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A DIELECTRIC BREAKDOWN MODEL FOR AN INTERFACE CRACK
IN A PIEZOELECTRIC BIMATERIAL

YURI LAPUSTA, ALLA SHEVELEVA, FRÉDÉRIC CHAPELLE AND VOLODYMYR LOBODA

A mode III electrically conductive crack between two piezoelectric semi-infinite spaces under the action
of anti-plane mechanical loading and in-plane electrical field parallel to the crack faces is considered. All
electromechanical quantities are presented as piecewise analytic vector functions. The problem is solved
analytically, revealing an oscillating singularity at the crack tips in the stress and electric fields. To
eliminate the electric field singularity the dielectric breakdown (DB) model is applied. According to this
model, the electric field along some zone of the crack continuation is initially assumed to be equal to the
electric breakdown strength and the length of this zone remains still unknown. A nonhomogeneous com-
bined Dirichlet–Riemann boundary value problem for the crack with DB zone is formulated. An exact an-
alytical solution of this problem is presented and the DB zone length is found from the electric field finite-
ness at the end point of this zone. The simple transcendental equation with respect to DB zone length is
solved numerically and all required electromechanical quantities are found in closed analytical form. The
DB model for a crack in a homogeneous material is also considered and compared with known results.

1. Introduction

Ferroelectric ceramics are widely used in piezoelectric devices, such as sensors, resonators and actua-
tors, due to their distinctive piezoelectric propertyies. However, ferroelectric ceramics are brittle and
susceptible to cracking at all scales. Their premature failure can be caused by high mechanical stresses
or electrical fields. Therefore, it is very important to study the fracture behavior of piezoelectric ceramics
under the combined action of mechanical stresses and electrical fields.

Consideration of a crack within the framework of linear fracture mechanics initiates singularities
at the crack tips in stresses, deformations and, for piezoelectric materials, in electrical displacements
and electric fields. Different ways of removing the crack tip singularities for cracks in homogeneous
isotropic materials and modeling of fracture processes were initiated in [Leonov and Panasyuk 1959;
Dugdale 1960; Barenblatt 1962].

Important problems of statics and dynamics of structural interfaces, which can be used for an interface
crack investigation, were considered in [Bigoni and Movchan 2002; Bertoldi et al. 2007]. The mathemat-
ical modeling of the interface crack propagation was carried out in [Peride et al. 2009]. Mode III fracture
propagation in prestressed and prepolarized piezoelectric crystals was studied in [Craciun et al. 2004].
Different crack models for interface cracks in piezoelectric bimaterials and in dielectric/piezoelectric ones
were investigated in [Li and Chen 2008; Govorukha and Kamlah 2010; Sladek et al. 2012; Xu et al. 2015].

The way of eliminating the electrical displacement singularity for an electrically insulated crack in a
homogeneous piezoelectric material was suggested in [Gao and Barnett 1996], due to the development
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of a polarization saturation (PS) model. It was assumed, similarly to [Dugdale 1960], that the electrical
polarization reaches a saturation limit in a line segment in front of the crack. The length of this segment
was found from the condition of finiteness of electrical displacement at the end point of the segment.
The energy release rate (ERR) for this model was analyzed in [Gao et al. 1997]. A PS model for an
electrically permeable crack was studied in [Ru and Mao 1999]. The saturation condition effects on
the near-tip field and on the stress intensity factor, as well as the influence of the crack orientation
with respect to the electrical polarization direction was investigated in [Ru 1999; Wang 2000] for an
electrically impermeable crack. The electric saturation zone of circular and elliptical form in piezoelec-
tric and electrostrictive materials was investigated in [Jeong et al. 2004; Beom et al. 2006a; 2006b].
Different variants of saturation zone for cracks in an interlayer between piezoelectric materials were
studied in [Lapusta and Loboda 2009; Loboda et al. 2008; 2010]. A penny-shaped crack in an infinite
piezoelectric and thermo-piezo-elastic medium was analyzed with use of PS model in [Fan et al. 2012;
Li et al. 2017]. The electric-magnetic polarization saturation model is developed in [Zhao et al. 2015]
for the numerical analysis of a nonlinear interfacial crack in three-dimensional transversely isotropic
magneto-electro-elastic bimaterial.

The dielectric breakdown (DB) model was developed in [Zhang and Gao 2004], and used to study
the problem of an impermeable crack in a piezoelectric material in [Zhang 2004; Zhang et al. 2005].
According to this model the electric field is assumed to be constant and equal to the dielectric breakdown
strength in a strip ahead of the crack tip. For a conductive crack the DB model was developed in [Gao et al.
2006] and for a finite sized body it was applied in [Fan et al. 2009] using the boundary element method.
The DB model was generalized to the investigation of a conductive crack in an electrostrictive solid in
[Zhang and Gao 2012]. Electric and magnetic polarization saturation and breakdown models for penny
shaped-cracks in magnetoelectroelastic media were developed in [Zhao et al. 2013]. A semipermeable
penny-shaped crack in a piezoelectric media was studied in [Zhao et al. 2016] with use of the DB
model. A comparison between the PS and DB models for a penny-shaped cracks in three-dimensional
piezoelectric media was performed by [Fan et al. 2014].

It is worth mentioning that all results obtained in the framework of the DB model are related to
cracks in homogeneous piezoelectric materials. To the authors’ knowledge, no analytical investigations
concerning this model have been presented for interface cracks in piezoelectric, piezoelectromagnetic or
electrostrictive solids. This can be explained by complexity of the mathematical problem arising in this
case. In the present paper the dielectric breakdown model is applied for the first time to the investiga-
tion of an interface crack in a piezoelectric bimaterial under anti-plane mechanical and inplane electric
loadings. The problem is reduced to the nonhomogeneous combined Dirichlet–Riemann boundary value
problem with a special right side. Although this problem appears mathematically more complicated than
the Riemann–Hilbert problem, an exact analytical solution is found for an arbitrary length of DB zone.
The actual length of this zone is obtained from the condition of electric field finiteness. All required
electromechanical quantities are presented in analytical form.

2. Basic equations and motivation for DB model formulation

For a piezoelectric material the relationship between the main electromechanical characteristics are de-
fined by the relations [Parton and Kudryavtsev 1988]
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σi j = ci jksεks − esi j Es, Di = eiksεks +αis Es,

where σi j , εi j are the components of stress and strain tensor; Di , Ei are the components of the electric
induction and the electric field, ci jks , esi j are elastic and piezoelectric constants and αis are dielectric
constants.

The equilibrium equations in the absence of body forces and free charges are:

σi j, j = 0, Di,i = 0.

The expressions for the deformation and electric field have the form:

εi j =
1
2(ui, j + u j,i ), Ei =−φ,i ,

where ui are the components of the displacement vector and φ is the electric potential.
For the anti-plane mechanical loading and in-plane electric loading assuming the material is trans-

versely isotropic with the poling direction parallel to the x3-axis one has

u1 = u2 = 0, u3 = u3(x1, x2), φ = φ(x1, x2).

Then the constitutive relations can be written in the form{
σ3i

Di

}
= R

{
u3,i

φ,i

}
, (1)

where i = 1, 2 and R =
[

c44 e15

e15 −α11

]
.

The functions u3 and φ satisfy the equations 1u3 = 0, 1φ = 0; i.e., they are harmonic. Therefore, we
present them in the form

u =
{

u3

φ

}
= 2 Re 8(z)=8(z)+ 8̄(z̄), (2)

where 8(z)=[81(z),82(z)]T is an arbitrary analytic vector function of the complex variable z= x1+i x2

and an upper bar means complex conjugation.
Introducing the vectors

v′ = [u′3, D2]
T , P = [σ32,−E1]

T , (3)

and substituting (2) in (1) we obtain

v′ = A8′(z)+ Ā8̄′(z̄), (4)

P = B8′(z)+ B̄8̄′(z̄), (5)

where

A=
[

1 0
Q21 Q22

]
, B =

[
Q11 Q12

0 1

]
, Q = i R.

Suppose further that the plane (x1, x2) is composed of two half-planes x1 > 0 and x2 < 0. The
presentation (4), (5) can be written for regions x1 > 0 and x2 < 0 in the form

v(m) = A(m)8(m)(z)+ Ā(m)8̄(m)(z̄), P (m) = B(m)8′(m)(z)+ B̄(m)8̄′(m)(z̄), (6)
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where m = 1 for the upper region and m = 2 for the lower one; A(m) and B(m) are the matrices A and
B for the regions 1 and 2, respectively; 8(m)(z) are arbitrary vector functions, analytic in the regions 1
and 2, respectively. Next we require that the equality P (1) = P (2) holds true on the entire axis x1. Then
it follows from (6) that

B(1)8′(1)(x1+ i0)+ B̄(1)8̄′(1)(x1− i0)= B(2)8′(2)(x1− i0)+ B̄(2)8̄′(2)(x1+ i0). (7)

Here F(x1± i0) designates the limit value of a function F(z) at x2→ 0 from above or below of the
x1-axis, respectively. The equation (7) can be rewritten as

B(1)8′(1)(x1+ i0)− B̄(2)8̄′(2)(x1+ i0)= B(2)8′(2)(x1− i0)− B̄(1)8̄′(1)(x1− i0).

The left and right sides of the last equation can be considered as the boundary values of the functions

B(1)8′(1)(z)− B̄(2)8̄′(2)(z) and B(2)8′(2)(z)− B̄(1)8̄′(1)(z), (8)

which are analytic in the upper and lower half-planes, respectively. But it means that there is a function
M(z), which is equal to the mentioned functions in each half-plane and is analytic in the entire plane.

Assuming that M(z)|z→∞→ 0, on the basis of the Liouville theorem we find that each of the func-
tions (8) is equal to 0 for any z from the corresponding half-plane. Hence, we obtain

8̄′(2)(z)=(B̄(2))−1 B(1)8′(1)(z) for x2 > 0, (9)

8̄′(1)(z)=(B̄(1))−1 B(2)8′(2)(z) for x2 < 0. (10)

Further, we find the jump in the vector function

〈v′(x1)〉 = v′(1)(x1+ i0)− v′(2)(x1− i0), (11)

when passing through the interface. From (6)1 we determine

v′(m)(z)= A(m)8′(m)(z)+ Ā(m)8̄′(m)(z̄),
or

v′(m)(x1± i0)= A(m)8′(m)(x1± i0)+ Ā(m)8̄′(m)(x1∓ i0);

substituting in (11), one gets

〈v′(x1)〉 = A(1)8′(1)(x1+ i0)+ Ā(1)8̄′(1)(x1− i0)− A(2)8′(2)(x1− i0)− Ā(2)8̄′(2)(x1+ i0).

Finding further 8′(2)(x1− i0) = (B(2))−1 B̄(1)8̄′(1)(x1− i0) from (10) and substituting this expression
together with (9) in the latest formula at x2→+0, leads to

〈v′(x1)〉 = D8′(1)(x1+ i0)+ D̄8̄′(1)(x1− i0),

where D = A(1)− Ā(2)(B(2)
)−1 B(1). Introducing a new vector function

W(z)=
{

D8′
(1)
(z), x2 > 0,

−D8′
(1)
(z), x2 < 0,

(12)

the last relation can be written as

〈v′(x1)〉 =W+(x1)−W−(x1), (13)
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where superscript + and − mean the limit values of W(z) as z→ x + i0 and z→ x − i0, respectively.
From (6)2 we have

P (1)(x1, 0)= B(1)8′(1)(x1+ i0)+ B̄(1)8̄′(1)(x1− i0). (14)

It follows from (12) that

8′(1)(x1+ i0)= D−1W(x1+ i0), 8̄′(1)(x1− i0)=−( D̄−1)−1W(x1− i0);

substituting these relations into (14) leads to

P (1)(x1, 0)= SW+(x1)− S̄W−(x1), (15)

where S= B(1)D−1. Simple calculations show that

S= [A(1)(B(1))−1
− Ā(2)(B̄(2))−1

]
−1. (16)

The matrix S for the class of piezoelectric materials being considered has the structure

S=
[

is11 s12

s21 is22

]
, (17)

where all the skl are real.
Further transformation of (13) and (15), performed similarly to [Lapusta et al. 2017], leads to

σ
(1)
32 (x1, 0)− im j E (1)1 (x1, 0)= t j [F+j (x1)+ γ j F−j (x1)], (18)

〈D2(x1, 0)〉+ is j 〈u′3(x1, 0)〉 = F+j (x1)− F−j (x1), (19)

where
F j (z)=W2(z)+ is j W1(z) ( j = 1, 2). (20)

and

s j =−m j , t j = s12−m j s22, m j =∓

√
−

s11s12

s21s22
, γ j =−(s12+m1s22)/t j ( j = 1, 2).

Let’s assume further that an electrically conductive interface crack arises in the section [c, a] of the
material interface. The half-spaces are subjected to uniformly distributed shear stress σ∞23 and electric
field E∞1 at infinity, which do not depend on coordinate x3. The crack faces are free of loading. These
kinds of external fields produce the anti-plane state, therefore, only the cross-section orthogonal to x3

(Figure 1) can be considered.
The boundary conditions for the formulated problem for x2 = 0 are

σ
(1)
23 = σ

(2)
23 = 0, E (1)1 = E (2)1 = 0 for c < x1 < a, (21)

〈σ23〉 = 0, 〈D2〉 = 0, 〈u′3〉 = 0, 〈E1〉 = 0 for x1 /∈ (c, a). (22)

Satisfying conditions (21) and (22) with the use of (18), (19) for j = 1 provide the continuity of the
function F1(z) over the segments x1 /∈ (c, a) of the material interface and also leads to

F+1 (x1)+ γ1 F−1 (x1)= 0 for c < x1 < a. (23)
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Figure 1. An electrically conducting crack between two piezoelectric materials.

Taking into account further that for x1 /∈ (c, a) the relationships F+1 (x1)= F−1 (x1)= F1(x1) are valid,
it follows from (18) that

(1+ γ1)t1 F1(x1)= σ
(1)
23 (x1, 0)− im1 E (1)1 (x1, 0) as x1→∞.

Using that the function F1(z) is analytic in the whole plane cut along (c, a) and applying the conditions
at infinity, one gets from the last equation

F1(z)|z→∞ = σ̃23− i Ẽ1, (24)

where σ̃23 = σ
∞

23 /r1, Ẽ1 = m1 E∞1 /r1, r1 = (1+ γ1)t1.
The solution of (23) under the condition at infinity (24) was found with use of [Muskhelishvili 1977]

in the form

F1(z)= (σ̃23− i Ẽ1)
z− (a+ c)/2− iεl
√
(z− c)(z− a)

(
z− c
z− a

)iε

, (25)

where ε = 1
2π ln γ1, l = a− c.

A similar analysis can be carried out for j = 2 in (18), (19) and the function F2(z) can be obtained.
The stress and electric fields at the interface are obtained from (18), (25) as follows:

σ
(1)
23 (x1, 0)− im1 E (1)1 (x1, 0)=±(σ∞23 − im1 E∞1 )

x1− (a+ c)/2− iεl
√
(x1− c)(x1− a)

(
x1− c
x1− a

)iε

for x1 > a, (26)

where the upper sign corresponds to x1 > a and the lower sign to x1 < c.
The electric induction and the derivative of the displacement jumps are found from the formula (19)

in the form

〈D2(x1, 0)〉+is1〈u′3(x1, 0)〉=−
(σ∞23 i+m1 E∞1 )

t1
√
γ1

(x1−(a+c)/2− iεl)
√
(x1−c)(a− x1)

(
x1−c
a− x1

)iε

for c< x1<a. (27)
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Integrating the last relation, we obtain

〈D̂2(x1, 0)〉+ is1〈u3(x1, 0)〉 =
√
(x1− c)(a− x1)

{
σ∞23 i +m1 E∞1

t1
√
γ1

(
x1− c
a− x1

)iε}
for c< x1 < a, (28)

where 〈D̂2(x1, 0)〉 =
∫
〈D2(x1, 0)〉dx1.

It should be noted that for the case of a homogeneous material formulas (26) and (28) take the form

σ
(1)
23 (x1, 0)− im1 E (1)1 (x1, 0)=±(σ∞23 − im1 E∞1 )

x1− (a+c)/2
√
(x1− c)(x1− a)

for
{

x1 > a (+ sign),
x1 < c (− sign),

(29)

〈D̂2(x1, 0)〉+ is1〈u3(x1, 0)〉 = t−1
1 (σ∞23 i +m1 E∞1 )

√
(x1− c)(a− x1) for c < x1 < a. (30)

It is clearly seen from the formulas (29), (30) that mechanical and electrical components are indepen-
dent for a homogeneous material, therefore, electrical characteristics at the whole interface are completely
defined by external electric loading while mechanical – by mechanical one. Another situation takes place
when considering the case of a bimaterial treated here. In this case mechanical and electrical components
are coupled (see Equations (26)–(30)) and their mutual influence is demonstrated in Figures 2–5.

The calculations were performed for a bimaterial with the following characteristics:

c(1)44 = 35.3 GPa, e(1)15 = 17.0 C/m2, α
(1)
11 = 15.1× 10−9 C/(Vm),

c(2)44 = 42.5 GPa, e(2)15 =−0.48 C/m2, α
(2)
11 = 0.0757× 10−9 C/(Vm),

and different values of mechanical and electric loadings.
The calculated tangential crack openings (sliding) 〈u3(x1, 0)〉 for c = −10 mm, b = 10 mm, σ∞23 =

10 MPa, and different values of E∞1 are presented in Figure 2 for the right vicinity of the left crack tip and
for the left vicinity of the right tip. It is seen that for E∞1 = 0 the crack opening has the same behavior,
but with different values of sliding, at the left and right crack tips. However an increase of E∞1 leads to
increasing the crack opening at the left crack tip and decreasing it at the right one.

Figure 2. Dependence of the crack sliding 〈u3(x1, 0)〉 at the left and right crack tips,
respectively, on E∞1 for σ∞23 = 10 MPa. Curves I , II and III correspond to E∞1 = 0,
300 kV/m and 600 kV/m, respectively.
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Figure 3. Variation of the electric field E (1)1 (x1, 0) along the left crack continuation
(left) and the right crack continuation for σ∞23 = 10 MPa and different values of E∞1 .

The variation in electric field E (1)1 (x1, 0) along the crack continuations for the same materials, crack
length and loadings are given in Figure 3. These figures suggest that an increase in E∞1 causes an increase
in the intensity of the electric field at the right crack tip and a decrease in its absolute value at the left
crack tip. Changing the E∞1 sign leads to the same phenomenon, but with permutation of the crack tips.
Thus, in contrast to the case of a crack in a homogeneous material, the electrical fields at the right and
left crack tips of an interface crack become substantially different for nonzero external electric fields.

In some cases it is necessary to know the behavior of electromechanical quantities outside of the
material interface. To define this behavior we obtain from (6)2 and (12)

P (m) = 2 Re{K (m) W(z)}, (31)

where K (1)
= B(1)D−1, K (2)

=−B(2) D̄−1.
Considering j = 1 and j = 2 in (20) and solving the system obtained with respect to W1(z) and W2(z)

one gets

W1(z)=
F1(z)− F2(z)

i(s1− s2)
, W2(z)=

s2 F1(z)− s1 F2(z)
s2− s1

(32)

Formulas (31) and (32) define the shear stress and the electric field component at any point of the bima-
terial domain via the functions F1(z) and F2(z) obtained above.

Figure 4 demonstrates the result of use of the formulas (31) and (32) for determination and presentation
of electromechanical characteristics outside of the material interface. Namely, the shear stress distribution
at the right crack tip in the upper part of the medium is shown in this figure. The curves with markers
represent the level lines of the shear stress σ (1)32 (x1, 0), which demonstrate its variation in the vicinity of
the right crack tip. Similar fields can be drawn with use of (31) and (32) for other electromechanical
components at any subdomain of the medium.

3. Formulation of the problem and dielectric breakdown model consideration
for an interface crack

By separating the real and imaginary parts of (26) one can see that the mechanical stress and the electric
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Figure 4. Variation of the shear stress σ23(x1, x2) distribution at the vicinity 0.004 m ≤
x1 ≤ 0.02 m, 0≤ x2 ≤ 0.015 m of the right crack tip.

field are singular at the crack tips. Moreover this singularity is oscillating. Square root singularity
takes place at the crack tip also in a case of a homogeneous material. To remove the oscillation and
to eliminate completely the singularity in the electric field the dielectric breakdown model (DB model)
is applied. This model was suggested in papers by [Zhang and Gao 2004] for a conducting crack in a
homogeneous piezoelectric material. In the present paper the generalization of this model to the interface
crack is suggested. As follows from Figures 2 and 3, the DB zone lengths should be different at the left
and right tips of an interface crack. Moreover, it will be shown later that these zones for an interface
crack are either both very short (for E∞1 = 0) or one zone is substantially shorter than another one,
therefore, their mutual influence can be neglected. Taking into account this circumstance we’ll consider
for simplicity only one zone paying the main attention to the longer one and assuming that it occurs at the
right crack tip (Figure 5). If the longer zone occurs at another crack tip then this zone can be considered
by simple transformation of half-spaces.

Figure 5. An electrically conducting interface crack with dielectric breakdown zone at
the right crack tip.
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Thus the boundary conditions for the considered model can be written as

σ
(1)
23 = σ

(2)
23 = 0, E (1)1 = E (2)1 = 0 for c < x1 < a, (33)

E (1)1 = E (2)1 = Eb, 〈σ23〉 = 0, 〈u′3〉 = 0, for a < x1 < b, (34)

〈σ23〉 = 0, 〈D2〉 = 0, 〈u′3〉 = 0, 〈E1〉 = 0 for x1 /∈ (c, b), (35)

where Eb is the dielectric breakdown strength, defined as a critical electric field at which partial
discharge starts to occur around the crack tip [Gao et al. 2006].

Satisfying the interface conditions (33) with use of (18) one gets the equation (23), and the first and
third conditions (34) together with (19) lead to

Im[F+1 (x1)+ γ1 F−1 (x1)] = −m1 Eb/t1,

Im[F+1 (x1)− F−1 (x1)] = 0 for a < x1 < b. (36)

Satisfaction of the boundary conditions (35) provides the analyticity of the function F1(z) outside of
the interval (c, b). The relations (36) lead to the equation

Im F±1 (x1)= E∗ for a < x1 < b, (37)

where E∗ =−m1 Eb/r1.
Equations (23) and (37) present the nonhomogeneous combined Dirichlet–Riemann boundary value

problem. The conditions at infinity (24) remain valid for this problem also. Following the paper by
[Nakhmein and Nuller 1986] the general solution of the homogeneous problem corresponding to (23), (37)
can be presented in the form

F1h(z)= P(z)X1(z)+ Q(z)X2(z), (38)

where
P(z)= C1z+C2, Q(z)= D1z+ D2.

The functions

X1(z)= ieiχ(z)/
√
(z− c)(z− b), X2(z)= eiχ(z)/

√
(z− c)(z− a), (39)

are the canonical solutions of the homogeneous problem corresponding to (23), (37),

χ(z)= 2ε ln
√
(b− a)(z− c)

√
(b− a)(z− a)+

√
(a− c)(z− b)

, z = x1+ i x2,

i =
√
−1 and C1, C2, D1, D2 are arbitrary real coefficients.

A particular solution of the nonhomogeneous problem (23), (37) we’ll find in the form

F1p(z)=8(z)X1(z), (40)

where 8(z) is assumed to be analytic in the whole complex plane with a cut [a, b] along the x1-axis. It is
obvious that F1p(z) satisfies (23). Substituting (40) into (37) and taking into account that Im X±1 (x1)= 0
on (a, b) one gets the following equation

Im8±(x1)= ψ
±(x1) for a < x1 < b, (41)
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where ψ(x1)= E∗/X1(x1).
A solution of the Dirichlet problem (41) has the following form [Gakhov 1966, formula (46.25)]:

8(z)=
Y (z)
2π

∫ b

a

ψ+(t)+ψ−(t)
Y+(t)(t − z)

dt +
1

2π

∫ b

a

ψ+(t)−ψ−(t)
t − z

dt, (42)

where Y (z)=
√
(z− a)(z− b) and 0≤ arg(z− a)≤ 2π , 0≤ arg(z− b)≤ 2π .

Taking into account that

ψ+(t)+ψ−(t)=−2E∗
√
(t − c)(b− t) sinhχ0(t),

ψ+(t)−ψ−(t)= 2E∗
√
(t − c)(b− t) coshχ0(t),

χ0(x1)= 2ε tan−1

√
(a− c)(b− x1)

(b− c)(x1− a)

and that Y+(t)=−i
√
(t − a)(b− t) on (a, b), the formula (42) takes the form

8(z)=
E∗

π
[−iY (z)L1(z)+ L2(z)], (43)

where

L1(z)=
∫ b

a

√
t − c
t − a

sinhχ0(t)
t − z

dt, L2(z)=
∫ b

a

√
(t − c)(b− t)

coshχ0(t)
t − z

dt.

The general solution of the problem (23), (37) is the sum of the solutions (38), (40). Arbitrary constants
C1, C2, D1, D2 can be found from the condition at infinity (24) together with condition of the displace-
ment uniqueness and the absence of an electric charge in the crack region [Knysh et al. 2012], which
due to (8) can be written in the form∫ b

c
(F+1 (x1)− F−1 (x1))dx1 = 0.

Taking into account that for the validity of last equation the coefficient before z−1 in the expansion of
F1(z) at infinity should be equal to zero [Herrmann and Loboda 2003] and also

X1(z)|z→∞ = i z−2eiβ
(

z+ iβ1+
c+ b

2

)
+ o(z−3),

X2(z)|z→∞ = z−2eiβ
(

z+ iβ1+
c+ a

2

)
+ o(z−3),

8(z)|z→∞ =−i R+ o(z−1), R =
E∗

π

∫ b

a

√
t − c
t − a

sinhχ0(t) dt,

one gets the following expressions for the unknown coefficients

C1 =−σ̃23 sinβ − Ẽ1 cosβ, D1 = σ̃23 cosβ − Ẽ1 sinβ,

C2 =−
c+ b

2
C1−β1 D1, D2 = β1C1−

c+ a
2

D1− R,
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where

β = ε ln
1−
√

1− λ

1+
√

1− λ
, β1 = ε

√
(a− c)(b− c), λ=

b− a
b− c

. (44)

From the exact analytical solution thus obtained,

F1(z)= (P(z)+8(z))X1(z)+ Q(z)X2(z), (45)

all required quantities at the material interface can be found. A similar analysis can be carried out for
j = 2 in (18), (19), leading to the function F2(z).

4. Stress intensity factor and DB zone length

According to equation (18) stress and electric field on the right hand side from DB zone can be presented
in the form

σ
(1)
32 (x1, 0)− im1 E (1)1 (x1, 0)= r1 F1(x1)= r1{(P(x1)+8(x1))X1(x1)+ Q(x1)X2(x1)}. (46)

For an arbitrary position of the point b (defining the DB zone length) right hand side of (46) is singular for
x1→ b+ 0 and besides P(b)+8(b) is real and X1(x1)|x1→b+0 = i/

√
(b− c)(x1− b) is pure imaginary.

Therefore, for any b the shear stress σ (1)32 (x1, 0) is finite for x1→ b+ 0 whilst E (1)1 (x1, 0) is singular. To
remove this singularity the equation

P(b)+8(b)= 0

should be satisfied. After some transformation this equation can be written in the form

m1 E∞1 cosβ + σ∞23 sinβ + 2ε
√

1− λ(σ∞23 cosβ −m1 E∞1 sinβ)

−
2m1 Eb

π(b− c)

∫ b

a

√
t − c
b− t

coshχ0(t) dt = 0. (47)

The obtained equation should be solved with respect to λ and then the point b can be found from the last
of (44). As a rule (47) can be solved numerically and the largest root of this equation from the interval
(0, 1), which we denote λ0, can be found.

In the particular case of homogeneous piezoelectric material one has ε = 0, χ0(t) = 0, β = 0, and
equation (47) reduces to the form

2
π(b− c)

∫ b

a

√
t − c
b− t

dt =
E∞1
Eb
.

After some transformations this can be written as
√
λ

π

∫ 1

−1

√
2+ λ(τ + 1)

1− τ
dτ =

E∞1
Eb
. (48)

For a small λ this equation has the following asymptotic solution

λ≈ λ0 =

(
πE∞1
4Eb

)2

. (49)
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For the case of two symmetrical DB zones (−b,−a) and (a, b) at both crack tips in a homogeneous
piezoelectric material the analysis similar to [Gao et al. 2006] leads to the following equation

a
b
= cos

πE∞1
2Eb

. (50)

Note that the asymptotic solution of this equation for small E∞1 /Eb completely coincides with the solu-
tion (49).

The shear stress at (a, b) according to (18), (34) can be found in the form

σ
(1)
32 (x1, 0)= t1[F+1 (x1)+ γ1 F−1 (x1)] + im1 Eb.

Substituting the formula (45), taking into account that according to [Herrmann and Loboda 2003]

X±1 (x1)=
±e±χ0(x1)

√
(x1− c)(b− x1)

, X±2 (x1)=
e±χ0(x1)

√
(x1− c)(x1− a)

for x1 ∈ (a, b)

and applying Plemeli’s formulas [Muskhelishvili 1977] we arrive at the expression

t−1
1 σ

(1)
32 (x1, 0)= P(x1)

eχ0(x1)− γ1e−χ0(x1)

√
(x1− c)(b− x1)

+ Q(x1)
eχ0(x1)+ γ1e−χ0(x1)

√
(x1− c)(x1− a)

+
E∗

π

{
−

√
x1− a
x1− c

[eχ0(x1)+γ1e−χ0(x1)]L1(x1)+
eχ0(x1)− γ1e−χ0(x1)

√
(x1− c)(b− x1)

L2(x1)

}
, (51)

where the integrals L1(x1) and L2(x1) should be considered in sense of principal value on Cauchy
[Muskhelishvili 1977].

Consider next the stress intensity factor (SIF) of the shear stress at the point a

K3 = lim
x1→a+0

√
2π(x1− a) σ (1)23 (x1, 0). (52)

Taking into account that L1(x1) has a square root singularity for x1→ a+0 and L2(x1) has the logarithmic
singularity at this point we arrive to the following formula

K3 = 2t1
√

2πγ1
Q(a)
√

a− c
,

which after some transformations takes the form

K3 =
2t1
√

2πγ1
√

a− c

[
b− c

2

√
1− λ(2εC1+

√
1− λD1)− R

]
. (53)

In the particular case of homogeneous piezoelectric material formula (53) reduces to

K3 =

√
π(a− c)

2
σ∞23 ,

which completely coincides with the associated result of [Gao et al. 2006].
The derivative of the crack faces displacement jump at the interval (c, a) (crack sliding) can be found

with use of (8) in the form

〈u′3(x1, 0)〉 = s−1
1 Im[F+1 (x1)− F−1 (x1)].
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10−6 E∞1 [V/m] 0 1 2 3 4 5
λ0 2.492× 10−4 7.285× 10−3 0.02571 0.05521 0.0947 0.1429
10−6K3 [Pa/m3/2

] 1.514 0.3850 −0.3448 −0.8656 −1.2375 −1.4879

Table 1. DB-zone length and SIF K3 for σ∞23 = 10 MPa and different positive values of E∞1

.
10−6 E∞1 [V/m] −0.1 −0.2 −1 −2
λ0 1.078× 10−4 3.522× 10−5 1.055× 10−9 2.419× 10−11

10−6K3 [Pa/m3/2
] 1.6739 1.852 4.061 7.531

Table 2. DB-zone length and SIF K3 for σ∞23 = 10 MPa and different negative values of E∞1 .

Substituting expression (31) one gets

〈u′3(x1, 0)〉 =
γ1+ 1
s1
√
γ1

Im
{[

P(x1)+8(x1)
√

b− x1
−i

Q(x1)
√

a− x1

]
exp[iχ∗(x1)]
√

x1− c

}
for c < x1 < a, (54)

where

χ∗(x1)= 2ε ln
√
(b− a)(x1− c)

√
(b− c)(a− x1)+

√
(a− c)(b− x1)

and the crack sliding can be found as

〈u3(x1, 0)〉 =
∫ x1

c
〈u′3(t, 0)〉 dt. (55)

5. Numerical results and discussion

We performed calculations for a bimaterial composed of PZT-4 (upper material) and BaTiO3 (lower one)
having the following characteristics:

c(1)44 = 25.6 GPa, e(1)15 = 12.7 C/m2, α
(1)
11 = 6.46 nC(V m)−1,

c(2)44 = 43.0 GPa, e(2)15 = 11.6 C/m2, α
(2)
11 = 11.2 nC(V m)−1,

with Eb = 107 V
m [Fan et al. 2009], c = −10 mm, b = 10 mm and different values of mechanical and

electric loadings.
In Table 1 the DB zone lengths and the SIF K3 are presented for σ∞23 = 10 MPa and different positive

values of E∞1 . It can be seen from the results that increasing of E∞1 leads to the increase of λ0 and
decrease of K3 with resulting in its change of sign even. The reason for the change will be clear from the
following graphs. Similar results, but for negative values of E∞1 are presented in Table 2. It follows from
this table that increasing of |E∞1 | initiates the cardinal decreasing of the DB zone length to negligibly
small values.

Results similar to Table 1, but for smaller values of σ∞23 , are presented in Table 3. It is seen by
comparison of these Tables that increase of σ∞23 leads to an increase of λ0 and K3. However with increase
of E∞1 the difference in λ0 for these two Tables almost disappear.
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10−6 E∞1 [V/m] 0 1 2 3 4 5
λ0 8.036× 10−5 6.537× 10−3 0.0247 0.05412 0.09363 0.14188
10−6K3 [Pa/m3/2

] 0.7264 −0.4672 −1.211 −1.738 −2.113 −2.3659

Table 3. DB-zone length and SIF K3 for σ∞23 = 5 MPa and different positive values of E∞1 .

10−6 E∞1 [V/m] 1 2 3 4 5
λ0 6.144× 10−4 0.02428 0.05660 0.09295 0.1410
λ̂ 6.156× 10−4 0.02447 0.05449 0.09549 0.1464

Table 4. DB-zone lengths in case of homogenous material BaTiO3 for σ∞23 = 10 MPa
and different values of E∞1 .

The results for the DB zone lengths in case of homogenous material BaTiO3 for σ∞23 = 10 MPa and
different values of E∞1 are given in Table 4. Value λ0 in this case is the root of (48) corresponding to one
DB zone and λ̂ is the root of (50) obtained for two symmetrical DB-zones at both crack tips. The SIF
K3 for all values of E∞1 is equal to 1.772× 106 Pa/m3/2. It is clear that for relatively small magnitudes
of E∞1 the difference between λ0 and λ̂ is negligibly small, but it grows moderately as E∞1 increases.

The calculated tangential crack opening (sliding) 〈u3(x1, 0)〉 for c = −10 mm, b = 10 mm, σ∞23 =

10 MPa is presented in Figure 6 for different values of E∞1 . Lines I , II and III correspond to E∞1 = 0,
2× 106 V/m and 4× 106 V/m, respectively. It is clearly seen from these results that the crack sliding is
almost symmetrical for E∞1 = 0, but increasing of E∞1 leads to the distortion of the curve and a change of
the sign of 〈u3(x1, 0)〉 in a region in the vicinity of the right crack tip (these explain the negative values
of SIF in Table 1). However, the appearance of the negative 〈u3(x1, 0)〉 does not mean the crack faces
interpenetration like in plane case and is quite admissible from physical point of view. It is worth to be
mentioning also that the negative electric field will lead to mirror mapping of the obtained graphs with
respect to the ordinate axis.

The behavior of the electric field in the DB zone and along its right continuation are presented in
Figure 7 for the same crack geometry, mechanical loading and different E∞1 . Here E∞1 = 2× 106 V/m
(line I ), 4×106 V/m (II) and 5×106 V/m (III). As it can be seen the DB-model eliminated the singulari-
ties of electric field at the right crack tip. Thus this model gives the possibility to get an electromechanical
field at the point b free from singularities and to transform the oscillating singularity of the shear stress
into conventional square root singularity at the point a. It is very important because it provides a possi-
bility for the SIF to be used in a conventional way.

For an additional verification of the obtained analytical solution the independent methods based on fi-
nite element package has been used. The finite sized body composed of two piezoelectric parallelepipeds
−30 mm≤ x1≤ 30 mm, 0≤ x2≤ 20 mm, 0≤ x3≤ 180 mm and−30 mm≤ x1≤ 30 mm,−20 mm≤ x2≤ 0,
0≤ x3≤ 180 mm with the same piezoelectric material parameters as presented at the beginning of this Sec-
tion has been considered. An electrically conducting crack in the interface region −10 mm≤ x1 ≤ 10 mm,
x2 = 0, 0 ≤ x3 ≤ 180 mm is situated. The lower boundary x2 = −20 mm was fixed while to the upper
one x2 = 20 mm the uniformly distributed shear stress σ (1)32 (x1,20) = 10 MPa was applied. Assuming
the external electric field E1 = 0 the DB zone in this case is defined by the second column of Table 1.
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Figure 6. Tangential crack sliding 〈u3(x1, 0)〉 for σ∞23 = 10 MPa and different values of E∞1 .

Figure 7. The electric field in DB zone and at it continuation for σ∞23 = 10 MPa and
different values of E∞1 .

The finite element ABAQUS code was used for the solution of this problem. The mesh refinement at
the crack tips was done. As a result of this solution the maximum value of the crack sliding at the point
x1 = x2 = 0, x3 = 90 mm turned out to be 6.771× 10−3 mm. Analytical analysis performed for the
same geometrical and mechanical parameters gave the result 6.260× 10−3 mm for the crack sliding at
the same point. Taking into account that we compared the results for finite size domain (with a crack 3
times shorter than the width of the compound) and for an infinite domain, the obtained error in 7.54%
can be considered as quite satisfactory. Therefore, the presented numerical analysis confirms the validity
of the analytical approach developed in this paper.
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6. Conclusions

The mode III interface crack problem for a transversely isotropic dissimilar piezoelectric bimaterial media
under the action of anti-plane mechanical loading and in-plane electrical field parallel to the crack faces
is considered.

To eliminate the electric field singularity, which occurs at the crack tips, the dielectric breakdown
model is applied. According to this model the electric field along some zone of the crack continuation is
assumed to be equal to the electric breakdown strength Eb and the length of this zone remain unknown
for a time being. A nonhomogeneous combined Dirichlet–Riemann boundary value problem (23), (37)
is formulated. This problem is much more complicated than the problem (23) nevertheless an exact
analytical solution (45) of this problem is presented. The transcendental equation for the determination
of the DB zone length is obtained from the condition of the electric field finiteness at the boundary point
of this zone. Analytical formulas for the shear stress in DB zone, the stress intensity factor at the crack
tip and for the crack sliding are obtained.

The variation of the DB zone length, crack sliding and the SIF with respect to external electric field is il-
lustrated in tables and figures. In particular it is shown that the electric field essentially influences all elec-
trical and also mechanical characteristics of the model. Namele, the increase of the electric field changes
the sign of the displacement jump in some part of the crack region (see line III of Figure 5). It is seen from
the last lines of Tables 1 and 3 that this increase cardinally vary the value of the SIF changing it sign even.

The particular case of identical physical properties of upper and lower domains is considered. This case
is equivalent to the case of a crack in a homogeneous piezoelectric medium. Equation (47), determining
the DB zone length, and the formula (53) for the SIF finding reduce to very simple equations which
solutions are in good agreement with the associated results obtained for the crack with two DB zones by
another method.

It’s worth to be mentioning that the dissimilarity of the bulk properties essentially effects the elec-
tromechanical quantities of the considered problem. In particular, the SIF K3 does not depend on the
applied electric field for a homogeneous case whilst it changes its value quite substantially with respect
to this field for a dissimilar piezoelectric material. Besides, as it is seen from Figure 6, the crack opening
transforms its symmetrical form due to electric field for a dissimilar material what is not observed for a
homogeneous one.

Comparison of the obtained analytical solution with the associated results obtained by finite element
method has been performed and good agreement has been found.

The importance of the obtained solution is justified by the possibility of using the obtained results
in electronic engineering for decreasing of the threat of failure of electronic devices produced from
dissimilar piezoelectric materials and having internal electrodes, which can lead to the appearance of
conducting interface cracks.

Acknowledgments

This work was sponsored by a public grant overseen by the French National Research Agency as part of
the “Investissements d’Avenir” through the IMobS3 Laboratory of Excellence (ANR-10-LABX-0016)
and through the IDEX-ISITE initiative CAP 20-25 (ANR-16-IDEX-0001) within the framework of the
program WOW PhD Mentoring.



104 YURI LAPUSTA, ALLA SHEVELEVA, FRÉDÉRIC CHAPELLE AND VOLODYMYR LOBODA

References

[Barenblatt 1962] G. I. Barenblatt, “The mathematical theory of equilibrium cracks in brittle fracture”, Adv. Appl. Mech. 7
(1962), 55–129.

[Beom et al. 2006a] H. G. Beom, Y. H. Kim, C. Cho, and C. B. Kim, “A crack with an electric displacement saturation zone in
an electrostrictive material”, Arch. Appl. Mech. 76 (2006a), 19–31.

[Beom et al. 2006b] H. G. Beom, Y. H. Kim, C. Cho, and C. B. Kim, “Asymptotic analysis of an impermeable crack in an
electrostrictive material subjected to electric loading”, Int. J. Solids Struct. 43 (2006b), 6869–6886.

[Bertoldi et al. 2007] K. Bertoldi, D. Bigoni, and W. J. Drugan, “Structural interfaces in linear elasticity, part I: Nonlocality
and gradient approximations”, J. Mech. Phys. Solids 55 (2007), 1–34.

[Bigoni and Movchan 2002] D. Bigoni and A. B. Movchan, “Statics and dynamics of structural interfaces in elasticity”, Int. J.
Solids Struct. 39 (2002), 4843–4865.

[Craciun et al. 2004] E.-M. Craciun, E. Baesu, and E. Soós, “General solution in terms of complex potentials for incremental
antiplane states in prestressed and prepolarized piezoelectric crystals: application to mode III fracture propagation”, IMA J.
Appl. Math. 70 (2004), 39–52.

[Dugdale 1960] D. S. Dugdale, “Yielding of steel sheets containing slits”, J. Mech. Phys. Solids 8 (1960), 100–108.
[Fan et al. 2009] C. Y. Fan, M. H. Zhao, and Y. H. Zhou, “Numerical solution of polarization saturation/ dielectric breakdown
model in 2D finite piezoelectric media”, J. Mech. Phys. Solids 57 (2009), 1527–1544.

[Fan et al. 2012] C. Y. Fan, Y. F. Zhao, M. H. Zhao, and E. Pan, “Analytical solution of a semi-permeable crack in a 2D
piezoelectric medium based on the PS model”, Mech. Res. Commun. 40 (2012), 34–40.

[Fan et al. 2014] C. Y. Fan, Z. H. Guo, H. Y. Dang, and M. H. Zhao, “Extended displacement discontinuity method for nonlinear
analysis of penny-shaped cracks in three-dimensional piezoelectric media”, Eng. Anal. Bound. Elem. 38 (2014), 8–16.

[Gakhov 1966] F. D. Gakhov, Boundary value problems, Pergamon Press, 1966.
[Gao and Barnett 1996] H. Gao and D. M. Barnett, “An invariance property of local energy release rate in a strip saturation
model of piezoelectric fracture”, Int. J. Fract. 79 (1996), R25–R29.

[Gao et al. 1997] H. Gao, T. Y. Zhang, and P. Tong, “Local and global energy release rates for an electrically yielded crack in
a piezoelectric ceramic”, J. Mech. Phys. Solids 45 (1997), 491–510.

[Gao et al. 2006] C. F. Gao, N. Noda, and T. Y. Zhang, “Dielectric breakdown model for a conductive crack and electrode in
piezoelectric materials”, Int. J. Eng. Sci. 44:3–4 (2006), 256–272.

[Govorukha and Kamlah 2010] V. Govorukha and M. Kamlah, “On contact zone models for an electrically limited permeable
interface crack in a piezoelectric bi-material”, Int. J. Fract. 164(1) (2010), 133–146.

[Herrmann and Loboda 2003] K. P. Herrmann and V. V. Loboda, “Fracture mechanical assessment of interface cracks with
contact zones in piezoelectric bimaterials under thermoelectromechanical loadings, I: Electrically permeable interface cracks”,
Int. J. Solids Struct. 40 (2003), 4191–4217.

[Jeong et al. 2004] K. M. Jeong, I. O. Kim, and H. G. Beom, “Effect of electric displacement saturation on the stress intensity
factor for a crack in a ferroelectric ceramic”, Mech. Res. Comm. 31 (2004), 371–382.

[Knysh et al. 2012] P. Knysh, V. Loboda, F. Labesse-Jied, and Y. Lapusta, “An electrically charged crack in a piezoelectric
material under remote electromechanical loading”, Lett. Fract. Micromech. 175:1 (2012), 87–94.

[Lapusta and Loboda 2009] Y. Lapusta and V. Loboda, “Electro-mechanical yielding for a limited permeable crack in an
interlayer between piezoelectric materials”, Mech. Res. Commun. 36 (2009), 183–192.

[Lapusta et al. 2017] Y. Lapusta, O. Onopriienko, and V. Loboda, “An interface crack with partially electrically conductive
crack faces under antiplane mechanical and in-plane electric loadings”, Mech. Res. Commun. 81 (2017), 38–43.

[Leonov and Panasyuk 1959] M. Y. Leonov and V. V. Panasyuk, “Development of the smallest cracks in a rigid body”, Appl.
Mech. 5:4 (1959), 391–401.

[Li and Chen 2008] Q. Li and H. Chen, “Solution for a semi-permeable interface crack in elastic dielectric/piezoelectric bima-
terials”, J. Appl. Mech. (ASME) 75(1) (2008), 011010.

[Li et al. 2017] P.-D. Li, X.-Y. Li, G.-Z. Kang, C.-F. Gao, and R. Müller, “Crack tip electric polarization saturation of a
thermally loaded penny-shaped crack in an infinite thermo-piezo-elastic medium”, Int. J. Solids Struct. 117 (2017), 67–79.

http://dx.doi.org/10.1016/S0065-2156(08)70121-2
http://dx.doi.org/10.1016/j.jmps.2006.06.004
http://dx.doi.org/10.1016/j.jmps.2006.06.004
http://dx.doi.org/10.1016/S0020-7683(02)00416-X
http://dx.doi.org/10.1093/imamat/hxh060
http://dx.doi.org/10.1093/imamat/hxh060
http://dx.doi.org/10.1016/0022-5096(60)90013-2
http://dx.doi.org/10.1016/j.jmps.2009.05.010
http://dx.doi.org/10.1016/j.jmps.2009.05.010
http://dx.doi.org/10.1016/j.mechrescom.2012.01.001
http://dx.doi.org/10.1016/j.mechrescom.2012.01.001
http://dx.doi.org/10.1016/j.enganabound.2013.09.014
http://dx.doi.org/10.1016/j.enganabound.2013.09.014
http://dx.doi.org/10.1016/S0022-5096(96)00108-1
http://dx.doi.org/10.1016/S0022-5096(96)00108-1
http://dx.doi.org/10.1016/S0020-7683(03)00200-2
http://dx.doi.org/10.1016/S0020-7683(03)00200-2
http://dx.doi.org/10.1016/j.mechrescom.2008.09.001
http://dx.doi.org/10.1016/j.mechrescom.2008.09.001
http://dx.doi.org/10.1016/j.mechrescom.2017.02.004
http://dx.doi.org/10.1016/j.mechrescom.2017.02.004
http://dx.doi.org/10.1016/j.ijsolstr.2017.04.003
http://dx.doi.org/10.1016/j.ijsolstr.2017.04.003


BREAKDOWN MODEL FOR AN INTERFACE CRACK IN A PIEZOELECTRIC BIMATERIAL 105

[Loboda et al. 2008] V. Loboda, Y. Lapusta, and V. Govorukha, “Mechanical and electrical yielding for an electrically insulated
crack in an interlayer between piezoelectric materials”, Int. J. Eng. Sci. 46 (2008), 260–272.

[Loboda et al. 2010] V. Loboda, Y. Lapusta, and A. Sheveleva, “Limited permeable crack in an interlayer between piezoelectric
materials with different zones of electric saturation and mechanical yielding”, Int. J. Solids Struct. 47 (2010), 1796–1806.

[Muskhelishvili 1977] N. I. Muskhelishvili, Some basic problems of mathematical theory of elasticity, Noordhoff, 1977.
[Nakhmein and Nuller 1986] E. L. Nakhmein and B. M. Nuller, “Contact between an elastic half-plane and a partly separated
stamp”, J. Appl. Math. Mech. 50:4 (1986), 507–515.

[Parton and Kudryavtsev 1988] V. Z. Parton and B. A. Kudryavtsev, Electromagnetoelasticity, Gordon and Breach Science
Publishers, 1988.

[Peride et al. 2009] N. Peride, A. Carabineanu, and E.-M. Craciun, “Mathematical modelling of the interface crack propagation
in a pre-stressed fiber reinforced elastic composite”, Comput. Mater. Sci. 45(1) (2009), 684–692.

[Ru 1999] C. Q. Ru, “Effect of electrical polarization saturation on stress intensity factors in a piezoelectric ceramics”, Int. J.
Solids Struct. 36 (1999), 869–883.

[Ru and Mao 1999] C. Q. Ru and X. Mao, “Conducting crack in a piezoelectric ceramics of limited electrical polarization”, J.
Mech. Phys. Solids 47 (1999), 2125–2146.

[Sladek et al. 2012] J. Sladek, V. Sladek, M. Wnsche, and C. Zhang, “Analysis of an interface crack between two dissimilar
piezoelectric solids”, Eng. Fract. Mech. 89 (2012), 114–117.

[Wang 2000] T. C. Wang, “Analysis of strip electric saturation model of crack problem in piezoelectric materials”, Int. J. Solids
Struct. 37 (2000), 6031–6049.

[Xu et al. 2015] C. H. Xu, Z. H. Zhou, X. S. Xu, and A. Y. T. Leung, “Electroelastic singularities and intensity factors for an
interface crack in piezoelectric-elastic bimaterials”, Appl. Math. Model. 39:9 (2015), 2721–2739.

[Zhang 2004] T. Y. Zhang, “Dielectric breakdown model for an electrical impermeable crack in a piezoelectric material”,
Comput. Mater. Continua 1 (2004), 107–115.

[Zhang and Gao 2004] T. Y. Zhang and C. F. Gao, “Fracture behavior of piezoelectric materials”, Theor. Appl. Fract. Mech. 41
(2004), 339–379.

[Zhang and Gao 2012] N. Zhang and C. F. Gao, “Effects of electrical breakdown on a conducting crack or electrode in elec-
trostrictive solids”, Eur. J. Mech. A Solids 32 (2012), 62–68.

[Zhang et al. 2005] T. Y. Zhang, M. H. Zhao, and C. F. Gao, “The strip dielectric breakdown model”, Int. J. Fract. 132 (2005),
311–327.

[Zhao et al. 2013] M. H. Zhao, Z. H. Guo, C. Y. Fan, and E. Pan, “Electric and magnetic polarization saturation and breakdown
models for penny shaped cracks in 3D magnetoelectroelastic media”, Int. J. Solids Struct. 50 (2013), 1747–1754.

[Zhao et al. 2015] Y. F. Zhao, M. H. Zhao, and E. Pan, “Displacement discontinuity analysis of a nonlinear interfacial crack in
three-dimensional transversely isotropic magneto-electro-elastic bi-materials”, Eng. Anal. Bound. Elem. 61 (2015), 254–264.

[Zhao et al. 2016] M. Zhao, H. Dang, G. Xu, and C. Fan, “Dielectric breakdown model for an electrically semi-permeable
penny-shaped crack”, Acta Mech. Solida Sin. 29:5 (2016), 536–546.

Received 15 Jun 2019. Revised 11 Nov 2019. Accepted 15 Nov 2019.

YURI LAPUSTA: yuri.lapusta@sigma-clermont.fr
Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France

ALLA SHEVELEVA: allasheveleva@i.ua
Department of Theoretical and Computational Mechanics, Oles Honchar Dnipro National University, Dnipro, 49010, Ukraine

FRÉDÉRIC CHAPELLE: frederic.chapelle@sigma-clermont.fr
Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France

VOLODYMYR LOBODA: loboda@dnu.dp.ua
Department of Theoretical and Computational Mechanics, Oles Honchar Dnipro National University, Dnipro, 49010, Ukraine

mathematical sciences publishers msp

http://dx.doi.org/10.1016/j.ijengsci.2007.11.007
http://dx.doi.org/10.1016/j.ijengsci.2007.11.007
http://dx.doi.org/10.1016/0021-8928(86)90017-1
http://dx.doi.org/10.1016/0021-8928(86)90017-1
http://dx.doi.org/10.1016/S0020-7683(97)00331-4
http://dx.doi.org/10.1016/S0022-5096(99)00007-1
http://dx.doi.org/10.1016/j.engfracmech.2012.04.032
http://dx.doi.org/10.1016/j.engfracmech.2012.04.032
http://dx.doi.org/10.1016/S0020-7683(99)00255-3
http://dx.doi.org/10.1016/j.apm.2014.10.061
http://dx.doi.org/10.1016/j.apm.2014.10.061
http://dx.doi.org/10.1016/j.tafmec.2003.11.019
http://dx.doi.org/10.1016/j.euromechsol.2011.09.001
http://dx.doi.org/10.1016/j.euromechsol.2011.09.001
http://dx.doi.org/10.1007/s10704-005-2054-8
http://dx.doi.org/10.1016/j.ijsolstr.2013.02.003
http://dx.doi.org/10.1016/j.ijsolstr.2013.02.003
http://dx.doi.org/10.1016/j.enganabound.2015.08.001
http://dx.doi.org/10.1016/j.enganabound.2015.08.001
http://dx.doi.org/10.1016/S0894-9166(16)30271-3
http://dx.doi.org/10.1016/S0894-9166(16)30271-3
mailto:yuri.lapusta@sigma-clermont.fr
mailto:allasheveleva@i.ua
mailto:frederic.chapelle@sigma-clermont.fr
mailto:loboda@dnu.dp.ua
http://msp.org




JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
msp.org/jomms

Founded by Charles R. Steele and Marie-Louise Steele

EDITORIAL BOARD

ADAIR R. AGUIAR University of São Paulo at São Carlos, Brazil
KATIA BERTOLDI Harvard University, USA

DAVIDE BIGONI University of Trento, Italy
MAENGHYO CHO Seoul National University, Korea

HUILING DUAN Beijing University
YIBIN FU Keele University, UK

IWONA JASIUK University of Illinois at Urbana-Champaign, USA
DENNIS KOCHMANN ETH Zurich

MITSUTOSHI KURODA Yamagata University, Japan
CHEE W. LIM City University of Hong Kong

ZISHUN LIU Xi’an Jiaotong University, China
THOMAS J. PENCE Michigan State University, USA

GIANNI ROYER-CARFAGNI Università degli studi di Parma, Italy
DAVID STEIGMANN University of California at Berkeley, USA

PAUL STEINMANN Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
KENJIRO TERADA Tohoku University, Japan

ADVISORY BOARD

J. P. CARTER University of Sydney, Australia
D. H. HODGES Georgia Institute of Technology, USA

J. HUTCHINSON Harvard University, USA
D. PAMPLONA Universidade Católica do Rio de Janeiro, Brazil

M. B. RUBIN Technion, Haifa, Israel

PRODUCTION production@msp.org

SILVIO LEVY Scientific Editor

Cover photo: Ev Shafrir

See msp.org/jomms for submission guidelines.

JoMMS (ISSN 1559-3959) at Mathematical Sciences Publishers, 798 Evans Hall #6840, c/o University of California, Berkeley,
CA 94720-3840, is published in 10 issues a year. The subscription price for 2020 is US $660/year for the electronic version, and
$830/year (+$60, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues, and changes of address
should be sent to MSP.

JoMMS peer-review and production is managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2020 Mathematical Sciences Publishers

http://msp.org/jomms/
mailto:production@msp.org
http://msp.org/jomms/
http://msp.org/
http://msp.org/


Journal of Mechanics of Materials and Structures
Volume 15, No. 1 January 2020

Stress-minimizing holes with a given surface roughness in a remotely loaded elastic
plane SHMUEL VIGDERGAUZ and ISAAC ELISHAKOFF 1

Analytical modeling and computational analysis on topological properties of 1-D
phononic crystals in elastic media MUHAMMAD and C. W. LIM 15

Dynamics and stability analysis of an axially moving beam in axial flow
YAN HAO, HULIANG DAI, NI QIAO, KUN ZHOU and LIN WANG 37

An approximate formula of first peak frequency of ellipticity of Rayleigh surface
waves in an orthotropic layered half-space model TRUONG THI THUY
DUNG, TRAN THANH TUAN, PHAM CHI VINH and GIANG KIEN TRUNG 61

Effect of number of crowns on the crush resistance in open-cell stent design
GIDEON PRAVEEN KUMAR, KEPING ZUO, LI BUAY KOH, CHI WEI ONG,
YUCHENG ZHONG, HWA LIANG LEO, PEI HO and FANGSEN CUI 75

A dielectric breakdown model for an interface crack in a piezoelectric bimaterial
YURI LAPUSTA, ALLA SHEVELEVA, FRÉDÉRIC CHAPELLE and
VOLODYMYR LOBODA 87

Thermal buckling and free vibration of Timoshenko FG nanobeams based on the
higher-order nonlocal strain gradient theory
GORAN JANEVSKI, IVAN PAVLOVIĆ and NIKOLA DESPENIĆ 107
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