start from the top of the piers, equal to 2.73 m
and 3.47 m, respectively. The fourth unknown is the diagonal reaction of the spandrel, equal to 16.8 kN.

The dynamical failure condition of the wall, pushed by a constant horizontal acceleration impulse of
given duration, is obtained by solving (51). By varying the duration t0 of the impulse, it is thus possible
to evaluate the magnitude of the collapse acceleration A0.

In this way, we can define a failure domain of the masonry wall, numerically solving (51), finding dif-
ferent combinations of values of pulse magnitude and duration, which lead the system to the achievement
of a failure condition. Figure 22 (right) shows the failure domain of the considered scheme of masonry
wall, in terms of the ratio between collapse and activation accelerations. The domain located below the
curve corresponds to an equilibrium condition, while the upper part of the graph refers to the attainment
of a failure state.
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Figure 24. Failure domain of the examined masonry wall 
Figure 22. Left: geometry of the masonry wall. Right: failure domain of the examined
masonry wall.

The horizontal dashed line (Figure 22, right) indicates the load multiplier value required for the activa-
tion of the motion, evaluated through the equivalent static analysis: it represents a horizontal asymptote
of the failure domain, attainable for infinite values of the pulse duration. The zone of the graph located
under this value represents a rest condition of the system. Figure 22 (right) shows the trend of the ratio
A0/AL between the dynamical constant acceleration impulse A0 and the static limit acceleration AL

versus its duration time t0. It is recognized from this graph that for a duration time t0 = 0.25 s — a value
corresponding to a strong seismic shock — the ratio A0/AL = 2.5. It means that in this case the intensity
of the acceleration impulse determining the dynamic failure of the wall is 2.5 times larger than the static
limit acceleration usually considered to evaluate the seismic strength of the wall.

If we consider the peak ground acceleration aPGa representative of the seismic shock of the given
site, equating A0 to aPGa, we can assume static limit acceleration AL 2.5 lower than aPGa. The ratio
A0(t0)/AL can thus be considered as the reduction factor q to assume checking the seismic strength of
the wall, rather than values obtained by assumptions founded on a doubtful masonry ductility.

5. Conclusions

The paper has examined the rocking of some important structural schemes by using an analytical ap-
proach, starting from the solid column to the masonry pier, and then to a simple model of a masonry
wall, composed by two piers and a spandrel, connected by a steel chain. The dynamic action applied to
these models is a horizontal acceleration impulse at given intensity and duration.

The rocking capacity of these models has been thoroughly examined under these dynamic loadings,
firstly to obtain useful information concerning the maximum acceleration intensity, corresponding to
a given duration, able to produce the dynamic failure of the structure. Impacts occurring during the
rocking motion have been analyzed to determine the corresponding dynamical energy losses able to
give information on the dissipation of energy occurring during the motion, dissipation at a first sight
unexpected in masonry structures that, deform with mechanisms with hinges that open without any
material opposition.

The intensity of the dynamic acceleration impulse able to produce the dynamical collapse can be much
larger than the limit static acceleration; this last is the representative of the seismic side strength of the
structure.
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These results, in some points innovative, recall some issues of the author and others [Coccia et al. 2016;
Di Carlo et al. 2017] and point out the usefulness of dynamical approaches to obtain sound evaluations
of the strength reduction factor q, fundamental in checking the seismic strength of constructions.
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