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ELASTIC FIELDS FOR A PARABOLIC HOLE
ENDOWED WITH SURFACE EFFECTS

XU WANG AND PETER SCHIAVONE

We study the contribution of surface energy to the plane strain deformations of an isotropic elastic ma-
terial with a parabolic hole. A closed-form full-field solution is derived using Muskhelishvili’s complex
variable formulation and the technique of conformal mapping. We also obtain the corresponding expres-
sions for the stresses and displacements in the full-field arising solely from the influence of the surface
effects. When the radius of curvature at the vertex of the parabola is reduced to the order of the square of
the ratio of surface energy to the generalized stress intensity factor, the surface contribution is significant
and cannot be disregarded.

1. Introduction

The elastic stress field near the tip of a blunt crack was first obtained in [Creager 1966; Creager and Paris
1967] from the full-field solutions in the case of an elliptical hole and hyperbolic notch. Recent studies
[Wang and Schiavone 2019a; 2019b] have shown that the full-field solution for the in-plane deformations
of an isotropic material with a traction-free parabolic boundary is simply the asymptotic elastic field near
a blunt crack tip presented in [Creager and Paris 1967]. This fact implies that for all intents and purposes,
a blunt crack can be represented quite simply by a parabola. On the other hand, surface energies, tension
and stresses come into play in nanostructured systems where surface to volume ratios become appreciable
[Miller and Shenoy 2000; Shenoy 2002; Sharma and Ganti 2004; Wang and Wang 2006].

In this paper, we use Muskhelishvili’s complex variable formulation together with the technique of
conformal mapping to derive a closed-form solution to the problem of plane strain deformations of an
isotropic elastic material with a parabolic hole. We emphasize that the “hole” studied here is an open hole
bounded by an infinitely extended parabolic boundary. Here, the parabola is endowed with a simplified
version of the Gurtin–Murdoch surface elasticity model [Gurtin and Murdoch 1975; Gurtin et al. 1998;
Shenoy 2002; Ru 2010]. In this simplified version, the surface energy is independent of the surface
strain tensor [Yang 2004; Wang and Wang 2006]. The present solution can then be superimposed with
the corresponding solution involving a parabola without surface effects in which the material is subjected
to far-field external loading characterized by the generalized mode I and mode II stress intensity factors
[Creager and Paris 1967; Wang and Schiavone 2019b] to arrive at the solution in the case of a parabolic
hole with surface effects in an elastic material subjected to external loading.
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2. Governing equations

In a fixed rectangular coordinate system {xi } (i = 1, 2, 3), let σi j , εi j and ui be respectively, the stresses,
strains and displacements in an isotropic elastic material. In the absence of body forces, the equilibrium
and constitutive equations describing the deformations of an isotropic elastic (bulk) solid are

σi j, j = 0, σi j = λδi jεkk + 2µεi j , εi j =
1
2(ui, j + u j,i ), (1)

where λ, µ are the Lamé constants of the material, i, j, k range from 1 to 3, we sum over repeated indices
and δi j is the Kronecker delta.

For the plane strain deformations of the isotropic elastic bulk material, the three in-plane stresses
(σ11, σ22, σ12), two in-plane displacements (u1, u2) and two stress functions (φ1, φ2) are given in terms
of two analytic functions ϕ(z) and ψ(z) of the complex variable z = x1+ ix2 as follows [Muskhelishvili
1953]:

σ11+ σ22 = 2
[
ϕ′(z)+ϕ′(z)

]
, σ22− σ11+ 2iσ12 = 2[z̄ϕ′′(z)+ψ ′(z)], (2)

2µ(u1+ iu2)= κϕ(z)− zϕ′(z)−ψ(z), φ1+ iφ2 = i
[
ϕ(z)+ zϕ′(z)+ψ(z)

]
. (3)

Here κ is defined as

κ =
λ+ 3µ
λ+µ

= 3− 4ν, (4)

where ν is Poisson’s ratio
(
0≤ ν ≤ 1

2

)
.

In addition, the stresses are related to the stress functions through the equalities [Ting 1996]

σ11 =−φ1,2, σ12 = φ1,1,

σ21 =−φ2,2, σ22 = φ2,1.
(5)

We consider the plane strain deformations of an infinite elastic body containing a parabolic hole as
depicted in Figure 1. Let t1 and t2 be the surface tractions along the x1 and x2 directions on the boundary
L . If s is the arc length measured along L such that when traveling in the direction of increasing s, the
material remains on the left-hand side, we will have

t1+ it2 =−
dφ1

ds
− i

dφ2

ds
, (6)

from which we can obtain the relation∫ z

A
(σρρ + iσρθ )dz =−i(φ1+ iφ2), (7)

where σρρ and σρθ are the normal and tangential components of the traction along the boundary L and
the integral is taken along L from a fixed point A.

The 2× 2 surface stress tensor σ s
αβ is related to the surface energy density γ and the surface strain

tensor εs
αβ through the equation [Miller and Shenoy 2000; Shenoy 2002; Wang and Wang 2006]

σ s
αβ = γ δαβ +

∂γ

∂εs
αβ

. (8)

We will assume that the surface energy density is independent of the surface strain tensor [Yang 2004;
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Figure 1. Plane strain deformations of an isotropic elastic material with a parabolic hole
endowed with surface effects.

Wang and Wang 2006]. In this case, (8) reduces to

σ s
αβ = γ δαβ . (9)

If the surface is perfectly bonded to the bulk, the equilibrium conditions on the surface are [Gurtin
and Murdoch 1975; Gurtin et al. 1998; Shenoy 2002; Ru 2010; Kim et al. 2011]

σα j n j eα + σ
s
αβ,βeα = 0 (tangential direction),

σi j ni n j = σ
s
αβκαβ (normal direction),

(10)

where ni is the unit normal vector to the surface and καβ is the curvature tensor of the surface.

3. A parabolic hole endowed with surface effects

As shown in Figure 1, we consider the plane strain deformations of an isotropic elastic material that
occupies the region

x1 ≥ H −
x2

2

4H
, H > 0, (11)

the boundary of which is a parabola L described by

x1 = H −
x2

2

4H
, z ∈ L . (12)

In this configuration of the problem, the parameter H is the single geometric parameter of the material.
It follows from (2), (7), (9) and (10) that when the surface effect is incorporated, the boundary condition
along the parabola L can be written as

ϕ(z)+ zϕ′(z)+ψ(z)=
∫ z

A
(σρρ + iσρθ ) dz, z ∈ L , (13)
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where
σρρ =

γ

ρ
, σρθ = 0, (14)

in which ρ is the radius of curvature of the parabola.
For the convenience of the ensuing analysis, we introduce the conformal mapping function

z = ω(ξ)= ξ 2, ξ = ω−1(z)=
√

z, Re{ξ} ≥ h, (15)

where h =
√

H . Using this mapping function, the exterior of the parabolic hole in the z-plane is mapped
onto the right half-plane Re{ξ} ≥ h in the ξ -plane and the parabola L is mapped onto the vertical straight
line Re{ξ} = h, −∞< Im{ξ}<+∞ in the ξ -plane.

Additionally, using the mapping function in (15), the curvature of the parabola can be determined as

κ =
1
ρ
=

h
2(2hξ − ξ 2)3/2

, Re{ξ} = h. (16)

With the aid of (16), the boundary condition in (13) can be further written in the form

ϕ(ξ)+
ω(ξ)ϕ′(ξ)

ω′(ξ)
+ψ(ξ)=

γ ξ√
2hξ − ξ 2

, Re{ξ} = h, (17)

where, for convenience, we write ϕ(ξ)= ϕ(ω(ξ))= ϕ(z) and ψ(ξ)= ψ(ω(ξ))= ψ(z).
In the absence of far-field external loading characterized by the generalized mode I and mode II stress

intensity factors KI and KII, the two analytic functions ϕ(ξ) and ψ(ξ) can be derived from (17) as
follows:

ϕ(ξ)= γ

√
ξ

2h
, ψ(ξ)= γ

√
2h− ξ
ξ
− γ

√
2h− ξ

2h
−
γ (2h− ξ)2

4ξ
√

2hξ
, Re{ξ} ≥ h. (18)

Substitution of (18) into (2) and (3) yields the following expressions for the stresses and displacements
in the full-field:

σ11+ σ22 =
γ
√

2h
Re
{
ξ−3/2},

σ22− σ11+ 2iσ12 =
γ

8
√

2h

[
−3ξ−7/2ξ̄ 2

+
4ξ−5/2

[
ξ 3/2
− (2h)3/2

]
√

2h− ξ
+ ξ−7/2(2h− ξ)(ξ + 6h)

]
;

2µ(u1+ iu2)= κγ

√
ξ

2h
+
γ ξ̄−3/2

[
(2h− ξ̄ )2− ξ 2

]
4
√

2h
− γ

√
2h− ξ̄
ξ̄
+ γ

√
2h− ξ̄

2h
, Re{ξ} ≥ h.

(19)

It is clear from (19) that the stresses and displacements are regular everywhere in the material including
at points on the parabola. In particular, the hoop stress σθθ along the parabola can be determined as

σθθ =
γ
√

2h
Re
{
ξ−3/2}

−
γ h

2(2hξ − ξ 2)3/2
, Re{ξ} = h, (20)

which is illustrated in Figure 2. It is seen from Figure 2 that the hoop stress induced by the surface energy
is tensile when |x2|< 1.806H and compressive when |x2|> 1.806H . In performing the calculations, we
have adopted the identity that x2 = 2h Im{ξ} along the parabola with Re{ξ} = h.
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Figure 2. Distribution of the hoop stress along the parabola solely induced by surface energy.

The displacements along the parabola L are given by

u1+ iu2 =
γ

2µ

[
(κ + 1)

√
ξ

2h
−

ξ√
2hξ − ξ 2

]
, Re{ξ} = h, (21)

and are illustrated in Figure 3.
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Figure 3. Distributions of the displacement components u1 and u2 along the parabola
with κ = 2 solely induced by surface energy.
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Figure 4. Effect of surface energy on the hoop stress along the parabola under mode I
generalized stress intensity factor.

If the bulk material is under the generalized mode I stress intensity factor KI, the hoop stress along
the parabola is given by

σθθ =

√
2
π

KIh−1
{

Re
{
hξ−1}

+ p Re
{
h3/2ξ−3/2}

−
p

√
2(2h−1ξ − h−2ξ 2)3/2

}
, Re{ξ} = h, (22)

where the dimensionless parameter p is defined by

p =
√
πγ

2
√

H KI
. (23)

We illustrate in Figure 4 the contribution of the surface energy to the hoop stress along the parabola.
In the figure, σθθ =

√
2/π KI Re

{
z−1/2

}
for p = 0 along the parabolic boundary L is consistent with

the observation in [Creager 1966; Creager and Paris 1967] that the hydrostatic stress (or mean stress)
σ11+σ22 is independent of the finite curvature at the tip of a blunt crack in the absence of surface effects.
It is seen from Figure 4 that when the geometric parameter H is of the order of γ 2/K 2

I , the contribution
from the surface is significant and cannot be disregarded. For example, when choosing γ ≈ 1 J/m2 [Yang
2004; Kim et al. 2011] and KI = 104 N

√
m/m2, the surface effect becomes significant when H ≤ 10 nm.

Note that H is just half of the radius of curvature of the parabola at the vertex (x1, x2) = (H, 0) (this
fact can be seen clearly from (16) by setting ξ = h =

√
H). This implies that the surface effect cannot

be ignored for a relatively sharp crack. This conclusion is in qualitative agreement with that in [Wang
et al. 2008].

When the material containing a parabolic hole endowed with surface effects is subjected to far-field
external loading characterized by the generalized mode I and mode II stress intensity factors, the two
analytic functions ϕ(ξ) and ψ(ξ) can be obtained from (18) and the result given in [Wang and Schiavone



ELASTIC FIELDS FOR A PARABOLIC HOLE ENDOWED WITH SURFACE EFFECTS 247

2019b] as

ϕ(ξ)=
K̄ ξ
√

2π
+ γ

√
ξ

2h
,

ψ(ξ)=
(2K − K̄ )ξ

2
√

2π
−

2h2 K̄
√

2πξ
+ γ

√
2h− ξ
ξ
− γ

√
2h− ξ

2h
−
γ (2h− ξ)2

4ξ
√

2hξ
, Re{ξ} ≥ h,

(24)

where K = KI+ iKII.

4. Conclusions

We have incorporated a simplified version of the Gurtin–Murdoch surface elasticity model into the plane
strain deformations of an isotropic material with a parabolic hole. In the absence of external loading, a
closed-form full-field solution is derived in (18) with the stress and displacement fields given by (19). In
the presence of external loading, the closed-form full-field solution is given by (24).
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