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DEFORMATION OF HETEROGENEOUS MICROSTRETCH ELASTIC BARS

DORIN IESAN

The material points of microstretch continua undergo a uniform microdilatation and a rigid microrotation.
This paper is concerned with the deformation of a bar composed by two different microstretch elastic
materials. The intended applications of the solution are to bone implants and various compound cylinders.
The bar is reinforced by a longitudinal rod and is subjected to extension, bending, torsion and flexure.
First, the problem of bending and extension is investigated. The solution involves the solving of three
plane strain problems. Then, we study the problem of torsion and flexure. The results are used to
investigate the extension of a right circular cylinder reinforced by a circular rod.

1. Introduction

A microstretch continuum is a material with microstructure in which the microelements can stretch
and contract independently of their translations and rotations. The theory of microstretch continua was
introduced in [Eringen 1999] as a generalization of the Cosserat theory. When the microdilatation is zero,
the microstretch continuum reduces to the Cosserat model. The applications of the theory of microstretch
continua are to composite materials, porous solids, bones and various materials with inner structure.
The Cosserat elastic solid was used as model for carbon nanotubes and composite materials [Lakes
2001; Chandraseker et al. 2009; Ha et al. 2016] and for bones [Lakes 1982; Fatemi et al. 2002]. Lakes
[1982] presented some experimental observations on the mechanical behavior of bones and remarked
that “Human bone, a natural fibrous composite, displays size effects in torsion and bending which are
consistent with Cosserat elasticity rather than classical elasticity”. The cancellous bone is considered as
a porous body [Kohles and Roberts 2002] so the linear theory of microstretch elastic solids is adequate
to describe the mechanical behavior of bones. Various papers have been devoted to the study of bone
implants and anisotropic cylinders [Hanumantharaju and Shivanand 2009; Thielen et al. 2009; Taliercio
and Veber 2016]. The bone and the implant form a body which can be modeled as a continuum composed
of different materials.

We study the deformation of a heterogeneous bar which is made of two materials, welded together
along the surface of separation. The deformation of homogeneous microstretch elastic cylinders has been
investigated in [Iesan and Nappa 1995; Iesan 2008; 2019a; 2019b]. We assume that the bar is composed
of two homogenous and isotropic microstretch elastic materials and is subjected to extension, bending,
torsion and flexure.

The paper is structured as follows. First, we present the basic equations of isotropic microstretch
elastic solids and formulate the problem of a reinforced rod. Then, we define the plane strain problem
associated to a heterogeneous body. In the following section we present the solution of the problem
of extension and bending. It is shown that this problem reduces to the study of some two-dimensional
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problems in which the external data depend only on the constitutive coefficients. Then, we study the
problem of torsion and flexure. The flexure of the cylinder produces a torsion of the bar about its axis.
Finally, we use the method to investigate the extension of a circular cylinder reinforced by a circular rod.

2. Preliminaries

We present the basic equations of the microstretch elastic solids and the formulation of the problem.
We consider a continuum which in undeformed state occupies the regular domain B of Euclidean three-
dimensional space and is bounded by the surface d B. Throughout this paper a fixed system of rectangular
cartesian axes Oxy, (k =1, 2, 3), is used. We shall employ standard indicial notations: Greek subscripts
take on the values 1 and 2 whereas Latin subscripts (unless otherwise specified) are understood to range
over (1, 2, 3), and summation over repeated subscripts is implied. We denote by n; the components of
the outward unit normal of d B and introduce the notation f; = df/dx;. We study the deformation of
isotropic solids in the linear theory of microstretch elastic continua. Let u; be the displacement vector, let
@i be the microrotation vector, and let ¥ be the microstretch function. We denote by ¢;; the alternating
symbol. The strain measures are defined by

eij =uji+Ejik P, Kij =@ji, Vi=V,. (2-1)

Let #;; be the stress tensor, m;; be the couple stress tensor, o; be the microstretch stress vector, and ¢ be
the microstress function. The constitutive equations are
tij =Aer 8ij + (k) e+ e +ro¥dij, mij =oaky 8;; + Bkji +yKij +boéjivk, 22)
o; =ag Vi +bo&irsKyr, ¢ =Aroerr + 11,
where A, u, k, o, A1, &, B, ¥, bg and ag are constitutive coefficients. In the linear elasticity the Cosserat
model is characterized by the coefficients A, u, k, @, B, y. The tractions acting at a regular point of 0 B
are defined by

L, =t;nj, m;=mjn;, O =O0;N;. (2-3)
In the absence of body loads, the equilibrium equations are
tiij =0, mjij+eists =0, o05;—¢=0. (2-4)

In what follows we assume that the domain B is a right cylinder of length /4 with the cross-section X
and the lateral boundary I1. The rectangular coordinate frame is chosen such that the x3-axis is parallel
to the generator of B. We denote by X; and X, the terminal cross-sections and assume that these are
located at x3 = 0 and x3 = h, respectively. Let L be the boundary of ¥;. We assume that the cylinder is
free of lateral loading. We have

tying =0, mying =0, oyn,=0 onlIl. (2-5)

We assume that the load of the cylinder is distributed over its ends in a way which fulfills the equilibrium
conditions of the body. We use Saint-Venant’s formulation in which the pointwise assignment of the
terminal tractions is replaced by prescribing the corresponding resultant force and resultant moment.
Let the loading applied on X be equivalent to the resultant force R = (R;, R», R3) and the resultant
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moment M = (M, My, M3). The cross-section X, is subjected to tractions that satisfy the conditions of
the equilibrium of the cylinder. The conditions on the end X; can be expressed as

/ r3ida = —R;, (Xo 133 — €30 M3pg) da = 43 Mg, (e3ap Xa13p +m33)da =—M5. (2-6)
P 2 2

The formulation of Saint-Venant leads to the four basic problems of extension (R, =0, M; =0), bending
(Rj =0, M3 =0), torsion (R; =0, M, =0) and flexure (R3 =0, M; =0).

Let I" be a closed curve contained in X, which is the boundary of a regular domain €2, contained
in 1. We suppose that I" and L have no common points and denote by 2; the domain bounded by I"
and L. Let B, be the cylinder:

B, ={(x1,x2,x3) : (x1,x2) €RQ,, O<x3<h}, p=1,2.

We suppose that B, is occupied by an elastic material with the constitutive coefficients AP ) P
W @, Oy @ ) and ¢, We assume that the elastic potential corresponding to the
material that occupies the cylinder B, is a positive definite quadratic form in the independent constitutive
variables.

Let S be the surface of separation of the two materials. We assume that the cylinder B is composed of
two different materials which are welded together along S (Figure 1) and that there is no separation of
material along S in the course of deformation. The functions u;, ¢;, ¥, t;, m; and o must be continuous
in passing from one medium to another, so that we have

[ujli = [ujla, lpj]i =[¢jla, (V] =[¥]a,

(2-7)
[toj 111 = [taj12nl,  [mejling =[majland, [o4]ind =[oxl2n) on S,

where (n(l), ng, 0) are the components of the unit normal to S, and the expressions in brackets are calcu-
lated for the domains B; and B;, respectively.

Saint-Venant’s problem consists in the determination of the functions u;, ¢; and vy which satisfy
the equations (2-1), (2-2) and (2-4) on B; and B,, the conditions (2-5) on the lateral surface, the condi-
tions (2-6) on X and the conditions (2-7) on S. The constants R; and M;, and the constitutive coefficients
are prescribed. In what follows we use the method established in [lesan 1976a; 1976b; 1976¢] to study the
deformation of inhomogeneous cylinders. This method has been extended to study generalized models
in [Lyons et al. 2002; Iesan and Scalia 2009; Iesan 2008; Birsan and Altenbach 2011; Birsan et al. 2012].

Figure 1. A heterogeneous rod.
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3. Plane strain

We introduce the plane strain problem associated to a cylinder composed by two materials. We assume
now that the cylinder is subjected to a body force fj(p ), a body couple g}p ), and to the microstretch body
force [”), on B,, (p =1, 2). Moreover, we suppose that the lateral surface of the cylinder is subjected
to surface tractions fj, to surface moments ; and to microstretch traction 6. We assume that all external
data are independent of the axial coordinate and that f3(p ) = 0, gép ) = 0, =0, m, =0.

We say that the cylinder B is in a state of plane strain, parallel to the x; Ox;-plane if the functions u;,

¢; and ¥ have the properties

ua =u0,(x1, -x2)7 I/l3=0, (p(I:O’ ‘P3=§03(x1,x2), W=W(xl,x2) on B (3_1)

It follows from (2-1), (2-2) and (3-1) that e;;, «;;, vi, tij, m;j, o; and ¢ are all independent of the axial
coordinate. The nonzero strain measures are

eup =UBa +Ea3 V3, Ka3=P3ar Yo=Y (3-2)

The constitutive equations (2-2) imply that, in the case of plane strain, the nonzero components of the
stress tensor, couple stress tensor and microstretch stress vector are fjg, mq3, m3, and o,. Further,

lap = )\(p)evu B(Xﬁ + (M(p) + K(p)) €ap + ﬂ(p)eﬁa + )»(()p)lﬁ Saﬁ,

(3-3)
Moz =y Pkqs + b(()p)83aﬁ Vg, Oa= a(()p))/a + b(()p)83ﬂa kg3, ¢ = )»(()p)ew + kgp)tlf-
The equations of equilibrium in the case of plane strain can be expressed as
tap+ [P =0, Mozatesaplop+8y =0, 0ua—C+I1? =0 onQ,. (3-4)
The conditions (2-7) reduce to
[ue]i = [ual2, [o3]i = [@3]2, [V =¥,
[1pa]1ny = [1pal2nl.  [masling =[meslang. [owling =[oxlany onT )
The conditions on the boundary IT become
[tpaling =1ta, [me3ling =m3, [oqling=6 onL. (3-6)

The plane strain problem consists in finding the functions u,, ¢3 and ¥ which satisfy the equations
(3-2)~(3-4) on §,, the conditions (3-5) on I and the conditions (3-6) on L. The functions f,", gép ) 1),
fy, M3 and & are given C*-fields. The necessary and sufficient conditons for the existence of a solution
to the plane strain problem are [Fichera 1973]

2 2
/t} ds+2/ fl_(p)da =0, /(83a,3 Xqo Ig +1M3) dS+Z/ (&3a0p xaf,ép)+g§p))da =0. (3-7)
L —Ue L il

If the conditions (3-5) are replaced by
[a]1 = U2, [@3]1 = [g3]2, (V1 =¥,

(3-8)
(16117} = [igalang + Pa.  [Ma3ling = [maslang +q. [oaling =[oalang +s.
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where py, ¢ and s are prescribed functions, then the necessary and sufficient conditions for the existence
of the solution are

2
/fads+2/f;ﬂ>ds+/pads=o,
L Pl r

(3-9)
2
f(sw Xolp+iiz)ds+ ) f (€30p Xa fy” + 85" da + f(s3a,3 Xepp +q)ds =0.
L Q r
p=177%F
If 73 = 0 and gép ) — 0, then the conditions (3-9) reduce to those used in classical elasticity to study

the deformation of heterogeneous cylinders [Muskhelishvili 1953]. By using (3-2) and (3-3) we can
express the equilibrium equations (3-4) in terms of functions u,, ¢3 and . We obtain the equations of
equilibrium:

2 419 Dug + O+ 1) ttya + 1P esap 93, + 0 Vo + [ =0,

(» (») (») (») (3-10)
YO Apy +kPezgpup e — 2P 03+ 85" =0, a” Ay — 2wy, — 27y +1P =0

on 2,, (p=1,2), where A is the Laplacian.

4. Extension and bending of heterogeneous cylinders

We assume that the loading applied on the end located at x3 = 0 is statically equivalent to the force
(0, 0, R3) and the moment (M;, M, 0). The conditions on X; become

/ t3pda =0, (4-1)
P
/ t33da = —R;3, (4-2)
%
(xgt33 — E3ap mgﬂ) da = Eap3 Mﬁ, (4-3)
PN
(8308 Xo t3g +m33) da = 0. (4-4)
P

The problem of extension and bending consists in finding the functions u;, ¢; and v which satisfy the
equations (2-1), (2-2) and (2-4) on B,, the conditions (2-5) on II, the conditions (2-7) on S, and the
conditions (4-1)—(4-4) for x3 = 0. Following [Iesan 2019b] we try to solve this problem assuming that

3

1 - k

Ma=—§Cax3+E Ckufx), uz = (c1x1 + c2x2 + c3) x3,
k=1

3 (4-5)

3
k
Go=Espcprs, @3= ccgy . Y=Y ay®,
k=1 k=1
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where u( ) ¢§k) and ¥ ® are unknown functions which are independent of x3, and ¢; are unknown

constants. In what follows we shall prove that the functions uka), <p(k) and y¥® satisfy a plane strain
problem P® (k =1, 2, 3), associated to the composed cylinder B.

Let us denote by efw) , K(];) and y® the strain measures (3-2) associated to the functions ua , <p§k>
and y®, (k =1, 2,3). Thus, we have

k k k k k k k
e = U T Epa3 03 K3 =050 V=0 (4-6)

We introduce the notations

= 1Py (k)5 up T+ (M(p) +K(p)) e(k) +M(p) (k) +)\(p)w5aﬂ’

k k k
mé3)=y(")/c(§3)+bép)g 208 V,s( )’ aoﬁk)=a(()")yo§k)+bép)83,g kg3, g(k)zk(()p) (k)+k(p)w(k) (4-7)

k k k
B _ 3006 30050 ® _ go, 0 0 0 oo

In view of (2-1), (4-5)—(4-7), the constitutive equations (2-2) imply

)\,(k)(cl)ﬂ 4+ crx2 +¢3) 5aﬂ+zck «p tyz3 = t3q =0,
k=1
3
t3= (L0 42 + kD) (erxy + e +e3) + Y atsy

k=1 (4-8)

3 3
k k
Moz =m33 =0, my3=Ppe30pcp+ E Ckmég)a m3q =y P e3qy cy + E Ckmgo,),

k=1 k=1

3
=—b(p)ca+ch " o3=0, g=A(()p)(c1x1+czx2+C3)+ch§(k) on B,.
k=1

Let us substitute (4-8) into the equations of equilibrium (2-4). We require that the resulting equations
be satisfied for any constant c¢;. Thus, we find that the functions t(iﬁ) , ka3) , (k) and ¢W, (k=1,2,3),
satisfy
) 3) (k) k
g A8, =0, 1505 =0, mgy ,+e3,1%) =0,
(4-9)
V™) —kép)xv =0, 0(3) @ — A(()p) =0, v=1,2 onQ,.

The equilibrium equations are satisfied if (4-9) holds. It follows from (2-5) and (4-8) that the conditions
on the lateral surface are satisfied for any constants cy, ¢, and c3 if we have

k ~ k k ~
[tgling =1L, [mSling =iy, [60ing=6® onlL, (4-10)

where we have used the notations

Wy, 1=

~ ~( ~(3 ~ 1 ~
téa) )‘(l)nﬂ m3 ,3(1)820“)1’11,, mg):(), O'(a):b(() )nou 0'(3)20. (4—11)
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Similarly, we conclude the conditions (2-7) on the surface S are satisfied if the unknown functions satisfy

1l =Pl [0l =103"L, WO =1 %, (g ing =[5 hn, + piP,

(4-12)
m& 100 = [m&1nd +4%, (610 =(6PLnd+5® onT.
Here, pék) ,q® and s® are defined by
p® = (@ — 50y xgn0, P = (@ — 30y 0
:B o o o (4-1 3)

1 2
g =BO = D)oy nl, P =0, O =@ -p)ng, s =0.

o

Thus, the functions u((xk), (p ) and w(k) are the solutions of the plane strain problems P® which are

characterized by the geometrical equations (4-6), the constitutive equations (4-7) and the equilibrium
equations (4-9) on €2, and the boundary conditions (4-10) and (4-11). The functions t(k) and mgk) can
be found after the determination of uka), goék) and ¥® from the problems P®, (k =1, 2, 3). It is easy
to see that the necessary and sufficient conditions (3-9) for the existence of the solution are satisfied for
each problem P®, (k =1,2,3). We note that the external loading in the problems P’ depend only
the constitutive coefficients and the cross-section of the cylinder.

Let us prove that the constants ¢, ¢; and c¢3 can be determined from the conditions on the ends. First,
we note that the conditions (4-1) and (4-4) are satisfied on the basis of equations (4-8).

The conditions (4-2) and (4-3) reduce to the following system for the constants ¢, ¢, and c3:
Aaj Cj :83a/3M/3, A3j Cj :—R3. (4-14)

Here, we have used the notations

2
Aaﬁ:Z/Q{(k(p)—i—Zu(")—i—K(p))xaxﬁ +xat33 +83vam§€)+y(p)8aﬂ}da,

2
Agz = Z/ {(}\(p) +2M(p) +K(p)) Xg + Xo t33 + &30 ms, )}da

) (4-15)
As, — Z/ [P 124 4 1P xg +£2] da,

2
A=Y / AP 42 4P 1)) da.

The constants A;; can be found if we know the functions u((xk) s (p ) and w(k), (k =1,2,3). By using

the methods of the classical elasticity [Muskhelishvili 1953; Iesan 2008] we can prove that the positive
definiteness of the elastic potential and the reciprocal theorem imply

det(A,-j) > 0, Aij = Aji- (4-16)

The constants c; are determined by the system (4-14). Thus, the solution of the problem is given by (4-5).
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5. Torsion and flexure

The problem of torsion and flexure consists in finding the displacement vector, the microrotation vector
and the microstretch function, which satisfy the equations (2-1), (2-2) and (2-4), the conditions (2-5) on
the lateral surface, the conditions (2-7) on the surface separation, and the conditions (2-6) on X, when
R3 =0 and M, = 0. We seek the solution of the problem in the form

3
1 1
Uy = —gaaX§ +x3 E aru® +dxzepez xp,  uz = §(a1X1 +axxy +az) x3 + F3,
= (5-1)

3 3
1 k
Yo = §x§83aﬂ ag+Fg, @3=dx3 +X3Zak<ﬂ§ Ly =X3Zakw(k)’
k=1 k=1

where a; and d are unknown constants, u((xk), goék) and w(k) are the solution to the problem P® and F )i
are unknown functions of x; and x;. We denote by w = (F}, F;, F3) the ordered triplet of functions F7,
F> and F3, and introduce the notations

Tofé’)w — (M(ﬂ) + K(p)) Fio+ K(p)ga/% Fg, T;(f)a) — M(p)FS,a + K(p)53ﬁa Fg, 52)
MPw=a®F & 0 F ()~ NPy —=n. M NPy =n T®
wp =0 0.0 Sap + B wp TV B.as o w=ngMg, o, 3 w=neT;3 .
and
Lf)p)w — a(,O)Fn’nv + ﬂ(p)FA,vk + J/(/O) Fyu+ Eua K('O)F3,n — 2P F,, 53
Lg”)a) = (uP 4+ k) F3 o0 + €483 K(p)Flg,a on 2.
From (2-1), (5-1) and the constitutive equations we obtain
3
lap = )L(p)(a].x] +arxy +az) x3 504/3 + X3 Zak tg;),
k=1
3
133 = (AP +2u°) + kD) (arx + arxy +as) x3+x3 Yy ar (Ve + 0"y ®),
k=1
3
tes = TR 0+ dpuPe3p x5 + 1 Z arul,
k=1
3
o T3((f)a) +d83,30,(,u(”) + 1) xg+ (u® + K(p))z ay ug‘), (5-4a)

k=1
3

k
My, = Msg)a) + a(/’)d(gvn + Zak(a(p)avr] (pg ) + €3 b(()ﬁ) w(k))’
k=1

3
m33=(a(p)+ﬂ(ﬂ)+y(p))<d+2ak<p§k>>+a<p)F,7,,7,
k=1

3 3
' k
Mo3 = (ﬂ(p)é‘ava a, + Zak m((x:)’)) X3, M3y = <V(p)8aﬂ3 ag+ Z“k m§a)> 13,
k=1 k=1
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3 3
Oy = (Z akO'OE’o) — bé’o)aa) X3, O03= b(()p)sgaﬂFa,;; —l—a(()'o)Zak w(k),
k=1 k=1

3 (5-4b)
.= ()\.(()p)(alxl 4+ arxy +az) + Z ay f(k)> x3 on B,.
k=1
By using (4-9), (5-3), (5-4a) and (5-4b) we see that the equilibrium equations (2-4) reduce to
) _ oo
Lj w= Sj on 2,, (5-5)
where
3
SEP) =dk®Px, +y® E3pv ap — Zak[mgkv) +a(")<p§’2 — 083 K(p)ufgk)],

= (5-6)

3
Sép) — _()L(P) + Z,LL('O) +K(p))(a1X] +a2x2 +a3) _ Zak[(k(l)) + M(P)) 81(112 +Aép)w(k)]
k=1

In view of (4-10), (4-11), (5-2), (5-4a) and (5-4b), the boundary conditions (2-5) can be written as
NYwo=h; onlL, (5-7)

where
3

he = _a(l)dna — Ny Zak(a(l)ava §0§k) + &30 b(()l)w(k)),

= . (5-8)
h; = du(1)83aﬁ XgNg — Ny ,u(l)z ai uka).
k=1
The conditions on the surface of separation S reduce to
[Fili = [Fl. (Nj(l)a))(no) = (N,.(2)w)(n0) +& onT. (5-9)
Here, (N j(p )a)) (n°) denotes the operator N j(p )w for Ny = ng and ¢; are defined by
3
e =@ —aMnd =" —u®) (desaﬂ xXp= ) ué")) ng- (5-10)

k=1

It is known [Fichera 1973] that the necessary and sufficient condition for the existence of a solution to
the problem (5-5), (5-7) and (5-9) is

2
/h3ds+/e3ds=2/5§">da. (5-11)
L r 12

P

In view of (5-6), (5-8) and (5-10), the condition (5-11) reduces to

A3j aj = 0, (5—12)
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where Aj; are defined in (4-15). By using the equations of equilibrium (2-4) we get

B3g = 1o3 + 380 Mjp,j = 13 + Xo i3k + €380 Mg, j = (KXo L3 + €380 Mug) v + Xo 1333 + €384 M3,3.

Thus, in view of (2-5) and (2-7), we obtain

ft3a da= | (x4 1333+ €380 M3p3) da. (5-13)
ol o

With the help of (5-4a), (5-13) and (4-15), the first two conditions from (2-6) become
A(xj Clj = —Ra. (5’14)

On the basis of (4-16), the equations (5-12) and (5-14) determine the constants a. Let us determine now
the constant d. We introduce the notation V = (G, G2, G3), where G; satisfy the following boundary
value problem

LYV =kPx, LYV =0 onQ,  Vili=[Vile NV = WV2V)@),
NV (%) = (NP VY0®) + (1D — 1 @) e30p xpn0,  onT, (5-15)
lel)V = —a(l)nv, N3(1)V = /,L(l)é‘ga/g Xgng onlL.
If we define the functions Fj0 by
FIQ:Fj—de, (5‘16)

and denote o° = (F, FZO, Fé)), then o satisfies

3
k k k
L;P)a)o — ,J/(ﬂ) €3py Ag — Z ak [m:(h;) +a(ﬂ) wg’z — &u83 K(ﬂ) ”;(3 )], Lgp)wo — S?(’P) on Qp’ (5_17)
k=1

and the conditions

[Fli=[FL,  (N"o) (") = (NP’) (") + &,

3
(1) 0y, 0y (2 0y/,,0 (1) @) ,,0 (k)
(N3 o)) = (N7 ") () = () — o )na;akua onT, (5-18)

3 3
k 1 1
N(fll)a)0 =—n, E ak(a(l)&,a goé ) + &340 b(() )w(k)), N3( ) = —,u(l)no, E akuka) on L.
k=1 k=1

Clearly, the conditions for the existence of the functions G; and F /'O are satisfied. The functions #3,
and m33 can be expressed as

3
3y = T3(£)C()O +d[T3((f)V +83,301(/'L(p) +K(p)).x/3] + (M(P) +K(p))zaku((xk)’

k=l (5-19)

3
m33=(Ol(p)+,3(p)+)/(p))zak§0§k)+05(p)F,?,n+d(0((p)+ﬁ(p)+)/(p)+a(p)Gr;,r/)-
k=1
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In view of (5-19), the last condition from (2-6) determines the constant d,

d=—-D""(M;+ M), (5-20)

where

2
D=Z/[egaﬁxaT3(§)V+(u(”)+K(”))xuxv+a(”)+ﬁ(")+y(”)+a(p)6v,v]da,
Q
p=17"°r

5 3 (5-21)
k
Mi=)" fﬂ{egaﬂ xa Ty +a P F),+) ad@? + 0 +y )i
p=1 » k=1
+830l,3 xa(M(P) +K(P))u}(8k)}da‘

As in classical elasticity we can show that the torsional rigidity D is different from zero. The other
conditions from (2-6) are satisfied on the basis of relations (5-4a). Thus, the solution of the problem is
given by (5-1).

In the case of flexure we have M3 = 0, but the constant d could be different from zero. In general,
the flexure of the bar is accompanied by torsion. The torsion problem is characterized by R; = 0 and
M, = 0. In this case, from (5-12) and (5-14) we find that the constants a; are equal to zero. It follows
that the torsion does not produce a microdilatation. The solution of the flexure problem shows that the
microrotation vector and the microstretch function are, in general, different from zero.

6. Extension of a cylinder reinforced by a longitudinal rod

This section is concerned with the problem of extension of a circular cylinder composed by two different
microstretch elastic materials. In this case in the conditions (2-6) we have R, = 0 and M; = 0. We
assume that the domains 2| and €2, are defined by Q2 = {(x1, x2, x3) : }’22 < x12 + x22 < rlz, x3 = 0}
and Q27 = {(x1, x2,x3) : 0 < xlz +x22 < r22, x3 = 0}, where r| and r, are the radiuses of the concentric
circles L and I', respectively. To investigate this problem we use the solution (4-5). First, we have to
study the plane strain problems P, and then to calculate the constants cj. We seek the solution of the
problem P® in the form

u) =Uqs, P =0, ¢y =0, (6-1)
where U and ® are unknown functions which depend only on the variable r = (xl2 + x%)l/ 2. Clearly,
uff?x =AU = %(rU/)/, e(%) =Uqp = 84p rlu - Xa Xp r3U’ + xq Xp r 20", (6-2)
where U’ = dU /dr. From (4-7) and (6-1) we find that

1) =298, AU + Qu' + k) Uap + 1§ ® 8ap.

(6-3)
m((j?)) =0, 0.053) — a(()p) q)’a’ €(3) — )\,(()p)AU +)\‘§P)¢ on Qp-
In view of (3-10), the equilibrium equations (4-9) reduce to
A@)
AU +ep® =AY, A0—20=""(1+AF) ong,, (6-4)

(0)
dy



356 DORIN IESAN

where Agl) and AEZ) are arbitrary constants and
)\(P) )\‘(p)

(p) 2 1
e =g [ 20 4P, W= L e
0

(6-5)

The positive definiteness of elastic potential imply that ‘L'(2 y > 0. From the equations (6-4) we find

U'= =1 P+ X0 7 + & AL+ AL r
® = Dy —2d(,y(1+ A, (6-6)
®g = C\” Io(t(pr) + C Ko(t(pyr) on 2,

where A(zp ), Cfp ) and Cép ) are arbitrary constants, /,, and K,, are modified Bessel functions of order #,
and we have used the notations

(0) () (0) (0)
N =€ /Ty X =ewdipys  dipy=n)" Qa7 & =2 Wdp /i) (6-T)
Since U’ and ® must be bounded for r = 0, we conclude that
AP =0, c{=o. (6-8)
With the help of (6-1) and (6-6) we obtain
1l = xa(=1(0) @01~ + X(p) He AL + AL on Q,,
;%)na = np{uD + kD) @pr ™ = Cu Y + 1Dy + k(AL — 2D 46Dy 240}, (6-9)
(3)na = aOI)CIJO on L,

where
ko) = dpy A" @1 + 20 + 6Py —200)21/0 . (6-10)

If we impose the conditions (4-10) and (4-12) corresponding to the problem P, then we obtain a linear
system of equations for the constants AY) ), C {p ), (p=1,2), Ag) and Cél). Thus, the condition 0053)110, =0
on L reduces to

cV =vc?, (6-11)
where
vy = L1 (zyr1) /K (zayry). (6-12)
From (6-6) and (6-11) we get
Do =CcV o), o, =CPr)A(r) onQ,
0 1 Q@) 0 1Ty A(r) 1 6-13)

CI)() = CEZ)I()(T(Q)}’), (DE) = C;Z)‘C(z) 11(‘[(2)}’) on Qz,
where
O(r) = Io(rayr) +viKo(rayr), A@)=L(tayr) —viKi(rayr). (6-14)

The condition imposed to the function ¢ on T leads to

c? =nc?, (6-15)
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where

1 2 _
vy = a(() )T(l)A(rz)[a(() )T(z) Ii(tayr)] ™" (6-16)
Let us introduce the notations

AV=x,, AV =x,, AP =x; c"=x,. (6-17)

The remaining conditions from (4-10) and (4-12) reduce to the following system for the constants A((xl),
A? and ¢V
1 1

4
ZaVSXS=br7 r=172a3747 (6'18)
s=1

where

a1 =-2day, ap=0, a;3=2dp), as=Q)—v2ly(t)r),
an =E1, an=ry', aj3=-£),
ar =) Ty vary  Ii(Teyr) —nayTayry L Ar),
az1 =kay, an=—-QuY +cMr?  an=—ke),
aza = u + Dy nayTayry ' A — Q' + @) ney v i”z_lf(z) I (T2)r2), (6-19)
an =kay, an=—-u"+xV) 7 a;=0,
ass = QuY + Dy ney oy ry A,
b1 =2(day—dw), b= xo — x>
by = 2 + D)yt — Qu® +1@) gz + 1D — 2D,
by = 2uV + kM) xay — 2L,
We assume that the constitutive coefficients are independent. From (6-18) we can determine the constants
A((),l), Agz) and Cl(l). The constants Cél) and CI(Z) can be calculated by (6-11) and (6-15). Thus, from
(6-1), (6-6), (6-9) and (6-13) we find that the solution of the problem P is given by
ul = xa{—n C\V tayr TAG) + xy +E A + A2 on @y,

2) — 2
u&s) = Xa{—U(Q) T(2) Cf )r 111 (T(z)r) + X(2) +'§(2)A§ )} on QZa

(6-20)
v = (" 0(r) —2day(1+A")} onQ,
vO ={CPIy(re)r) — 21+ AT)} on Q. ¢ =0.
From (4-7) and (6-2) we find
13 = AP 71U + 0 [®0 — 2d () (1 + AP)] on Q. (6-21)

In view of (6-6), (6-13), (6-21) and (4-15), we obtain

A3 =0, Aszx3z=H, (6-22)
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where
H=r02 +2u% 41 r22 + 7@ 42,0 4 /c(l))(rl2 — r22)
+27T(h11A§1) +h12A§2) +h13C1(1) +h14C1(2) + hyo),

h =i —r3) Y — d(l))\(()l)), hia =r3 (% —dp )»(()2)),

_ (6-23)

hi3 =G(r1) — G(r2), his = rz(?»éz) T(z)l —2Pew)) I (tayr),
_ 2 2y /4 (1) (1) 2) .2 2),2

ho = (r{ =r)) (A xay —dayrg ) —dy Ay 3 + 21713 X2),

G(r) = r{ny 7 Ui (rayr) — viKi(zayn)] = 2P ey A}
With the help of (4-16) and (6-22) we obtain A3, = 0. In the case of extension we have M; = 0, so that
the system (4-14) has the solution
c1=0, =0, c3=—-R3/H. (6-24)
Thus, the solution of the extension problem can be expressed as

Uy =c3ul), us=c3xz, ¢; =0, Y=c3y?,

where 1 and ¥ ® are given by (6-20).

7. Conclusions

The paper is concerned with the deformation of a bar composed by two different microstretch elastic
materials welded together along the surface of separation. The results established in this paper can be
summarized as follows:

(a) We study the deformation of a heterogeneous bar which is subjected to extension, bending, torsion
and flexure.

(b) We show that the solution of the problem of extension and bending can be reduced to the study of
some two-dimensional problems.

(c) We establish the solution of the problem of torsion and flexure by a transversal force.

(d) We use the method to investigate the extension of a circular cylinder reinforced by a longitudinal
rod.
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