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DEFORMATION OF HETEROGENEOUS MICROSTRETCH ELASTIC BARS

DORIN IEŞAN

The material points of microstretch continua undergo a uniform microdilatation and a rigid microrotation.
This paper is concerned with the deformation of a bar composed by two different microstretch elastic
materials. The intended applications of the solution are to bone implants and various compound cylinders.
The bar is reinforced by a longitudinal rod and is subjected to extension, bending, torsion and flexure.
First, the problem of bending and extension is investigated. The solution involves the solving of three
plane strain problems. Then, we study the problem of torsion and flexure. The results are used to
investigate the extension of a right circular cylinder reinforced by a circular rod.

1. Introduction

A microstretch continuum is a material with microstructure in which the microelements can stretch
and contract independently of their translations and rotations. The theory of microstretch continua was
introduced in [Eringen 1999] as a generalization of the Cosserat theory. When the microdilatation is zero,
the microstretch continuum reduces to the Cosserat model. The applications of the theory of microstretch
continua are to composite materials, porous solids, bones and various materials with inner structure.
The Cosserat elastic solid was used as model for carbon nanotubes and composite materials [Lakes
2001; Chandraseker et al. 2009; Ha et al. 2016] and for bones [Lakes 1982; Fatemi et al. 2002]. Lakes
[1982] presented some experimental observations on the mechanical behavior of bones and remarked
that “Human bone, a natural fibrous composite, displays size effects in torsion and bending which are
consistent with Cosserat elasticity rather than classical elasticity”. The cancellous bone is considered as
a porous body [Kohles and Roberts 2002] so the linear theory of microstretch elastic solids is adequate
to describe the mechanical behavior of bones. Various papers have been devoted to the study of bone
implants and anisotropic cylinders [Hanumantharaju and Shivanand 2009; Thielen et al. 2009; Taliercio
and Veber 2016]. The bone and the implant form a body which can be modeled as a continuum composed
of different materials.

We study the deformation of a heterogeneous bar which is made of two materials, welded together
along the surface of separation. The deformation of homogeneous microstretch elastic cylinders has been
investigated in [Ieşan and Nappa 1995; Ieşan 2008; 2019a; 2019b]. We assume that the bar is composed
of two homogenous and isotropic microstretch elastic materials and is subjected to extension, bending,
torsion and flexure.

The paper is structured as follows. First, we present the basic equations of isotropic microstretch
elastic solids and formulate the problem of a reinforced rod. Then, we define the plane strain problem
associated to a heterogeneous body. In the following section we present the solution of the problem
of extension and bending. It is shown that this problem reduces to the study of some two-dimensional
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problems in which the external data depend only on the constitutive coefficients. Then, we study the
problem of torsion and flexure. The flexure of the cylinder produces a torsion of the bar about its axis.
Finally, we use the method to investigate the extension of a circular cylinder reinforced by a circular rod.

2. Preliminaries

We present the basic equations of the microstretch elastic solids and the formulation of the problem.
We consider a continuum which in undeformed state occupies the regular domain B of Euclidean three-
dimensional space and is bounded by the surface ∂B. Throughout this paper a fixed system of rectangular
cartesian axes Oxk , (k = 1, 2, 3), is used. We shall employ standard indicial notations: Greek subscripts
take on the values 1 and 2 whereas Latin subscripts (unless otherwise specified) are understood to range
over (1, 2, 3), and summation over repeated subscripts is implied. We denote by n j the components of
the outward unit normal of ∂B and introduce the notation f,k = ∂ f/∂xk . We study the deformation of
isotropic solids in the linear theory of microstretch elastic continua. Let uk be the displacement vector, let
ϕk be the microrotation vector, and let ψ be the microstretch function. We denote by εi jk the alternating
symbol. The strain measures are defined by

ei j = u j,i + εj ik ϕk, κi j = ϕ j,i , γi = ψ,i . (2-1)

Let ti j be the stress tensor, mi j be the couple stress tensor, σi be the microstretch stress vector, and ζ be
the microstress function. The constitutive equations are

ti j = λerr δi j + (µ+ κ) ei j +µej i + λ0ψδi j , mi j = ακrr δi j +βκj i + γ κi j + b0 εk jiγk,

σi = a0γi + b0 εirs κsr , ζ = λ0 err + λ1ψ,
(2-2)

where λ, µ, κ , λ0, λ1, α, β, γ, b0 and a0 are constitutive coefficients. In the linear elasticity the Cosserat
model is characterized by the coefficients λ, µ, κ , α, β, γ . The tractions acting at a regular point of ∂B
are defined by

ti = tj i n j , mi = m j i n j , σ = σi ni . (2-3)

In the absence of body loads, the equilibrium equations are

tj i, j = 0, m j i, j + εirs trs = 0, σj, j − ζ = 0. (2-4)

In what follows we assume that the domain B is a right cylinder of length h with the cross-section 6
and the lateral boundary 5. The rectangular coordinate frame is chosen such that the x3-axis is parallel
to the generator of B. We denote by 61 and 62 the terminal cross-sections and assume that these are
located at x3 = 0 and x3 = h, respectively. Let L be the boundary of 61. We assume that the cylinder is
free of lateral loading. We have

tαi nα = 0, mαi nα = 0, σα nα = 0 on 5. (2-5)

We assume that the load of the cylinder is distributed over its ends in a way which fulfills the equilibrium
conditions of the body. We use Saint-Venant’s formulation in which the pointwise assignment of the
terminal tractions is replaced by prescribing the corresponding resultant force and resultant moment.
Let the loading applied on 61 be equivalent to the resultant force R = (R1, R2, R3) and the resultant
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moment M = (M1,M2,M3). The cross-section 62 is subjected to tractions that satisfy the conditions of
the equilibrium of the cylinder. The conditions on the end 61 can be expressed as∫

61

t3i da =−Ri ,

∫
61

(xα t33− ε3αβ m3β) da = εαβ3 Mβ,

∫
61

(ε3αβ xα t3β +m33) da =−M3. (2-6)

The formulation of Saint-Venant leads to the four basic problems of extension (Rα = 0, Mj = 0), bending
(Rj = 0, M3 = 0), torsion (Rj = 0, Mα = 0) and flexure (R3 = 0, Mj = 0).

Let 0 be a closed curve contained in 61, which is the boundary of a regular domain �2 contained
in 61. We suppose that 0 and L have no common points and denote by �1 the domain bounded by 0
and L . Let Bρ be the cylinder:

Bρ = {(x1, x2, x3) : (x1, x2) ∈�ρ, 0< x3 < h}, ρ = 1, 2.

We suppose that Bρ is occupied by an elastic material with the constitutive coefficients λ(ρ), µ(ρ), κ(ρ),
λ
(ρ)

0 , λ(ρ)1 , α(ρ), β(ρ), γ (ρ), b(ρ)0 and a(ρ)0 . We assume that the elastic potential corresponding to the
material that occupies the cylinder Bρ is a positive definite quadratic form in the independent constitutive
variables.

Let S be the surface of separation of the two materials. We assume that the cylinder B is composed of
two different materials which are welded together along S (Figure 1) and that there is no separation of
material along S in the course of deformation. The functions u j , ϕ j , ψ , tj , m j and σ must be continuous
in passing from one medium to another, so that we have

[u j ]1 = [u j ]2, [ϕ j ]1 = [ϕ j ]2, [ψ]1 = [ψ]2,

[tα j ]1 n0
α = [tα j ]2 n0

α, [mα j ]1 n0
α = [mα j ]2 n0

α, [σα]1 n0
α = [σα]2 n0

α on S,
(2-7)

where (n0
1, n0

2, 0) are the components of the unit normal to S, and the expressions in brackets are calcu-
lated for the domains B1 and B2, respectively.

Saint-Venant’s problem consists in the determination of the functions u j , ϕ j and ψ which satisfy
the equations (2-1), (2-2) and (2-4) on B1 and B2, the conditions (2-5) on the lateral surface, the condi-
tions (2-6) on 61 and the conditions (2-7) on S. The constants Rj and Mj , and the constitutive coefficients
are prescribed. In what follows we use the method established in [Ieşan 1976a; 1976b; 1976c] to study the
deformation of inhomogeneous cylinders. This method has been extended to study generalized models
in [Lyons et al. 2002; Ieşan and Scalia 2009; Ieşan 2008; Bîrsan and Altenbach 2011; Bîrsan et al. 2012].

S1

S
2

Figure 1. A heterogeneous rod.
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3. Plane strain

We introduce the plane strain problem associated to a cylinder composed by two materials. We assume
now that the cylinder is subjected to a body force f (ρ)j , a body couple g(ρ)j , and to the microstretch body
force l(ρ), on Bρ, (ρ = 1, 2). Moreover, we suppose that the lateral surface of the cylinder is subjected
to surface tractions t̃j , to surface moments m̃ j and to microstretch traction σ̃ . We assume that all external
data are independent of the axial coordinate and that f (ρ)3 = 0, g(ρ)α = 0, t̃3 = 0, m̃α = 0.

We say that the cylinder B is in a state of plane strain, parallel to the x1Ox2-plane if the functions u j ,
ϕ j and ψ have the properties

uα = uα(x1, x2), u3 = 0, ϕα = 0, ϕ3 = ϕ3(x1, x2), ψ = ψ(x1, x2) on B. (3-1)

It follows from (2-1), (2-2) and (3-1) that ei j , κi j , γi , ti j , mi j , σi and ζ are all independent of the axial
coordinate. The nonzero strain measures are

eαβ = uβ,α + εβα3 ϕ3, κα3 = ϕ3,α, γα = ψ,α. (3-2)

The constitutive equations (2-2) imply that, in the case of plane strain, the nonzero components of the
stress tensor, couple stress tensor and microstretch stress vector are tjβ , mα3, m3α and σα. Further,

taβ = λ(ρ)eνν δαβ + (µ(ρ)+ κ(ρ)) eαβ +µ(ρ)eβα + λ
(ρ)

0 ψ δαβ,

mα3 = γ
(ρ)κα3+ b(ρ)0 ε3αβψ,β, σα = a(ρ)0 γα + b(ρ)0 ε3βα κβ3, ζ = λ

(ρ)

0 eνν + λ
(ρ)

1 ψ.
(3-3)

The equations of equilibrium in the case of plane strain can be expressed as

tβα,β + f (ρ)α = 0, mα3,α + ε3αβ tαβ + g(ρ)3 = 0, σα,α − ζ + l(ρ) = 0 on �ρ . (3-4)

The conditions (2-7) reduce to

[uα]1 = [uα]2, [ϕ3]1 = [ϕ3]2, [ψ]1 = [ψ]2,

[tβα]1 n0
β = [tβα]2 n0

β, [mα3]1 n0
α = [mα3]2 n0

α, [σα]1 n0
α = [σα]2 n0

α on 0.
(3-5)

The conditions on the boundary 5 become

[tβα]1 nβ = t̃α, [mα3]1 nα = m̃3, [σα]1 nα = σ̃ on L . (3-6)

The plane strain problem consists in finding the functions uα, ϕ3 and ψ which satisfy the equations
(3-2)–(3-4) on �ρ , the conditions (3-5) on 0 and the conditions (3-6) on L . The functions f (ρ)α , g(ρ)3 , l(ρ),
t̃α , m̃3 and σ̃ are given C∞-fields. The necessary and sufficient conditons for the existence of a solution
to the plane strain problem are [Fichera 1973]∫

L
t̃α ds+

2∑
ρ=1

∫
�ρ

f (ρ)i da = 0,
∫

L
(ε3αβ xα t̃β + m̃3) ds+

2∑
ρ=1

∫
�ρ

(ε3αβ xα f (ρ)β + g(ρ)3 ) da = 0. (3-7)

If the conditions (3-5) are replaced by

[uα]1 = [uα]2, [ϕ3]1 = [ϕ3]2, [ψ]1 = [ψ]2,

[tβα]1 n0
β = [tβα]2 n0

β + pα, [mα3]1 n0
α = [mα3]2 n0

α + q, [σα]1 n0
α = [σα]2 n0

α + s,
(3-8)
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where pα , q and s are prescribed functions, then the necessary and sufficient conditions for the existence
of the solution are ∫

L
t̃α ds+

2∑
ρ=1

∫
�ρ

f (ρ)α ds+
∫
0

pα ds = 0,

∫
L
(ε3αβ xα t̃β + m̃3) ds+

2∑
ρ=1

∫
�ρ

(ε3αβ xα f (ρ)β + g(ρ)3 ) da+
∫
0

(ε3αβ xα pβ + q) ds = 0.

(3-9)

If m̃3 = 0 and g(ρ)3 = 0, then the conditions (3-9) reduce to those used in classical elasticity to study
the deformation of heterogeneous cylinders [Muskhelishvili 1953]. By using (3-2) and (3-3) we can
express the equilibrium equations (3-4) in terms of functions uα, ϕ3 and ψ . We obtain the equations of
equilibrium:

(µ(ρ)+ κ(ρ))1uα + (λ(ρ)+µ(ρ)) uν,να + κ(ρ)ε3αβ ϕ3,β + λ
(ρ)

0 ψ,α + f (ρ)α = 0,

γ (ρ)1ϕ3+ κ
(ρ)ε3αβ uβ,α − 2κ(ρ)ϕ3+ g(ρ)3 = 0, a(ρ)0 1ψ − λ

(ρ)

0 uν,ν − λ
(ρ)

1 ψ + l(ρ) = 0
(3-10)

on �ρ , (ρ = 1, 2), where 1 is the Laplacian.

4. Extension and bending of heterogeneous cylinders

We assume that the loading applied on the end located at x3 = 0 is statically equivalent to the force
(0, 0, R3) and the moment (M1,M2, 0). The conditions on 61 become∫

61

t3α da = 0, (4-1)∫
61

t33 da =−R3, (4-2)∫
61

(xα t33− ε3αβ m3β) da = εαβ3 Mβ, (4-3)∫
61

(ε3αβ xα t3β +m33) da = 0. (4-4)

The problem of extension and bending consists in finding the functions u j , ϕ j and ψ which satisfy the
equations (2-1), (2-2) and (2-4) on Bρ , the conditions (2-5) on 5, the conditions (2-7) on S, and the
conditions (4-1)–(4-4) for x3 = 0. Following [Ieşan 2019b] we try to solve this problem assuming that

uα =−
1
2

cα x2
3 +

3∑
k=1

ck u(k)α , u3 = (c1x1+ c2x2+ c3)x3,

ϕα = ε3αβ cβ x3, ϕ3 =

3∑
k=1

ck ϕ
(k)
3 , ψ =

3∑
k=1

ckψ
(k),

(4-5)
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where u(k)α , ϕ(k)3 and ψ (k) are unknown functions which are independent of x3, and ck are unknown
constants. In what follows we shall prove that the functions u(k)α , ϕ(k)3 and ψ (k) satisfy a plane strain
problem P (k), (k = 1, 2, 3), associated to the composed cylinder B.

Let us denote by e(k)αβ , κ(k)α3 and γ (k) the strain measures (3-2) associated to the functions u(k)α , ϕ(k)3
and ψ (k), (k = 1, 2, 3). Thus, we have

e(k)αβ = u(k)β,α + εβα3 ϕ
(k)
3 , κ

(k)
α3 = ϕ

(k)
3,α, γ (k)α = ψ

(k)
,α . (4-6)

We introduce the notations

t (k)aβ = λ
(ρ)e(k)νν δαβ + (µ

(ρ)
+ κ(ρ)) e(k)αβ +µ

(ρ)e(k)βα + λ
(ρ)

0 ψ δαβ,

m(k)
α3 = γ

(ρ)κ
(k)
α3 + b(ρ)0 ε3αβ γ

(k)
β , σ (k)α = a(ρ)0 γ (k)α + b(ρ)0 ε3βα κβ3, ζ (k) = λ

(ρ)

0 e(k)νν + λ
(ρ)

1 ψ (k),

t (k)33 = λ
(ρ)e(k)νν + λ

(ρ)

0 ψ (k), m(k)
3α = β

(ρ)κ
(k)
α3 + b(ρ)0 ε3αν γ

(k)
ν on �ρ .

(4-7)

In view of (2-1), (4-5)–(4-7), the constitutive equations (2-2) imply

tαβ = λ(k)(c1x1+ c2x2+ c3) δαβ +

3∑
k=1

ck t (k)αβ , tα3 = t3α = 0,

t33 = (λ
(ρ)
+ 2µ(ρ)+ κ(ρ))(c1x1+ c2x2+ c3)+

3∑
k=1

ck t (k)33 ,

mα3 = m33 = 0, mα3 = β
(ρ)ε3αβ cβ +

3∑
k=1

ck m(k)
α3 , m3α = γ

(ρ)ε3αν cν +
3∑

k=1

ck m(k)
3α ,

σα =−b(ρ)0 cα +
3∑

k=1

ck σ
(k)
α , σ3 = 0, ζ = λ

(ρ)

0 (c1x1+ c2x2+ c3)+

3∑
k=1

ck ζ
(k) on Bρ .

(4-8)

Let us substitute (4-8) into the equations of equilibrium (2-4). We require that the resulting equations
be satisfied for any constant ck . Thus, we find that the functions t (k)αβ , m(k)

α3 , σ (k)α and ζ (k), (k = 1, 2, 3),
satisfy

t (ν)βα,β + λ
(ρ)δαν = 0, t (3)βα,β = 0, m(k)

βα,β + ε3ρν t (k)ρν = 0,

σ (ν)α,α − ζ
(ν)
− λ

(ρ)

0 xν = 0, σ (3)α,α − ζ
(3)
− λ

(ρ)

0 = 0, ν = 1, 2 on �ρ .
(4-9)

The equilibrium equations are satisfied if (4-9) holds. It follows from (2-5) and (4-8) that the conditions
on the lateral surface are satisfied for any constants c1, c2 and c3 if we have

[t (k)βα ]1 nβ = t̃ (k)α , [m(k)
α3 ]1 nα = m̃(k)

3 , [σ (k)α ]1 nα = σ̃ (k) on L , (4-10)

where we have used the notations

t̃ (α)β =−λ
(1)xα nβ, t̃ (3)β =−λ

(1)nβ, m̃(α)
3 = β

(1)ε3αν nν, m̃(3)
3 = 0, σ̃ (α) = b(1)0 nα, σ̃ (3) = 0. (4-11)
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Similarly, we conclude the conditions (2-7) on the surface S are satisfied if the unknown functions satisfy

[u(k)α ]1 = [u
(k)
α ]2, [ϕ

(k)
3 ]1 = [ϕ

(k)
3 ]2, [ψ

(k)
]1 = [ψ

(k)
]2, [t

(k)
βα ]1 n0

β = [t
(k)
βα ]2 n p + p(k)α ,

[m(k)
α3 ] n

0
α = [m

(k)
α3 ]2 n0

α + q(k), [σ (k)α ]1 n0
α = [σ

(k)
α ]2 n0

α + s(k) on 0.
(4-12)

Here, p(k)α , q(k) and s(k) are defined by

p(β)α = (λ
(2)
− λ(1)) xβ n0

α, p(3)α = (λ
(2)
− λ(1)) n0

α,

q(η) = (β(1)−β(2)) ε3ηα n0
α, q(3) = 0, s(β) = (b(1)0 − b(2)0 ) n0

β, s(3) = 0.
(4-13)

Thus, the functions u(k)α , ϕ(k)3 and ψ (k) are the solutions of the plane strain problems P (k) which are
characterized by the geometrical equations (4-6), the constitutive equations (4-7) and the equilibrium
equations (4-9) on �ρ , and the boundary conditions (4-10) and (4-11). The functions t (k)33 and m(k)

3α can
be found after the determination of u(k)α , ϕ(k)3 and ψ (k) from the problems P (k), (k = 1, 2, 3). It is easy
to see that the necessary and sufficient conditions (3-9) for the existence of the solution are satisfied for
each problem P (k), (k = 1, 2, 3). We note that the external loading in the problems P (k) depend only
the constitutive coefficients and the cross-section of the cylinder.

Let us prove that the constants c1, c2 and c3 can be determined from the conditions on the ends. First,
we note that the conditions (4-1) and (4-4) are satisfied on the basis of equations (4-8).

The conditions (4-2) and (4-3) reduce to the following system for the constants c1, c2 and c3:

Aα j cj = ε3αβ Mβ, A3 j cj =−R3. (4-14)

Here, we have used the notations

Aαβ =
2∑
ρ=1

∫
�ρ

{(λ(ρ)+ 2µ(ρ)+ κ(ρ)) xα xβ + xα t (β)33 + ε3να m(β)

3ν + γ
(ρ) δαβ} da,

Aα3 =

2∑
ρ=1

∫
�ρ

{(λ(ρ)+ 2µ(ρ)+ κ(ρ)) xα + xα t (3)33 + ε3να m(3)
3ν } da,

A3α =

2∑
ρ=1

∫
�ρ

[(λ(ρ)+ 2µ(ρ)+ κ(ρ)) xα + t (α)33 ] da,

A33 =

2∑
ρ=1

∫
�ρ

(λ(ρ)+ 2µ(ρ)+ κ(ρ)+ t (3)33 ) da.

(4-15)

The constants Ai j can be found if we know the functions u(k)α , ϕ(k)3 and ψ (k), (k = 1, 2, 3). By using
the methods of the classical elasticity [Muskhelishvili 1953; Ieşan 2008] we can prove that the positive
definiteness of the elastic potential and the reciprocal theorem imply

det(Ai j ) > 0, Ai j = A j i . (4-16)

The constants cj are determined by the system (4-14). Thus, the solution of the problem is given by (4-5).
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5. Torsion and flexure

The problem of torsion and flexure consists in finding the displacement vector, the microrotation vector
and the microstretch function, which satisfy the equations (2-1), (2-2) and (2-4), the conditions (2-5) on
the lateral surface, the conditions (2-7) on the surface separation, and the conditions (2-6) on 61, when
R3 = 0 and Mα = 0. We seek the solution of the problem in the form

uα =−
1
6

aα x3
3 + x3

3∑
k=1

ak u(k)α + dx3 εβα3 xβ, u3 =
1
2
(a1x1+ a2x2+ a3) x2

3 + F3,

ϕα =
1
2

x2
3 ε3αβ aβ + Fβ, ϕ3 = dx3+ x3

3∑
k=1

ak ϕ
(k)
3 , ψ = x3

3∑
k=1

akψ
(k),

(5-1)

where ak and d are unknown constants, u(k)α , ϕ(k)3 and ψ (k) are the solution to the problem P (k), and F j

are unknown functions of x1 and x2. We denote by ω = (F1, F2, F3) the ordered triplet of functions F1,
F2 and F3, and introduce the notations

T (ρ)

α3 ω = (µ
(ρ)
+ κ(ρ))F3,α + κ

(ρ)εαβ3 Fβ, T (ρ)

3α ω = µ
(ρ)F3,α + κ

(ρ)ε3βα Fβ,

M (ρ)
αβ ω = α

(ρ)Fη,η δαβ +β(ρ)Fα,β + γ (ρ)Fβ,α, N (ρ)
α ω = nβ M (ρ)

βα ω, N (ρ)

3 ω = nα T (ρ)

α3 ω.
(5-2)

and
L(ρ)ν ω = α(ρ)Fη,ην +β(ρ)Fλ,νλ+ γ (ρ)Fν,λλ+ ενη3 κ

(ρ)F3,η− 2κ(ρ)Fν,

L(ρ)3 ω = (µ(ρ)+ κ(ρ))F3,αα + εαβ3 κ
(ρ)Fβ,α on �ρ .

(5-3)

From (2-1), (5-1) and the constitutive equations we obtain

tαβ = λ(ρ)(a1x1+ a2x2+ a3) x3 δαβ + x3

3∑
k=1

ak t (k)αβ ,

t33 = (λ
(ρ)
+ 2µ(ρ)+ κ(ρ))(a1x1+ a2x2+ a3) x3+ x3

3∑
k=1

ak(λ
(ρ)e(ρ)νν + λ

(ρ)

0 ψ (k)),

tα3 = T (ρ)

α3 ω+ dµ(ρ)ε3βα xβ +µ(ρ)
3∑

k=1

ak u(k)α ,

t3α = T (ρ)

3α ω+ dε3βα(µ
(ρ)
+ κ(ρ)) xβ + (µ(ρ)+ κ(ρ))

3∑
k=1

ak u(k)α , (5-4a)

mνη = M (ρ)
νη ω+α

(ρ)dδνη+
3∑

k=1

ak(α
(ρ)δνη ϕ

(k)
3 + ε3ην b(ρ)0 ψ (k)),

m33 = (α
(ρ)
+β(ρ)+ γ (ρ))

(
d +

3∑
k=1

akϕ
(k)
3

)
+α(ρ)Fη,η,

mα3 =

(
β(ρ)εαν3 aν +

3∑
k=1

ak m(k)
α3

)
x3, m3α =

(
γ (ρ)εαβ3 aβ +

3∑
k=1

ak m(k)
3α

)
x3,
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σα =

( 3∑
k=1

akσ
(ρ)
α − b(ρ)0 aα

)
x3, σ3 = b(ρ)0 ε3αβFα,β + a(ρ)0

3∑
k=1

akψ
(k),

(5-4b)

ζ =

(
λ
(ρ)

0 (a1x1+ a2x2+ a3)+

3∑
k=1

ak ζ
(k)
)

x3 on Bρ .

By using (4-9), (5-3), (5-4a) and (5-4b) we see that the equilibrium equations (2-4) reduce to

L(ρ)j ω = S(ρ)j on �ρ, (5-5)

where

S(ρ)ν = dκ(ρ)xν + γ (ρ) ε3βν aβ −
3∑

k=1

ak[m
(k)
3ν +α

(ρ)ϕ
(k)
3,ν − ενβ3 κ

(ρ)u(k)β ],

S(ρ)3 =−(λ
(ρ)
+ 2µ(ρ)+ κ(ρ))(a1x1+ a2x2+ a3)−

3∑
k=1

ak[(λ
(ρ)
+µ(ρ)) e(k)αα + λ

(ρ)

0 ψ (k)].

(5-6)

In view of (4-10), (4-11), (5-2), (5-4a) and (5-4b), the boundary conditions (2-5) can be written as

N (1)
j ω = h j on L , (5-7)

where

hα =−α(1)dnα − nν
3∑

k=1

ak(α
(1)δνα ϕ

(k)
3 + ε3αν b(1)0 ψ (k)),

h3 = dµ(1)ε3αβ xβ nα − nαµ(1)
3∑

k=1

ak u(k)α .

(5-8)

The conditions on the surface of separation S reduce to

[Fj ]1 = [Fj ]2, (N (1)
j ω)(n0)= (N (2)

j ω)(n0)+ εj on 0. (5-9)

Here, (N (ρ)
j ω)(n0) denotes the operator N (ρ)

j ω for nα = n0
α and εj are defined by

εν = (α
(2)
−α(1)) n0

ν, ε3 = (µ
(1)
−µ(2))

(
dε3αβ xβ −

3∑
k=1

ak u(k)α

)
n0
α. (5-10)

It is known [Fichera 1973] that the necessary and sufficient condition for the existence of a solution to
the problem (5-5), (5-7) and (5-9) is∫

L
h3 ds+

∫
0

ε3 ds =
2∑
ρ=1

∫
�ρ

S(ρ)3 da. (5-11)

In view of (5-6), (5-8) and (5-10), the condition (5-11) reduces to

A3 j aj = 0, (5-12)
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where A3 j are defined in (4-15). By using the equations of equilibrium (2-4) we get

t3α = tα3+ ε3βα m jβ, j = tα3+ xα tk3,k + ε3βα m jβ, j = (xα tν3+ ε3βα mνβ),ν + xα t33,3+ ε3βα m3β,3.

Thus, in view of (2-5) and (2-7), we obtain∫
61

t3α da =
∫
61

(xα t33,3+ ε3βα m3β,3) da. (5-13)

With the help of (5-4a), (5-13) and (4-15), the first two conditions from (2-6) become

Aα j aj =−Rα. (5-14)

On the basis of (4-16), the equations (5-12) and (5-14) determine the constants ak . Let us determine now
the constant d. We introduce the notation V = (G1,G2,G3), where G j satisfy the following boundary
value problem

L(ρ)α V = κ(ρ)xα, L(ρ)3 V = 0 on �ρ, [V j ]1 = [V j ]2, (N (1)
α V )(n0)= (N (2)

α V )(n0),

(N (1)
3 V )(n0)= (N (2)

3 V )(n0)+ (µ(1)−µ(2)) ε3αβ xβ n0
α, on 0,

N (1)
ν V =−α(1)nν, N (1)

3 V = µ(1)ε3αβ xβ nα on L .

(5-15)

If we define the functions F0
j by

F0
j = F j − dG j , (5-16)

and denote ω0
= (F 0

1 , F0
2 , F0

3 ), then ω0 satisfies

L(ρ)j ω0
= γ (ρ) ε3βν aβ −

3∑
k=1

ak[m
(k)
3ν +α

(ρ)ϕ
(k)
3,ν − ενβ3 κ

(ρ)u(k)β ], L(ρ)3 ω0
= S(ρ)3 on �ρ, (5-17)

and the conditions

[F0
j ]1 = [F

0
j ]2, (N (1)

ν ω0)(n0)= (N (2)
ν ω0)(n0)+ εv,

(N (1)
3 ω0)(n0)= (N (2)

3 ω0)(n0)− (µ(1)−µ(2)) n0
α

3∑
k=1

ak u(k)α on 0,

N (1)
α ω0

=−nν
3∑

k=1

ak(α
(1)δνα ϕ

(k)
3 + ε3αν b(1)0 ψ (k)), N (1)

3 ω0
=−µ(1)nα

3∑
k=1

ak u(k)α on L .

(5-18)

Clearly, the conditions for the existence of the functions G j and F0
j are satisfied. The functions t3α

and m33 can be expressed as

t3α = T (ρ)

3α ω
0
+ d [T (ρ)

3α V + ε3βα(µ
(ρ)
+ κ(ρ)) xβ] + (µ(ρ)+ κ(ρ))

3∑
k=1

ak u(k)α ,

m33 = (α
(ρ)
+β(ρ)+ γ (ρ))

3∑
k=1

akϕ
(k)
3 +α

(ρ)F0
η,η+ d(α(ρ)+β(ρ)+ γ (ρ)+α(ρ)Gη,η).

(5-19)
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In view of (5-19), the last condition from (2-6) determines the constant d ,

d =−D−1(M3+M∗3 ), (5-20)
where

D =
2∑
ρ=1

∫
�ρ

[ε3αβ xαT (ρ)

3β V + (µ(ρ)+ κ(ρ))xν xν + a(ρ)+β(ρ)+ γ (ρ)+α(ρ)Gν,ν] da,

M∗3 =
2∑
ρ=1

∫
�ρ

{ε3αβ xα T (ρ)

3β +α
(ρ)F0

ν,ν +

3∑
k=1

ak[(α
(ρ)
+β(ρ)+ γ (ρ))v

(k)
3 ]

+ ε3αβ xα(µ(ρ)+ κ(ρ))u
(k)
β }da.

(5-21)

As in classical elasticity we can show that the torsional rigidity D is different from zero. The other
conditions from (2-6) are satisfied on the basis of relations (5-4a). Thus, the solution of the problem is
given by (5-1).

In the case of flexure we have M3 = 0, but the constant d could be different from zero. In general,
the flexure of the bar is accompanied by torsion. The torsion problem is characterized by Rj = 0 and
Mα = 0. In this case, from (5-12) and (5-14) we find that the constants ak are equal to zero. It follows
that the torsion does not produce a microdilatation. The solution of the flexure problem shows that the
microrotation vector and the microstretch function are, in general, different from zero.

6. Extension of a cylinder reinforced by a longitudinal rod

This section is concerned with the problem of extension of a circular cylinder composed by two different
microstretch elastic materials. In this case in the conditions (2-6) we have Rα = 0 and Mj = 0. We
assume that the domains �1 and �2 are defined by �1 = {(x1, x2, x3) : r2

2 < x2
1 + x2

2 < r2
1 , x3 = 0}

and �2 = {(x1, x2, x3) : 0 ≤ x2
1 + x2

2 < r2
2 , x3 = 0}, where r1 and r2 are the radiuses of the concentric

circles L and 0, respectively. To investigate this problem we use the solution (4-5). First, we have to
study the plane strain problems P (k), and then to calculate the constants cj . We seek the solution of the
problem P (3) in the form

u(3)α =U,α, ϕ(3) = 0, ψ (3) =8, (6-1)

where U and 8 are unknown functions which depend only on the variable r = (x2
1 + x2

2)
1/2. Clearly,

u(3)α,α =1U = 1
r (rU ′)′, e(3)αβ =U,αβ = δαβ r−1U ′− xα xβ r−3U ′+ xα xβ r−2U ′′, (6-2)

where U ′ = dU/dr . From (4-7) and (6-1) we find that

t (3)αβ = λ
(ρ)δαβ1U + (2µ(ρ)+ κ(ρ))U,αβ + λ

(ρ)

0 8δαβ,

m(3)
α3 = 0, σ (3)α = a(ρ)0 8,α, ζ (3) = λ

(ρ)

0 1U + λ(ρ)1 8 on �ρ .
(6-3)

In view of (3-10), the equilibrium equations (4-9) reduce to

1U + e(ρ)8= A(ρ)1 , 18− τ 2
(ρ)8=

λ
(ρ)

0

a(ρ)0

(1+ A(ρ)1 ) on �ρ, (6-4)
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where A(1)1 and A(2)1 are arbitrary constants and

e(ρ) = λ
(ρ)

0 /(λ(ρ)+ 2µ(ρ)+ κ(ρ)), τ 2
(ρ) =

λ
(ρ)

1

a(ρ)0

−
λ
(ρ)

0

a(ρ)0

e(ρ). (6-5)

The positive definiteness of elastic potential imply that τ 2
(ρ) > 0. From the equations (6-4) we find

U ′ =−η(ρ)8′0+χ(ρ)r + ξ(ρ) A(ρ)1 r + A(ρ)2 r−1,

8=80− 2d(ρ)(1+ A(ρ)1 ),

80 = C (ρ)

1 I0(τ(ρ)r)+C (ρ)

2 K0(τ(ρ)r) on �ρ,

(6-6)

where A(ρ)2 , C (ρ)

1 and C (ρ)

2 are arbitrary constants, In and Kn are modified Bessel functions of order n,
and we have used the notations

η(ρ) = e(ρ)/τ 2
(ρ), χ(ρ) = e(ρ)d(ρ), d(ρ) = λ

(ρ)

0 (2τ 2
(ρ)a

(ρ)

0 )−1, ξ(ρ) = λ
(ρ)

1 (d(ρ)/λ
(ρ)

0 ). (6-7)

Since U ′ and 8 must be bounded for r = 0, we conclude that

A(2)2 = 0, C (2)
2 = 0. (6-8)

With the help of (6-1) and (6-6) we obtain

u(3)α = xα(−η(ρ)8′0r−1
+χ(ρ)+ ξ(ρ)A

(ρ)

1 + A(ρ)2 r−2) on �ρ,

t (3)αβ nα = nβ{(2µ(1)+κ(1))η(ρ)8′0r−1
− (2µ(1)+κ(1))χ(ρ)+ k(ρ)A

(1)
1 − (2µ

(1)
+κ(1)) r−2 A(1)2 },

σ (3)α nα = a(1)0 8′0 on L ,

(6-9)

where
k(ρ) = d(ρ)[λ

(ρ)

1 (2λ(ρ)+ 2µ(ρ)+ κ(ρ))− 2(λ(ρ)0 )2]/λ
(ρ)

0 . (6-10)

If we impose the conditions (4-10) and (4-12) corresponding to the problem P (3), then we obtain a linear
system of equations for the constants A(ρ)1 , C (ρ)

1 , (ρ= 1, 2), A(1)2 and C (1)
2 . Thus, the condition σ (3)α nα = 0

on L reduces to
C (1)

2 = ν1C (2)
1 , (6-11)

where
ν1 = I1(τ(1)r1)/K1(τ(1)r1). (6-12)

From (6-6) and (6-11) we get

80 = C (1)
1 Q(r), 8′0 = C (1)

1 τ(1)3(r) on �1,

80 = C (2)
1 I0(τ(2)r), 8′0 = C (2)

1 τ(2) I1(τ(2)r) on �2,
(6-13)

where
Q(r)= I0(τ(1)r)+ ν1K0(τ(1)r), 3(r)= I1(τ(1)r)− ν1K1(τ(1)r). (6-14)

The condition imposed to the function σ (3) on 0 leads to

C (2)
1 = ν2 C (1)

1 , (6-15)
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where

ν2 = a(1)0 τ(1)3(r2)[a
(2)
0 τ(2) I1(τ(2) r2)]

−1. (6-16)

Let us introduce the notations

A(1)1 = X1, A(1)2 = X2, A(2)1 = X3, C (1)
1 = X4. (6-17)

The remaining conditions from (4-10) and (4-12) reduce to the following system for the constants A(1)α ,
A(2)1 and C (1)

1 ,
4∑

s=1

ars Xs = br , r = 1, 2, 3, 4, (6-18)

where

a11 =−2d(1), a12 = 0, a13 = 2d(2), a14 = Q(r2)− ν2 I0(τ(2)r2),

a21 = ξ(1), a22 = r−1
2 , a23 =−ξ(2),

a24 = η(2) τ(2)ν2 r−1
2 I1(τ(2)r2)− η(1)τ(1)r−1

2 3(r2),

a31 = k(1), a32 =−(2µ(1)+ κ(1))r−2
2 , a33 =−k(2),

a34 = (2µ(1)+ κ(1)) η(1) τ(1)r−1
2 3(r2)− (2µ(2)+ κ(2)) η(2)ν2 r−1

2 τ(2) I1(τ(2)r2),

a41 = k(1), a42 =−(2µ(1)+ κ(1)) r−2
1 , a43 = 0,

a44 = (2µ(1)+ κ(1)) η(2) τ(1)r−1
1 3(r1),

b1 = 2(d(1)− d(2)), b2 = χ(2)−χ(1),

b3 = (2µ(1)+ κ(1))χ(1)− (2µ(2)+ κ(2))χ(2)+ λ(2)− λ(1),

b4 = (2µ(1)+ κ(1))χ(1)− λ(1).

(6-19)

We assume that the constitutive coefficients are independent. From (6-18) we can determine the constants
A(1)α , A(2)1 and C (1)

1 . The constants C (1)
2 and C (2)

1 can be calculated by (6-11) and (6-15). Thus, from
(6-1), (6-6), (6-9) and (6-13) we find that the solution of the problem P (3) is given by

u(3)α = xα{−η(1)C
(1)
1 τ(1)r−13(r)+χ(1)+ ξ(1)A

(1)
1 + A(1)2 r−2

} on �1,

u(3)α = xα{−η(2) τ(2)C
(2)
1 r−1 I1(τ(2)r)+χ(2)+ ξ(2)A

(2)
1 } on �2,

ψ (3) = {C (1)
1 Q(r)− 2d(1)(1+ A(1)1 )} on �1,

ψ (3) = {C (2)
1 I0(τ(2)r)− 2d(2)(1+ A(2)1 )} on �2, ϕ(3) = 0.

(6-20)

From (4-7) and (6-2) we find

t (3)33 = λ
(ρ)r−1(r ′U ′)′+ λ(ρ)0 [80− 2d(ρ)(1+ A(ρ)1 )] on �ρ . (6-21)

In view of (6-6), (6-13), (6-21) and (4-15), we obtain

Aα3 = 0, A33 = H, (6-22)
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where
H = π(λ(2)+ 2µ(2)+ κ(2)) r2

2 +π(λ
(2)
+ 2µ(1)+ κ(1))(r2

1 − r2
2 )

+ 2π(h11 A(1)1 + h12 A(2)1 + h13 C (1)
1 + h14 C (2)

1 + h0),

h11 = (r2
1 − r2

2 )(λ
(1)
− d(1)λ

(1)
0 ), h12 = r2

2 (λ
(2)
− d(2)λ

(2)
0 ),

h13 = G(r1)−G(r2), h14 = r2(λ
(2)
0 τ−1

(2) − λ
(2)e(2)) I1(τ(2)r2),

h0 = (r2
1 − r2

2 )(λ
(1)χ(1)− d(1)λ

(1)
0 )− d(2)λ

(2)
0 r2

2 + λ
(2)r2

2 χ(2),

G(r)= r{λ(1)0 τ−1
(1) [I1(τ(1)r)− ν1K1(τ(1)r)] − λ(2) e(1)3(r)}.

(6-23)

With the help of (4-16) and (6-22) we obtain A3α = 0. In the case of extension we have Mj = 0, so that
the system (4-14) has the solution

c1 = 0, c2 = 0, c3 =−R3/H. (6-24)

Thus, the solution of the extension problem can be expressed as

uα = c3 u(3)α , u3 = c3 x3, ϕ j = 0, ψ = c3ψ
(3),

where u(3)α and ψ (3) are given by (6-20).

7. Conclusions

The paper is concerned with the deformation of a bar composed by two different microstretch elastic
materials welded together along the surface of separation. The results established in this paper can be
summarized as follows:

(a) We study the deformation of a heterogeneous bar which is subjected to extension, bending, torsion
and flexure.

(b) We show that the solution of the problem of extension and bending can be reduced to the study of
some two-dimensional problems.

(c) We establish the solution of the problem of torsion and flexure by a transversal force.

(d) We use the method to investigate the extension of a circular cylinder reinforced by a longitudinal
rod.

Acknowledgement

The author thanks the referees for their helpful suggestions.

References

[Bîrsan and Altenbach 2011] M. Bîrsan and H. Altenbach, “On the theory of porous elastic rods”, Int. J. Solids Struct. 48:6
(2011), 910–924.

[Bîrsan et al. 2012] M. Bîrsan, H. Altenbach, T. Sadowski, V. A. Eremeyev, and D. Pietras, “Deformation analysis of function-
ally graded beams by the direct approach”, Compos. B Eng. 43:3 (2012), 1315–1328.

http://dx.doi.org/10.1016/j.ijsolstr.2010.11.022
http://dx.doi.org/10.1016/j.compositesb.2011.09.003
http://dx.doi.org/10.1016/j.compositesb.2011.09.003


DEFORMATION OF HETEROGENEOUS MICROSTRETCH ELASTIC BARS 359

[Chandraseker et al. 2009] K. Chandraseker, S. Mukherjee, J. T. Paci, and G. C. Schatz, “An atomistic-continuum Cosserat rod
model of carbon nanotubes”, J. Mech. Phys. Solids 57:6 (2009), 932–958.

[Eringen 1999] A. C. Eringen, Microcontinuum field theories: I — foundations and solids, Springer, New York, 1999.

[Fatemi et al. 2002] J. Fatemi, F. Van Keulen, and P. R. Onck, “Generalized continuum theories: application to stress analysis
in bone”, Meccanica (Milano) 37:4 (2002), 385–396.

[Fichera 1973] G. Fichera, “Existence theorems in elasticity”, pp. 347–389 in Linear theories of elasticity and thermoelasticity,
edited by C. Truesdell, Springer, Berlin, Heidelberg, 1973.

[Ha et al. 2016] C. S. Ha, M. E. Plesha, and R. S. Lakes, “Chiral three-dimensional lattices with tunable Poisson’s ratio”, Smart
Mater. Struct. 25:5 (2016), 054005.

[Hanumantharaju and Shivanand 2009] H. G. Hanumantharaju and H. K. Shivanand, “Static analysis of bi-polar femur bone
implant using FEA”, Int. J. Recent Eng. 1:5 (2009), 118–121.
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[Ieşan 2019b] D. Ieşan, “Torsion of chiral porous elastic beams”, J. Elasticity 134:1 (2019), 103–118.
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