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STRESS-MINIMIZING HOLES WITH A GIVEN SURFACE ROUGHNESS
IN A REMOTELY LOADED ELASTIC PLANE

SHMUEL VIGDERGAUZ AND ISAAC ELISHAKOFF

We proposed a new form of modeling the boundary roughness effects on the stress distribution and stress
concentration around a single hole in a loaded thin elastic plate. The shape irregularities are simulated
as periodic patterns of notch-like deviations from an “ideal” shape (mostly from a circle). These are
assessed with two relative measures: their maximum peak-to-valley height and the average slope. At
given hole shape, all expressions for stress fields are derived in explicit form. This analysis serves as a
basis to formulate and numerically solve the optimization problem of finding the stress-minimizing hole
shape under fixed irregularities levels. In doing so, the surface topography need not be shallow as was
supposed in previous studies.

Methodologically, this study continues the previous work of the authors in detecting the “worst” hole
shape under certain extremizing conditions [Vigdergauz and Elishakoff 2019]. The performance of the
proposed scheme is verified via instructive numerical examples. The results obtained are presented
graphically and may be analyzed visually. They have a practical relevance for optimal design problems
in mechanical engineering.

1. Introduction

The problem of determining stress distributions and reducing the stress concentration factor (SCF) around
holes in thin flat elastic plates occurs in numerous design situations. The SCF is defined here as the
(dimensionless) ratio between the maximum hoop stress and unit applied stresses.

Stress concentrations are highly localized effects which are functions of loading mode and geometry.
At given shape, the direct problem of finding SCF is solved, analytically or numerically, for a host of
different cases together spanning a large range of possibilities as summarized, for instance, in [Pilkey and
Pilkey 2007]. In addition to the SCF, a modern physical explanation of the influence of local shape irregu-
larities on fatigue and fracture mechanical performance also includes the volumetric strain energy density
approach (see, for instance, [Pluvinage 2003; Savruk and Kazberuk 2017]) which is beyond our scope.

The paper is focused on nonideal hole-shapes with technologically inevitable irregularities. These
are well approximated by isolated notches which can be described by several geometric parameters: the
notch peak-to-valley height p, the notch edge angle ¢+ and the notch radius [Pluvinage 2003]. The latter
is less important in the current context of the shape-smoothing SCF minimization, while the first two are
chosen here as lower constraints on the shape roughness under which the SCF-minimizing hole is found
numerically through a global optimization approach.

Vigdergauz is the corresponding author.
Keywords: 2D-elastostatic problem, Kolosov—Muskhelishvili potentials, shape optimization, stress concentration factor, shape
irregularity, genetic algorithm.
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This research, therefore, has three key novel aspects. First, we introduce easy-to-measure geometrical
parameters well applicable separately or in combination to quantitatively assess the shapes irregularities.
Second, together with the primary analytical findings from [Vigdergauz 2006; Vigdergauz and Elishakoff
2019], these are embedded into a stable and fast GA-based optimization scheme which can be handled by
modern computers. Third, its efficient numerical implementation permits to identify the SCF-minimizing
hole shape in an elastic plate over a wide variety of the governing parameters. Especially interesting here
is the notch edge slope ¥ which has not received sufficient attention in the literature so far.

The findings of this study are in line with the earlier conducted studies [Vigdergauz and Cherkaev
1986; Cherkaev et al. 1998; Vigdergauz 2006; Vigdergauz and Elishakoff 2019].

The remainder of this paper is organized as follows: for reader’s convenience, Section 2 summarizes
the complex valued direct solver of the considered 2D model; Section 3 introduces and describes in
detail the suggested geometrical constraints; in these terms the precise problem formulation is presented
in Section 4; and then Section 5 gives the solution scheme and some computational hints for practical
applications; Section 6 displays representative numerical examples to illustrate the use of the proposed
approach and demonstrate its effectiveness and rationality. Concluding remarks are offered in Section 7.

2. Basic model: assumptions and notations

This whole section contains mainly classical material. We choose to include it nevertheless, since the
novel parts of this works to be presented in the next sections, will refer to many of the equations in this
section.

2.1. Problem setup. Consider Figure 1. Let a thin infinite linear elastic plate be weakened by a hole with
a p-fold rotationally symmetric boundary L, enclosing the origin of the plane E of a complex variable
z=x+iy € E. Suppose further that the plate is remotely loaded by uniform nontangential stresses

oy =P, oy=0, o5=0, -1
while the hole is traction-free:
Onn(t), 0 (1) =0, 1 eLp; (2-2)

where o (t) = {oun, 071, 0, } denotes the stress tensor in a local system of curvilinear orthogonal coordi-
nates (n,7) atapointz € L.

Let also the infinite material-filled domain S outside the hole be conformally mapped onto the exterior
T of the unit circle y in the auxiliary complex ¢-plane by the holomorphic function w(¢), ¢ € T which
has only finite number M of the Laurent terms:

M
d
Lpy:t=w(), tely; &=explig)ey, §l=1; @)=+ E com=T° 1¢1= 1. (2-3)
m=1

By the required mapping uniqueness the coefficients {d,,} are necessarily bounded by the successfully
narrowing intervals [Ahlfors 1953]

1 1
———<d, <

< m=1,2,..., M. (2-4)
pm—1
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Figure 1. The problem schematic: an infinite plate with a traction-free hole under uni-
form stresses, the cases P = Q and P = —Q correspond to remote bulk and shear,
respectively. The piecewise smooth hole boundary possesses a certain p-fold rotational
symmetry as exemplified here for p = 4.

For M =1, the equal sign in (2-4) defines (up to rigid rotation) the limiting case of a p-cusped hypocycloid
identified in the optimization context in [Givoli and Elishakoff 1992; Shahzad et al. 2017; Vigdergauz
and Elishakoff 2019].

Equation (2-3) provides, in effect, a finite parametrization of an arbitrary closed curve L, = L ,(d,, d,
..., M), which is approximated as a point in an M-dimensional rectangular parallelepiped I1;; with the
edges of the length (2-4). This is further used as a searching space to find the globally optimal hole shape
(Section 4) with taking {d,,} as the design variables. In view of the loading symmetry (2-1) they can be
taken as real-valued quantities without loss of generality.

The integers p =2,3,4,...and M =1, 2, 3, ... are governing parameters determining the behavior
of the numerical simulations and their convergence to a stable solution (Section 6).

2.2. Kolosov—Muskhelishvili formalism for 2D linear elasticity. This widely known approach replaces
the biharmonic real-valued Airy function with two complex-valued functions ®¢(¢), Wo(¢), ¢ € T
[Muskhelishvili 1963] commonly referred to as the KM potentials. They are analytic functions in 7
and continuously extendible on y.The loading conditions (2-1), (2-2) are then equivalently expressed as

Do) =B+D(); V@) =T+W(Q), e D), ¥(E@)=0(¢™:; (2-52)
4B=Tr{c*} =0+ P; 2I'=Dev(c*}=0Q0—P; ImB,ImI =0; (2-5b)

and )
~ 2@ ©)Re © (&) + B] +0E)P'(E)+To (§) =—-E)V(E), Ecvy; (2-6)

respectively. The terms in (2-6) are rearranged specifically for later use [Kalandiya 1975].
At any given shape L, identities (2-5), (2-6) comprise together the direct boundary-value problem
in ®(§), W(&). This formulation allows to employ the rich machinery of the complex-variable theory.
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Especially relevant here is to expand the KM potentials in the convergent Laurent series (the summation
begins with k£ = 2 to match the asymptotic (2-5a))

(o.¢] o.¢]
OO =) aF, W@ =) hiTF, reT4y. 2-7)
k=2 k=2
The coefficients {ax}, {bx} may partially vanish due to the adopted rotational symmetry. Nevertheless, one

should keep in mind that both expansions are infinite even for a finite-term mapping w(¢) [Muskhelishvili
1963].

2.3. Explicit closed form of the hoop stress. The left-hand side of (2-6) is the boundary value of an T-
holomorphic function tending to zero at infinity. In turn, this means that its series expansion involves no
nonnegative powers in ¢. Substitution of (2-3) and (2-7) in (2-6) with zeroing the resultant coefficients
for ¢", n > 0 gives the infinite linear algebraic system in ay, k > 2 [Kalandiya 1975]

J 00
ajin — Z(j —k+Ddjjprax—(j+1) Zdj+k+16_lk =A;, j=01,..., (2-8a)
k=1 k=1
Ag=2B-T, A1 =0, A;j=-2B(j+)d;s, j=>2. (2-8b)

The first sum is omitted in (2-8a) when j =0, 1. Again, by the symmetry arguments, the above equations
may be eliminated partially from the system, thus facilitating the computations.

Actually, the second potential W ({) remains outside the system thus allowing to separate out the
coefficients {a;} only needed to compute the boundary hoop stress o, (¢§) [Muskhelishvili 1963]

o7 (§) =4Re Po(§) (2-9)

that are of our interest here. Note in passing that by the principle of maximum applied to harmonic
function Re ®((¢) we have for the hoop stress average over an arbitrary hole shape (at | P|, |Q| = 1, for
definiteness)

07t = Po(00) =2 = K =max |07 (§)| = 2, (2-10)

where K stands for the SCF.
Remarkably, for the finite term mapping (2-3) system (2-8) breaks up into two subsystems

(a) the first M nonvanishing equations for the first M unknowns {a;} and
(b) the infinite remainder for the “tail” {a;}, k > M.
The key feature of the subsystem (b)enumi is its finite-differences structure [Levy and Lessman 1958] by

which the “tail” is expressed analytically through the first M unknowns as proved at length in [Vigdergauz
2006; Vigdergauz and Elishakoff 2019]. The resultant formula reads

Ru(€)

o} =B
0&) =B+

2-11)

where Ry (§) is a polynomial of degree M in &:

Ry &) =ruM +ry M 4 4y (2-12)
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with the coefficients
m

ro=a;1 =0, ri=ay, rp=ans — Z(—l)kkdkam+k+1, m>2. (2-13)
k=2

In other words, equations (2-11)—(2-13) are exact up to negligible errors caused by numerically solving
the subsystem (a)enumi at moderate values of M. When, for example, p = 4, the numerical simulations
gives stable results at most for M = 8 — 12.

Note that just this (almost) analytical solution of the direct problem provides the numerical effective-
ness of the SCF local optimization.

3. Geometrical constraints

The question here is how to quantitatively assess the deviations of real holes surfaces R(8) from the
nominally “ideal” shape with no local disturbances or spikes, like, say, a circle (R(6) = constant). We
advance the following two easy-to-measure dimensionless factors:

(1) The maximum peak-to-valley normalized height,

Rmax - Rmin

pILp) =
b Rmax

, 0<p=<1, Rmax=maxR(#), Rmin=minR(@), 6€nrp, (3-1

which equals to zero only for a circle. Here A, = [0; 7/ p] is the irreducible angular interval along L .
Any given p > 0 corresponds to a variety of curves from an ellipse with eccentricity +/p (2 — p) to a highly
irregular shape with many notches around the perimeter as exemplified in Section 6 (Figure 8, left).

(2) The normalized variation of R(6)

VL, = var[L ]

> 0. (3-2)
max

In conformity with the theory of real-valued functions [Natanson 1955], the (bounded) variation var[L ]

is here defined through the nonnegative discrete sums of absolute values of the differences of the radii

between each two adjacent points on the irreducible part L

n
var[L,] =sup > [R(arg(6i+1) — R(arg(®)| =0, (t}eL. fargt)}€ry,  (3-3)
i=0
The supremum is taken over all possible partitions of L, with an arbitrary set of points #, 1, ..., 1,

ordered by a chosen direction of traversing. Clearly, only one such set is used in numerically evaluating
the variations.
The variations are nontrivially bounded below [Natanson 1955] as

Var[Lp] > Rmnax — Rmin, (3-4)
where the equal sign is true for only monotonic functions so that

VILy] = plL,). (3-5)
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Say, the shape shown in the above-mentioned Figure 8 (left) has a small ratio p = 0.019 and a markedly
larger variation V =2p = 0.038 by which the function R() is forced to oscillate along the hole perimeter.
For a differentiable function R(6) one has with (3-2)

max

7/
V[L,,]:R_I/ p|R/(9)|d9. (3-6)
0

Again, as before, V[L ] is zero only on a circle R(6) = constant.

Remark. For an arbitrary one-term mapping (2-3) (¢) = ¢ 4 d,,¢ ' ~P" both parameters take the same
value thus reaching the equal sign in (3-5). Indeed, in view of (3-6),

R*() =1 +2d,, cos pd +d>; (3-7a)
R | 2|dn|
max = 1 +|d,| and Ruyin=1—|d,|, therefore p= T, (3-7b)
m
2pd /p in pé 2|d
VIL,] = L [ sin o] do =2l _ (3-7¢)
L+ldul Jo  /1+42dy, cos pd +d2 1+ |dn|

With (3-4) the last identity is however evident: function R(€) is monotonic in each irreducible part of
L, since sgn(R’'(#)) = —sgn(d,), 0 € .

Generally speaking, p and V are not interrelated for M > 1. On the contrary, they basically com-
plement each other in that p defines the maximal relative height of the notches while V is, through
(3-6), proportional to the tangent of the average slope angle ¥ of the notches edges. These are precisely
the parameters used in [Palmov 1963; Sheinin 1972] in developing a probabilistic risk evaluation of
the surface roughness, thus possibly bridging the gap between deterministic and stochastic uncertainty
assessments. In the current optimization context, their interplay becomes all the more intimate (Section 6)
returning us again to the equal sign in (3-5).

Before leaving this section we note the following useful features of the proposed approach:

» Neglecting the V-factor may adversely affect the accuracy of some previous published results [Med-
ina and Hinderliter 2014; Chang et al. 2017] where the restriction of very small slopes ¢ < 1 was
involved. Taking into account irregularities tilts substantially expands the practicability of this study.

» Mathematically, an integral-type assessment V of the slopes provides a numerically stable opti-
mization scheme and requires less computational efforts than direct angular differentiation of R(¥})
between closely spaced points.

» Both parameters do not need to be as small as frequently supposed in the literature.

4. One-side constraining inequalities and problem statement

Our aim is to numerically minimize the SCF at given p and V in a representative interval of their values.
For embedding these constraints into the minimization framework it is desirable to reformulate them
as one-side inequalities. For this purpose we recall the previous result in [Vigdergauz 2006], which
states that the unconstrained K-minimizing shape is always a circle with one exception of the four-fold
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symmetric hole under remote shear. In this case (named S4 for brevity) the optimal shape looks as a
smoothed quadrangle with
p*=V*=023, K =278, 4-1)

in contrast to the circle-related value K = 4. Keeping this in mind, we intuitively conjecture that here
the SCF is a monotonically decreasing function of either of these two quantities from zero to p* and an
increasing one afterward while in all other cases it increases monotonically everywhere. Then one can
introduce the following constraining inequalities:

P = L0, Po € [Oa p*]a Y = L0, 0 = ,0*» S4 case; (4-23)
P >po, po=0, any other case; (4-2b)

and analogously for V. These are tailored especially to fix a priori the intervals of monotonicity of the
functions K (p), K (V). Both p- and V -types can be applied either separately or together. For the case
(4-2b) they are used directly while for (4-2a), their appropriate combination is given and explained in
Section 6.

It is hoped that the adequate choice of the inequality sign within each interval will make the K (p)
minimum occur exactly at the boundary point pg. This presumption is fully justified by the numerical
simulations for a set of p* and V values in the representative interval [0, 0.75] (Section 6).

Remark. Noteworthy is that the SCF-minimizing p and V values coincide not only for S4 as indicated
by (4-1) but also for the general minimization case as revealed by the numerical simulations.

With these preliminaries we are now in a position to quantitatively formulate the following optimiza-
tion problem:

Given an external loading type to find, over all admissible set of the design variables {d,,}, the
p-symmetrical hole shape L, € 1y which minimizes the stress concentration factor K under
either or both (p and V') constraint types (4-2)

K(L,, M, c") m) min(p, M, c¥). 4-3)
Here ¢* abstractly denotes given thresholds p*, V*.

5. Numerical solution procedure

Computationally, (4-3) is a rather standard optimization problem whose numerical solution is conve-
niently obtained by an iterative loop over successively modified shapes with computing the criterion K
(fitness function) of each candidate. For this purpose, we apply the approach developed and validated
in the first author’s previous paper [Vigdergauz 2006]. It includes three main ingredients: an enhanced
direct solver (2-11)—(2-13), a standard GA-based global searching engine (see, for instance, [Goldberg
and Sastry 2007]) and an efficient shape encoding scheme (2-3) within the GA framework. The use of
a global scheme rather than a gradient-type scheme is intended to avoid being trapped by the highly
nonlinear and sensitive cost function K.

The GA starts with randomly generating an initial population of individual binary strings that might
be possible solutions. Each string concatenates M randomly generated two-byte signed integers 1, :
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W<, <W,W=2Y—1,m=1, M. In view of (2-4), this encodes a shape L, within the searching

space ITy; as
I

=W
Substitution of (5-1) into (2-3) decodes the corresponding shape. However, in doing so, self-intersecting
shapes may appear, since the inequalities (2-4) are only necessary, but not sufficient to guarantee their
absence. To the author’s best knowledge, no conditions imposed on the Laurent terms (2-3) to effectively
trim out any self-intersection are known thus far. Therefore, we check each decoded curve for possibly
breaking the monotonicity

dm

m=1,2,....M. (5-1)

dargw(0) -
de -
which provides the more restrictive shape property of star-shapedness. It is clear, physically, that only
star-shaped holes are promising for optimization. In the numerical simulations (Section 6) this is attested
to by the fact that the optimal values of {d,,} are rather distant from the intervals limiting values (2-4).
After decoding each string into the corresponding shape its fitness K is then computed through (2-11)-
(2-13) at a large number of the unit circle points. Whenever the current shape violates any imposed
constraint, including (5-2), a significant constant penalty is assigned as its fitness value without further
computation of K. After that, all strings are subject to the GA binary operations of 1-point crossover
and mutations performed with certain predefined probability levels to obtain offspring.
This is repeated many times (typically several hundreds) up to achieving a stable solution which is
believed to be close to the global optimum.
The stopping criterion is a problematic issue in GA iterations as there are no practical means to assess

0, 6¢eh, (5-2)

the actual error in real applications. Instead, the optimization is stopped after some Nj, iterations —in
belief that the process really converges. However, at specific stochastic combinations, GAs may become
“stuck” quite far from the global optimum. This is prevented by multiple GA runs carried out for every
result point. Practically, Nje, is chosen in such a way that the optimization criterion remains unchanged
in successive iterations well in advance of termination. For the problem at hand, we averaged five runs
per point with N, = 200 = 500 depending on specific values of the governing parameters.

6. Numerical results

This constrained optimization scheme is tested numerically in the most informative case of square symme-
try (p = 4) except for the case p = 64 in Section 6.3. For comparison convenience, the results obtained
are displayed and commented (wherever possible) in parallel for both bulk and shear loading modes.
They are further grouped into three subsections according to constraints combinations preimposed on
the shape geometry.

6.1. The p-inequality constraint alone. Our first set of computations is carried out with no V -constraint
when the minimization problem (4-3) is treated only under p-inequalities (4-2). The resultant curves in
Figure 2 visualize the attainable lower bound on K (p) as yielded by the GA searching.

The corresponding K -minimizing hole shapes (normalized to the unit area) are exemplified in Figure 3.
Here the attention is drawn to the resultant smoothly shaped “arms”, which are gradually lengthening
in an attempt to match the growing constraint p. Notice that in the shear (antisymmetric) mode the
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GA optimizes also the shapes orientation by aligning the “arms” along the diagonals y = £=x where the
(continuous) hoop stress o7, () must change its sign. This is of no concern in the isotropic bulk mode
but we rotate them through the same angle for easier comparison to their shear-related counterparts.

Figure 4 illustrates the shape convergence to the stable solution with increasing number M of the
mapping terms at a given p. One can see that the bulk mode exhibits faster convergence (M > 8 against
M > 12). This can directly be attributed to the higher local curvature occurring near the diagonal since
this is the only substantial difference between the shapes.

8.0

7.0
)

6.0

5.0

N e

bulk ///
1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0
Figure 2. The minimal attainable K (o) for the basic loads.

3.0

stress concentration factor K (o)

2.0
0.0 0.

Y (0.75; 6.27‘) Y (0.73; 7.36) /j

0.23:2.71) (0.23:2.78) 4/

% 0.67;4.73) | . (0.67;5.13)
o
- % /74\
0.50; 3.37) -
_‘j// >/( — )( (0.50: 3.83)

/ /

/ /\\p=o.o;l<<p)=2.00) / \\p=o.0;K(p>=4.00>
[ x [{ x

Figure 3. The upper-right quarter of K-optimal hole: the shape evolution with increas-
ing p for bulk load (left) and pure shear (right). The globally optimal shapes at p = 0.0
and p = 0.23, respectively (Equation (4-1)), are emboldened for better comparison.
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// (=4 k=953 /// (M =4, K = 10.44)

i : i .

Figure 4. The upper-right quarter of K-optimal hole: the shape convergence to the
stable state (bolded lines) at p = 0.67 with increasing number M of nonzero mapping
terms for bulk load (left) and pure shear (right).

\\
N\
N\

8.0 8.0
0.75
8 7.0 8 7.
~ 0.75 ~
b‘-’ 6.0 b‘-‘ 6.0
% ] | 2 0.67
= 0.67 g
‘& . z ol ? =0.0
o0 0 |
g 0.5 S \\ /\ 05
= 30 | = 3 | |
o o)
_ 0.23 0.23 l
g . p=0.0 ] °§’ .
= ] = \L \
g 1.0 g 1.0 /
= — ; = —— j\
0.0 L 0.0
0 5 10 15 25 30 35 40 a5 [ 5 10 15 20 25 30 35 40 a5

0 2Edeg.) 0 (deg.)

Figure 5. The upper-right quarter of K-optimal hole: the hoop stress angular distribu-
tion in the physical plane E for bulk load (left) and pure shear (right).

The angular stress distributions o, (6) (normalized by the unit load) along the K-minimal shapes
in the physical plane E is depicted by Figure 5. Interestingly, with the increasing p, the distributions
form a distinct step near the diagonal while remaining almost zero along the rest of the shape. To avoid
confusion, note that the bulk-related nonzero stress average (2-10) holds only in the auxiliary ¢-plane as
shown in explanatory Figure 6.

Such piecewise constant pattern is consistent with two others obtained previously in the similar con-
text:
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05 [ |/

023 _/ /]

p=00 ~] [ ]
‘_ /
L /4

0.0 —

normalized hoop stress o (¢)

0 5 10 15 30 35 a0 a5

¢ (deg.)
Figure 6. The bulk case: the hoop stress from the left-side of Figure 4 depicted along
the unit circle y in the auxiliary complex plane.

(a) the unrestricted minimization of K under pure shear [Vigdergauz 2006];

(b) the stress-smoothing optimization in perforated checkerboard structures [Vigdergauz 2012].

This numerically found smoothing-minimization relationship should be studied also analytically in the
future. This is more so relevant since combination of the equistress concept advanced in [Cherepanov
1974] and the maximum principle [Ahlfors 1953] for harmonic function ®(z) proves directly that both
criteria are equivalent at least for the unconstrained shape optimization of several holes under bulk-

dominating remote load [Vigdergauz 1976].
Figure 7 presents a typical dependence of the K-minimum stress distribution on the number of held

mapping terms. As this shows, the stress peak and attendant oscillations are progressively being smoothed
by larger M.

We see, therefore, that the bulk- and shear-related K-minimum hole shapes have exactly the same
integral measures p and V but differ locally as clearly seen in Figure 3.

Finally, of special importance is that a posteriori computed normalized variation V (p) of the K-
minimum shapes appear, in numerical fact, to attain the smallest possible values everywhere for p €
[0, 0.75] by saturating the nonzero lower bound for monotonous functions (3-5): V(o) = Viin(p) = p.
To put it differently, the p-constrained minimization of the SCF has the nice property of minimizing the
optimal shape variation as well:

KP = min K (po) <> Vmin(p0) = V" = po. (6-1)

endowing the function R(6) with the monotonicity property in the irreducible interval A ,. However, the
exact explanation of this remains unclear.

6.2. The V-inequality constraint alone. Here, the limitations are obtained from (4-2) by the evident
substitution of p, pg, p* with V, Vy, V*, respectively. With the established monotonicity of the functions
min K (p) and Viyin(p), one can write analogously to (6-1),

K‘(,O) = min K (Vjy) <> min p (V) = pg,o) = W, (6-2)
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Figure 7. The upper-right quarter of K-optimal hole: hoop stress convergence to the

stable state (bolded lines) at p = 0.67 with increasing number M of nonzero mapping

terms for bulk load (left) and pure shear (right).
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normalized hoop stress o, (0)
o0

normalized hoop stress o;;(0)
Y
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so that if K ‘(,0 ) =K /(,0) then ,0%,0 ) = 00> V,SO) = Vy. Therefore, taken separately, both p- and V-constraints
return the same optimal results already detailed in the previous subsection, as expected.

6.3. Both constraints combined. Taken together, they have a nontrivial sense only as the following
inequality constraints
p=<po, V=Vo, Vo> po, (6-3)

where the last one is introduced to conform with the general relation (3-5). The evident modification of
(6-3) for the exceptional S4 case is omitted here to save space.

The first two opposite-sided bounds are intended to detect the K -minimizing shapes with V > p (and
hence with K (V) > K (p)) which appear to be unattainable by applying these constraints separately as
before. The stronger this inequality is and the larger p is, the more wavy is the K-optimal hole shape
with increasing number of smoothed notches as exemplified in Figure 8 (left). Again, as before, the
resultant optimal shapes tend to avoid the hoop stress jumps or singularities with a step-like pattern of
the tangential stresses (Figure 8, right). The oscillations observed along the step’s top side are caused
by the local nature of the K-minimum criterion. These are small (with the valley-to-peak ratio greater
than 96.5%) and may be further diminished with increasing M. More extended numerical results are too
bulky to be presented here. We will analyze this case in the future.

7. Concluding remarks

We advanced two possible parameters with clear engineering meaning for geometrically measuring hole-
shape irregularities. These are maximum height and average steepness of the shape deviations easily
embedded into the stable and highly accurate numerical scheme of the constrained minimization of the
stress concentration factor. The results obtained give a good indication of the SCF attainable lower limit
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Figure 8. Both constraints together for bulk load and p = 64: the upper-right quarter
of K-optimal hole (left) and the corresponding hoop stress (right) at V > p.

and the corresponding hole shapes. Fascinatingly, the K-minimum hoop stress distributions tend to be
piecewise constant with a distinctive step along strongly rounded notches and a very small stress value
and gradient in all other locations.

It should be emphasized that the analytical direct solver ((2-11)—(2-13)) cannot be extended to the
next in complexity cases of a single elastic inclusion or several interacting holes. Here, new approaches
are required for a stable and accurate minimization of the local K -criterion.

References

[Ahlfors 1953] L. V. Ahlfors, Complex analysis: an introduction to the theory of analytic functions of one complex variable,
McGraw-Hill, New York, 1953.

[Chang et al. 2017] Z. Chang, R. Liao, and W. Lu, “Surface stress concentration factor via Fourier representation and its
application for machined surfaces”, Int. J. Solids Struct. 113-114 (2017), 108-117.

[Cherepanov 1974] G. P. Cherepanov, “Inverse problems of the plane theory of elasticity”, Prikl. Mat. Mekh. 38:6 (1974),
963-979. In Russian; translated in J. Appl. Math. Mech. 38:6 (1974) 915-931.

[Cherkaev et al. 1998] A. V. Cherkaev, Y. Grabovsky, A. B. Movchan, and S. K. Serkov, “The cavity of the optimal shape under
the shear stresses”, Int. J. Solids Struct. 35:33 (1998), 4391-4410.

[Givoli and Elishakoff 1992] D. Givoli and I. Elishakoff, “Stress concentration at a nearly circular hole with uncertain irregu-
larities”, J. Appl. Mech. 59:25 (1992), S65-S71.

[Goldberg and Sastry 2007] D. E. Goldberg and K. Sastry, Genetic algorithms: the design of innovation, 2nd ed., Springer,
2007.

[Kalandiya 1975] A. I. Kalandiya, Mathematical methods of two-dimensional elasticity, Mir, Moscow, 1975.
[Levy and Lessman 1958] H. Levy and F. Lessman, Finite difference equations, Pitman, London, 1958.

[Medina and Hinderliter 2014] H. Medina and B. Hinderliter, “The stress concentration factor for slightly roughened random
surfaces: analytical solution”, Int. J. Solids Struct. 51:10 (2014), 2012-2018.

[Muskhelishvili 1963] N. I. Muskhelishvili, Some basic problems of the mathematical theory of elasticity, Noordhoff, Gronin-
gen, Netherlands, 1963.


http://dx.doi.org/10.1016/j.ijsolstr.2017.01.023
http://dx.doi.org/10.1016/j.ijsolstr.2017.01.023
https://doi.org/10.1016/0021-8928(75)90085-4
http://dx.doi.org/10.1016/S0020-7683(97)00214-X
http://dx.doi.org/10.1016/S0020-7683(97)00214-X
http://dx.doi.org/10.1115/1.2899509
http://dx.doi.org/10.1115/1.2899509
http://dx.doi.org/10.1016/j.ijsolstr.2014.02.011
http://dx.doi.org/10.1016/j.ijsolstr.2014.02.011
http://dx.doi.org/10.1007/978-94-017-3034-1

14 SHMUEL VIGDERGAUZ AND ISAAC ELISHAKOFF

[Natanson 1955] I. P. Natanson, Theory of functions of a real variable, Ungar, New York, 1955.

[Palmov 1963] V. A. Palmov, “State of stress in the neighborhood of a rough surface of elastic bodies”, Prikl. Mat. Mekh. 27:5
(1963), 963-969. In Russian; translated in J. Appl. Math. Mech. 27:5 (1963), 1479-1489.

[Pilkey and Pilkey 2007] W. D. Pilkey and D. F. Pilkey, Peterson’s stress concentration factors, 3rd ed., Wiley, New York,
2007.

[Pluvinage 2003] G. Pluvinage, Fracture and fatigue emanating from stress concentrators, Springer, 2003.
[Savruk and Kazberuk 2017] M. P. Savruk and A. Kazberuk, Stress concentration at notches, Springer, 2017.

[Shahzad et al. 2017] S. Shahzad, F. Dal Corso, and D. Bigoni, “Hypocycloidal inclusions in nonuniform out-of-plane elasticity:
stress singularity vs. stress reduction”, J. Elasticity 126:2 (2017), 215-229.

[Sheinin 1972] V. 1. Sheinin, “On the asymptotic method for calculating stress near rough surface of elastic solids”, Izv. Akad.
Nauk SSSR Mekh. Tverd. Tela 2 (1972), 94-102. In Russian; translated in Mech. Solids 7:2 (1972), 94—-102.

[Vigdergauz 1976] S. B. Vigdergauz, “Integral equation of the inverse problem of the plane theory of elasticity”, Prikl. Mat.
Mekh. 40 (1976), 566-569. In Russian; translated in J. Appl. Math. Mech. 40:3 (1976), 518-522.

[Vigdergauz 2006] S. Vigdergauz, “The stress-minimizing hole in an elastic plate under remote shear”, J. Mech. Mater. Struct.
1:2 (2006), 387-406.

[Vigdergauz 2012] S. Vigdergauz, “Stress-smoothing holes in an elastic plate: from the square lattice to the checkerboard”,
Math. Mech. Solids 17:3 (2012), 289-299.

[Vigdergauz and Cherkaev 1986] S. B. Vigdergauz and A. V. Cherkaev, “A hole in a plate, optimal for its biaxial extension-
compression”, Prikl. Mat. Mekh. 50:3 (1986), 524-528. In Russian; translated in J. Appl. Math. Mech. 50:3 (1986), 401-404.

[Vigdergauz and Elishakoff 2019] S. Vigdergauz and I. Elishakoff, “Energy-maximizing holes in an elastic plate under remote
loading”, J. Mech. Mater. Struct. 14:1 (2019), 139-154.

Received 28 Jun 2019. Revised 27 Aug 2019. Accepted 28 Sep 2019.

SHMUEL VIGDERGAUZ: shmuelvigdergauz@gmail.com
R&D Division, The Israel Electric Corp. Ltd., Haifa, Israel

ISAAC ELISHAKOFF: elishako@fau.edu
Department of Mechanical Engineering, Florida Atlantic University, Boca Raton, FL, United States

mathematical sciences publishers :'msp


https://doi.org/10.1016/0021-8928(63)90087-X
http://dx.doi.org/10.1002/9780470211106
http://dx.doi.org/10.1007/1-4020-2612-9
http://dx.doi.org/10.1007/978-3-319-44555-7
http://dx.doi.org/10.1007/s10659-016-9590-5
http://dx.doi.org/10.1007/s10659-016-9590-5
https://doi.org/10.1016/0021-8928(76)90046-0
http://dx.doi.org/10.2140/jomms.2006.1.387
http://dx.doi.org/10.1177/1081286511411571
https://doi.org/10.1016/0021-8928(86)90141-3
http://dx.doi.org/10.2140/jomms.2019.14.139
http://dx.doi.org/10.2140/jomms.2019.14.139
mailto:shmuelvigdergauz@gmail.com
mailto:elishako@fau.edu
http://msp.org

JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES

Founded by Charles R.

EDITORIAL BOARD

ADAIR R. AGUIAR
KATIA BERTOLDI
DAVIDE BIGONI
MAENGHYO CHO
HUILING DUAN
YIBIN FU

IWONA JASIUK
DENNIS KOCHMANN
MITSUTOSHI KURODA
CHEE W. LM

ZISHUN LIU

THOMAS J. PENCE
GIANNI ROYER-CARFAGNI
DAVID STEIGMANN
PAUL STEINMANN
KENJIRO TERADA

ADVISORY BOARD

J. P. CARTER
D. H. HODGES
J. HUTCHINSON
D. PAMPLONA
M. B. RUBIN

PRODUCTION

SILVIO LEVY

msp.org/jomms

Steele and Marie-Louise Steele

University of Sdo Paulo at Sdo Carlos, Brazil
Harvard University, USA

University of Trento, Italy

Seoul National University, Korea

Beijing University

Keele University, UK

University of Illinois at Urbana-Champaign, USA
ETH Zurich

Yamagata University, Japan

City University of Hong Kong

Xi’an Jiaotong University, China

Michigan State University, USA

Universita degli studi di Parma, Italy

University of California at Berkeley, USA
Friedrich-Alexander-Universitit Erlangen-Niirnberg, Germany
Tohoku University, Japan

University of Sydney, Australia

Georgia Institute of Technology, USA

Harvard University, USA

Universidade Catdlica do Rio de Janeiro, Brazil
Technion, Haifa, Israel

production@msp.org

Scientific Editor

Cover photo: Ev Shafrir

See msp.org/jomms for submission guidelines.

JoMMS (ISSN 1559-3959) at Mathematical Sciences Publishers, 798 Evans Hall #6840, c/o University of California, Berkeley,
CA 94720-3840, is published in 10 issues a year. The subscription price for 2020 is US $660/year for the electronic version, and
$830/year (+$60, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues, and changes of address
should be sent to MSP.

JoMMS peer-review and production is managed by EditFLow® from Mathematical Sciences Publishers.

PUBLISHED BY
:I mathematical sciences publishers
nonprofit scientific publishing
http://msp.org/
© 2020 Mathematical Sciences Publishers


http://msp.org/jomms/
mailto:production@msp.org
http://msp.org/jomms/
http://msp.org/
http://msp.org/

Journal of Mechanics of Materials and Structures

Volume 15, No. 1 January 2020

Stress-minimizing holes with a given surface roughness in a remotely loaded elastic
plane SHMUEL VIGDERGAUZ and ISAAC ELISHAKOFF

Analytical modeling and computational analysis on topological properties of 1-D
phononic crystals in elastic media MUHAMMAD and C. W. LIm

Dynamics and stability analysis of an axially moving beam in axial flow
YAN HAO, HULIANG DAI, NI Q1A0, KUN ZHOU and LIN WANG

An approximate formula of first peak frequency of ellipticity of Rayleigh surface
waves in an orthotropic layered half-space model TRUONG THI THUY
DUNG, TRAN THANH TUAN, PHAM CHI VINH and GIANG KIEN TRUNG

Effect of number of crowns on the crush resistance in open-cell stent design
GIDEON PRAVEEN KUMAR, KEPING ZUO, L1 BUAY KOH, CHI WEI ONG,
YUCHENG ZHONG, HWA LIANG LEO, PEI HO and FANGSEN CUI

A dielectric breakdown model for an interface crack in a piezoelectric bimaterial
YURI LAPUSTA, ALLA SHEVELEVA, FREDERIC CHAPELLE and
VOLODYMYR LOBODA

Thermal buckling and free vibration of Timoshenko FG nanobeams based on the
higher-order nonlocal strain gradient theory
GORAN JANEVSKI, IVAN PAVLOVIC and NIKOLA DESPENIC

A new analytical approach for solving equations of elasto-hydrodynamics in
quasicrystals VALERY YAKHNO

Expansion-contraction behavior of a pressurized porohyperelastic spherical shell
due to fluid redistribution in the structure wall
VAHID ZAMANI and THOMAS J. PENCE

15

<74

61

75

87

107

135

159


http://dx.doi.org/10.2140/jomms.2020.15.1
http://dx.doi.org/10.2140/jomms.2020.15.1
http://dx.doi.org/10.2140/jomms.2020.15.15
http://dx.doi.org/10.2140/jomms.2020.15.15
http://dx.doi.org/10.2140/jomms.2020.15.37
http://dx.doi.org/10.2140/jomms.2020.15.61
http://dx.doi.org/10.2140/jomms.2020.15.61
http://dx.doi.org/10.2140/jomms.2020.15.75
http://dx.doi.org/10.2140/jomms.2020.15.87
http://dx.doi.org/10.2140/jomms.2020.15.107
http://dx.doi.org/10.2140/jomms.2020.15.107
http://dx.doi.org/10.2140/jomms.2020.15.135
http://dx.doi.org/10.2140/jomms.2020.15.135
http://dx.doi.org/10.2140/jomms.2020.15.159
http://dx.doi.org/10.2140/jomms.2020.15.159

	1. Introduction
	2. Basic model: assumptions and notations
	2.1. Problem setup
	2.2. Kolosov–Muskhelishvili formalism for 2D linear elasticity
	2.3. Explicit closed form of the hoop stress

	3. Geometrical constraints
	4. One-side constraining inequalities and problem statement
	5. Numerical solution procedure
	6. Numerical results
	6.1. The -inequality constraint alone
	6.2. The V-inequality constraint alone
	6.3. Both constraints combined

	7. Concluding remarks
	References
	
	

