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WAVE PROPAGATION IN THREE-DIMENSIONAL GRAPHENE AEROGEL
CYLINDRICAL SHELLS RESTING ON WINKLER–PASTERNAK

ELASTIC FOUNDATION

CHEN LIANG AND YAN QING WANG

The objective of this work is to investigate the wave propagation characteristics of circular cylindrical
shells made of three-dimensional graphene aerogel (3D-GA). Different distributions of 3D-GA inside the
shells are taken into account. The first-order shear deformation (FSD) shell theory is utilized to model
the present shells. Hamilton’s principle is employed to drive the equations of motion, which governs the
wave propagation behavior of 3D-GA cylindrical shells. The analytical wave dispersion relations with
longitudinal and circumferential wave numbers are obtained. In addition, detailed parametric studies are
conducted to emphasize the influences of the porosity distribution, the porosity coefficient, the radius-
to-thickness ratio, the applied forces and the elastic foundation on wave propagation characteristics of
3D-GA cylindrical shells.

1. Introduction

Since the isolation of graphene films was first achieved by Novoselov et al. [2004], this type of carbon
materials has been one of the most interesting materials owing to its extraordinary fracture strength,
superior Young’s modulus, extreme thermal conductivity and so on [Lee et al. 2008; Geim and Novoselov
2009; Chatterjee et al. 2012; Wang et al. 2012; Geim 2009]. Recently, based on several physical and
chemical methods, the macroscopic architecture of three-dimensional graphene aerogel (3D-GA) was
successfully fabricated by using the controlled micro/nano-scale graphene sheets as building blocks
[Vickery et al. 2009; Xu et al. 2010; Chen et al. 2011; Huang et al. 2012; Kuang et al. 2013; Jiang
and Fan 2014; Li et al. 2014; Sha et al. 2016; 2017; Strek et al. 2017]. Such creative design make
3D-GA possess many exciting properties, such as high compressibility, super elasticity, extremely low
density and electrochemical stability [Chen et al. 2014; Wu et al. 2015; Xu et al. 2016; Qin et al. 2017;
Qiu et al. 2017].

As one of the most novel developments in advanced porous structures, 3D-GA structures exhibit
tremendous potentials and applications in biological, environmental, electric and chemical engineering.
For instance, using 3D-GA structures as the conductive and biocompatible scaffold, it can support neural
stem cells (NSCs) growth and keep NSCs at the positive proliferation state [Li et al. 2013]. With the
abilities of reversible absorption and discharge of liquids and strong hydrophobicity, 3D-GA structures
can be applied for the liquid transfer and environmental cleanup [Wu et al. 2015]. Owing to their high
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specific surface area, 3D-GA structures were proposed as recyclable and versatile sorbent with the effi-
cient absorption of not only toxic solvents, but also fats and petroleum products [Bi et al. 2012]. It is
worth mentioning that the porous structures could be analyzed by using the gradient elasticity [Xu et al.
2008; 2014; Askes and Aifantis 2009; Sun and Aifantis 2014; Aifantis 2016; Lurie et al. 2018].

Investigation of wave propagation characteristics in structures is of significance in practical engineer-
ing applications [Wang 2010; Zeighampour et al. 2017; 2018; Zhen 2017]. Zeighampour and Beni
[2017] carried out the wave propagation analysis of functionally graded (FG) cylindrical shells rein-
forced by CNTs. Hu et al. [2008] investigated the transverse and torsional wave propagation in double-
and single-walled CNTs. Ma et al. [2018] utilized the classical and FSD shell theories to study wave
propagation in magneto-electro-elastic nanoshells. Based on the fast Fourier transform (FFT), Shakeri
et al. [2006] investigated wave propagation characteristics in FG thick cylindrical shells subjected to
dynamic load. Aminipour et al. [2018] utilized Reddy’s higher-order shear deformation theory to study
the wave propagation of FG anisotropic doubly-curved shells. Thorp et al. [2005] analyzed the atten-
uation of wave propagation in fluid-loaded cylindrical shells with periodic shunted piezoelectric rings.
Using the three-dimensional theory of anisotropic elasticity, Talebitooti and Choudari Khameneh [2017]
analyzed the wave propagation across double-walled laminated composite cylindrical shells along with
air-gap. Sorokin and Ershova [2004] studied the plane wave propagation in periodic cylindrical shells
with and without fluid loads. The wave propagation analysis in spherically symmetric shells made of
laminated piezoelectric materials was carried out in [Dai and Wang 2005]. Here the electric excitation
and the thermal shock loads were taken into account. By using the reverberation ray matrix method
and the generalized ray method, Liu et al. [2011] investigated the transient elastic wave propagation in
laminated composite circular cylindrical shells. The Flügge shell theory was utilized to investigate wave
propagation of CNTs in [Wang and Varadan 2007]. Using the Cooper–Naghdi thick shell theory and
Love’s thin shell theory, Liew and Wang [2007] studied wave propagation in single- and double-walled
CNTs.

In this study, wave propagation analysis of circular cylindrical shells made of 3D-GA is carried out
for the first time. Different distributions of 3D-GA inside the shells are taken into account. The FSD
shell theory and Hamilton’s principle are employed to obtain the governing equations. The analytical
wave dispersion relations for 3D-GA cylindrical shells are derived. In addition, the influences of several
parameters are investigated on the wave propagation in 3D-GA cylindrical shells resting on the Winkler–
Pasternak elastic foundation.

2. Material properties of 3D-GA cylindrical shells

A 3D-GA cylindrical shell with the middle-surface radius r and thickness h, subjected to applied axial
and circumferential distributed forces Npx and Npθ , is shown in Figure 1. Suppose that the shell is resting
on the Winkler–Pasternak elastic foundation with spring constant kw and shear constant kp. A cylindrical
coordinate system (x, θ, z) is set on the middle surface of the shell.

As illustrated in Figure 2, four types of porosity distribution across the shell thickness, namely,
porosity-1, porosity-2, porosity-3 and porosity-4, are taken into account.

In the porosity-1 shell, the mass density and elastic moduli have the maxima on the inner and outer
surfaces which are equal to corresponding material parameters of solid graphene without internal foams,
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Figure 1. Schematic diagram of 3D-GA cylindrical shell.

Figure 2. Different types of porosity distribution: porosity-1 (top left), porosity-2 (top
right), porosity-3 (bottom left) and porosity-4 (bottom right).
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while the mass density and elastic moduli reach the minimum values on the middle-surface owing to the
largest size of internal pores. In the porosity-2 shell, the mass density and elastic moduli are the minima
on the inner and outer surfaces, while the maxima of mass density and elastic moduli are on the middle-
surface. In the porosity-3 shell, mass density and elastic moduli are the minima on the outer surface
and increase gradually to the maxima on the inner surface. In the porosity-4 shell, the mass density and
elastic moduli remain constant.

Young’s modules E(z), shear modules G(z) and mass density ρ(z) for porosity-1, porosity-2, porosity-3
and porosity-4 shells are expressed below [Magnucki and Stasiewicz 2004; Jabbari et al. 2014; Chen et al.
2015; Yang et al. 2018; Wang et al. 2019].
Porosity-1 shell:

E(z)= Eg

[
1− e1 cos π z

h

]
, (1a)

G(z)= Gg

[
1− e1 cos π z

h

]
, (1b)

ρ(z)= ρg

[
1− e∗1 cos π z

h

]
. (1c)

Porosity-2 shell:

E(z)= Eg

{
1− e2

[
1− cos π z

h

]}
, (2a)

G(z)= Gg

{
1− e2

[
1− cos π z

h

]}
, (2b)

ρ(z)= ρg

{
1− e∗2

[
1− cos π z

h

]}
. (2c)

Porosity-3 shell:

E(z)= Eg

[
1− e3 cos

(
π z
2h
+
π

4

)]
, (3a)

G(z)= Gg

[
1− e3 cos

(
π z
2h
+
π

4

)]
, (3b)

ρ(z)= ρg

[
1− e∗3 cos

(
π z
2h
+
π

4

)]
. (3c)

Porosity-4 shell:

E(z)= Eg ζ, (4a)

G(z)= Gg ζ, (4b)

ρ(z)= ρg ζ
∗, (4c)

where the maximum value of Young’s modules, shear modules and mass density are Eg, Gg and ρg,
respectively; e1, e2 and e3 (0 ≤ e1, e2, e3 < 1) are porosity coefficients for the porosity-1, porosity-2
and porosity-3 shells, respectively; and the corresponding coefficients of mass density are e∗1 , e∗2 and e∗3;
ζ and ζ ∗ are corresponding coefficients for the porosity-4 shell. The shear modulus is given by

G(z)=
E(z)

2(1+µ)
, (5)

where Poisson’s ratio µ is a constant.
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For the graphene aerogel with open-cell foams, the relationship of the material properties is provided
as [Qin et al. 2017]

E(z)
Eg
=

[
ρ(z)
ρg

]2.73
. (6)

Therefore, the relationships between porosity coefficients and mass density coefficients can be expressed
as

1− e∗1 cos π z
h
= 2.73

√
1− e1 cos π z

h
, (7)

1− e∗2
[
1− cos π z

h

]
=

2.73

√
1− e2

[
1− cos π z

h

]
, (8)

1− e∗3 cos
(
π z
2h
+
π

4

)
=

2.73

√
1− e3 cos

(
π z
2h
+
π

4

)
, (9)

ζ ∗ = 2.73
√
ζ . (10)

Without the loss of generality, let the masses of 3D-GA cylindrical shells with different porosity
distributions keep equal to each other. Hence, we obtain [Yang et al. 2018]∫ h/2

−h/2

2.73

√
1− e1 cos π z

h
dz =

∫ h/2

−h/2

2.73

√
1− e2

[
1− cos π z

h

]
dz, (11)∫ h/2

−h/2

2.73

√
1− e1 cos π z

h
dz =

∫ h/2

−h/2

2.73

√
1− e3 cos

(
π z
2h
+
π

4

)
dz, (12)∫ h/2

−h/2

2.73

√
1− e1 cos π z

h
dz =

∫ h/2

−h/2

2.73
√
ζ dz, (13)

which means that the values of e2, e3 and ζ can be calculated by a given e1. As observed in Figure 3, the
increase of e1 leads to the increase of e2 and e3 and the decrease of ζ . When e1 = 0.6, e2 approaches
the upper limit. Therefore, the range of e1 (0≤ e1 ≤ 0.6) is selected in the following calculations.

Figure 3. Variations of porosity coefficients for different porosity distributions.
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Figure 4. Variations of material properties along the radial direction: mass density (top
left), shear modulus (top right) and Young’s modulus (bottom).

In Figure 4, the changing curves of mass density, shear modulus and Young’s modulus along the radial
direction are depicted for porosity-1, porosity-2, porosity-3 and porosity-4 shells, respectively. Herein
the following parameters are utilized: Eg = 1.02 TPa, µ= 0.3, ρg = 2300 kg/m3, e0 = 0.5, h = 0.1 m,
r = 0.3 m.

3. Wave propagation via FSD shell theory

On the basis of the FSD shell theory [Reddy 2004], the displacement field of an arbitrary point in the
shell along the x-, θ - and z-axes, denoted by ux(x, θ, z, t), vθ (x, θ, z, t) and wz(x, θ, z, t) are

ux(x, θ, z, t)= u(x, θ, t)+ zφx(x, θ, t), (14)

vθ (x, θ, z, t)= v(x, θ, t)+ zφθ (x, θ, t), (15)

wz(x, θ, z, t)= w(x, θ, t), (16)

where u(x, θ, t), v(x, θ, t) and w(x, θ, t) are the displacements of a point at the midplane; t is time;
φx(x, θ, t) and φθ (x, θ, t) denote the rotations of a transverse normal about the θ- and x-axes, respec-
tively.
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The relations between strains and displacements can be written as

εx =
∂u
∂x
+ z

∂φx

∂x
, (17)

εθ =
1
r

(
∂v

∂θ
+w

)
+

z
r
∂φθ

∂θ
, (18)

γxθ =
∂v

∂x
+

1
r
∂u
∂θ
+ z

(
∂φθ

∂x
+

1
r
∂φx

∂θ

)
, (19)

γxz = φx +
∂w

∂x
, (20)

γθ z = φθ +
1
r
∂w

∂θ
−
v

r
. (21)

The relations between stresses and strains can be given by [Reddy 2004]

σx =
E(z)

1−µ2 (εx +µεθ ), (22)

σθ =
E(z)

1−µ2 (εθ +µεx), (23)

τxθ = G(z) γxθ , (24)

τxz = G(z) γxz, (25)

τθ z = G(z) γθ z. (26)

The resultant moments and forces are expressed as
Nx

Nθ
Nxθ

=
∫ h/2

−h/2


σx

σθ

τxθ

 dz, (27)


Mx

Mθ

Mxθ

=
∫ h/2

−h/2


σx

σθ

τxθ

 z dz, (28)

{
Qθ z

Qxz

}
= κs

∫ h/2

−h/2

{
τθ z

τxz

}
dz, (29)

where the shear correction coefficient is κs = 5/6 [Reddy 2004].
From (17)–(29), we obtain

Nx = A11
∂u
∂x
+ A12

∂φx

∂x
+ A13

1
r

(
∂v

∂θ
+w

)
+ A14

1
r
∂φθ

∂θ
, (30)

Nθ = A11
1
r

(
∂v

∂θ
+w

)
+ A12

1
r
∂φθ

∂θ
+ A13

∂u
∂x
+ A14

∂φx

∂x
, (31)

Nxθ = B11

(
∂v

∂x
+

1
r
∂u
∂θ

)
+ B12

(
∂φθ

∂x
+

1
r
∂φx

∂θ

)
, (32)
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Mx = C11
∂u
∂x
+C12

∂φx

∂x
+C13

1
r

(
∂v

∂θ
+w

)
+C14

1
r
∂φθ

∂θ
, (33)

Mθ = C11
1
r

(
∂v

∂θ
+w

)
+C12

1
r
∂φθ

∂θ
+C13

∂u
∂x
+C14

∂φx

∂x
, (34)

Mxθ = D11

(
∂v

∂x
+

1
r
∂u
∂θ

)
+ D12

(
∂φθ

∂x
+

1
r
∂φx

∂θ

)
, (35)

Qxz = κs B11

(
φx +

∂w

∂x

)
, (36)

Qθ z = κs B11

(
φθ +

1
r
∂w

∂θ
−
v

r

)
, (37)

where the parameters Ai j , Bi j , Ci j and Di j (i, j = 1, 2, 3, 4) are given in Appendix A.
The strain energy of the 3D-GA shell is written as

S = 1
2

∫ L

0

∫ 2π

0

∫ h/2

−h/2
(σx εx + σθ εθ + τxθ γxθ + τxz γxz + τθ z γθ z) r dz dθ dx . (38)

The kinetic energy is represented as

K = 1
2

∫ L

0

∫ 2π

0

∫ h/2

−h/2
ρ(z)

[(
∂u
∂t
+ z

∂φx

∂t

)2

+

(
∂v

∂t
+ z

∂φθ

∂t

)2

+

(
∂w

∂t

)2]
r dz dθ dx . (39)

The work done by the applied forces can be expressed as

WF =
1
2

∫ L

0

∫ 2π

0

[
Npx

(
∂w

∂x

)2
+ Npθ

(1
r
∂w

∂θ

)2]
r dθ dx, (40)

where the applied axial and circumferential distributed forces are given by

Npx = Npθ = Np. (41)

The additional strain energy results from the Winkler–Pasternak elastic foundation is written as [Win-
kler 1867; Pasternak 1954]

WG =
1
2

∫ L

0

∫ 2π

0

{
kww2

+ kp

[(
∂w

∂x

)2
+

(1
r
∂w

∂θ

)2]}
r dθ dx . (42)

By employing Hamilton’s principle∫ t

0
[δK − (δS+ δWF + δWG)] dt = 0, (43)
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the governing equations of the 3D-GA shell can be obtained as

∂Nx

∂x
+

1
r
∂Nxθ

∂θ
= I1

∂2u
∂t2 + I2

∂2φx

∂t2 , (44)

∂Nxθ

∂x
+

1
r
∂Nθ
∂θ
+

Qθ z

r
= I1

∂2v

∂t2 + I2
∂2φθ

∂t2 , (45)

∂Qxz

∂x
+

1
r
∂Qθ z

∂θ
−

Nθ
r
+ Npx

∂2w

∂x2 + Npθ
1
r2

∂2w

∂θ2 − kww+ kp

(
∂2w

∂x2 +
1
r2

∂2w

∂θ2

)
= I1

∂2w

∂t2 , (46)

∂Mx

∂x
+

1
r
∂Mxθ

∂θ
− Qxz = I2

∂2u
∂t2 + I3

∂2φx

∂t2 , (47)

∂Mxθ

∂x
+

1
r
∂Mθ

∂θ
− Qθ z = I2

∂2v

∂t2 + I3
∂2φθ

∂t2 , (48)

where the coefficients I1, I2 and I3 take the form of

I1 =

∫ h/2

−h/2
ρ(z) dz, (49)

I2 =

∫ h/2

−h/2
ρ(z) z dz, (50)

I3 =

∫ h/2

−h/2
ρ(z) z2 dz. (51)

By substituting (30)–(37) into (44)–(48), it yields

A11
∂2u
∂x2 + A12

∂2φx

∂x2 +
A13

r

(
∂w

∂x
+

∂2v

∂x ∂θ

)
+

A14

r
∂2φθ

∂x ∂θ
+ B11

(
1
r2

∂2u
∂θ2 +

1
r
∂2v

∂x ∂θ

)
+ B12

(
1
r2

∂2φx

∂θ2 +
1
r
∂2φθ

∂x ∂θ

)
= I1

∂2u
∂t2 + I2

∂2φx

∂t2 , (52)

A11

r2

(
∂2v

∂θ2 +
∂w

∂θ

)
+

A12

r2

∂2φθ

∂θ2 +
A13

r
∂2u
∂x ∂θ

+
A14

r
∂2φx

∂x ∂θ
+ B12

(
1
r
∂2φx

∂x ∂θ
+
∂2φθ

∂x2

)
+ B11

(
1
r
∂2u
∂x ∂θ

+
∂2v

∂x2 +
κs

r2

∂w

∂θ
+
κs

r
φθ −

κs

r2 v

)
= I1

∂2v

∂t2 + I2
∂2φθ

∂t2 , (53)

A11
1
r2

(
w+

∂v

∂θ

)
+ A12

1
r2

∂φθ

∂θ
+ A13

1
r
∂u
∂x
+ A14

1
r
∂φx

∂x

+ κs B11

(
∂φx

∂x
+
∂2w

∂x2 +
1
r2

∂2w

∂θ2 +
1
r
∂φθ

∂θ
−

1
r2

∂v

∂θ

)
+ Npx

∂2w

∂x2 +
Npθ

r2

∂2w

∂θ2

− kww+ kp

(
∂2w

∂x2 +
1
r2

∂2w

∂θ2

)
= I1

∂2w

∂t2 (54)
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− B11κs

(
φx +

∂w

∂x

)
+C11

∂2u
∂x2 +C12

∂2φx

∂x2 +C13
1
r

(
∂w

∂x
+

∂2v

∂x ∂θ

)
+C14

1
r
∂2φθ

∂x ∂θ

+ D11

(
1
r2

∂2u
∂θ2 +

1
r
∂2v

∂x ∂θ

)
+ D12

(
1
r2

∂2φx

∂θ2 +
1
r
∂2φθ

∂x ∂θ

)
= I2

∂2u
∂t2 + I3

∂2φx

∂t2 , (55)

κs B11

(
v

r
−

1
r
∂w

∂θ
−φθ

)
+

C11

r2

(
∂w

∂θ
+
∂2v

∂θ2

)
+

C12

r2

∂2φθ

∂θ2 +
C13

r
∂2u
∂x ∂θ

+
C14

r
∂2φx

∂x ∂θ

+ D11

(
1
r
∂2u
∂x ∂θ

+
∂2v

∂x2

)
+ D12

(
1
r
∂2φx

∂x ∂θ
+
∂2φθ

∂x2

)
= I2

∂2v

∂t2 + I3
∂2φθ

∂t2 . (56)

The wave propagation solutions of (52)–(56) are expressed as

u(x, θ, t)=Uei(kx+nθ−ωt), (57)

v(x, θ, t)= V ei(kx+nθ−ωt), (58)

w(x, θ, t)=W ei(kx+nθ−ωt), (59)

φx(x, θ, t)=Φx ei(kx+nθ−ωt), (60)

φθ (x, θ, t)=Φθ ei(kx+nθ−ωt), (61)

where i=
√
−1; k and n are the wave numbers in the longitudinal and circumferential directions, respec-

tively; ω is the frequency of wave motion; U , V , W , Φx and Φθ are the amplitudes of wave motion.
Substituting (57)–(61) into (52)–(56) yields a generalized eigenvalue problem:

(L5×5−ω
2 H5×5)


U
V
W
Φx

Φθ

= {0}, (62)

where the elements L i j and Hi j (i, j = 1, 2, . . . , 5) in the matrix L5×5 and H5×5 can be found in
Appendix B.

The dispersion relation derived from (62) takes the form of

Det[L5×5−ω
2 H5×5] = 0. (63)

The relation between the wave frequency ω and phase velocity v is [Wang and Varadan 2007]

v = ω/k. (64)

According to (63) and (64), five positive analytical solutions of wave phase velocity can be obtained.
The first three low-value solutions which correspond to the coupled longitudinal, radial and circumfer-
ential (L-R-C) modes are discussed hereinbelow.
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4. Results and discussion

For the purpose of demonstrating the effectiveness of the present analysis, Figure 5 presents a comparative
study of the dispersion relation between phase velocity and circumferential wave number for a homoge-
neous cylindrical shell. The present 3D-GA cylindrical shell model can be simplified to a homogeneous
cylindrical shell by setting Np = 0 N, kw = 0 N/m3, kp = 0 N/m and e1 = 0. The thickness, the middle-
surface radius, Poisson’s ratio and the mass density of the cylindrical shell are h = 0.34 nm, r = 5 nm,
µ= 0.2 and ρ = 2.27 g/cm3, respectively. The bending rigidity is D = 2 eV and the in-plane stiffness
is Eh = 360 J/m2. The results from the classical shell theory were given in [Wang and Varadan 2007].
The present results have good consistency with those in the literature, manifesting the effectiveness of
the present analysis.

Hereinafter, the wave propagation analysis in 3D-GA cylindrical shells is conducted. If not specified,
the following geometric and material parameters are utilized: h = 0.1 m, r = 0.3 m, Eg = 1.02 TPa,
ρg = 2300 kg/m3 and µ= 0.3.

Figure 5. Comparisons of wave characteristics in a homogenous cylindrical shell (k =
8× 106 m−1, e0 a = 0): the first mode (top left), the second mode (top right) and the
third mode (bottom).
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Figure 6 demonstrates the curves of phase velocity versus longitudinal wave number k of 3D-GA
shells for the L-R-C modes. Dispersion relations are investigated for porosity-1, porosity-2, porosity-3
and porosity-4 shells. For clearer discussion, we define the mode number by the numerical order of
phase velocity in the following results, which is different from Figure 5. As can be observed, for all
porosity distributions, the phase velocity for the first L-R-C mode fluctuates initially and then tends to
be constant. As for the second and third L-R-C modes, the phase velocities initially exhibit a decreasing
trend and then tend to be constant. The nonlinear variation of phase velocities is because the coupling
exists among the longitudinal, radial and circumferential wave modes, which arises from the coupled
displacement fields. It is worth mentioning that at the larger longitudinal wave number k > 102 m−1,
or at corresponding smaller longitudinal wavelength λ= 1/k < 0.01 m, all the phase velocities for the
L-R-C modes are close to each other.

Figure 6. Phase velocity versus longitudinal wave number k of 3D-GA shell (e1 = 0.5,
n = 1, Np = 0 N, kw = 0 N/m3, kp = 0 N/m): porosity-1 (top left), porosity-2 (top right),
porosity-3 (bottom left) and porosity-4 (bottom right).
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In Figure 7, the dispersion relations between the phase velocity and circumferential wave number n
for different porosity distributions are shown. It is found that for the first L-R-C mode, the phase velocity
decreases initially and then increases with the circumferential wave number. Moreover, the lowest phase
velocity occurs at n = 2. As for the second and third L-R-C modes, the phase velocities exhibit an
increasing-trend variation with increasing circumferential wave number.

Figure 8 depicts the effect of porosity coefficient e1 on the dispersion relations for different porosity
distributions. One can find that the phase velocities in the 3D-GA shell decrease with the increasing
porosity coefficient. Among all types of porosity distribution, the porosity-1 shell has the largest phase
velocity and the porosity-2 shell has the smallest phase velocity. Moreover, the phase velocity in the
porosity-4 shell is smaller than that in the porosity-3 shell.

Figure 7. Phase velocity versus circumferential wave number n of 3D-GA shell (e1 =

0.5, k = 8 m−1, Np = 0 N, kw = 0 N/m3, kp = 0 N/m): porosity-1 (top left), porosity-2
(top right), porosity-3 (bottom left) and porosity-4 (bottom right).
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Figure 8. Phase velocity versus porosity coefficient e1 of 3D-GA shell (n= 1, k= 8 m−1,
Np = 0 N, kw = 0 N/m3, kp = 0 N/m): the first L-R-C mode (top left), the second L-R-C
mode (top right), and the third L-R-C mode (bottom).

The influence of applied force Np on the dispersion relations of the 3D-GA shell is plotted in Figure 9.
For all the porosity distributions, the phase velocities initially increase slightly, then increase rapidly, and
finally approach to constant. This interesting phenomenon indicates that the applied force has significant
effect on the dispersion relation in certain range; beyond this range, however, it affects slightly the
dispersion relation.

Figure 10 illustrates the effect of spring constant kw on the dispersion relations of 3D-GA shells with
different porosity distributions. It is interesting that a similar variation tendency of phase velocity can
be observed with the comparison of Figure 9. In certain range, spring constant has significant influence
on the phase velocity but it is insignificant for phase velocity beyond this range. For example, the phase
velocity for the first L-R-C mode changes rapidly when 1011 N/m3

≤ kw ≤ 1013 N/m3, while it almost
remains constant if kw < 1011 N/m3 or kw > 1013 N/m3.
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Figure 9. Phase velocity versus applied force Np of 3D-GA shell (e1 = 0.5, n = 1,
k = 8 m−1, kw = 0 N/m3, kp = 0 N/m): the first L-R-C mode (top left), the second
L-R-C mode (top right), and the third L-R-C mode (bottom).

Figure 11 examines the effect of shear constant kp on the dispersion relations of the 3D-GA shell.
When the shear constant is in the certain range, it has conspicuous effect on the phase velocity of the 3D-
GA shell. From Figures 9–11, it is concluded that the applied force, spring constant and shear constant
have similar influence on the phase velocity of 3D-GA shells. Such observations are significant for
guiding the structural design of 3D-GA shells by adjusting the corresponding parameters.

In Figure 12, phase velocity versus radius-to-thickness ratio r/h of the 3D-GA shell is depicted. It is
found that the phase velocities for the L-R-C modes initially decrease rapidly and then tend to be constant.
In particular, the phase velocities for the second and third L-R-C modes decrease faster than that for the
first L-R-C mode. Additionally, it is worth mentioning that when r/h > 15, the phase velocities are
insensitive to the radius-to-thickness ratio.
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Figure 10. Phase velocity versus spring constant kw of 3D-GA shell (e1 = 0.5, n = 1,
k = 8 m−1, Np = 0 N, kp = 0 N/m): the first L-R-C mode (top left), the second L-R-C
mode (top right), and the third L-R-C mode (bottom).

5. Concluding remarks

Wave propagation characteristics in 3D-GA cylindrical shells are studied in the framework of the FSD
shell theory. Hamilton’s principle is utilized to derive the governing equations. The effects of longitudinal
and circumferential wave numbers, the porosity distribution, the porosity coefficient, the applied forces,
the Winkler–Pasternak elastic foundation and the radius-to-thickness ratio on wave dispersion relations
of 3D-GA shells are investigated. The main conclusions are summarized as follows:

(1) An increasing porosity coefficient leads to a decrease in the phase velocities of 3D-GA shells.
Among different types of porosity distribution, the porosity-1 shell has the largest phase velocity
whereas the porosity-2 shell has the smallest phase velocity.
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(2) For the L-R-C modes of 3D-GA shells, the phase velocities show nonlinear variation with the change
of longitudinal and circumferential wave numbers. It is found that phase velocities of the three L-
R-C modes approach to constant and are close to each other when the longitudinal wave number is
large.

(3) As the applied forces, the spring constant and the shear constant increase, the phase velocities of
3D-GA shells initially increase slightly, then increase rapidly, and finally approach to constant.

(4) With the increase in radius-to-thickness ratio, the phase velocities of 3D-GA shells initially decrease
rapidly but finally are insensitive to the radius-to-thickness ratio.

Figure 11. Phase velocity versus shear constant kp of 3D-GA shell (e1 = 0.5, n = 1,
k = 8 m−1, Np = 0 N, kw = 0 N/m3): the first L-R-C mode (top left), the second L-R-C
mode (top right), and the third L-R-C mode (bottom).
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Figure 12. Phase velocity versus radius-to-thickness ratio r/h of 3D-GA shell (e1 = 0.5,
n = 1, k = 8 m−1, Np = 0 N, kw = 0 N/m3, kp = 0 N/m): the first L-R-C mode (top left),
the second L-R-C mode (top right), and the third L-R-C mode (bottom).

Appendix A

A11 =

∫ h/2

−h/2

E(z)
1−µ2 dz A12 =

∫ h/2

−h/2

E(z)
1−µ2 z dz A13 =

∫ h/2

−h/2

µE(z)
1−µ2 dz A14 =

∫ h/2

−h/2

µE(z)
1−µ2 z dz

B11 =

∫ h/2

−h/2
G(z) dz B12 =

∫ h/2

−h/2
G(z)z dz C11 = A12 C12 =

∫ h/2

−h/2

E(z)
1−µ2 z2 dz

C13 = A14 C14 =

∫ h/2

−h/2

µE(z)
1−µ2 z2 dz D11 = B12 D12 =

∫ h/2

−h/2
G(z)z2 dz

Appendix B

L11 = A11 k2r2
+ B11 n2 L12 = (A13+ B11) knr L13 =−iA13 kr

L14 = A12 k2r2
+ B12 n2 L15 = (A14+ B12) knr L21 = (A13+ B11) knr
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L22 = A11n2
+ B11k2r2

+ κs B11 L23 =−in(A11+ κs B11) L24 = (A14+ B12) knr

L25 = A12 n2
− κs B11r + B12 k2r2 L31 = iA13 kr L32 = in(A11+ κs B11)

L33 = A11+ κs B11(n2
+ k2r2)+ Npx k2r2

+ Npθ n2
+ kw r2

+ kp(n2
+ k2r2)

L34 = i(A14− κs B11 r) kr L35 = in(A12− κs B11 r) L41 = C11 k2r2
+ D11 n2

L42 = (C13+ D11) knr L43 = i(κs B11 r −C13) kr L44 = κs B11 r2
+C12 k2r2

+ D12 n2

L45 = (C14+ D12) knr L51 = (C13+ D11) knr L52 =−κs B11r +C11 n2
+ D11 k2r2

L53 = in(κs B11 r −C11) L54 = (C14+ D12) knr L55 = κs B11 r2
+C12 n2

+ D12 k2r2

H11 = I1r2 H14 = I2 r2 H12 = H13 = H15 = 0 H21 = H23 = H24 = 0

H22 = I1r2 H25 = I2 r2 H31 = H32 = H34 = H35 = 0 H33 = I1r2

H41 = I2 r2 H44 = I3 r2 H42 = H43 = H45 = 0 H51 = H53 = H54 = 0

H52 = I2 r2 H55 = I3 r2

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant nos. 11922205
and 11672071), LiaoNing Revitalization Talents Program (Grant no. XLYC1807026), and the Funda-
mental Research Funds for the Central Universities (Grant no. N2005019).

References

[Aifantis 2016] E. C. Aifantis, “Internal length gradient (ILG) material mechanics across scales and disciplines”, pp. 1–110 in
Advances in applied mechanics, 1st ed., vol. 49, Elsevier, 2016.

[Aminipour et al. 2018] H. Aminipour, M. Janghorban, and L. Li, “A new model for wave propagation in functionally graded
anisotropic doubly-curved shells”, Compos. Struct. 190 (2018), 91–111.

[Askes and Aifantis 2009] H. Askes and E. C. Aifantis, “Gradient elasticity and flexural wave dispersion in carbon nanotubes”,
Phys. Rev. B 80:19 (2009), 195412.

[Bi et al. 2012] H. Bi et al., “Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents”, Adv.
Funct. Mater. 22:21 (2012), 4421–4425.

[Chatterjee et al. 2012] S. Chatterjee et al., “Mechanical reinforcement and thermal conductivity in expanded graphene nano-
platelets reinforced epoxy composites”, Chem. Phys. Lett. 531 (2012), 6–10.

[Chen et al. 2011] Z. Chen et al., “Three-dimensional flexible and conductive interconnected graphene networks grown by
chemical vapour deposition”, Nat. Mater. 10:6 (2011), 424–428.

[Chen et al. 2014] S. Chen et al., “Hierarchical 3D mesoporous silicon@graphene nanoarchitectures for lithium ion batteries
with superior performance”, Nano Res. 7:1 (2014), 85–94.

[Chen et al. 2015] D. Chen, J. Yang, and S. Kitipornchai, “Elastic buckling and static bending of shear deformable functionally
graded porous beam”, Compos. Struct. 133 (2015), 54–61.

[Dai and Wang 2005] H. L. Dai and X. Wang, “Stress wave propagation in laminated piezoelectric spherical shells under
thermal shock and electric excitation”, Struct. Eng. Mech. 24:2 (2005), 263–276.

[Geim 2009] A. K. Geim, “Graphene: status and prospects”, Science 324:5934 (2009), 1530–1534.

[Geim and Novoselov 2009] A. K. Geim and K. S. Novoselov, “The rise of graphene”, pp. 11–19 in Nanoscience and technol-
ogy: a collection of reviews from Nature journals, 2009.

http://dx.doi.org/10.1016/bs.aams.2016.08.001
http://dx.doi.org/10.1016/j.compstruct.2018.02.003
http://dx.doi.org/10.1016/j.compstruct.2018.02.003
http://dx.doi.org/10.1103/PhysRevB.80.195412
http://dx.doi.org/10.1002/adfm.201200888
http://dx.doi.org/10.1016/j.cplett.2012.02.006
http://dx.doi.org/10.1016/j.cplett.2012.02.006
http://dx.doi.org/10.1038/nmat3001
http://dx.doi.org/10.1038/nmat3001
http://dx.doi.org/10.1007/s12274-013-0374-y
http://dx.doi.org/10.1007/s12274-013-0374-y
http://dx.doi.org/10.1016/j.compstruct.2015.07.052
http://dx.doi.org/10.1016/j.compstruct.2015.07.052
http://dx.doi.org/10.1016/j.euromechsol.2004.09.007
http://dx.doi.org/10.1016/j.euromechsol.2004.09.007
http://dx.doi.org/10.1126/science.1158877
http://dx.doi.org/10.1142/9789814287005_0002


454 CHEN LIANG AND YAN QING WANG

[Hu et al. 2008] Y.-G. Hu et al., “Nonlocal shell model for elastic wave propagation in single- and double-walled carbon
nanotubes”, J. Mech. Phys. Solids 56:12 (2008), 3475–3485.

[Huang et al. 2012] X. Huang et al., “Functional nanoporous graphene foams with controlled pore sizes”, Adv. Mater. 24:32
(2012), 4419–4423.

[Jabbari et al. 2014] M. Jabbari, A. Mojahedin, A. R. Khorshidvand, and M. R. Eslami, “Buckling analysis of a functionally
graded thin circular plate made of saturated porous materials”, J. Eng. Mech. (ASCE) 140:2 (2014), 287–295.

[Jiang and Fan 2014] L. Jiang and Z. Fan, “Design of advanced porous graphene materials: from graphene nanomesh to 3D
architectures”, Nanoscale 6:4 (2014), 1922–1945.

[Kuang et al. 2013] J. Kuang et al., “A hierarchically structured graphene foam and its potential as a large-scale strain-gauge
sensor”, Nanoscale 5:24 (2013), 12171.

[Lee et al. 2008] C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of
monolayer graphene”, Science 321:5887 (2008), 385–388.

[Li et al. 2013] N. Li et al., “Three-dimensional graphene foam as a biocompatible and conductive scaffold for neural stem
cells”, Sci. Rep. 3 (2013), 1604.

[Li et al. 2014] Y. Li et al., “Highly compressible macroporous graphene monoliths via an improved hydrothermal process”,
Adv. Mater. 26:28 (2014), 4789–4793.

[Liew and Wang 2007] K. M. Liew and Q. Wang, “Analysis of wave propagation in carbon nanotubes via elastic shell theories”,
Int. J. Eng. Sci. 45:2-8 (2007), 227–241.

[Liu et al. 2011] C.-C. Liu, F.-M. Li, and W.-H. Huang, “Transient wave propagation and early short time transient responses
of laminated composite cylindrical shells”, Compos. Struct. 93:10 (2011), 2587–2597.

[Lurie et al. 2018] S. A. Lurie et al., “Modeling the effective mechanical properties of “fuzzy fiber” composites across scales
length”, Compos. B Eng. 142 (2018), 24–35.

[Ma et al. 2018] L. H. Ma et al., “Wave propagation characteristics in magneto-electro-elastic nanoshells using nonlocal strain
gradient theory”, Compos. Struct. 199 (2018), 10–23.

[Magnucki and Stasiewicz 2004] K. Magnucki and P. Stasiewicz, “Elastic buckling of a porous beam”, J. Theor. Appl. Mech.
(Warsaw) 42:4 (2004), 859–868.

[Novoselov et al. 2004] K. S. Novoselov et al., “Electric field effect in atomically thin carbon films”, Science 306:5696 (2004),
666–669.

[Pasternak 1954] P. L. Pasternak, On a new method of analysis of an elastic foundation by means of two foundation constants,
Gosudarstvennoe Izdatelstvo Literaturi po Stroitelstvu I Arkhitekture, Moscow, 1954. in Russian.

[Qin et al. 2017] Z. Qin, G. S. Jung, M. J. Kang, and M. J. Buehler, “The mechanics and design of a lightweight three-
dimensional graphene assembly”, Sci. Adv. 3:1 (2017), e160153.

[Qiu et al. 2017] L. Qiu et al., “Extremely low density and super-compressible graphene cellular materials”, Adv. Mater. 29:36
(2017), 1701553.

[Reddy 2004] J. N. Reddy, Mechanics of laminated composite plates and shells: theory and analysis, CRC press, 2004.
[Sha et al. 2016] J. Sha et al., “Preparation of three-dimensional graphene foams using powder metallurgy templates”, ACS
Nano 10:1 (2016), 1411–1416.

[Sha et al. 2017] J. Sha et al., “Three-dimensional printed graphene foams”, ACS Nano 11:7 (2017), 6860–6867.
[Shakeri et al. 2006] M. Shakeri, M. Akhlaghi, and S. M. Hoseini, “Vibration and radial wave propagation velocity in function-
ally graded thick hollow cylinder”, Compos. Struct. 76:1-2 (2006), 174–181.

[Sorokin and Ershova 2004] S. V. Sorokin and O. A. Ershova, “Plane wave propagation and frequency band gaps in periodic
plates and cylindrical shells with and without heavy fluid loading”, J. Sound Vib. 278:3 (2004), 501–526.

[Strek et al. 2017] W. Strek et al., “Laser induced white lighting of graphene foam”, Sci. Rep. 7:1 (2017), 41281.
[Sun and Aifantis 2014] B. Sun and E. C. Aifantis, “Gradient elasticity formulations for micro/nanoshells”, J. Nanomater. 2014
(2014), 846370.

[Talebitooti and Choudari Khameneh 2017] R. Talebitooti and A. M. Choudari Khameneh, “Wave propagation across double-
walled laminated composite cylindrical shells along with air-gap using three-dimensional theory”, Compos. Struct. 165 (2017),
44–64.

http://dx.doi.org/10.1016/j.jmps.2008.08.010
http://dx.doi.org/10.1016/j.jmps.2008.08.010
http://dx.doi.org/10.1002/adma.201201680
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000663
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000663
http://dx.doi.org/10.1039/C3NR04555B
http://dx.doi.org/10.1039/C3NR04555B
http://dx.doi.org/10.1039/c3nr03379a
http://dx.doi.org/10.1039/c3nr03379a
http://dx.doi.org/10.1126/science.1157996
http://dx.doi.org/10.1126/science.1157996
http://dx.doi.org/10.1038/srep01604
http://dx.doi.org/10.1038/srep01604
http://dx.doi.org/10.1002/adma.201400657
http://dx.doi.org/10.1016/j.ijengsci.2007.04.001
http://dx.doi.org/10.1016/j.compstruct.2011.04.021
http://dx.doi.org/10.1016/j.compstruct.2011.04.021
http://dx.doi.org/10.1016/j.compositesb.2017.12.029
http://dx.doi.org/10.1016/j.compositesb.2017.12.029
http://dx.doi.org/10.1016/j.compstruct.2018.05.061
http://dx.doi.org/10.1016/j.compstruct.2018.05.061
http://dx.doi.org/10.1126/science.1102896
http://dx.doi.org/10.1126/sciadv.1601536
http://dx.doi.org/10.1126/sciadv.1601536
http://dx.doi.org/10.1002/adma.201701553
http://dx.doi.org/10.1021/acsnano.5b06857
http://dx.doi.org/10.1021/acsnano.7b01987
http://dx.doi.org/10.1016/j.compstruct.2006.06.022
http://dx.doi.org/10.1016/j.compstruct.2006.06.022
http://dx.doi.org/10.1016/j.jsv.2003.10.042
http://dx.doi.org/10.1016/j.jsv.2003.10.042
http://dx.doi.org/10.1038/srep41281
http://dx.doi.org/10.1155/2014/846370
http://dx.doi.org/10.1016/j.compstruct.2016.12.068
http://dx.doi.org/10.1016/j.compstruct.2016.12.068


WAVE PROPAGATION IN THREE-DIMENSIONAL GRAPHENE AEROGEL CYLINDRICAL SHELLS 455

[Thorp et al. 2005] O. Thorp, M. Ruzzene, and A. Baz, “Attenuation of wave propagation in fluid-loaded shells with periodic
shunted piezoelectric rings”, Smart Mater. Struct. 14:4 (2005), 594–604.

[Vickery et al. 2009] J. L. Vickery, A. J. Patil, and S. Mann, “Fabrication of graphene-polymer nanocomposites with higher-
order three-dimensional architectures”, Adv. Mater. 21:21 (2009), 2180–2184.

[Wang 2010] L. Wang, “Wave propagation of fluid-conveying single-walled carbon nanotubes via gradient elasticity theory”,
Comput. Mater. Sci. 49:4 (2010), 761–766.

[Wang and Varadan 2007] Q. Wang and V. K. Varadan, “Application of nonlocal elastic shell theory in wave propagation
analysis of carbon nanotubes”, Smart Mater. Struct. 16:1 (2007), 178–190.

[Wang et al. 2012] J. Wang et al., “Reinforcement with graphene nanosheets in aluminum matrix composites”, Scr. Mater. 66:8
(2012), 594–597.

[Wang et al. 2019] Y. Q. Wang, C. Ye, and J. W. Zu, “Nonlinear vibration of metal foam cylindrical shells reinforced with
graphene platelets”, Aerosp. Sci. Technol. 85 (2019), 359–370.

[Winkler 1867] E. Winkler, Die lehre von der elastizität und festigkeit (The theory of elasticity and stiffness), H. Dominius,
Prague, 1867.

[Wu et al. 2015] Y. Wu et al., “Three-dimensionally bonded spongy graphene material with super compressive elasticity and
near-zero Poisson’s ratio”, Nat. Commun. 6:1 (2015), 6141.

[Xu et al. 2008] K. Y. Xu, E. C. Aifantis, and Y. H. Yan, “Vibrations of double-walled carbon nanotubes with different boundary
conditions between inner and outer tubes”, J. Appl. Mech. (ASME) 75:2 (2008), 021013.

[Xu et al. 2010] Y. Xu, K. Sheng, C. Li, and G. Shi, “Self-assembled graphene hydrogel via a one-step hydrothermal process”,
ACS Nano 4:7 (2010), 4324–4330.

[Xu et al. 2014] K. Y. Xu et al., “Free transverse vibrations of a double-walled carbon nanotube: gradient and internal inertia
effects”, Acta Mech. Solida Sin. 27:4 (2014), 345–352.

[Xu et al. 2016] X. Xu et al., “Naturally dried graphene aerogels with superelasticity and tunable Poisson’s ratio”, Adv. Mater.
28:41 (2016), 9223–9230.

[Yang et al. 2018] J. Yang, D. Chen, and S. Kitipornchai, “Buckling and free vibration analyses of functionally graded graphene
reinforced porous nanocomposite plates based on Chebyshev–Ritz method”, Compos. Struct. 193 (February 2018), 281–294.

[Zeighampour and Beni 2017] H. Zeighampour and Y. T. Beni, “Size dependent analysis of wave propagation in functionally
graded composite cylindrical microshell reinforced by carbon nanotube”, Compos. Struct. 179 (2017), 124–131.

[Zeighampour et al. 2017] H. Zeighampour, Y. T. Beni, and I. Karimipour, “Wave propagation in double-walled carbon
nanotube conveying fluid considering slip boundary condition and shell model based on nonlocal strain gradient theory”,
Microfluid. Nanofluid. 21:5 (2017), 85.

[Zeighampour et al. 2018] H. Zeighampour, Y. Tadi Beni, and M. Botshekanan Dehkordi, “Wave propagation in viscoelastic
thin cylindrical nanoshell resting on a visco-Pasternak foundation based on nonlocal strain gradient theory”, Thin-Walled
Struct. 122 (2018), 378–386.

[Zhen 2017] Y. X. Zhen, “Wave propagation in fluid-conveying viscoelastic single-walled carbon nanotubes with surface and
nonlocal effects”, Physica E 86 (2017), 275–279.

Received 24 Jun 2019. Revised 14 May 2020. Accepted 30 May 2020.

CHEN LIANG: neuliangchen@gmail.com
Department of Mechanics, Northeastern University, Shenyang 110819, China

YAN QING WANG: wangyanqing@mail.neu.edu.cn
Department of Mechanics, Northeastern University, Shenyang 110819, China

and

Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, Northeastern University, Shenyang 110819,
China

mathematical sciences publishers msp

http://dx.doi.org/10.1088/0964-1726/14/4/018
http://dx.doi.org/10.1088/0964-1726/14/4/018
http://dx.doi.org/10.1002/adma.200803606
http://dx.doi.org/10.1002/adma.200803606
http://dx.doi.org/10.1016/j.commatsci.2010.06.019
http://dx.doi.org/10.1088/0964-1726/16/1/022
http://dx.doi.org/10.1088/0964-1726/16/1/022
http://dx.doi.org/10.1016/j.scriptamat.2012.01.012
http://dx.doi.org/10.1016/j.ast.2018.12.022
http://dx.doi.org/10.1016/j.ast.2018.12.022
http://dx.doi.org/10.1038/ncomms7141
http://dx.doi.org/10.1038/ncomms7141
http://dx.doi.org/10.1115/1.2793133
http://dx.doi.org/10.1115/1.2793133
http://dx.doi.org/10.1021/nn101187z
http://dx.doi.org/10.1016/S0894-9166(14)60042-2
http://dx.doi.org/10.1016/S0894-9166(14)60042-2
http://dx.doi.org/10.1002/adma.201603079
http://dx.doi.org/10.1016/j.compstruct.2018.03.090
http://dx.doi.org/10.1016/j.compstruct.2018.03.090
http://dx.doi.org/10.1016/j.compstruct.2017.07.071
http://dx.doi.org/10.1016/j.compstruct.2017.07.071
http://dx.doi.org/10.1007/s10404-017-1918-3
http://dx.doi.org/10.1007/s10404-017-1918-3
http://dx.doi.org/10.1016/j.tws.2017.10.037
http://dx.doi.org/10.1016/j.tws.2017.10.037
http://dx.doi.org/10.1016/j.physe.2016.10.037
http://dx.doi.org/10.1016/j.physe.2016.10.037
mailto:neuliangchen@gmail.com
mailto:wangyanqing@mail.neu.edu.cn
http://msp.org




JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 15, No. 4, 2020

https://doi.org/10.2140/jomms.2020.15.457 msp

SEMIINFINITE MOVING CRACK IN A SHEAR-FREE ORTHOTROPIC STRIP

SANATAN JANA, PRASANTA BASAK AND SUBHAS MANDAL

We have considered a semiinfinite crack moving with constant velocity in an orthotropic strip with shear-
free boundaries. The crack is propagating subjected to constant normal displacements applied at the
boundaries of the strip. The Fourier transformation is applied to convert the boundary value problem into
the standard Wiener–Hopf equation. This equation has been solved to find out the analytical expressions
for the stress intensity factor and crack-opening displacement. The graphs of stress intensity factor and
crack-opening displacement have been plotted against various parameters such as crack velocity, strip
width etc. to show the effects of these parameters and material orthotropy on stress intensity factor and
crack-opening displacement.

1. Introduction

In recent times the study of the nature of elastic waves in the presence of cracks has gained momentum
in many engineering applications like designing metal and polymer-forming processes, machining, etc.
These types of research problems have great importance and versatility in potential applications in the
fields of seismology and geophysics. The analytical study of cracks and inclusion is very important
in civil, aerospace, nuclear and mechanical engineering, especially in civil and mechanical engineering
where designing of load-bearing components of vehicles, power generation, reduction of cracks are
important and challenging issues. The foremost motive in civil structure is to elude the progress of a
crack initiated originally. Researchers found that the stress has a square root singularity at the tip of the
crack. A nondimensional quantity called the stress intensity factor has been calculated to show the nature
of stress at the tip of the crack. Many researchers did their work in this field to find the stress intensity
factor and other expressions related to fracture. Initially researchers considered the problems involving
static cracks only.

The moving Griffith crack model was introduced in [Yoffe 1951]. She considered that the crack
propagates with a constant speed and without a change in length along the crack propagation axis. Knauss
[1966] studied the problem of stresses in an infinitely long isotropic strip of finite width containing a
straight semiinfinite crack for the case of displaced clamped boundaries normal to the crack. He applied
the Wiener–Hopf technique to find the stress intensity factor and stresses. The correction to this work
was made in [Rice 1967]. Nilsson [1972; 1973] explored a method to find the analytical expression for
the stress intensity factor by the Wiener–Hopf technique. The same technique was later used in [Atkinson
and Popelar 1979; Kousiounelos and Williams Jr. 1982; Georgiadis 1986]. Georgiadis and Papadopoulos
[1987] analyzed the steady state solution for the stress intensity factor in a cracked plane orthotropic strip
by the Wiener–Hopf technique. De and Patra [1990] considered the problem of a moving Griffith crack

Keywords: semiinfinite crack, orthotropic strip, Wiener–Hopf equation, Rayleigh wave velocity, stress intensity factor,
crack-opening displacement.
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in a stressed orthotropic strip. The problem of four coplanar Griffith cracks moving in an infinitely long
elastic strip under antiplane shear stress was solved in [Sarkar et al. 1996]. Lee [2000] obtained stress
and displacement fields for the propagating crack along the interface of dissimilar orthotropic materials
under dynamic mode I and mode II load. Wang et al. [2001] analyzed the problem of the dynamic stress
intensity factor for a semiinfinite crack in orthotropic materials with concentrated shear impact loads.
They found out the dynamic stress intensity factor by the Wiener–Hopf technique for orthotropic as well
as isotropic media. The problem of the stress intensity factor around a moving Griffith crack in an infinite
elastic layer between two elastic half-planes was studied in [Itou 2004]. Ma et al. [2005] considered the
problem of the moving Griffith crack in the functionally graded orthotropic strip under plane loading.
Bagheri et al. [2015] investigated the analytical solution of multiple moving cracks in functionally graded
piezoelectric strip. Nourazar and Ayatollahi [2016] studied the problem of multiple moving interfacial
cracks between two dissimilar piezoelectric layers under electromechanical loading.

This paper is a generalization of investigations done in [Nilsson 1972; 1973; Georgiadis and Papa-
dopoulos 1987]. Nilsson obtained the expression for the stress intensity factor for an isotropic strip
weakened by a semiinfinite moving crack. He considered both shear-free and clamped strip boundaries.
Later, Georgiadis and Papadopoulos investigated the problems of an orthotropic strip weakened by a
semiinfinite static crack. They first (1987) considered the problem where shear-free boundaries were
considered and later (1988) they solved another problem where clamped boundaries were considered.
The dynamical problem of the work of Georgiadis and Papadopoulos [1988] had been done in [Basak
and Mandal 2017]. We have considered the dynamical problem of the work done in [Georgiadis and
Papadopoulos 1987]. Here we have considered an orthotropic strip which contains a semiinfinite crack
moving along the mid-plane of the strip with constant velocity. The crack surfaces and the strip bound-
aries have been assumed traction-free. The crack is subjected to constant normal displacements applied
at the boundaries of the strip. In order to reduce the boundary value problem to the standard Wiener–Hopf
equation, we have applied the Fourier transform technique. One can solve the Wiener–Hopf equation to
obtain the necessary expression for the stresses and the displacements. Due to mathematical complexities,
the explicit solution of the Wiener–Hopf equation has not been found; instead, asymptotic expressions
for the stresses and displacements have been obtained for limited cases only. However, this asymptotic
solution is sufficient to obtain the analytical expressions for the stress intensity factor and crack-opening
displacement, which are the quantities of physical interest. One thing here to note that many of the
earlier problems involving the Wiener–Hopf technique solved by many authors, did not follow the correct
analysis of the method as pointed in [Nilsson 1973]. We have applied the analysis of the Wiener–Hopf
method as revised and corrected in [Nilsson 1973]. Finally, the deductions of the solution have been
made for isotropic and statical cases to compare and ensure the accuracy of the solution.

2. Formulation of the problem

Let us consider the problem of interaction of a semiinfinite crack situated at the interior of an orthotropic
strip of width 2h moving along the plane with constant velocity c. The crack is propagating due to
the actions of the constant normal displacements applied at the boundaries of the strip. Let X, Y, Z be
the fixed cartesian coordinates which are the axes of symmetry of the orthotropic material. The strip is
defined by −∞< X <∞, −h < Y < h, −∞< Z <∞. At any time t , position of the crack is assumed
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as −∞< X ≤ ct , Y = 0, which is propagating along the positive X-axis with a constant velocity c. Due
to symmetry we shall consider the two dimensional (X, Y ) problem.

The nonvanishing displacements U (X, Y, t) and V (X, Y, t) along the X- and Y-axes satisfy the fol-
lowing Navier’s equations:

C11
∂2U
∂X2 +C66

∂2U
∂Y 2 + (C12+C66)

∂2V
∂X ∂Y

= ρ
∂2U
∂t2 , (1)

C66
∂2V
∂X2 +C22

∂2V
∂Y 2 + (C12+C66)

∂2U
∂X ∂Y

= ρ
∂2V
∂t2 , (2)

where C66 is the shear modulus, ρ is the material density and C11, C22, C12 are material constants related
to orthotropic elastic constants by

C11 = E1/
(
1− (E2/E1) ν

2
12
)
, C22 = (E2/E1)C11, C12 = ν12 C22 = ν21 C11

for generalized plane stress problems. Moreover E1, E2 are Young’s Moduli and ν12, ν21 are Poisson’s
ratios of the medium.

To make the crack stationary, the Galilean transformation x = X − ct , y = Y , t = t is introduced so
that the above displacement equations (1) and (2) reduce to

(C11− ρc2)
∂2u
∂x2 +C66

∂2u
∂y2 + (C12+C66)

∂2v

∂x ∂y
= 0, (3)

(C66− ρc2)
∂2v

∂x2 +C22
∂2v

∂y2 + (C12+C66)
∂2u
∂x ∂y

= 0, (4)

where u(x, y) = U (X, Y, t) and v(x, y) = V (X, Y, t) are the displacements in the moving coordinate
system.

The required stresses can be obtained from the well-known relations

τxx = C11
∂u
∂x
+C12

∂v

∂y
, (5)

τyy = C12
∂u
∂x
+C22

∂v

∂y
, (6)

τxy = C66

(
∂u
∂y
+
∂v

∂x

)
. (7)

The crack surfaces are assumed to be traction-free, so we consider the following boundary conditions
(see Figure 1):

τyy(x, 0)= 0, x < 0, (8)

τxy(x, 0)= 0, −∞< x <∞, (9)

v(x, 0)= 0, x > 0, (10)

τxy(x,±h)= 0, −∞< x <∞, (11)

v(x,±h)=±v0, −∞< x <∞, (12)
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Figure 1. Geometry of the original problem.

where v0 is a known constant.
We wish to solve the problem by using the Wiener–Hopf technique, but the above boundary conditions

are not eligible for applying that technique. It can be shown that [Georgiadis and Papadopoulos 1987]
the above set of boundary conditions can be converted to a more suitable form (see Figure 2):

τyy(x, 0)= τ0 x < 0, (13)

v(x, 0)= 0, x > 0, (14)

τxy(x, 0)= 0, −∞< x <∞, (15)

τxy(x,±h)= 0, −∞< x <∞, (16)

v(x,±h)= 0, −∞< x <∞ (17)

by introducing a constant homogeneous load τyy = τ0 in the system. Although the selection of the
constant load τ0 is not arbitrary, it satisfies the relation τ0 =−(C22/h)v0 for the given problem.

Now we slightly change the boundary condition (13) as discussed in [Nilsson 1973] introducing a
slightly variable load

τyy(x, 0)= τ0 eεx , x < 0, (13′)

where ε is a very small positive quantity which can be assumed as tending to zero. Since the problem is
symmetric with respect to the x-axis, it is sufficient to consider the half-strip 0≤ y ≤ h only.

Figure 2. Geometry of the transformed problem.
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The well-known Fourier transform is defined by

f̄ (ω, y)=
1
√

2π

∫
∞

−∞

f (x, y) eiωx dx (18)

with the inverse

f (x, y)=
1
√

2π

∫
∞

−∞

f̄ (ω, y) e−iωx dω, (19)

where ω = σ + iτ is the complex variable in the Fourier transform plane.
Now introducing the Fourier transform on (3) and (4), the solutions can be assumed as

ū(ω, y)= P(ω) eγ1ωy
+ Q(ω) e−γ1ωy

+ R(ω) eγ2ωy
+ S(ω) e−γ2ωy, (20)

v̄(ω, y)= i[α1 P(ω) eγ1ωy
−α1 Q(ω) e−γ1ωy

+α2 R(ω) eγ2ωy
−α2S(ω) e−γ2ωy

], (21)

where ū(ω, y) and v̄(ω, y) are Fourier transforms of u(x, y) and v(x, y), respectively; αj , ( j = 1, 2) are
given by

αj =
C11− ρc2

−C66 γ
2
j

(C12+C66) γj
, j = 1, 2, (22)

where i =
√
−1 and γ 2

1 , γ 2
2 are the positive roots of the equation

C22 C66 γ
4
+{C2

12+ 2C12 C66−C11 C22+ (C66+C22) ρc2
} γ 2
+ (C11− ρc2)(C66− ρc2)= 0. (23)

Moreover, P(ω), Q(ω), R(ω) and S(ω) are unknown functions of ω.
The expressions for the stresses can be obtained as

1
C66

τ̄xy(ω, y)= ω(γ1+α1)
(
eγ1ωy P(ω)− e−γ1ωy Q(ω)

)
+ω(γ2+α2)

(
eγ2ωy R(ω)− e−γ2ωy S(ω)

)
, (24)

τ̄yy(ω, y)= iω(C22 α1γ1−C12)
(
eγ1ωy P(ω)+ e−γ1ωy Q(ω)

)
+ iω(C22 α2γ2−C12)

(
eγ2ωy R(ω)+ e−γ2ωy S(ω)

)
, (25)

where τ̄xy(ω, y) and τ̄yy(ω, y) are the Fourier transforms of τxy(x, y) and τyy(x, y).

3. Method of solution

The normal stress τyy(x, 0) and displacement v(x, 0) are unknown for x > 0 and x < 0. Hence we
consider

τyy(x, 0)= f (x), x > 0, (26)

v(x, 0)= g(x), x < 0. (27)
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The objective of the method is to obtain the expression of the stress f (x) at the tip of the crack. We
define half-range Fourier transforms of the above functions as

f̄+ (ω)=
1
√

2π

∫
∞

0
f (x) eiωx dx, (28)

ḡ− (ω)=
1
√

2π

∫ 0

−∞

g(x) eiωx dx, (29)

where the existence of the above transforms are still unclear but can be proved by the following assump-
tions that the stresses and displacements are bounded at the infinity, so the functions f (x) and g(x)
should be bounded there. Therefore, without any loss of generality we may assume that

| f (x)|< Fx−l f , as x→∞, (30)

|g(x)|< G|x |−lg , as x→−∞ (31)

for some l f > 0, lg > 0 with F and G being finite positive numbers. The conditions (30) and (31) ensure
the existence of the transforms (28) and (29); in fact the functions f̄+(ω) and ḡ−(ω) are now analytic
for τ ≥ 0 and τ ≤ 0.

Introducing Fourier transforms on the boundary conditions (15), (16) and (17) with the help of (21)
and (24), the unknown functions Q(ω), R(ω) and S(ω) can be expressed in terms of P(ω) as

Q(ω)=
11

1
P(ω), R(ω)=

12

1
P(ω), S(ω)=

13

1
P(ω), (32)

where

11 = 2(γ2+α2) eγ1ωh sinh(γ2ωh)(α2γ1−α1γ2), (33)

12 = 2(γ1+α1) e−γ2ωh sinh(γ1ωh)(α1γ2−α2γ1), (34)

13 = 2(γ1+α1) eγ2ωh sinh(γ1ωh)(α1γ2−α2γ1), (35)

1= 2(γ2+α2) e−γ1ωh sinh(γ2ωh)(α2γ1−α1γ2). (36)

Next, using the conditions (13′), (14) with the help of (28), (29) we get a pair of equations involving
f̄+(ω) and ḡ−(ω) as

τ̄yy(ω, 0)= f̄+ (ω)+
τ0

√
2π(ε+ iω)

, (37)

v̄(ω, 0)= ḡ− (ω). (38)

Replacing the values of the stress and displacement from (21), (25) and after some manipulation using
(32)–(36) we get the following equation of two unknown functions:

f̄+ (ω)= K (ω) ḡ− (ω)−
τ0

√
2π(ε+ iω)

, (39)

where the kernel K (ω) is given by

K (ω)= ωK1(ω)/K2(ω), (40)
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with

K1(ω)= (C22 α1γ1−C12)(1+ e2γ1ωh)1+ (C22 α2γ2−C12)(1+ e2γ2ωh)12, (41)

K2(ω)= (α1−α1 e2γ1ωh)1+ (α2−α2 e2γ2ωh)12. (42)

Equation (39) is the standard Wiener–Hopf equation with the kernel given by (40).
The first and most important step of the Wiener–Hopf technique is the factorization of the kernel K (ω)

in the following form:
K (ω)= K+(ω) K−(ω) (43)

such that the function K+(ω) is analytic and nonzero in some upper half plane τ > τ1 (τ1 < 0) and
K−(ω) is analytic and nonzero in some lower half plane τ < τ2 (τ2 > 0).

Once the factorization (43) is done, (39) can be written as

f̄+(ω)
K+(ω)

= K−(ω) ḡ−(ω)−
τ0

√
2π(ε+ iω)K+(ω)

. (44)

The next task is the decomposition of the last part of (44) as
τ0

√
2π(ε+ iω)K+(ω)

= L(ω)= L+(ω)+ L−(ω), (45)

where

L+(ω)=
τ0

√
2π(ε+ iω)

[
1

K+(ω)
−

1
K+(iε)

]
, (46)

L−(ω)=
τ0

√
2π(ε+ iω)K+(iε)

. (47)

It can be shown [Noble 1958] that L+(ω) and L−(ω) are analytic and nonzero in the regions τ > τ1

and τ < ε.
Now utilizing (45), equation (44) can be written as

f̄+(ω)
K+(ω)

+ L+(ω)= K−(ω) ḡ−(ω)− L−(ω), (48)

It may be noted that the regions of analyticity of the functions f̄+(ω), ḡ−(ω), K+(ω), K−(ω), L+(ω)
and L−(ω) are τ ≥ 0, τ ≤ 0, τ > τ1(τ1 < 0), τ < τ2(τ2 > 0), τ > τ1(τ1 < 0) and τ < ε, respectively.
Therefore, the left-hand side of (48) is analytic in the upper half plane τ ≥ 0 and the right-hand side is
analytic in the lower half plane τ ≤ 0 for any arbitrary small positive values of ε. Since the regions of
analyticity overlap and the line τ = 0 is the common line of analyticity, hence by a well-known theorem
on the analytic continuation the whole equation (48) is analytic and single valued throughout the complex
ω-plane. We may now assume that both sides of (48) is equal to an entire function, say J (ω).

It may be easily verified that both K+(ω) and K−(ω) tend to ω1/2 for large ω. Furthermore, f̄+(ω)
and ḡ−(ω) are bounded for large ω. Therefore, the left-hand side of (48) and consequently J (ω) tends
to ω−1/2 for large value of ω in the upper half plane τ ≥ 0; similarly, the right-hand side of (48) and
consequently J (ω) tends to ω1/2 for large ω in the lower half plane τ ≤ 0. Hence, by the extended
Liouville theorem it can be concluded that J (ω) is a constant, more specifically zero.
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Therefore, from (46)–(48) we find

f̄+(ω)=
τ0

√
2π(ε+ iω)

[
K+(ω)
K+(iε)

− 1
]
, ḡ−(ω)=

τ0
√

2π(ε+ iω)

1
K+(iε)K−(ω)

.

Now for constant loading we may take ε→ 0; consequently the above equations become

f̄+(ω)=
τ0

√
2π iω

[
K+(ω)
K+(0)

− 1
]
, (49)

ḡ−(ω)=
τ0

√
2π iω

1
K+(0)K−(ω)

. (50)

The main difficulty in the Wiener–Hopf technique is the decomposition of the kernel K (ω). Due to
mathematical complexities, factorization of the kernel K (ω) is not easy. Nilsson [1972] introduced a
technique where behavior of normal stress at the crack-tip can be obtained by only knowing the values
of K (ω) for very large ω and also for very small ω.

It can be easily verified that

lim
ω→∞

K (ω)
ω
= θ, (51)

where

θ =
(C22 α2γ2−C12)(γ1+α1)− (C22 α1γ1−C12)(γ2+α2)

α1γ2−α2γ1
(52)

and

lim
ω→0

K (ω)=−
C22

h
−

C12(γ
2
1 − γ

2
2 +α1γ1−α2γ2)

hγ1γ2(α1γ2−α2γ1)
= θ0, say. (53)

Now for very large values of ω, equations (49) and (50) can be written as

lim
ω→∞

f̄+(ω)= lim
ω→∞

τ0
√

2π i K+(0) ω1/2

K+(ω)
ω1/2 − lim

ω→∞

τ0
√

2π iω
(54)

and

lim
ω→∞

ḡ−(ω)= lim
ω→∞

τ0
√

2π i K+(ω) ω3/2

ω1/2

K−(ω)
, (55)

Taking Inverse Fourier transform on (54) and (55) and using asymptotic property with the help of equa-
tions (51)–(53) we get

lim
x→0+

f (x)=−τ0

√
2θ
πθ0

x−1/2, (56)

and

lim
x→0−

g(x)=−τ0

√
1

πθθ0
(−x)1/2. (57)

Equation (56) shows the normal stress τyy just outside the crack-tip. It is found that the normal stress
component τyy has a square root singularity at the tip of the crack which was expected. Moreover,
equation (57) represents the displacement v just inside the crack-tip.
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4. Quantities of physical interest

The stress intensity factor (SIF) that denotes the state of stress at the crack-tip is defined as

SIF= lim
x→0+

√
2πx τyy(x, 0) (58)

and found to be
SIF=−τ0

√
2θ/θ0, (59)

where θ is given by (52). Therefore, the stress intensity factor of the original problem is given by

K I =

√
2θ
θ0

C22v0

h
. (60)

Another quantity of physical interest is the crack-opening displacement (COD):

COD= v(x, 0+)− v(x, 0−). (61)

Since the problem is symmetric with respect to the x-axis, we can write

COD=−2τ0

√
1

πθθ0
(−x)1/2. (62)

Therefore, COD of the original problem normalized with respect to v0 is

COD= 2
√
−x
πθθ0

C22

h
. (63)

Comparison of results. For isotropic media we write C11 =C22 = λ+2µ, C12 = λ and C66 =µ, where
λ and µ are Lamé constants; so we get

γ 2
1 = 1− c2/c2

1, (64)

γ 2
2 = 1− c2/c2

2, (65)

α1 = γ
−1
1 , (66)

α2 = γ2, (67)

θ =
µ{(1+ γ 2

1 )
2
− 4γ1γ2}

γ2(1− γ 2
1 )

, (68)

θ0 =
µ

h
.
(1+ γ 2

1 )
2
− 4γ 2

2

γ 2
2 (1− γ

2
1 )

, (69)

where c1 =
√
µ/ρ and c2 =

√
λ+ 2µ/ρ are the velocities of shear waves and dilatational waves, respec-

tively. Therefore, using (64)–(69), the expression (59) of the stress intensity factor becomes

SIFISO =−τ0

√
2hγ2

(1+ γ 2
1 )

2− 4γ1γ2

(1+ γ 2
1 )

2− 4γ 2
2
, (70)

which is exactly the expression Nilsson [1972] obtained for isotropic strip.
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For statical problem (c = 0) the expression for the stress intensity factor after some algebraic manip-
ulation has been obtained as

K stat
I = C22v0

√
2γ̄1γ̄2

(γ̄1+ γ̄2)h
, (71)

where γ̄ 2
1 , γ̄ 2

2 are positive roots of the equation

C22 C66 γ
4
+ (C2

12+ 2C12 C66−C11 C22) γ
2
+C11 C66 = 0. (72)

Georgiadis and Papadopoulos [1987] obtained the same expression as that of (71) for statical problem
of semiinfinite crack at the interior of orthotropic strip.

The above two results show the correctness of the solution of our problem.

5. Numerical results and discussions

In elasticity, two well-known wave velocities — velocities of shear waves and dilatational waves — are
given by

c1 = cs =
√
µ12/ρ and c2 = cL =

√
C11/ρ. (73)

Moreover, the velocity of the Rayleigh surface waves is denoted by cR . It is known that the value of cR

is slightly less than that of the shear waves. Also, Rayleigh surface wave velocity is the theoretical
upper limit [Broberg 1999] of the crack propagation velocity, although practically the maximum crack
propagation velocity is much less than the Rayleigh surface wave velocity. Hence, in this problem we
assume that velocity of the crack c < cR <min{c1, c2}.

From the expressions of the stress intensity factor (SIF) and crack-opening displacement (COD) the
numerical values of the SIF and COD have been plotted against various parameters. Material constants
(in GPa) and densities (in g/cm3) of some orthotropic materials are given [Rubio-Gonzalez and Lira-
Vergara 2011] in Table 1.

The values of the stress intensity factor (SIF) normalized with respect to v0 have been plotted against
the velocity (cm/µs) of the crack for each of the two types of materials.

For type I material, velocity of Rayleigh surface wave is cR = 0.2138 cm/µs. From Figure 3, it is
clear that the SIF depends on the crack propagation velocity c. For fixed crack width, the SIF decreases
with the increasing value of c and tends to zero as c approaches cR . Consequently, K I = 0 when c = cR .
Practically our concern is for c < cR , hence the case K I = 0 is of no interest. The graph is not valid for
super Rayleigh velocities (c > cR) as cR is the theoretical upper limit of the crack velocity. Moreover,
for fixed crack propagation velocity the value of the SIF decreases as the width of the strip h increases
which is obvious from the expression of the SIF in (60). This is also justified with the fact that as
the strip becomes wider, the impact of the displacement v0 on the crack surface is less. Similarly, for

C11 C22 C12 µ12 ρ

type I graphite epoxy 155.36 16.31 3.67 7.48 1.6
type II E-glass epoxy 46.09 12.60 2.86 5.50 2.1

Table 1. Engineering elastic constants.
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Figure 3. SIF against the crack velocity c for type I material.
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Figure 4. SIF against the crack velocity c for type II material.

type II materials the velocity of the Rayleigh waves is 0.1574 cm/µs and the graph (Figure 4) is very
much similar to Figure 3. These results agree with the results obtained in [Nilsson 1972] for isotropic
materials.

Values of the COD has been plotted against negative x-axis for different parameters viz. crack velocity
and strip width. From all the figures of the COD (Figures 5–8) it is clear that the values of the COD
normalized with respect to v0 decreases as we approach the crack-tip along the negative x-axis and finally
vanishes at the crack-tip. This result is very much expected and agrees with the physical nature of the
crack. Figures 5 and 7 show the effect of strip width h on the COD for fixed value of the crack velocity c
and it shows that the COD decreases with the increasing value of h for fixed c. Again, Figures 6 and 8
show the effect of crack velocity c on the COD for fixed value of crack width h. It is clear that for
subsonic propagation the value of the COD increases with the increasing value of the crack velocity
subjected to same crack width.
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Figure 5. Crack-opening displacement against x for type I material and c = 0.12.
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Figure 6. Crack-opening displacement against x for type I material and h = 2.5.
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Figure 7. Crack-opening displacement against x for type II material and c = 0.08.
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Figure 8. Crack-opening displacement against x for type II material and h = 2.5.

6. Conclusions

The diffraction problem of a semiinfinite moving crack in an orthotropic strip due to shear-free boundaries
has been investigated. At first, the problem has been converted to the problem of a semiinfinite moving
crack subjected to uniform normal stresses at the crack surfaces to make the boundary conditions suitable
for the Wiener–Hopf technique. Then Fourier transform has been used to reduce the boundary value
problem to the standard Wiener–Hopf equation which has been solved for asymptotic cases to obtain
the expressions of the stress intensity factor and crack-opening displacement. The dependence of the
stress intensity factor on the material constants, velocity and strip width have been shown with graphs.
As the target of this work is to find an idea regarding how to arrest the propagation of the crack, it is
necessary to keep the values of the stress intensity factor and crack-opening displacement within a certain
limit. Propagation of crack depends on the SIF at the tip of the crack. From graphs it is observed
that by controlling stress on the crack i.e., displacement on the surface of the strip, crack velocity and
consequently propagation of crack can be made insignificant. The results given by (60) and (63) are
applicable in fabrication process of large construction.
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A BERNOULLI–EULER BEAM MODEL BASED ON THE LOCAL
GRADIENT THEORY OF ELASTICITY

OLHA HRYTSYNA

Using the total energy balance equation and principle of the frame indifference, a fundamental set of
relations of the local gradient continuum model of elastic solids is formulated. The model is based
on taking account of non-convective and non-diffusive mass flux related to the changes in the material
microstructure. Linear stationary governing equations of the local gradient theory and corresponding
boundary conditions are also derived by variational principle. In order to investigate the size-dependent
behavior of nano-scale structures, this model is combined with the Bernoulli–Euler beam theory. De-
flection of the cantilever beam subjected to the end-point loading under the plane stress conditions is
evaluated and compared to the corresponding ones provided by the classical theory and by the strain
gradient theory. It is shown that the beam deflection within the local gradient theory is smaller than
that predicted by the classical Bernoulli–Euler beam theory. This work may be of special interest for
designing the devices utilizing the micro/nano-beam elements.

1. Introduction

It is known that surface and size phenomena play an important role in determining mechanical behaviors
of small-scale structures. Laboratory investigations showed that thin films, nanowires, and nanobeams
exhibit different physical properties compared with macro-sized structures of the same material [Espinosa
et al. 2003; Greer and Nix 2005; Hardwick 1987; Kakunai et al. 1985; Ma and Clarke 1995; Weihs
et al. 1988]. Since the classical theory of elasticity cannot explain a specific mechanical behavior of
micro/nano-scale structures, various modified mathematical models of elastic continua were developed in
the last six decades. Among them there are the couple stress theory [Mindlin and Tiersten 1962; Toupin
1962], strain gradient theories of elasticity [Mindlin 1965], theory of elastic micromorphic materials
[Eringen 1999; Eringen and Suhubi 1964; Mindlin 1964], micropolar theory [Eringen 1966; Kafadar and
Eringen 1971], microstrech theory [Eringen 1999], nonlocal theory of elasticity with integral-type consti-
tutive relations [Edelen 1969; Eringen 1972], etc. In recent years, modified theories of the elastic continua
were effectively adapted in order to investigate the mechanical behavior of elastic micro/nanoscale beams,
plates, rods, rings, and shells (see, for example, [Akgöz and Civalek 2011; Lazopoulos and Lazopoulos
2010; Liebold and Müller 2015; Lurie and Solyaev 2019; Repka et al. 2018; Shokrieh and Zibaei 2015;
Tahaei Yaghoubi et al. 2018], etc). The papers studied the size-dependent mechanical behaviour of micro-
/nano-beams using modified continuum models are reviewed in [Niiranen et al. 2019]. The applications of
the surface elasticity theory, pure nonlocal elastic models and nonlocal strain gradient elasticity theories
in static and dynamic analysis of nanobeams, nanotubes and nanoplates are presented in [Wang et al.

Keywords: gradient-type theory, continuum mechanics modeling, local gradient elasticity, Bernoulli–Euler beam,
micro/nano-beams, size effect.
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2016; Farajpour et al. 2018]. Trends in the development of the nonlocal and gradient-type theories of
elastic beams are highlighted in reviews [Reddy 2007; Eltaher et al. 2016; Thai et al. 2017; Spagnuolo
and Andreaus 2019], etc.

In 1987, Burak proposed a new continuum-thermodynamic approach to the construction of gradient-
type continuum theory of elastic solids. The mentioned approach is based on taking account of non-
diffusive and non-convective mass flux Jms associated with the changes in the material microstructure.
Such changes in the material microstructure can be observed, for instance, in the vicinity of the newly-
created surfaces. Burak related the mentioned non-diffusive and non-convective mass flux to the process
referred to as the local mass displacement. [Marchenko et al. 2009] observed this kind of mass flux
within the near-surface regions of thin films during their formation. Making use the total energy balance
equation and assuming that the mass flux Jms causes an energy flux µ Jms, where µ is the chemical
potential, [Burak 1987] received gradient-type constitutive equations. The additional pair of conjugate
variables (∇µ,5m) related to the local mass displacement was obtained within this theory. Here, 5m is
the vector of local mass displacement related to the vector of mass flux Jms by the formula [Burak 1987]

5m(r, t)=
∫ t

0
Jms(r, t ′)dt ′⇒ Jms =

∂5m

∂t
, (1)

where r is the position vector and t denotes the time variable.
This is called the local gradient theory of elasticity. The relations of that theory were applied to

describe surface and size effects not covered by the classical theory (see the review article [Hrytsyna
et al. 2006] and references therein). In the cited papers, specific studies were carried out in linear
approximation with the assumption that convective term in the material time derivative can be neglected.

Two decades later, [Burak et al. 2007] proposed a modified local gradient theory of thermoelasticity in
which two additional constitutive parameters related to the local mass displacement were introduced. The
mentioned theory contains a new balance-type differential equation that governs the behavior of thermoe-
lastic media in addition to the classical momentum balance equation and entropy balance equation. The
local gradient theory was successfully used to describe a near-surface inhomogeneity of mechanical fields
[Burak et al. 2008], high-frequency dispersion of longitudinal elastic waves [Kondrat and Hrytsyna 2010],
the propagation of antiplane horizontally polarized surface shear waves (SH waves) in homogeneous
solids [Hrytsyna 2017], etc.

The objectives of the present paper are (i) to derive stationary balance equations and boundary con-
ditions of the local gradient elasticity from the variational principle, (ii) to establish a local gradient
Bernoulli–Euler linear beam model to incorporate the surface and size effects, and (iii) to test the obtained
relations on simple problem of a cantilevered beam under the end-point loading.

The paper is organized as follows. In Section 2, the nonlinear local gradient mathematical model of
elastic solids is developed based on the total energy balance equation and on the principle of the frame
indifference. In Section 3, the stationary balance equations and constitutive relations are formulated
for linear approximation. In Section 4, the linear governing equations of local gradient elasticity and
corresponding boundary conditions are derived from the variational principle. Based on these relations,
the Bernoulli–Euler local gradient beam model is developed in Section 5. The deflection of the cantilever
beam loaded by a point force is obtained in this section. The numerical results are discussed in Section 6.
Conclusions are drawn in the final Section 7.
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2. Basic equations of nonlinear local gradient elasticity

In the classical elasticity, the position of a small body element (body particle) is identified with the
position of its center of mass. In such a theory, the change of position of the mass center of the small
body element can be caused only by the convective displacement of this element (Figure 1a). The local
gradient theory takes into account that a change in the center of mass of the body particle may be induced
not only by its convective displacement as a rigid entity (i.e., translational displacement of the particle
geometric center) but by the changes of the relative positions of microparticles within this element as
well, i. e., the change of its microstructure (Figure 1b). Within the local gradient theory mentioned
changes in microstructure are described by non-convective and non-diffusive mass flux Jms. This mass
flux was linked with the process of the local mass displacement.

To describe the local mass displacement, new physical quantities associated with this process should
be introduced. Following [Burak 1987], alongside with the mass flux Jms, we introduce vector of the
local mass displacement 5m . Let us assume that above vectors are related by Eq. (1). Note that the vector
5m of the local mass displacement has a dimension of the density of a dipole mass moment (kg ·m/m3)

while its specific quantity πm =5m/ρ has the length dimension (m) (here, ρ is the mass density).
For an arbitrary body of finite size (domain (V )), using the relation [Burak et al. 2008]∫

(V )
5mdV =

∫
(V )
ρmπ r dV, (2)

we introduce a new scalar physical quantity ρmπ that has the dimension of mass density. Here, r is the
position vector of the material point. From integral relation (2), formula

ρmπ =−∇ ·5m (3)

can be obtained [Hrytsyna and Kondrat 2019]. Here, ∇ = (∂/∂ξ1, ∂/∂ξ2, ∂/∂ξ3) is the nabla operator,
where ξi , i = 1, 3, are the space coordinates.

Figure 1. Mass-center displacement of a small volume element due to action of external
load: (a) the classical theory of elasticity, u = r− r0; (b) the local gradient theory of
elasticity, u= r∗+πm − r0 where πm =5mρ.
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Note that in electrodynamics by similar formula ρeπ = −∇ ·5e, the density of an induced charge
ρeπ was introduced into consideration (here, 5e is the polarization vector, i.e., the vector of the local
displacement of electric charges) [Bredov et al. 1985]. Thus, by analogy with the electrodynamics, we
refer to ρmπ as the density of an induced mass [Hrytsyna and Kondrat 2019].

By differentiating expression (3) with respect to time and taking formula (1) into account, one can
obtain the balance-type differential equation

∂ρmπ

∂t
+∇ · Jms = 0, (4)

for quantities ρmπ and Jms introduced for a description of the local mass displacement.
Within this subsection, we derive the constitutive and balance equations, using the energy conservation

law and the principle of frame indifference. We consider an elastic body that occupies the region (V ) and
is bounded by a smooth surface (6). Let us separate from the body a fixed small volume (V ′) bounded
by closed surface (6′). We represent the total energy of this volume as the sum of internal ρu and
kinetic ρv2/2 energies. Here, u denotes the specific internal energy and v is the velocity of continuum of
centre mass. The change in the total energy is caused (i) by the convective energy transport ρ

(
u+v2/2

)
v

through the body surface, (ii) by the energy flux σ̂ · v due to the mechanical work of the surface forces,
(iii) by the energy flux µJm linked with the mass transport relative to the mass-centre of the small body
particle, (iv) by the energy flux µπJms related to the material microstructure ordering (i. e., the local
mass displacement) as well as (v) by the action of mechanical mass forces F. Thus, for the fixed volume
(V ′), the energy balance equation can be written as follows:

d
dt

∫
(V ′)

(
ρu+ 1

2ρv2) dV =−
∮
(6′)

[
ρ
(
u+ 1

2 v2)v− σ̂ ·v+µJm +µπ Jms
]
·n d6+

∫
(V ′)

ρF ·v dV . (5)

Here, σ̂ represents the classical Cauchy stress tensor; µπ is the energy measure of the effect of the local
mass displacement on the internal energy; Jm = ρ(v∗− v); v∗ is the velocity of convective displacement
of the small body element; n is the unit vector normal to the material surface (6′), and the dot denotes
the scalar product. Note that vectors v∗ and v are related through the following expression (see Figure 1):

v= v∗+
1
ρ

∂5m

∂t
. (6)

Note also that by virtue of Eqs. (1) and (6), the mass flux Jm can be written down as follows:

Jm =−
∂5m

∂t
. (7)

Making use of the divergence theorem as well as of the expressions (1) and (7), from integral equa-
tion (5), in view of the arbitrary of the volume (V ′) one obtains the local form of the energy conservation
law for the elastic continuum

∂

∂t

(
ρu+ 1

2ρv2)
=−∇ ·

[
ρv
(
u+ 1

2 v2)]
+∇ · (σ̂ · v)+ ρF · v−∇µ′π ·

∂5m

∂t
+µ′π

∂(−∇ ·5m)

∂t
. (8)

Here, µ′π = µπ −µ is the modified chemical potential.
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After some algebra, expression (8) can be written as follows:

ρ
du
dt
+
(
u+ 1

2 v2)[∂ρ
∂t
+ (∇ · ρv)

]
= v ·

(
− ρ

dv
dt
+∇ · σ̂ + ρF

)
+ σ̂ : (∇⊗ v)−∇µ′π ·

∂5m

∂t
+µ′π

∂ρmπ

∂t
. (9)

Here, d/dt = ∂/∂t + v ·∇ denotes the substantive derivative, and ⊗ is the tensor product.
Let us introduce specific quantities πm =5m/ρ and ρm = ρmπ/ρ. Substituting these two relations

into the energy balance equation (9) after some transformations, we obtain

ρ
du
dt
+ ρ∇µ′π ·

dπm

dt
− ρµ′π

dρm

dt
− σ̂ ∗ : (∇⊗ v)= v ·

(
− ρ

dv
dt
+∇ · σ̂ ∗+ ρF∗

)
−

(
∂ρ

∂t
+∇ · (ρv)

)(
u+

1
2

v2
− ρmµ

′

π +∇µ′π ·πm

)
, (10)

where

σ̂ ∗ = σ̂ − ρ(ρmµ
′

π −πm ·∇µ
′

π )Î, (11)

F∗ = F+ ρm∇µ′π −πm ·∇⊗∇µ′π , (12)

where Î represents the unit tensor.
Following [Green and Rivlin 1964], assume that the energy balance equation (10) remains valid under

superimposed rigid body translation. As a result from (10), we get the equation of motion and the mass
balance equation, namely [Hrytsyna and Kondrat 2019]:

∇ · σ̂ ∗+ ρF∗ = ρ
dv
dt
, (13)

∂ρ

∂t
+∇ · (ρv)= 0. (14)

From formulae (11)–(13), it follows that the local mass displacement being taken into consideration
leads to the modification of the stress tensor σ̂ ∗ and to the appearance of an additional nonlinear mass
force F′

∗
= ρm∇µ′π −πm ·∇⊗∇µ′π in equation of motion (13).

Since the energy balance equation (10) should be invariant under superimposed rigid body rotation
with a constant angular rate, it follows that σ̂ ∗ is a symmetric tensor [Hrytsyna and Kondrat 2019].

In view of Eqs. (13) and (14), the balance equation (10) for the internal energy simplifies and can be
written as follows:

ρ
du
dt
= σ̂ ∗ :

d ê
dt
− ρ∇µ′π ·

dπm

dt
+ ρµ′π

dρm

dt
. (15)

Here, ê is the strain tensor related to the mechanical displacement vector u by the formula

ê= 1
2

(
∇⊗u+ (∇⊗u)T

)
, (16)

where superscript T stands for transpose.
Let us introduce a new energy density function H = H(ê, µ′π , ∇µ′π ) through the Legendre transfor-

mation H = u+ρmµ
′
π +∇µ′π ·πm . Based on (15) we can write the following generalized Gibbs relation:
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d H =
1
ρ
σ̂ ∗ : d ê− ρmdµ′π +πm · d∇µ′π . (17)

Since H is the function of scalar µ′π , vector ∇µ′π , and tensor ê arguments, its full differential looks as
follows:

d H =
∂H
∂ ê

d ê+
∂H
∂µ′π

dµ′π +
∂H

∂(∇µ′π )
· d(∇µ′π ). (18)

Subtracting formulae (17) and (18), we get(
∂H
∂ ê
−

1
ρ
σ̂ ∗

)
d ê++

(
∂H
∂µ′π
+ ρm

)
dµ′π +

(
∂H

∂(∇µ′π )
−πm

)
· d(∇µ′π )= 0. (19)

Equation (19) must hold for arbitrary d ê, dµ′π , and d(∇µ′π ). Thus, (19) yields the following gradient-
type constitutive equations:

σ̂ ∗ = ρ
∂H
∂ ê

∣∣∣∣∣
µ′π ,∇µ

′
π

, ρm =−
∂H
∂µ′π

∣∣∣∣∣
ê,∇µ′π

,πm =
∂H

∂(∇µ′π )

∣∣∣∣∣
ê, µ′π

, (20)

where the subscripts to the right from the vertical lines indicate the variables that are held constant during
the differentiation. Note that within the framework of this higher-order theory of elastic media, the set
of conjugate variables is complemented by two additional pairs of variables (ρm, µ

′
π ) and (πm, ∇µ′π )

related to the local mass displacement.

3. Linear set of equations for stationary approximation

Let us represent the constitutive relations (20) in an explicit form. To this end, we expand the potential
H in the vicinity of the natural state (ê= 0, σ̂ ∗ = 0, µ′π = µ

′

π0, ∇µ′π = 0, πm = 0, and ρm = 0) into a
Taylor series. We retain quadratic terms in this decomposition which enables us to get linear constitutive
equations. Let ei j � 1, µ̃′π � 1, and ∇µ̃′π � 1, where µ̃′π = µ

′
π −µ

′

π0. For anisotropic media, we can
write:

H = H0+
1

2ρ0
Ĉ(4)
:: (ê⊗ ê)−

1
2

dµµ̃′2π −
1
2
χ̂

m
: (∇µ̃′π ⊗∇µ̃′π )−

1
ρ0
α̂
µ
: ê µ̃′π

−
1
ρ0

ĝ(3)...(ê⊗∇µ̃′π )− (γ
µ
·∇µ̃′π )µ̃

′

π . (21)

Here, ρ0 is the reference mass density, Ĉ(4) is the fourth-order tensor of the elastic constants, α̂µ denotes
the tensor of volumetric expansion caused by the local mass displacement, ĝ(3) is the third-order ten-
sor of piezomass constants, dµ is the isochoric coefficient of the dependency of specific density of the
induced mass on perturbation of modified chemical potential µ̃′π , χ̂m denote the tensor characterizing
the dependence of vectors of the local mass displacement on ∇µ̃′π , γ̂ µ is the vector characterizing the
dependence of the induced mass density on ∇µ̃′π .
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Note that for the linear approximation, tensor σ̂ ∗ can be replaced by the ordinary Cauchy stress tensor
σ̂ . Therefore, using relations (20) and (21), we obtain the following state equations:

σ̂ = Ĉ(4)
: ê− α̂µ µ̃′π −∇µ̃′π · ĝ

(3), (22a)

ρm = dµµ̃′π +
1
ρ0
α̂
µ
: ê+ γ µ ·∇µ̃′π , (22b)

πm =−χ̂
m
·∇µ̃′π − γ

µ µ̃′π −
1
ρ0

ĝ(3)
: ê. (22c)

Due to the accounting for the local mass displacement, the constitutive equations (22) contain new
material constants dµ, γ µ, α̂µ, χ̂m , and ĝ(3), characterizing the physical properties of material. The
tensors of the second order α̂µ and χ̂m have 6 components and vector γ µ has 3 components. The third-
order tensor of the piezomass coefficients ĝ(3) contains 18 independent components (they are symmetric
about the permutation of the second and third subscripts).

The number of material constants is decreased for isotropic media. For such media, constitutive
relations are as follows:

σ̂ = 2G ê+
[(

K − 2
3 G
)
e− Kαµµ̃′π

]
Î, (23a)

ρm = dµµ̃′π +
Kαµ
ρ0

e, (23b)

πm =−χm∇µ̃′π . (23c)

The local gradient theory yields five coefficients for isotropic materials, two of which are classical
elastic moduli (i. e., K and G), and αµ, dµ, and χm are new material coefficients.

It is worth to note that the stress for isotropic materials is related not only to the strain, as in clas-
sical elasticity, but also to the modified chemical potential µ̃′π . Therefore, in general, the local mass
displacement can influence the stress-strain state of an isotropic solid body.

For linear stationary approximation, Eqs. (4) and (13) can be written as:

ρm =−∇ ·πm, (24)

∇ · σ̂ + ρ0F= 0. (25)

For static fields, the complete linear system of field equations consists of Eqs. (24) and (25), the
constitutive relations (22) (or ((23))), and the strain-displacement relation (16).

4. Variational approach

In this section, the variational principle is used to derive the governing equations and corresponding
boundary conditions of the linear local gradient elasticity.

Assume that energy density potential H exists for the elastic continuum introduced in Section 2.
To take the changes in the material microstructure into account, we assume the potential H to be a
C2-continuous function of the strain tensor ê, modified chemical potential µ̃′π as well as on its space
gradient ∇µ̃′π , that is: H(ê, µ̃′π ,∇µ̃′π ). Let us also assume that constitutive relations are defined by
the formulae (20). For elastic solids that occupy the region (V ) bounded by a smooth surface (6), the
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variational principle can be expressed by formula

δ

(
−

∫
(V )

H(ê, µ̃′π ,∇µ̃
′

π ) dV +
∫
(V )

WV dV +
∫
(6)

Ws d6
)
= 0. (26)

The second and third integrals in (26) correspond to the virtual work done by the external body force
and surface loading, respectively.

In view of the constitutive equations (20), the first integral in the above relation can be represented as

δ

∫
(V )

H(ê, µ̃′π ,∇µ̃
′

π ) dV =
∫
(V )

(
∂H
∂ ê
δ ê+

∂H
∂µ̃′π

δµ̃′π +
∂H
∂∇µ̃′π

δ∇µ̃′π

)
dV

=

∫
(V )

(
1
ρ0
σ̂ : δ ê− ρmδµ̃

′

π +πm · δ∇µ̃
′

π

)
dV .

Since σ̂ is a symmetric tensor, and taking strain-displacement relation (16) and equations

πm · δ∇µ̃
′

π =∇ · (πmδµ̃
′

π )− (∇ ·πm)δµ̃
′

π ,

σ̂ : δ(∇⊗u)=∇ · (σ̂ · δu)− (∇ · σ̂ ) · δu

into account, the variation of the potential H can be expressed as follows:

δ

∫
(V )

H dV =
∫
(V )

(
1
ρ0

∇ · (σ̂ · δu)−
1
ρ0
(∇ · σ̂ ) · δu− (ρm +∇ ·πm)δµ̃

′

π +∇ · (πmδµ̃
′

π )

)
dV .

The variation of the external mass force is

δ

∫
(V )

WV dV =
∫
(V )

F · δu dV .

Thus, by the divergence theorem for smooth surface (6), we can rewrite the expression (26) as∫
(V )

(
1
ρ0
(∇ · σ̂ + ρ0F) · δu+ (ρm +∇ ·πm)δµ̃

′

π

)
dV −

∫
(6)

(
1
ρ0
σ n · δu+πmnδµ̃

′

π − δWs

)
d6

= 0, (27)

where σ n = n · σ̂ , and πmn = n ·πm . From variational relation (27), the stationary equations (24) and (25)
as well as the following boundary conditions ensue:

(σ n − σ ns) · δu= 0, ∀r ∈ (6), (28)

(πmn −πms)δµ̃
′

π = 0, ∀r ∈ (6). (29)

Here, σ ns and πms are the surface values of the corresponding quantities.
The equations set (16), (22), (24), and (25), along with the boundary conditions (28) and (29) constitute

the stationary boundary-value problem for linear local gradient elasticity.

5. Bernoulli–Euler local gradient beam model; cantilever beam bending problem

In this section, based on relations of local gradient elasticity, the bending problem of elastic cantilever
nanobeam is studied. The length of the cantilever beam is L , thickness is h and width is b. The beam
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Figure 2. The cantilever beam with rectangular cross section subjected to a tip-point load.

thickness and width are assumed to be much less than the cantilever length, i. e., L >> h and L >> b.
Assume that beam is fixed at one end and concentrated load Q is applied at the free end of the cantilever
beam (Figure 2). Let the x-axis be along the beam length, the y-axis be along the width of the beam,
and the z-axis be along the thickness of the beam. The applied load and the beam geometry are treated
in such a way that the plane stress conditions are realized in the body. For this case, the displacement
vector and the modified chemical potential are functions of x and z space coordinates only.

For the sake of simplicity, we neglect the effect of the gradient of modified chemical potential on
stress distribution σ̂ as well as on the density of the induced mass ρm . In this case, the constitutive
equations (22) read as:

σ̂ = Ĉ(4)
: ê− α̂µ µ̃′π , ρm = dµµ̃′π +

1
ρ0
α̂
µ
: ê, πm =−χ̂

m
·∇µ̃′π . (30)

In order to derive the relations of local gradient beam theory, we introduce the Bernoulli–Euler hy-
potheses. Thus, the displacement components are expressed as follows:

u1 =−zw,x , u2 = 0, u3 = w(x). (31)

Here, w(x) is the beam deflection, and the comma indicates differentiation with respect to the spatial
variables. For this case, there is only one nonzero strain component e11, that is

e11 =−zw,xx . (32)

Similarly to formulae (31), we represent the modified chemical potential as the linear function of
z-coordinate, namely:

µ̃′π (x, z)= zm(x), (33)

where m(x) is unknown function of x-coordinate.
Let us consider the following material property matrices:[C11 C13 0

C13 C33 0
0 0 C55

]
,

[αµ1
α
µ

3
0

]
,

[
−χm

1 0
0 −χm

3

]
, (34)

where the Voigt notation (i.e., 11→ 1, 22→ 2, 33→ 3, 23→ 4, 13→ 5, 12→ 6) are employed.
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In view of relations (32)–(34), constitutive equations (30) may be rewritten as follows:

σ11(x, z)=−z(C11w,xx +α
µ

1 m)= zσ ′1(x), (35a)

σ33(x, z)=−z(C13w,xx +α
µ

3 m)= zσ ′3(x), (35b)

σ13 = 0, (35c)

ρm(x, z)= z(dµm−αµ1 ρ
−1
0 w,xx )= zρ ′m(x), (35d)

π1
m(x, z)=−χm

1 zm,x = zπ ′1(x), (35e)

π3
m(x)=−χ

m
3 m(x). (35f)

To obtain the equations of local gradient beam model, let us consider the variation of the potential H.
In view of (21) and (35), we have the following form for this energy:

H − H0 =
1
ρ0
σ11e11− ρmµ̃

′

π +π
1
m µ̃
′

π ,x +π
3
m dµ̃′π ,z . (36)

By means of the variation of the relation (36), we obtain

δ

∫
(V )

H dV

=

∫
(V )

(
1
ρ0
σ11δe11− ρm δµ̃

′

π +π
1
m δµ̃

′

π ,x +π
3
m δµ̃

′

π ,z

)
dV

=

∫ L

0

∫ h/2

−h/2

∫ b

0

(
−

1
ρ0
σ11z δw,xx −(ρm +π

1
m,x +π

3
m,z )δµ̃

′

π + (π
1
m δµ̃

′

π ),x +(π
3
m δµ̃

′

π ),z

)
dx dy dz.

The above relation may be expressed as

δ

∫
(V )

H dV =−b
∫ L

0

∫ h/2

−h/2

[
1
ρ0
σ11z δw,xx +(ρm +π

1
m,x )δµ̃

′

π

]
dx dz

+ b
∫ L

0

(
π3

m δµ̃
′

π

)∣∣z= h
2

z=− h
2
dx + b

∫ h/2

−h/2

(
π1

m δµ̃
′

π

)∣∣x=L
x=0 dz.

Taking (35) and the relation

σ11δw,xx = (σ11δw,x − σ11,x δw),x +σ11,xx δw

into account and integrating by parts in the space coordinates, yields

δ

∫
(V )

H dV =−
∫ L

0

{
I
ρ0
σ ′1,xx δw+

(
I (ρ ′m +π

′

1,x )− Sπ3
m
)
δm
}

dx

+ I
(
π
′

1δm
)∣∣x=L

x=0 −
I
ρ0

(
σ ′1 δw,x −σ

′

1,x δw
)∣∣x=L

x=0 . (37)

Here, S = bh is the cross-section area and I = bh3/12 is the second moment of cross-section area.
Due to the arbitrariness of δw and δm, based on the variational relation (37), we obtain the governing

equations
M,xx = 0, I (ρ ′m +π

′

1,x )− Sπ3
m = 0, (38)
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with boundary conditions that are defined at the ends x = 0 and x = L of the cantilever beam the following
quantities:

M or w,x , M,x or w, Iπ
′

1 or m.

Here, M =−I (C11w,xx +α
µ

1 m) is the bending moment.
Substituting (35) into (38) yields the equations to determine the unknown functions w(x) and m(x):

C11w,xxxx +α
µ

1 m,xx = 0, (39)

m,xx −λ
2
0(1+Mh)m+

α
µ

1

ρ0χ
m
1
w,xx = 0, (40)

where Mh = Sχm
3 /I dµ, and λ0 =

√
dµ/χm

1 . Note that l∗ = λ−1
0 is the internal material length scale

parameter. This kind of parameter appears within the gradient-type theories of elasticity while it is
absent in the classical theory.

For cantilever beam, the boundary conditions can be written as:

x = 0 : w = 0, w,x = 0, m = 0, (41)

x = L : M = 0, M,x = Q, m = 0. (42)

Finally, from Eqs. (39) and (40), we get the sixth-order ordinary differential equation for beam deflec-
tion

(w,xx −λ
2w),xxxx = 0 (43)

in contrast to the fourth-order equation of the classical Euler–Bernoulli beam model. Here, λ2
= λ2

0(1+
M+Mh), and M= (αµ1 )

2/ρ0dµC11.
The solution to the formulated boundary-value problems (40)–(43) is as follows:

w(X)=
6QL3

C11bh3(1+�)

{
X2
−

X3

3

+
2�[exp(ξ)(exp(−ξ X)− 1+ ξ X)− exp(−ξ)(exp(ξ X)− 1− ξ X)]

ξ 2[exp(ξ)− exp(−ξ)]

}
, (44)

m(X)=
12QL�

α
µ

1 bh3(1+�)

[
1− X −

exp(ξ(1− X))− exp(−ξ(1− X))
exp(ξ)− exp(−ξ)

]
.

Here, ξ = Lλ, �=M/(1+Mh), and X = x/L is the dimensionless space coordinate.
If the local mass displacement effect is neglected (1/λ→ 0), the governing equation (43) can be re-

duced to a known fourth order differential equation of the classical Bernoulli–Euler beam theory, namely,
w,xxxx = 0 [Shokrieh and Zibaei 2015]. The analytical solution for classical theory is as follows:

wcl(X)=
6QL3

C11bh3

(
X2
−

X3

3

)
. (45)

6. Numerical calculations and discussions

We now discuss the effect of local mass displacement on mechanical response of nanobeam. To illustrate
this effect, the deflection of cantilever beam under the end-point load was plotted in Figures 3–6 for
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material PZT-5H. The concentrated force is Q= 1 nN and the geometry of the nanobeam is L = 500 nm,
h = 20 nm, and b = 10 nm. The elastic material constants for PZT-5H are C11 = 12.6× 1010 Pa, C13 =

5.3× 1010 Pa, and C33 = 11.7× 1010 Pa. Unfortunately, the relevant parameters dµ, αµi , and χm
i for

PZT-5H are not available in the literature. Hence, the material properties related to the local mass
displacement (i. e., internal material length scale parameters) adopted here are: l∗ =

√
χm

1 /dµ = 3 nm,
and l∗3 =

√
χm

3 /dµ = 1 nm.
Note that based on the Bernoulli–Euler strain-gradient theory [Lurie and Solyaev 2019], the deflection

can be calculated as

wst(X)=
6QL5

c11bh3ζ 2l2

×

(
X2
−

X3

3
−

2X
ζ 2 +2

(exp(ζ X)−1)(1−exp(−ζ ))+(exp(−ζ X)−1)(1−exp(ζ ))
ζ 3(exp(ζ )−exp(−ζ ))

)
, (46)

where l is the material characteristic length scale parameter, and ζ = Ll−1
√

1+ 12l2/h2.
Solution (46) satisfies the following boundary conditions:

x = 0 : w = 0, w,x = 0, M H
= 0,

x = L : M H
= 0, M + P −M,Hx = 0, (M + P −M,Hx ),x = Q,

where M is the bending moment,

M(x)=
∫ b

0

∫ h/2

−h/2
zσ11(x, z) dy dz, σ11(x, z)=−C11z

d2w(x)
dx2 ,

M H is the higher-order bending moment,

M H (x)=
∫ b

0

∫ h/2

−h/2
zτ111(x, z) dy dz, τ111(x, z)=−l2C11z

d3w(x)
dx3 ,

Figure 3. The deflections predicted by the classical theory, local gradient theory and
strain gradient theory of the elastic beams.
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Figure 4. The end-point deflection w(L) versus the coupling factor M for different
length scale parameters.

Figure 5. Variation of the end-point deflection w(L) with the beam thickness h.

and P is the higher-order shear forces:

P(x)=
∫ b

0

∫ h/2

−h/2
τ113(x, z) dy dz, τ113 =−l2C11

d2w(x)
dx2 .

A comparison of the deflection between the analytical solution (45) for classical theory, solution (46)
for strain-gradient theory, and solution (44) for local gradient theory is presented in Figure 3. The deflec-
tion predicted by the local gradient beam theory is smaller than that by the classical elastic Bernoulli–
Euler beam theory. Such a result describes the experimental data reported in the literature and agrees
well with the results obtained within the strain-gradient theory of beam. The graphs in Figure 4 show
that the beam deflection essentially depends on the coupling factor M. An increased parameter M the
beam deflection decreases.

The deflection of the end-point of cantilever beam versus the different beam thickness and length
are shown in Figures 5 and 6, respectively. As it follows from Figure 5, the deflection in the local
gradient beam theory increases if the beam thickness decreases. This effect became more significant
when the thickness of the nanobeam became comparable to the internal material length scale parameter.
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Figure 6. Variation of the end-point deflection w(L) with the beam length L .

Note that the beam stiffness is directly related to the deflection. Therefore, the stiffness based on the
relations of local gradient elasticity is higher than that of predicted by classical theory, i. e., the local
mass displacement being taken into account stiffens the elastic cantilever nanobeam.

Note that the analytical solution (44) can be used to evaluate material constants pertinent to the local
mass displacement. Indeed, based on formula (44), we get

�=
QL3/3−w(L)C11 I

QL3g(ζ )+w(L)C11 I
, (47)

where ζ = L/ l∗>>1 and g(ζ )= (thζ−ζ−1)/ζ ≈ ζ−1. The mechanical deflectionw(L) of nanocantilever
beam subjected to the end-point loading can be defined from force-displacement measurements with the
help of atomic force microscopy or other techniques of mechanical property measurement [Hardwick
1987; Weihs et al. 1988; Liebold and Müller 2015]. The length scale parameter l∗ can be evaluated using
the methods of molecular dynamics or lattice theory [Askar et al. 1970]. Then, based on formula (47), the
material constant � can be evaluated using the known values of the concentrated force Q, beam geometric
properties (i.e., b, h and L), elastic module C11, beam deflection w(L) and length scale parameter l∗.

7. Conclusion

In the present study, the classical theory of elasticity is extended by taking account of non-diffusive and
non-convective mass flux associated with the possible changes in the material microstructure. This flux
is related to the process of local mass displacement. New physical quantities associated with this process
are introduced and an additional balance equation for these quantities is formulated. Based on the total
energy balance equation and on the principle of frame-indifference, a fundamental system of coupled
nonlinear equations of local gradient theory of elastic solids is derived. Within the framework of this
theory, the set of conjugate variables is complemented by two additional pairs of variables (µ′π , ρm)

and (πm,∇µ
′
π ), related to the local mass displacement. The local mass displacement being taken into

consideration leads to the appearance of an additional nonlinear mass force in the equation of motion
and to the redefinition of the stress tensor σ̂ ∗. It is shown that the linear relations of the local gradient
elasticity can be also formulated within a framework of the variational principle.
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A simple cantilever problem with Bernoulli–Euler kinematics is investigated to illustrate the efficiency
of the theory. The governing equations of local gradient Bernoulli–Euler nanobeam model and corre-
sponding boundary conditions are derived from a variational principle. An analytical solution to the
resultant differential equation of the sixth order is derived and the effect of the local mass displacement
on beam behavior under the end-point load is discussed. It is shown that the deflection within the local
gradient theory is smaller than that in the classical Bernoulli–Euler nanobeam model. This indicates that
the local mass displacement being taken into account stiffens the nanocantilever beam. The obtained
result agrees well with the strain gradient theory as well as with the data of experimental investigations
available in the scientific literature. The possibility of the evaluation of new material constants associated
with the local gradient elasticity is pointed out. It is shown that the developed local gradient Bernoulli–
Euler micro-beam model recovers the classical Bernoulli–Euler beam theory for vanishing length scale
parameters.

Acknowledgements

Financial support from the Slovak Science and Technology Assistance Agency registered under number
SK-CN-RD-18-0005 and the National Academy of Sciences of Ukraine (grant number 0117U004156)
is gratefully acknowledged. The author also thanks Prof. Jan Sladek for helpful discussions.

References

[Akgöz and Civalek 2011] B. Akgöz and Ö. Civalek, “Strain gradient elasticity and modified couple stress models for buckling
analysis of axially loaded micro-scaled beams”, Int. J. Eng. Sci. 49:11 (2011), 1268–1280.

[Askar et al. 1970] A. Askar, P. C. Y. Lee, and A. S. Cakmak, “Lattice dynamics approach to the theory of elastic dielectrics
with polarization gradient”, Phys. Rev. B 1:8 (1970), 3525–3537.

[Bredov et al. 1985] M. M. Bredov, V. V. Rumyantsev, and I. N. Toptygin, Klassiqeska� �lektrodinamika, Nauka,
Moscow, 1985.

[Burak 1987] Y. Burak, “Constitutive equations of locally gradient thermomechanics”, Proc. Acad. Sci. USSR 12 (1987), 19–23.
In Ukranian.

[Burak et al. 2007] Y. Burak, Y. Chaplia, V. Kondrat, and O. Hrytsyna, “Mathematical modeling of thermomechanical processes
in elastic solids taking the local mass displacement into account”, Proc. Acad. Sci. USSR 4:6 (2007), 45–49. In Ukranian.

[Burak et al. 2008] Y. Burak, V. Kondrat, and O. Hrytsyna, “An introduction of the local displacements of mass and electric
charge phenomena into the model of the mechanics of polarized electromagnetic solids”, J. Mech. Mater. Struct. 3:6 (2008),
1037–1046.

[Edelen 1969] D. G. B. Edelen, “Protoelastic bodies with large deformation”, Arch. Ration. Mech. Anal. 34:4 (1969), 283–300.

[Eltaher et al. 2016] M. A. Eltaher, M. E. Khater, and S. A. Emam, “A review on nonlocal elastic models for bending, buckling,
vibrations, and wave propagation of nanoscale beams”, Appl. Math. Model. 40:5-6 (2016), 4109–4128.

[Eringen 1966] A. C. Eringen, “Linear theory of micropolar elasticity”, J. Math. Mech. 15:6 (1966), 909–923.

[Eringen 1972] A. C. Eringen, “Linear theory of nonlocal elasticity and dispersion of plane waves”, Int. J. Eng. Sci. 10:5 (1972),
425–435.

[Eringen 1999] A. C. Eringen, Microcontinuum field theories, I: Foundations and solids, Springer, 1999.

[Eringen and Suhubi 1964] A. C. Eringen and E. S. Suhubi, “Nonlinear theory of simple micro-elastic solids, I”, Int. J. Eng.
Sci. 2:2 (1964), 189–203.

[Espinosa et al. 2003] H. D. Espinosa, B. C. Prorok, and M. Fischer, “A methodology for determining mechanical properties
of freestanding thin films and MEMS materials”, J. Mech. Phys. Solids 51:1 (2003), 47–67.

http://dx.doi.org/10.1016/j.ijengsci.2010.12.009
http://dx.doi.org/10.1016/j.ijengsci.2010.12.009
http://dx.doi.org/10.1103/PhysRevB.1.3525
http://dx.doi.org/10.1103/PhysRevB.1.3525
https://tinyurl.com/hrytkond
https://tinyurl.com/hrytkond
http://dx.doi.org/10.2140/jomms.2008.3.1037
http://dx.doi.org/10.2140/jomms.2008.3.1037
http://dx.doi.org/10.1007/BF00248570
http://dx.doi.org/10.1016/j.apm.2015.11.026
http://dx.doi.org/10.1016/j.apm.2015.11.026
https://www.jstor.org/stable/24901442
http://dx.doi.org/10.1016/0020-7225(72)90050-X
http://dx.doi.org/10.1007/978-1-4612-0555-5
http://dx.doi.org/10.1016/0020-7225(64)90004-7
http://dx.doi.org/10.1016/S0022-5096(02)00062-5
http://dx.doi.org/10.1016/S0022-5096(02)00062-5


486 OLHA HRYTSYNA

[Farajpour et al. 2018] A. Farajpour, M. H. Ghayesh, and H. Farokhi, “A review on the mechanics of nanostructures”, Int. J.
Eng. Sci. 133 (2018), 231–263.

[Green and Rivlin 1964] A. E. Green and R. S. Rivlin, “On Cauchy’s equations of motion”, Z. Angew. Math. Phys. 15 (1964),
290–292.

[Greer and Nix 2005] J. R. Greer and W. D. Nix, “Size dependence of mechanical properties of gold at the sub-micron scale”,
Appl. Phys. A Mater. Sci. Process. 80:8 (2005), 1625–1629.

[Hardwick 1987] D. A. Hardwick, “The mechanical properties of thin films: a review”, Thin Solid Films 154:1-2 (1987),
109–124.

[Hrytsyna 2017] O. R. Hrytsyna, “Influence of subsurface inhomogeneity on the propagation of SH waves in isotropic materi-
als”, Mater. Sci. (Russia) 53:2 (2017), 273–281.

[Hrytsyna and Kondrat 2019] O. Hrytsyna and V. Kondrat, Local gradient theory for dielectrics: fundamentals and applica-
tions, Stanford, Singapore, 2019.

[Hrytsyna et al. 2006] O. Hrytsyna, T. Nahirnyy, and K. Tchervinka, “Local gradient approach in thermomechanics”, Phys.-
Math. Model. Inf. Technol. 3 (2006), 72–83. In Ukranian.

[Kafadar and Eringen 1971] C. B. Kafadar and A. C. Eringen, “Micropolar media, I: The classical theory”, Int. J. Eng. Sci. 9:3
(1971), 271–305.

[Kakunai et al. 1985] S. Kakunai, J. Masaki, R. Kuroda, K. Iwata, and R. Nagata, “Measurement of apparent Young’s modulus
in the bending of cantilever beam by heterodyne holographic interferometry”, Exp. Mech. 25:4 (1985), 408–412.

[Kondrat and Hrytsyna 2010] V. F. Kondrat and O. R. Hrytsyna, “Mechanoelectromagnetic interaction in isotropic dielectrics
with regard for the local displacement of mass”, J. Math. Sci. (NY) 168:5 (2010), 688–698.

[Lazopoulos and Lazopoulos 2010] K. A. Lazopoulos and A. K. Lazopoulos, “Bending and buckling of thin strain gradient
elastic beams”, Eur. J. Mech. A Solids 29:5 (2010), 837–843.

[Liebold and Müller 2015] C. Liebold and W. H. Müller, “Applications of strain gradient theories to the size effect in submicro-
structures incl. experimental analysis of elastic material parameters”, Bull. TICMI 19:1 (2015), 45–55.

[Lurie and Solyaev 2019] S. Lurie and Y. Solyaev, “On the formulation of elastic and electroelastic gradient beam theories”,
Contin. Mech. Therm. 31:6 (2019), 1601–1613.

[Ma and Clarke 1995] Q. Ma and D. R. Clarke, “Size dependent hardness of silver single crystals”, J. Mater. Res. 10:4 (1995),
853–863.

[Marchenko et al. 2009] I. G. Marchenko, I. M. Neklyudov, and I. I. Marchenko, “Collective atomic ordering processes during
the low-temperature film deposition”, Proc. Nat. Acad. Sci. Ukraine 10 (2009), 97–103. In Russian.

[Mindlin 1964] R. D. Mindlin, “Micro-structure in linear elasticity”, Arch. Ration. Mech. Anal. 16 (1964), 51–78.

[Mindlin 1965] R. D. Mindlin, “Second gradient of strain and surface-tension in linear elasticity”, Int. J. Solids Struct. 1:4
(1965), 417–438.

[Mindlin and Tiersten 1962] R. D. Mindlin and H. F. Tiersten, “Effects of couple-stresses in linear elasticity”, Arch. Ration.
Mech. Anal. 11 (1962), 415–448.

[Niiranen et al. 2019] J. Niiranen, V. Balobanov, J. Kiendl, and S. B. Hosseini, “Variational formulations, model comparisons
and numerical methods for Euler–Bernoulli micro- and nano-beam models”, Math. Mech. Solids 24:1 (2019), 312–335.

[Reddy 2007] J. N. Reddy, “Nonlocal theories for bending, buckling and vibration of beams”, Int. J. Eng. Sci. 45:2-8 (2007),
288–307.

[Repka et al. 2018] M. Repka, V. Sladek, and J. Sladek, “Gradient elasticity theory enrichment of plate bending theories”,
Compos. Struct. 202 (2018), 447–457.

[Shokrieh and Zibaei 2015] M. M. Shokrieh and I. Zibaei, “Determination of the appropriate gradient elasticity theory for
bending analysis of nano-beams by considering boundary conditions effect”, Lat. Amer. J. Solids Struct. 12:12 (2015), 2208–
2230.

[Spagnuolo and Andreaus 2019] M. Spagnuolo and U. Andreaus, “A targeted review on large deformations of planar elastic
beams: extensibility, distributed loads, buckling and post-buckling”, Math. Mech. Solids 24:1 (2019), 258–280.

http://dx.doi.org/10.1016/j.ijengsci.2018.09.006
http://dx.doi.org/10.1007/BF01607019
http://dx.doi.org/10.1007/s00339-005-3204-6
http://dx.doi.org/10.1016/0040-6090(87)90357-9
http://dx.doi.org/10.1007/s11003-017-0072-0
http://dx.doi.org/10.1007/s11003-017-0072-0
http://dx.doi.org/10.1201/9781003006862
http://dx.doi.org/10.1201/9781003006862
http://dx.doi.org/10.1016/0020-7225(71)90040-1
http://dx.doi.org/10.1007/BF02321341
http://dx.doi.org/10.1007/BF02321341
http://dx.doi.org/10.1007/s10958-010-0019-6
http://dx.doi.org/10.1007/s10958-010-0019-6
http://dx.doi.org/10.1016/j.euromechsol.2010.04.001
http://dx.doi.org/10.1016/j.euromechsol.2010.04.001
http://www.viam.science.tsu.ge/others/ticmi/blt/vol19_1/p45-55.pdf
http://www.viam.science.tsu.ge/others/ticmi/blt/vol19_1/p45-55.pdf
http://dx.doi.org/10.1007/s00161-019-00781-3
http://dx.doi.org/10.1557/JMR.1995.0853
http://dx.doi.org/10.1007/BF00248490
http://dx.doi.org/10.1016/0020-7683(65)90006-5
http://dx.doi.org/10.1007/BF00253946
http://dx.doi.org/10.1177/1081286517739669
http://dx.doi.org/10.1177/1081286517739669
http://dx.doi.org/10.1016/j.ijengsci.2007.04.004
http://dx.doi.org/10.1016/j.compstruct.2018.02.065
http://dx.doi.org/10.1590/1679-78251589
http://dx.doi.org/10.1590/1679-78251589
http://dx.doi.org/10.1177/1081286517737000
http://dx.doi.org/10.1177/1081286517737000


A BERNOULLI–EULER BEAM MODEL BASED ON THE LOCAL GRADIENT THEORY OF ELASTICITY 487

[Tahaei Yaghoubi et al. 2018] S. Tahaei Yaghoubi, V. Balobanov, S. M. Mousavi, and J. Niiranen, “Variational formulations
and isogeometric analysis for the dynamics of anisotropic gradient-elastic Euler–Bernoulli and shear-deformable beams”, Eur.
J. Mech. A Solids 69 (2018), 113–123.

[Thai et al. 2017] H.-T. Thai, T. P. Vo, T.-K. Nguyen, and S.-E. Kim, “A review of continuum mechanics models for size-
dependent analysis of beams and plates”, Compos. Struct. 177 (2017), 196–219.

[Toupin 1962] R. A. Toupin, “Elastic materials with couple-stresses”, Arch. Ration. Mech. Anal. 11 (1962), 385–414.

[Wang et al. 2016] K. F. Wang, B. L. Wang, and T. Kitamura, “A review on the application of modified continuum models in
modeling and simulation of nanostructures”, Acta Mech. Sinica 32:1 (2016), 83–100.

[Weihs et al. 1988] T. P. Weihs, S. Hong, J. C. Bravman, and W. D. Nix, “Mechanical deflection of cantilever microbeams: a
new technique for testing the mechanical properties of thin films”, J. Mater. Res. 3:5 (1988), 931–942.

Received 10 Jan 2020. Revised 13 May 2020. Accepted 27 Jun 2020.

OLHA HRYTSYNA: hrytsyna.olha@gmail.com
Institute of Construction and Architecture, Slovak Academy of Sciences, 84503 Bratislava 45, Slovakia

and

Center of Mathematical Modeling, Pidstryhach Institute for Applied Problems of Mechanics and Mathematics,
National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine

mathematical sciences publishers msp

http://dx.doi.org/10.1016/j.euromechsol.2017.11.012
http://dx.doi.org/10.1016/j.euromechsol.2017.11.012
http://dx.doi.org/10.1016/j.compstruct.2017.06.040
http://dx.doi.org/10.1016/j.compstruct.2017.06.040
http://dx.doi.org/10.1007/BF00253945
http://dx.doi.org/10.1007/s10409-015-0508-4
http://dx.doi.org/10.1007/s10409-015-0508-4
http://dx.doi.org/10.1557/JMR.1988.0931
http://dx.doi.org/10.1557/JMR.1988.0931
mailto:hrytsyna.olha@gmail.com
http://msp.org




JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 15, No. 4, 2020

https://doi.org/10.2140/jomms.2020.15.489 msp

NONLINEAR DEFLECTION EXPERIMENTS:
WRINKLING OF PLATES PRESSED ONTO FOUNDATIONS

NICHOLAS J. SALAMON AND PEGGY B. SALAMON

Experiments are done on elastic plates set unilaterally on foundations or substrates and driven into large
deflections by a centrally located load. Previous and related work that report wrinkling in such problems,
especially in thin layers on substrates, is reviewed. Deflection contours and tabulated data are given
for one wrinkled state. Photographs of others illustrate wrinkling in plates of various geometry. It
is found that for certain plate-foundation relative stiffnesses, a characteristic, periodic wrinkling shape
evolves, but on the brink of instability that presents a challenge for both analytical solution and numerical
simulation.

1. Introduction

The Problem is that of an elastic plate, set unilaterally on a foundation or elastic substrate, undergoing
large deflections under a centrally located load. The issue is that such plates may naturally tend to
wrinkle. To illustrate transitions from linear to nonlinear behavior, we presented in [Salamon 1984]
photographs of The Problem’s response for both thick and thin plates, the former deflect into smooth
shapes, the latter wrinkle, Figure 1. To relate such intriguing behavior with beam contact problems,
Pawlak et al. [1985] drew upon the work of [Dundurs and Stippes 1970; Dundurs 1975], especially the
counter-intuitive phenomena that in linear receding contact situations, beams maintain a constant contact
length independent of nonzero load. Concurrently, Yu and Stronge [1985] applied an energy method to
solve for large deformations in a plate fixed vertically to a circumferential ring yet free to move radially
when pressed by a rigid, spherical punch; the plate wrinkled in regions of compressive circumferential
stress and they found criteria for its occurrence.

Research on related problems inspired renewed interest in The Problem: wrinkles appear in thin
surface layers attached to elastic substrates that undergo compression; for examples, see [Sun et al. 2012;
Cerda and Mahadevan 2003; Huang et al. 2005]. Terminology varies (buckling, folding, blistering) as in
[Dong et al. 2016; Chen and Hutchinson 2004; Ortiz and Gioia 1994]; “snapping” appears in [Holmes
2009] and “bifurcation” in [Masters and Salamon 1994].

Applications of The Problem further fire interest: examples include [Trejo et al. 2013] on bacteria,
[DUMAIS 2007] on plant leaves, [Srinivasa and Ross 2005] on designing shapes, [Wang et al. 2019]
on Van der Waals materials, [Semler et al. 2014] on nanotube-polymer bilayers. Pertinent applications
involve the mechanics of exoskeletons on soft substrates; e.g., [Martini and Barthelat 2016] on hard
plates both bonded and not bonded to soft substrates.

Several works employ experiments to address The Problem, but do not report wrinkling: [Kaiser 1936]
measures large deflections in a thin square plate, simply supported, but “free-standing”, and does finite

Keywords: plate, nonlinear, deflection, foundation, unilateral, contact, wrinkling.
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Figure 1. Plate deflection: linear smooth (left) and nonlinear wrinkled (right). From
[Salamon 1984].

difference calculations over a declared “symmetric” triangular region that disagree with experiments
only where, notably, the in-plane forces go compressive; [Laermann 1981a] combines photoelasticity
and moiré methods with difference analysis to solve nonlinear differential equations for centrally loaded
plates resting on elastomeric substrates; [Laermann 1981b] extends experiments to include strain gage
methods; [Klučka et al. 2014] employs a proprietary apparatus to measure deflection in an edge-loaded
circular plate resting on an elastic foundation; the plate may be too stiff or insufficiently loaded to wrinkle.
The role of in-plane compression is paramount: indeed it is seen in [Timoshenko 1940, p. 332] and
[Timoshenko and Woinowsky-Krieger 1959, p. 399] that nonlinear bending of plates generates in-plane
compressive forces.

But in what may be the first report of wrinkling behavior, Biot [1959] finds surface wrinkling in an
analytical solution of a semi-infinite viscoelastic medium under compression. Although a half-space
deviates from The Problem, visco-effects are very much of interest.

This work presents both laboratory and desktop experiments. One deflection state is graphically shown
and quantitatively tabulated. Observations of similar experiments are described. Photographs of desktop
experiments are presented for plates of various geometry resting on flat soft foundations and on a stiff
ring. Stability of and bifurcation in plate response and behavior of the foam foundation material are
discussed.

2. Laboratory experiments

The objective of the laboratory experiments is to observe the response of a plate as it develops and
measure a developed deflection state while holding it constant on laboratory models of The Problem. The
experiments are done using a Tinius Olsen Universal Testing Machine to apply downward load through
a 25.4 mm diameter, flat-bottomed rod centered on a model, each of which comprise a flat plate freely
resting upon a foam foundation that sets on the tabletop of the machine; see Figure 2. Observations were
made as the load on the model was increased until a desired end-state was reached, then the position of
the machine crosshead was held constant while measurements of this deflection state were taken. These
were obtained by traversing, magnetically clamping and reading an analog dial indicator, 0 to 25.4 mm
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Figure 2. Plate on foam under load.

range (±0.01 mm accuracy), attached through extension rods to a magnetic base, at all grid intersections
that could be reached; five to six grid points near the loading rod that could not be reached and several at
two corners that lifted out of range of the instruments were determined by a two-dimensional quadratic
curve fit using surrounding data; the measured descent of the loading rod provided a center point datum.
Experiments were run on several rectangular plates. It should be noted that the Tinius Olsen machine,
over-sized by far for these experiments, maintained crosshead position, although load read-out oscillated.

2.1. Properties of a square plate. The plate, of titanium stock, 305 mm square, nominally flat, 0.289 mm
average thickness (maximum deviations: +0.019 mm, −0.022 mm) has a Young’s modulus of 111 GPa
as measured by an uniaxial tensile test run on a MTS 810 Material Test System. Poisson’s ratio was not
measured, nominally it’s 0.34.

2.2. Properties of the foam foundation. The foundation material, polyurethane packing foam, density
27.9 kg/m3, dimensions 305 mm square, 48.6 mm thick, is used in all testing machine experiments. Prop-
erties of the foam, complicated by its cellular structure, were determined through five compression tests
run on the MTS 810 machine using two samples, each 108 mm diameter, 48.6 mm thick. In order to
closely conform with conditions in the plate deflection experiments, test samples were oriented exactly
the same as in the experiments and compressed between nonporous steel platens (hence deviating from
the strict ASTM D3574 procedure) at an average load rate of 0.5 N/s. Both Stress and Poisson’s ratio
versus strain were slightly nonlinear over the full range of strain [0,−64)%, but (1) for the strain range
(−0.2%, −12.7%), where 12.7% is the maximum strain in the plate bending experiments, the Young’s
modulus, averaged over four of the tests (one outlier dropped), is 35.3 kPa (maximum deviations +2.7,
−1.7 kPa); (2) over the full strain range in one test, six measurements of circumference were made
and converted for calculation of transverse strain; after dropping an outlier at low load, a curve fit to the
remaining data gives Poisson’s ratio as 0.1602× strain+0.0988. Single measurements in three other tests
corroborate this equation. At large compressive strains the ratio goes negative as reported in the literature,
overall this result tallies with [Pierron 2010, Figures 19 and 25] and with [Widdle et al. 2008]. It should
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Figure 3. Load decrease with time while holding center deflection constant. Deflection
contours in millimeters for the model in Section 2 show a trilobate shape.

be noted that all foam samples visually displayed full recovery after loading, hence the material appears
to be elastic or, as indicated Figure 3, viscoelastic which shows the load decrease while the machine
crosshead holds the center deflection of the square titanium plate constant.

2.3. The square plate deflections. Deflections, measured at points on a 12×12 grid drawn onto the
top surface of the plate, required 2.75 hours to complete each of two passes. The first pass measured
flatness of the model while it was held just snug by the loading rod; either model or plate could be slid
horizontally by hand and the Tinius Olsen displayed an oscillating load too small to be reliable. Out-of-
flatness ranged from −0.12 mm to +0.56 mm at one corner. The machine crosshead was then lowered
slowly until the plate wrinkled into an end-state, Figure 2, center deflection 6.15 mm, load 400 N. As the
load passed through 267 N, one quadrant, say, snapped into a lobate shape. (A shape characterized by
radial valleys between radial ridges that resemble lobes.) The second pass measured deflections at points
on the 12×12 grid while this center deflection was held constant. As readings were taken, the load to hold
the center deflection constant decreased quadratically, Figure 3, over the 2.75 hours to 365 N, indicating
time-dependent viscoelastic behavior of the foam. After unloading, both plate and foam fully recovered
with no permanent set visible. Deflection readings minus out-of-flatness readings were processed using
Mathematica 12.0 to obtain the plate deflection state shown in Figure 2 and as contours in Figure 4
with respective numerical values in Table 1, where values in red were obtained by a curve fit through
neighboring values and those in blue are measured, but lie between grid points. These special values
result from loading rod interference with the instruments.

3. Other model experiments

For tests run on several rectangular plates resting upon the same foam material, observations confirm the
above deformation state and show an effect of aspect ratio, level of load and foundation to plate relative
stiffness.

Two sister plates, same dimensions and material as in Section 2, evolved under load into trilobate
shapes, similar in magnitude and pattern: one smoothly; the other snapped into position as did the plate
in Section 2.3. The loading rod left a slightly visible permanent set in one plate. The foam recovered
completely to the eye.

Two plates, much thinner, cut from 0.089 mm thick stainless steel roll stock, generated mixed results,
perhaps in part due to their curvature. One, 305 mm square, lifted-off the foundation at all corners,
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Figure 4. Deflection contours in millimeters for the model in Section 2 show a trilobate shape.

22.40 22.81 25.88 15.32 11.76 7.44 4.01 1.35 1.32 2.54 4.19 7.39
16.81 15.77 14.53 12.17 10.16 4.67 1.35 –0.38 –0.05 1.83 2.08 7.16
11.71 11.05 10.67 9.22 6.38 2.31 –0.81 –1.88 –1.09 1.60 5.05 8.26

7.06 6.30 5.79 5.64 3.61 –0.03 –2.92 –3.35 –0.89 2.72 6.71 10.57
3.12 2.36 1.55 0.66 –0.20 –1.52 –4.32 –3.63 0.20 4.60 9.22 13.46
0.76 –0.46 –1.88 –3.18 –3.94 –3.07 –3.63 0.05 2.11 6.32 10.08 14.35

–2.21 –0.86 –2.24 –3.53 –4.17 –3.18 –3.73 –1.40 1.30 2.97 9.45 13.61
1.96 1.14 0.51 –0.03 –0.25 –2.43 –4.75 –3.94 –0.94 3.28 7.42 11.53
5.28 4.62 4.50 4.47 3.30 0.89 –2.51 –3.78 –1.63 1.55 5.05 9.19
9.91 11.89 9.47 9.04 7.01 3.68 –0.10 –1.75 –1.30 0.84 4.29 7.49

14.76 14.58 14.35 12.90 10.06 6.22 2.59 0.20 0.13 1.24 3.51 6.32
16.51 17.05 16.68 16.51 13.13 9.12 5.33 2.64 1.83 2.06 4.04 6.32

Table 1. Deflection values in millimeters for the model in Section 2. Curve-fit values are
in red, those measured between grids are blue. The center deflection (drop of machine
crosshead) is −6.15 mm.

one diagonally opposite pair significantly higher than the other, denoting twist. The second plate,
178×305 mm, deformed into a near-trilobate shape, then upon subsequent reload, into a clear trilobate
shape. Afterward, permanent set under the loading rod was evident in both plates.

An aluminum plate, 305 mm square, 0.946 mm thick, deformed smoothly into an unsymmetric bending
mode, lifting off along two opposite edges and at all corners under central loads up to 800 N that left a
permanent set under the loading rod.

Another aluminum plate, 254×305×1.52 mm, deformed into a slightly unsymmetric, beam-like bend-
ing mode about the short dimension with slight liftoff on one end of the long dimension, the remainder
in contact.
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Figure 5. Top row: circular (left), elliptic (middle) and hexagonal (right) plates on foam,
showing trilobate wrinkles. Below: Circular plate on foam, small punch, four lobes.

4. Desktop experiments

The desktop experiments are done with plastic plates set on two types of foundations, flat cushioning
foam, as in Figures 5, and a stiff plastic jar lid (diameter 11.3 cm), as in Figures 6. On the foam, a
concentrated force in the form of a pencil or pen is applied to circular, elliptical, and hexagonal plates
(Figure 5, top row), and a punch-like load, a small ball, is applied to a circular plate (Figure 5, bottom).
Similarly, on the jar lid, a circular plate is depressed by a punch-like load, a large ball (Figure 6, left) and
a concentrated force (Figure 6, right). The plates are cut from 3M transparency film, PP2200, consisting

Figure 6. Circular plate on lid. Left: large punch, five lobes. Right: concentrated load,
trilobate wrinkles.
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of polyethylene terephthalate plastic, 0.1 mm thick. In Figures 5 and 6, the maximum number of wrinkles
each model is capable of generating is displayed: three lobes under a concentrated load, four under the
small-sized ball, five under the large one. It is noted that the jar lid limited the depth of deflection at the
center to approximately 1.5 cm enabling that point to be held steady at maximum depression.

5. Discussion of results

When driven into large deflections, thin plates unilaterally set on foundations may wrinkle, forming a
characteristic shape described herein as lobate. In the present experiments, under a central, concentrated
increasing load, this shape terminates as trilobate. Under an increasing punch-like load, wrinkling may
progress through more than three lobes. Experience with the experiments demonstrates that this behavior
may not be smooth, indeed, for stiff plates on soft foundations, wrinkling may not occur at all, as
witnessed in pressing the aluminum plates into the foam foundation. In general, with increasing load, in-
plane compression develops, plates become inherently unstable and their response may bifurcate along
different paths. Yet when unloaded, all plates studied (as well as foam foundations) fully recovered their
flatness, the exception being some metal plates that yielded under the loading rod. Hence, to the eye,
wrinkling in plates and compression of the foam foundation appears to be reversibly elastic.

5.1. Instability under concentrated load. For the metal plates machine loaded at a slow rate, of those
that wrinkled, only one plate smoothly formed a trilobate shape; for all others, the third lobe would
snap to complete the trilobate shape. This behavior may be subtle, neither visibly obvious, nor distinctly
audible.

For the plastic plates, hand loading provided freedom to play. Under a rapid concentrated load, some-
times plates on the foam foundation developed a trilobate end-state directly. Most times, particularly
under light load or a slow load rate, lobes tend to form stepwise: first one or two smoothly, then for the
third and final lobe, perturbation might be required, i.e., in the form of flicking the plate with a finger.

5.2. Bifurcation under concentrated load. Sometimes a plate, metal or plastic, will develop one or
two lobes that monotonically grow with increasing load to reach a stable end-state without launching
additional lobes. At that point, perturbation has no effect. One example is the hexagonal plastic plate
under a slowly increasing concentrated load: (1) sometimes an edge lifts off smoothly followed by a
second opposite edge, both now proceed to a stable end-state — flicking does not trigger the third lobe; (2)
other times, one corner lifts off smoothly followed by the snap of an opposite edge, then under increasing
load, a second corner lifts off to form a stable trilobate shape. These two different responses denote
bifurcation.

5.3. Response under punch-like loads. Intrigued by Yu and Stronge’s problem [Yu and Stronge 1985],
circular plastic plates were set on the jar lid. When subjected to punch-like loads, they wrinkled, but
in a manner different from the analytical predictions in [Yu and Stronge 1985]. In Figure 6, wrinkles
emanate from the center and extend radially, reaching an apex at a plate’s periphery whereas in their
analysis, wrinkles terminate there because of the imposition of zero vertical displacement around the
plate edge. Furthermore, they report criterion for as many as eight wrinkles; the jar-lid experiments
reveal a maximum of five wrinkles. (Not shown: a circular plastic plate set upon the open glass jar itself,
which allows a deeper center depression, generates up to seven wrinkles with perturbation.) Hence the
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problems differ: their boundary conditions constrain the response, apparently enabling solution of a
stable, well-posed problem; the unilateral conditions herein allow freedoms that permit instability.

Under increasing punch-like loads applied by either ball to circular, hexagonal and rectangular plastic
plates set on the foam foundation, as in Figure 5, bottom, wrinkles beyond the first snapped into place,
but did not require perturbation. The maximum number of wrinkles generated were five for the circular
and hexagonal plates under the large ball, four for all others (not shown).

5.4. Relative stiffness ratio. In an attempt to predict wrinkling, a plate-to-foundation stiffness ratio for
rectangular plates, SR = kp/k f , is defined where kp = E pt3/L2 is the plate stiffness derived from
plate flexure [Timoshenko and Woinowsky-Krieger 1959] and its associated rigidity modulus and where
k f = E f wL/d is the foundation stiffness derived from uniaxial deformation. For the plate, w < L are its
width and length, respectively, t is its thickness and E p is the elastic modulus. For the foundation, d is
the actual or a characteristic depth of the foundation (the foam in this case) and E f is an elastic modulus
in compression. To orders of magnitude, for the four metal plates above that wrinkled, SR≤ 10−4, for
four that did not wrinkle, SR≥ 10−3.

But a contradiction arose: SR= 2.16·10−05 for the square stainless steel plate, yet it did not wrinkle in a
lobular fashion, it bent into a twist; ironically, the rectangular stainless steel plate with SR= 3.71 · 10−05,
did wrinkle. Could these two very thin, rather flimsy sheets lack sufficient structural integrity to act
as plates? . . .Making their behavior a toss-up? With more certainty, the three titanium plates, SR =
4.26 ·10−04, did wrinkle, and the two aluminum plates, SR= 4.76 ·10−02 and 9.38 ·10−03, did not wrinkle.
Hence, stiffness ratio, while an indicator of wrinkling, is clearly not absolute. For nonrectangular plates,
one would have to seek characteristic dimensions.

6. Conclusion

Plates have been well studied — Naruoka [1981] lists 12,717 references, yet deflection-induced wrinkling
shown herein does not appear there. The Problem, fundamental in the class of problems dealing with
plates on foundations, has come to the fore through a manifold of applications dealing with films or
coatings on substrates, particularly in situations where bonding is weak. It is shown that the wrinkling
of plates provides important lessons in mechanics. In analysis, such wrinkling demonstrates that the as-
sumption of symmetry, common in linear mechanics, does not carry over to nonlinear mechanics: indeed,
the misapplication of symmetry was done by one reference cited herein. In education, this seemingly
simple problem vividly illustrates that the transition from linear to nonlinear behavior concomitant with
the onset of instability and bifurcation in response, escalates its complexity and presents a challenge to
both analytical solution and numerical simulation. The wrinkling of plates into such a characteristic shape
denotes protean behavior (after Proteus, the shape-shifting Greek God); however, students bestowed upon
it a more memorable description: “the flying carpet problem”.

Acknowledgements

We thank C. Bakis for advice and use of his laboratories; A. Brown and W. Dyer for laboratory assistance;
R. P. McNitt for the purchase of gages; N. Carrier, E. Dunkelberger and B. Genet for machining help;
D. Fura and D. Faulds for Civil Engineering laboratory time; M. LaCorte, MTS Systems for advice; and
F. Schlegel, Harkness Industries, for materials.



NONLINEAR DEFLECTION EXPERIMENTS: WRINKLING OF PLATES PRESSED ONTO FOUNDATIONS 497

References

[Biot 1959] M. A. Biot, “Folding of a layered viscoelastic medium derived from an exact stability theory of a continuum under
initial stress”, Quart. Appl. Math. 17 (1959), 185–204.

[Cerda and Mahadevan 2003] E. Cerda and L. Mahadevan, “Geometry and Physics of Wrinkling”, Phys. Rev. Lett. 90:7 (2003),
art. id. 074302.

[Chen and Hutchinson 2004] X. Chen and J. W. Hutchinson, “Herringbone Buckling Patterns of Compressed Thin Films on
Compliant Substrates”, J. Appl. Mech. (ASME) 71:5 (2004), 597–603.

[Dong et al. 2016] J. H. Dong, X. Ma, J. E. Mills, and Z. G. Yan, “A Review of Skin Buckling Theory in Composite Members”,
Appl. Mech. Mat. 846 (2016), 312–317.

[DUMAIS 2007] J. DUMAIS, “Can mechanics control pattern formation in plants?”, Current Opinion in Plant Biology 10:1
(2007), 58–62.

[Dundurs 1975] J. Dundurs, “Properties of elastic bodies in contact”, pp. 54–66 in The mechanics of the contact between
deformable bodies (IUTAM Symposium, Enschede, Netherlands, 1974), edited by A. D. de Pater and J. J. Kalker, Delft
University Press, 1975.

[Dundurs and Stippes 1970] J. Dundurs and M. Stippes, “Role of elastic constants in certain contact problems”, J. Appl. Mech.
(ASME) 37:4 (1970), 965–970.

[Holmes 2009] D. P. Holmes, Wrinkling, folding, and snapping instabilities in polymer films, DS Dissertation, University of
Massachusetts Amherst, 2009.

[Huang et al. 2005] Z. Y. Huang, W. Hong, and Z. Suo, “Nonlinear analyses of wrinkles in a film bonded to a compliant
substrate”, J. Mech. Phys. Solids 53:9 (2005), 2101–2118.

[Kaiser 1936] R. Kaiser, “Rechnerische und experimentelle Ermittlung der Durchbiegungen und Spannungen von quadratis-
chen Platten bei freier Auflagerung an den Rändern, gleichmäßig verteilter Last und großen Ausbiegungen”, Z. Angew. Math.
Mech. 16:2 (1936), 73–98.
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BUCKLING OF CIRCULAR CFDST SLENDER COLUMNS WITH COMPLIANT
INTERFACES: EXACT SOLUTION

SIMON SCHNABL AND BOJAN ČAS

The paper presents a new mathematical model and its exact solution for the buckling analysis of circular
CFDST slender columns with compliant interfaces between the steel tubes and sandwiched concrete. The
exact critical buckling loads are calculated for the first time. The results are compared to the experimental
results and good agreement is obtained. A parametric study is also performed to investigate the effects
of different parameters on buckling loads. It is shown that buckling loads can be significantly affected
by the finite interface compliance.

1. Introduction

Concrete-filled double-skin steel tubular (CFDST) columns are structural members that are increasingly
being used worldwide in new building developments. Owning to their good mechanical properties, fire,
corrosion, blast and impact resistance and light weight cross-sections they are used as tall piers for bridges,
electric transmission towers, underwater pressure vessels, columns in high-rise building, and so on.
Nonetheless, when subjected to compressive loading, slender CFDST columns can be prone to buckling.

In the past, several series of test have been performed on short CFDST columns [Han et al. 2004;
Tao et al. 2004; Hassanein et al. 2013; Hassanein and Kharoob 2014b; Huang et al. 2010; Li et al.
2012; Yang et al. 2012] and only a few studies exist on slender CFDST columns [Romero et al. 2015;
Essopjee and Dundu 2015; Romero et al. 2017; Hassanein and Kharoob 2014a]. Romero et al. [2015;
2017] investigated slender double-tube ultra-high strength concrete-filled tubular columns under ambient
temperature and fire. Similarly, Hassanein and Kharoob [2014a] investigated CFDST columns with
external stainless steel tubes and Essopjee and Dundu [2015] experimentally and numerically analyzed
circular CFDST columns in compression. However, as far as the authors’ knowledge is concerned all
these studies assumed perfect contact between the components of CFDST columns. In practice, full
bonding of steel tubes and sandwiched concrete is impossible to obtain. As a result, always an incomplete
or partial connection exists between the steel tubes and concrete core which can have a considerable effect
on buckling behaviour of CFDST columns.

The present paper derives a mathematical model and its exact solution for investigation of slender
CFDST columns with interface compliance between the steel tubes and sandwiched concrete. The the-
oretical basis used in the derivation of this new mathematical model is partially taken from [Schnabl
et al. 2007; Kryžanowski et al. 2009], and from [Schnabl et al. 2015], where the concrete-filled steel
tubular columns with compliant interfaces was analyzed analytically. The proposed mathematical model
is validated to the test and adjusted code (see [Eurocode 2004; SANS 2011]) results obtained in [Essopjee
and Dundu 2015]. After the validation, a parametric study is performed by which the effects of different

Keywords: buckling, double-skin, debonding, column, exact.
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Figure 1. Cross-section of a circular CFDST slender column: details and dimensions
(left) and coordinate system (right).

parameters like column slenderness, hollow and thickness ratio, and concrete elastic modulus on the
buckling load of CFDST columns is investigated in detail.

2. Problem formulation

2.1. Preliminaries. We consider a straight, planar, geometrically perfect CFDST slender column shown
in Figure 1. The CFDST slender column has an undeformed length L . It consists of sandwiched concrete
core, a, concentric inner, b, and outer, c, steel tubes. All these three components are joined together by
an interface adhesive layer of negligible thickness and finite stiffness.

The CFDST slender column is placed in the (X , Z ) plane of a global Cartesian coordinate system
with coordinates (X , Y , Z ) and unit base vectors EX , EY , and EZ . The reference axis of the CFDST
slender column is common to all three components. It is parameterized by the undeformed arc-length x .
The material particles of the sandwiched concrete core and inner and outer steel tubes are identified by
material coordinates (x i , yi , zi ), (i = a, b, c) in local coordinate system with coordinates (x , y, z). It is
assumed that initially the local coordinate system coincides with the global coordinate system, and then
follows the deformation of the CFDST slender column. The CFDST slender column is subjected axially
to a conservative compressive load P in such a way, that homogeneous stress-strain state is achieved in
the primary configuration of the column.

2.2. Preliminaries. The formulation of the governing equations of the mathematical model of a CFDST
slender column is based on the following basic assumptions as well:

• The sandwiched concrete core, inner and outer steel tubes are prismatic, homogeneous, isotropic
and linear elastic.

• A linearized Reissner planar shear-stiff beam theory [Reissner 1972] is used for each component.

• The components are continuously connected and contact stiffness is finite and constant.

• The components can deform relative to each other, i.e. generalized slips in axial, radial and circum-
ferential direction can occur.

• Only the global type of instability can occur.

• The generalized slips are small.
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2.3. Algebraic-differential equations of a CFDST column. The linearized Reissner algebraic-differential
equations of the CFDST column are kinematic, equilibrium, constitutive and constraining equations
along with the boundary conditions. In this paper, a compact comma notation ( · )i will be used, where
superscript i = (a, b, c) indicates to which components the quantity ( · ) belongs to. Hence, the govern-
ing equations of a CFDST column constitute a system of 34 algebraic and first order differential equa-
tions with constant coefficients for 34 unknown functions ui , wi , ϕi , εi , κ i , Ri

X , Ri
Z ,M i

Y ,1X,in,1X,out,
1Z ,in,1Z ,out, pX,in, pX,out:
Kinematic equations

dui

dx
− εi
= 0, (1)

dwi

dx
+

(
1−

P∑
i

E i Ai

)
ϕi
= 0, (2)

dϕi

dx
− κ i
= 0, (3)

Equilibrium equations

dRa
X

dx
− pX,out+ pX,in = 0, (4)

dRb
X

dx
− pX,in = 0, (5)

dRc
X

dx
+ pX,out = 0, (6)

dRa
Z

dx
− pZ ,out+ pZ ,in = 0, (7)

dRb
Z

dx
− pZ ,in = 0, (8)

dRc
Z

dx
+ pZ ,out = 0, (9)

dRa
Z

dx
− pZ ,out+ pZ ,in = 0, (11)

dRb
Z

dx
− pZ ,in = 0, (12)

dM i
Y

dx
−

(
E i Ai∑

i
E i Ai P

)
dwi

dx
−

(
1−

P∑
i

E i Ai

)
Ri

Z = 0, (13)

Constitutive equations

Ri
X − E i Aiεi

= 0, (14)

M i
Y − E i J iκ i

= 0, (15)
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Constraining equations

1X,in− ub
+ ua
= 0, (16)

1X,out− ua
+ uc
= 0, (17)

1Z ,in−w
b
+wa

= 0, (18)

1Z ,out−w
a
+wc

= 0, (19)

pX,in− Kin1X,in = 0, (20)

pX,out− Kout1X,out = 0, (21)

pZ ,in−Cin1Z ,in = 0, (22)

pZ ,out−Cout1Z ,out = 0, (23)

Boundary conditions
x = 0:

Si
1+ Ri

X (0)= 0 or ui
1− ui (0)= 0, (24)

Si
2+ Ri

Z (0)= 0 or ui
1−w

i (0)= 0, (25)

Si
3+M i

Y (0)= 0 or ui
3−ϕ

i (0)= 0. (26)

x = L:

Si
4− Ri

X (L)= 0 orui
4− ui (L)= 0, (27)

Si
5− Ri

Z (L)= 0 or ui
5−w

i (L)= 0, (28)

Si
6−M i

Y (L)= 0 or ui
6−ϕ

i (L)= 0, (29)

where ui
k and Si

k (k = 1-6) are the generalized boundary displacements and their complementary gener-
alized forces at the edges of the components of the CFDST column.

2.4. Exact solution of buckling equations. In order to obtain the exact solution of the system of govern-
ing algebraic-differential equations (1)–(23) it is suitable to write the equations (1)–(23) and boundary
conditions (24)–(29) in a compact form as a homogeneous system of 18 first order linear differential
equations:

dY
dx
(x)= AY(x) and Y(0)= Y0, (30)

where Y(x) is the eigenvector, Y(0) is the vector of unknown integration constants, i.e. generalized
displacements and forces at the component’s boundary, and A is the constant real 18× 18 matrix. The
analytical solution of (30) can be given as, see [Perko 1991]

Y(x)= expAx Y0. (31)

The vector of unknown integration constants Y(0) can be obtained from the boundary conditions (24)–
(29). By inserting (31) into (24)–(29) one obtains a system of 18 homogeneous linear algebraic equations
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for the same number of unknown integration constants

KY0 = 0, (32)

where K is the tangent stiffness matrix. A non-trivial solution of (32) is obtained from the condition
of vanishing determinant of the tangent stiffness matrix K . For the known geometric parameters, the
only unknown is the applied load P . As a result, the critical buckling load Pcr is determined from the
characteristic equation

|K | = 0, (33)

and is equal to the lowest eigenvalue of (31). In this case, the analytical expressions are obtained using
Mathematica. However, these analytical expressions are too extensive to be shown in the paper in a
closed-form, except for the two limiting cases, namely for perfectly bonded and perfectly debonded case.
Thus, for the CFDST column with perfectly bonded interface between the sandwiched concrete core and
the steel tubes, the critical buckling load is

Pcr =
∑

i

P i
cr = Pa

cr+ Pb
cr+ Pc

cr =

π2∑
i

E i J i

(1+ ε)L2 =
π2(Ea J a

+ Eb J b
+ Ec J c)

(1+ ε)L2 , (34)

where Pa
cr, Pb

cr, and Pc
cr are the buckling loads of the concrete core, inner and outer steel tubes, respectively.

On the other hand, in the limiting case when the interface is fully debonded the critical buckling loads
is

Pcr = Pa
+ Pb

cr+ Pc
= (Ea Aa

+ Ec Ac)ε+
π2 Eb J b

(1+ ε)L2 , (35)

where Pa and Pc are the corresponding axial loads carried by the concrete core and outer steel tube,
respectively.

3. Results and discussion

3.1. Validation. The principal aim of this section is to check and demonstrate the validity of this math-
ematical model and its exact solution in comparison to the available experimental and design results
in the literature. Therefore, the validation of the critical buckling loads of CFDST slender columns
uses the four available specimens in the literature experimentally tested in [Essopjee and Dundu 2015]
and whose geometric and material properties are given in Table 1. Further, the exact critical buckling
loads are compared to the adjusted (see [Eurocode 2004; SANS 2011]) design predictions obtained in
[Essopjee and Dundu 2015] for the same four specimens. The results are given in Table 2 and Figure 2.

Specimen L[cm] Dout[cm] tout[mm] Din[cm] tin[mm] Ea[kN/cm2
] Eb, Ec[kN/cm2

]

S139.2-2.5 250 13.92 3.0 7.6 2.0 2821 20323.3
S152.4-2.5 250 15.24 3.0 7.6 2.0 2821 20622.0
S165.1-2.5 250 16.51 3.0 7.6 2.0 2821 20353.0
S193.7-2.5 250 19.37 3.5 7.6 2.0 2821 20796.2

Table 1. Material and geometric properties of CFDST columns.
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Specimen NTEST[kN] NEC4[kN] NSANS[kN] P∗cr[kN] P∗∗cr [kN] C(Pcr = NTEST)[kN/cm2
]

S139.2-2.5 732.1 692 679 672.1 1674.2 6.15 10−4

S152.4-2.5 949.0 920 882 792.4 2314.5 2.80 10−4

S165.1-2.5 1036.5 1011 1028 907.7 3044.6 1.86 10−4

S193.7-2.5 1458.7 1272 1467 1270.5 5793.8 2.04 10−4

Average 3.21 10−4

Table 2. Comparison of exact, test and adjusted EC4 and SANS code predictions. P∗cr
and P∗∗cr are the buckling loads of, respectively, a fully debonded and a fully bonded
CFDST column.

Figure 2. Comparison of exact, test and adjusted code predictions of buckling loads of
circular CFDST slender columns.

It can be seen from Table 2 and Figure 2 that the code buckling loads are in general smaller than
test results. The test buckling loads of all four specimens are between the results for fully debonded
(P∗cr = Pcr(C = 0)) and fully bonded (P∗∗cr = Pcr(C =∞)) CFDST slender columns. In fact, in these
particular cases, the test results are closer to the exact buckling loads of fully debonded CFDST columns.
In addition, with the inverse analysis, one can calculate the corresponding contact stiffness K and C from
the equality of test and analytical buckling loads, i.e. Pcr = NTEST. Nevertheless, it is found out that the
critical buckling load of a CFDST slender column is independent of K. Thus, only C that corresponds
to the test results obtained in [Essopjee and Dundu 2015] are given in Table 2. The exact buckling loads
are in good agreement with the test results if adequate contact stiffness is used in the calculations.

The exact buckling loads are also compared to the numerical results obtained by finite element (FE)
analysis in [Hassanein and Kharoob 2014a]. Table 3 shows a summary of the comparison for different
columns and various C . The geometric and material data of each column are given in [Hassanein and
Kharoob 2014a]. It is clear from Table 3 that Pcr is decreasing with increasing the Pcr and decreasing C .

For intermediate slender column C5, the FE buckling load PFE is always smaller than Pcr irrespective
to C . In case of other columns, e.i. C6–C17, the FE buckling load PFE is always between the two limits,
i.e. fully debonded (C = 0) and perfectly bonded (C =∞) interface between the concrete and steel.
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Pcr[kN]

Column λ PFE[kN] C = 0 C = 10−6 C = 10−5 C = 10−4 C =∞

C5 51 9440 12711 12733 12926 14775 35992
C6 62 8431 8621 8652 8936 11512 24410
C7 73 7358 6228 6273 6661 9891 17636
C8 84 6591 4709 4768 5273 8910 13335
C9 94 5803 3686 3759 4391 8039 10435

C10 105 5014 2963 3054 3816 7109 8388
C11 116 4393 2433 2544 3433 6186 6889
C12 127 3951 2033 2166 3169 5354 5759
C13 138 3140 1725 1881 2974 4641 4885
C14 149 2827 1482 1661 2812 4043 4197
C15 160 2455 1287 1491 2659 3544 3644
C16 171 2156 1128 1358 2501 3127 3194
C17 182 1971 997 1253 2336 2776 2822

Table 3. Comparison of analytical buckling loads with the FE buckling loads from
[Hassanein and Kharoob 2014a].

3.2. Parametric study. The derived mathematical model and its exact solution are used to analyse the
effects of different parameters like column slenderness ratio (λ), hollow ratio (χ), concrete elastic mod-
ulus (Ea), and thickness ratio (τ ) on buckling loads (Pcr) of CFDST slender column, in this case the
specimen S139.2-2.5 is used in the analysis. The results are given in Figures 3 and 4.

3.2.1. Effect of column slenderness ratio. The column slenderness ratio is generally one of the most
important parameters that influence the buckling behaviour of circular CFDST slender columns. Here,
the column slenderness ratio is defined as λ = L

√
A/
√

I , where L is the effective buckling length,
A is the cross-sectional area and I is the moment of inertia of the CFDST column. The effect of λ
on Pcr is illustrated for different contact stiffness (fully bonded (C =∞ kN/cm2) and fully debonded
(C = 0 kN/cm2), and all in between) in Figure 3, left.

It can be seen that Pcr decreases as λ increases. Notice also that the buckling load P̄cr = Pcr(C =
3.21 · 10−4 kN/cm2) that belongs to the average contact stiffness of the selected tested four specimens
in [Essopjee and Dundu 2015] is for λ ≤ 100 closer to P∗cr = Pcr(C = 0), while for λ > 100 is closer
to P∗∗cr = Pcr(C =∞). Thus, it is seen that for very slender CFDST columns the effect of C on Pcr is
insignificant and can be neglected.

3.2.2. Effect of hollow ratio. The effect of hollow ratio (χ = Din/(Dout− 2tout)) on Pcr is shown in
Figure 3, middle. This effect is investigated by varying the external tube thickness tout. It can be seen
from the graph that increasing χ , which reduces the cross-sectional area of the sandwiched concrete,
increases Pcr, especially for nearly fully debonded columns, while on the other hand, for fully bonded
columns, this effect is negligible. Again, it could be seen that P̄cr is closer to fully debonded CFDST
columns.
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Figure 3. Effect of slenderness ratio λ (top), hollow ratio χ (middle) and elastic modulus
(Ea) of sandwiched concrete (bottom) on the buckling load (Pcr) of a circular CFDST
slender column.
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Figure 4. Effect of thickness ratio (τ ) on buckling load (Pcr) of circular CFDST slender column.

3.2.3. Effect of concrete elastic modulus. The effect of concrete elastic modulus on Pcr is investigated
next. Figure 3, bottom, shows Pcr versus normalized concrete elastic modulus, i.e., Ēa = Ea/2821.

As can been seen, the elastic modulus of sandwiched concrete Ea has a considerable effect onPcr. The
increasing of Ea increases linearly Pcr. This effect in more pronounced for CFDST columns with highly
bonded components. Similarly as above, for the circular CFDST slender column whose contact stiffness
corresponds to the test results, the buckling capacity is again closer to one with almost fully debonded
components.

3.2.4. Effect of thickness ratio. The effect of thickness ratio (τ = tin/tout) on Pcr of CFDST column is
also investigated. This effect is investigated by varying the outer tube thickness (tout). Figure 4. shows
Pcr versus τ for values of contact stiffness between the one of fully bonded components to the one of
fully debonded components. Note that τ increases by decreasing the outer tube thickness. As would
be expected, by increasing of τ , the buckling load of CFDST column decreases. This effect is more
pronounced for smaller values of τ while for higher is almost negligible. Again, P̄cr is nearly the same
as P∗cr.

4. Conclusions

The paper presented a new mathematical model and its exact solution for the buckling analysis of circular
CFDST columns with compliant interfaces between the steel and sandwiched concrete. After the valida-
tion of the results, the exact critical buckling loads were calculated using the proposed exact model and a
parametric study was also performed by which the effects of different parameters on buckling behaviour
of CFDST columns were investigated. Based on the results obtained, the following conclusions can be
made:

1. The present mathematical model and its exact solution are simple, efficient and derived for the first
time.

2. The exact results agree well with the experimental results obtained in [Essopjee and Dundu 2015].

3. The results also agree well with the adjusted design predictions [Eurocode 2004; SANS 2011].
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4. The exact results can agree completely with the numerical results of [Hassanein and Kharoob 2014a]
if calibrated values of C are used in the calculations.

5. The buckling load is independent on axial contact stiffness K .

6. The buckling load of CFDST column decreases with increasing the column slenderness and thick-
ness ratio, while increases with increasing the elastic modulus of sandwiched concrete and hollow
ratio.

7. The exact results can be used as a benchmark solution.
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Notation. The following symbols are used in this paper:

A = cross-sectional area (cm2)

C = contact modulus in Z direction (kN/cm2)

D = tube diameter (cm)
E = elastic modulus (kN/cm2)

J = moment of inertia (cm4)

K = contact modulus in X direction (kN/cm2)

L = column length (cm)
MY = cross-sectional bending moment (kNcm)
P = centrally applied point load (kN)
Pcr = critical bucklig load (kN)
pX , pZ = contact tractions in X and Z directions (kN/cm2)

RX , RZ = X and Z components of the cross-sectional equilibrium force (kN)
t = tube thickness (cm)
u = axial displacement (cm)
w = deflection (cm)
1 = generalized slip (cm)
ε = extensional strain
κ = presudocurvature (rad/cm)
ϕ = rotation (rad)

Subcripts

in = inner
out = outer
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A SIMPLE SCALAR DIRECTIONAL HARDENING MODEL FOR THE
BAUSCHINGER EFFECT COMPARED WITH A TENSORIAL MODEL

MARTIN KROON AND M. B. RUBIN

Modeling the Bauschinger effect is usually accomplished by introducing a second-order back-stress or
directional hardening tensor. The objective of this paper is to propose a simpler scalar model of the
Bauschinger effect based on a scalar directional hardening parameter that is determined by integration of
an evolution equation. The behavior of this scalar model is compared to a tensorial model for a number of
load cases. Strongly objective numerical algorithms are developed for integrating the evolution equations
for both the tensorial and scalar models. Also, a consistent tangent is developed for both models. Obvi-
ously, the numerical implementation of the scalar model is significantly less complicated than for the ten-
sorial model. Examples show that the tensorial and scalar models predict the same results for cyclic pro-
portional triaxial extension and triaxial compression loadings. In contrast, the tensorial model predicts a
Bauschinger effect for cyclic proportional pure torsion loading which is not predicted by the scalar model.
More complicated examples with nonproportional loading paths and inhomogeneous deformations indi-
cate that, relative to the tensorial model, the scalar model accounts for directional hardening fairly well
and the simplicity of the model makes it an attractive option to add to isotropic hardening models.

1. Introduction

The inelastic response of isotropic metals typically exhibits some form of hardening. The simplest
model for hardening introduces an isotropic hardening variable κ , which is determined by integrating
an evolution equation for its rate. Cyclic loading in uniaxial stress using a model with only isotropic
hardening indicates that the magnitude of stress in tension at the onset of unloading is the same as that in
compression at the onset of inelastic response during reverse loading. For many metals, however, cyclic
loading in uniaxial stress also exhibits a Bauschinger effect [Bauschinger 1881], which is observed as
a reduced magnitude of stress and a rounding of the stress-strain curve at the onset of reverse loading.
A review of aspects of the Bauschinger effect in metals up until 1979 can be found in [Sowerby et al.
1979]. There the physical reason for the Bauschinger effect is described as long range stresses caused by
inhomogeneous deformations of the grains that introduce directionality of the resistance to inelastic flow.

The introduction in [Langer et al. 2010] reviews comments by major researchers of hardening in met-
als who conclude that phenomenological models of hardening are necessary since a theory of hardening
based on first-principles has not been developed. Langer et al. [2010] then proceed to develop a theory that
characterizes the thermodynamically irreversible nature of dislocations which successfully predicts the
strain hardening of copper over a wide range of temperatures and strain rates. Specifically, they introduce
an effective temperature of dislocations and a second-law for externally driven systems within the context

Keywords: Bauschinger effect, finite deformation, isotropic elastic-inelastic response, numerical algorithm, scalar directional
hardening.
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of homogeneous deformations. However, this theory is not relevant for quasistatic experiments. A recent
thermodynamical theory based on nonuniform plastic deformations, which account for excess disloca-
tions due to the incompatibility of plastic distortion, has been developed in [Le and Tran 2018]. This the-
ory explains that the Bauschinger effect is due to movement and annihilation of excess dislocations during
load reversal but it does not predict the observed smoothing of the stress-strain curve during load reversal.

Within the context of small deformations, [Prager 1949] used a yield function with the stress replaced
by the difference between the stress and a kinematic hardening parameter (sometimes referred to as
a back-stress) which he attributed to a conference abstract by Reuss [1935]. This model captures the
Bauschinger effect but it exhibits a sharp elastic-inelastic transition. An early model for cyclic loading
that captures the Bauschinger effect and smooths the elastic-inelastic transition with a finite number of
segments was introduced by Besseling [1958], who used a number of inelastic elements that are activated
at different stress levels. More modern phenomenological continuum models typically introduce kine-
matic hardening, with the yield surface being expressed as a function of the stress T minus back-stress
tensor β. The original report by [Armstrong and Frederick 1966] has been republished with a historical
introduction. Another feature of this formulation of kinematic hardening is that the inelastic deformation
rate is proportional to the difference between the stress and the kinematic hardening variable. This allows
the model to capture more complicated response for nonproportional loadings. A review of plastic and
viscoplastic response with kinematic hardening can be found in [Chaboche 2008].

Directional hardening is an alternative to kinematic hardening (e.g., [Bodner 1968]). In this model
an effective yield strength is determined by a function of the isotropic hardening variable and the inner
product of the stress with a symmetric directional hardening tensor β to account for different yielding
properties in different directions. Moreover, the inelastic deformation rate remains proportional to the
deviatoric stress. Within the context of the directional hardening formulation, the direction of the inelastic
deformation rate was modified in [Rubin and Bodner 1995] to include a component normal to the devia-
toric stress which produced a reduced modulus for nonproportional loading. For both of these directional
hardening models the rate of material dissipation remains nonnegative. In contrast, depending on the
formulation of kinematic hardening, the model can produce negative material dissipation for proportional
cyclic uniaxial stress loading if inelasticity occurs during unloading before the stress changes sign as the
material goes into reverse loading. A more recent alternative formulation to kinematic hardening, which
models the Bauschinger effect, can be found in [Barlat et al. 2011].

For large deformations with the back-stress tensor β being subtracted from the Cauchy stress T in the
yield function it is necessary to propose an evolution equation for β which ensures that β rotates like
T under Superposed Rigid Body Motions (SRBM). This means that the modeling includes an inelastic
spin tensor that needs a constitutive equation (e.g., [Bammann 1990]).

To model more complicated multiaxial response, [Armstrong and Frederick 1966] introduced an
effective kinematic hardening tensor as the sum of a number of hardening tensors which each were
determined by evolution equations. Similarly, motivated by the work in [Hollenstein et al. 2013], which
proposed a large deformation model with a smooth elastic-inelastic transition for both rate independent
and rate-dependent response, LS-DYNA [Gladman 2018] developed a generalized model (MAT_275)
which includes a number of elastic distortional deformation tensors to model more complicated inelastic
effects for cyclic and multiaxial loadings with relaxation.
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The objective of this paper is to propose a simplified scalar model for the Bauschinger effect which
introduces a scalar evolution equation for a directional hardening parameter β. The responses of this
scalar model are compared with those of a tensorial model which introduces an evolution equation for
a directional hardening tensor β. The simplified scalar model predicts the same results as the tensorial
model for cyclic proportional triaxial extension and triaxial compression loadings. However, in contrast
with the tensorial model, the scalar model cannot predict the Bauschinger effect for cyclic proportional
pure torsion loading. Robust and strongly objective numerical integration algorithms are developed for
both the scalar model and tensorial models. In this regard, it is recalled [Rubin and Papes 2011] that
an algorithm will be strongly objective if all of the numerical estimates of tensorial quantities satisfy
the same transformation relations under SRBM as the exact tensorial measures. Moreover, it is shown
that the scalar model predicts nearly the same effective yield strength contours as the tensorial model for
example problems with nonproportional loading and inhomogeneous deformation.

An outline of this paper is as follows: Section 2 provides an outline of the general theoretical frame-
work to be used, whereas Section 3 describes the details of the different hardening models employed.
Section 4 summarizes the objectivity properties of relevant entities in the theoretical framework, and
Section 5 contains a description of a strongly objective numerical integration procedure for the state
variables, including an algorithmic tangent stiffness. A number of numerical examples are provided in
Section 6, and a discussion and some concluding remarks are given in Section 7.

2. Basic equations

Let x and v = ẋ denote the position and velocity, respectively, of a material point in the current config-
uration at time t , where (̇ ) denotes the material time derivative. Then, the velocity gradient is given by
L = ∂v/∂x, and the rate of deformation D and the spin W are defined by

L = D+W , D = 1
2(L+ LT ), W = 1

2(L− LT ). (1)

The need for an Eulerian formulation of evolution equations for finite deformation elastic-inelastic
response has been discussed in a series of papers (e.g., [Rubin and Attia 1996; Rubin 2012]). This
Eulerian formulation is insensitive to the choice of reference configuration, an intermediate configuration,
a total deformation measure and an inelastic deformation measure. Eckart [1948] seems to be the first to
propose an evolution equation directly for elastic deformation that is used to determine stress for finite
elastic-inelastic deformations of solids. Leonov [1976] proposed similar equations for polymeric liquids.

Within the context of the Eulerian formulation of isotropic, hyperelastic-inelastic materials, Rubin and
Attia [1996] proposed evolution equations for an elastic dilatational deformation Je and a symmetric,
positive-definite, unimodular second order elastic distortional deformation tensor B̄e. In the absence of
inelastic dilatational deformation, the elastic dilatation is defined by

Je = ρz/ρ (2)

with ρ being the current mass density and ρz being its zero-stress value. Furthermore, the evolution
equations for these quantities were proposed in the forms

J̇e

Je
= D : I, ˙̄Be = L B̄e+ B̄e LT

−
2
3(D : I)B̄e−0Ap, Ap = B̄e−

(
3

B̄−1
e : I

)
I, (3)
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where the scalar function 0 ≥ 0 controls the magnitude of inelastic distortional deformation rate, and the
tensor Ap controls the direction of inelastic distortional deformation rate. This form ensures that inelastic
deformation rate causes a tendency for B̄e to approach the identity I and for B̄e to remain a unimodular
tensor. The evolution equation for Je is appropriate for nonporous metals with no inelastic dilatation rate
and can be determined by the conservation of mass equation. Also, A : B = tr(ABT ) denotes the inner
product of two second order tensors A and B and I is the second order unit tensor.

The formulation in [Rubin and Cardiff 2017] simplifies that in [Simo 1992, 2.19a] and [Simo 1998,
§50] and recorded in [Simo and Hughes 1998, Box 9.1], which corrected that proposed in [Simo 1988,
Table 1]. Specifically, for a neo-Hookean material, the strain energy function 6 per unit mass can be
specified in the form

ρz6 =
1
2 K (Je− 1)2+ 1

2µ(α1− 3), (4)

where K and µ are the zero-stress bulk and shear modulus, respectively, and the first invariant α1 of the
elastic distortional deformation tensor B̄e satisfies the equations

α1 = B̄e : I ≥ 3, α̇1 = 2B̄′e : D−0Ap : I, (5)

where a superscript prime (•)′ is added to the symbol of a tensor to denote its deviatoric part. For example,
the deviatoric part B̄′e of B̄e is defined by

B̄′e = B̄e−
1
3(B̄e : I)I . (6)

It follows that the Cauchy stress T associated with this strain energy function is given by

T =−p I + T ′, p =−ρz
∂6

∂ Je
= K (1− Je), T ′ = 2J−1

e ρz
∂6

∂α1
B̄′e = J−1

e µB̄′e. (7)

Also, the rate of material dissipation D automatically satisfies the restriction that

D = T : D− ρ6̇ = 1
2 J−1

e µ0Ap : I ≥ 0. (8)

Next, consider a yield function of the form

g = 1−
Hκ
γe

, (9)

with g < 0 implying elastic response, and g = 0 defining the elastic-inelastic boundary. In this yield
function, the effective elastic distortional strain γe is defined by

γe =
1
2

√
3
2 B̄′e : B̄′e . (10)

In the expression (9) for the yield function g, κ is a positive measure of isotropic hardening that is
determined by integrating an evolution equation (16) defined later and H is a scalar measure of directional
hardening defined later in (19) for the tensorial model or in (25) for the scalar model.

A simple rate-independent version of the smooth elastic-inelastic transition model proposed in [Hol-
lenstein et al. 2013] is obtained by using the yield function g in (9) and specifying the function 0 in the
form

0 = b1ε̇〈g〉, b1 > 0, (11)
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where b1 is a constant that controls the smoothness of the elastic-inelastic transition, the effective total
distortional rate of deformation ε̇ is defined by

ε̇ =

√
2
3 D′ : D′, (12)

with the Macaulay brackets 〈g〉 defined by

〈g〉 =max(g, 0). (13)

From (3) and (11) it is observed that the material response is elastic when the inelastic deformation rate
vanishes (g ≤ 0) and is inelastic with an overstress when g > 0. Moreover, this model does not require
loading and unloading conditions. Large values of b1 reduce the magnitude of the overstress with the
response asymptotically approaching that predicted by standard loading and unloading conditions with
no overstress (g ≤ 0) in the limit that b1→∞.

Even though a measure of plastic deformation is not necessary in the present Eulerian formulation,
an equivalent plastic deformation may still be introduced to identify regions in a structure which have
experienced inelastic deformation. It can be shown that for small deformations, the inelastic distortional
deformation rate can be approximated by

ε̇p ≈
1
20 B̄′e. (14)

Then, the equivalent inelastic deformation rate is defined as

ε̇p =

√
2
3 ε̇p : ε̇p =

1
20

√
2
3 B̄′e : B̄′e =

2
30γe. (15)

3. Models for hardening

3.1. Prerequisites. A combination of isotropic and directional hardening is used. The same model for
isotropic hardening is used throughout this work, whereas two formulations of directional hardening
models are explored:

(a) a formulation using a second-order directional hardening tensor β, and

(b) a formulation using a single scalar state variable β.

3.2. Isotropic hardening. For all models discussed in this paper, the isotropic hardening variable κ is
determined by the evolution equation [Chan et al. 1988]

κ̇ = m10(κs− κ)−m2(κ − κa), 0 ≥ 0, m1 ≥ 0, m2 ≥ 0, κa ≤ κ ≤ κs > 0. (16)

This evolution equation includes a competition of strain hardening rate and thermal recovery rate. Strain
hardening causes a tendency for κ to approach its saturated value κs with its rate controlled by the
constant m1. Thermal recovery causes a tendency for κ to approach its fully annealed value κa with its
rate controlled by the constant m2.
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3.3. A tensor-based model for directional hardening. A formulation of directional hardening, using
a second-order tensor, is now presented. To distinguish between the different models for directional
hardening, the present model is termed “Model T” (“T” for “tensor”). Motivated by the work in [Chan
et al. 1988], the evolution equation for the directional hardening tensor β is proposed in the form

β̂ = m30(βsU −β)−m4β, 0≤ βs < 1, m3 ≥ 0, m4 ≥ 0, (17)

where β̂ denotes the objective Jaumann derivative and is defined by

β̂ ≡ β̇ − (Wβ +βW T ). (18)

The function H , which accounts for directional hardening in the yield function (9), is specified by

H = HT = 1+β : U . (19)

In these equations, β is a symmetric, deviatoric, directional hardening tensor, U is defined by the direction
of the deviatoric elastic distortional deformation tensor B̄′e, such that

βT
= β, β : I = 0, U =

B̄′e
|B̄′e|

, U T
= U, U : I = 0, U : U = 1. (20)

Hence, the value of HT in (19) depends on the magnitude of β and on its direction relative the tensor U .
In particular, it can be seen that the evolution equation (17) causes a competition of β increasing towards
the value βsU , with the rate controlled by m3 and thermal recovery with the rate controlled by m4. This
evolution equation causes HT to satisfy the restriction

0< 1−βs ≤ HT ≤ 1+βs, (21)

which ensures that the resistance Hκ to inelastic deformation rate in (9) remains positive for positive κ .

3.4. A scalar-based model for directional hardening. The scalar-based model for directional hardening
is now outlined, and this model is termed “Model S” (“S” for “scalar”). A state variable β is introduced,
whose evolution is given by

β̇ = m30(βsU −β)−m4β, −βs ≤ β ≤ βs, (22)

where the constants m3,m4 and βs satisfy the restrictions in (17), and the Lode parameter U is defined
by

U =


0 for γe = 0,
27 det(T ′)

2σ 3
e
=

27 det B̄′e
16γ 3

e
for γe > 0,

− 1≤U ≤ 1. (23)

Next, introducing the Lode angle ϑ by the expressions

sin(3ϑ)=U, − 1
6π ≤ ϑ ≤

1
6π , (24)

and motivated by the simple failure surface developed in [Rubin 1991], the function H in (9) is specified
by the form

H = HS = 1+βU. (25)
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Figure 1. Normalized yield surfaces displayed in the τ3-τ1-plane for ϑ ∈
[
−

1
6π,

1
6π
]
:

the von Mises curve (solid blue line) and an example of a curve with accumulated direc-
tional hardening (dashed blue line).

This gives the values

HS
(
ϑ = 1

6π
)
= 1+β, HS(ϑ = 0)= 1, HS

(
ϑ =− 1

6π
)
= 1−β. (26)

3.5. Graphical representations of models for directional hardening. Following [Rubin 1991], three
special load cases are identified:

• triaxial extension (TXE), U = 1, ϑ = 1
6π ,

• pure torsion (TOR), U = 0, ϑ = 0,

• triaxial compression (TXC), U =−1, ϑ =− 1
6π .

Notice that the sign of ϑ is opposite to that defined in [Rubin 1991].
The loading state is characterized by B̄′e, whose ordered eigenvalues are denoted by B̄ ′e1, B̄ ′e2, and B̄ ′e3,

with B̄ ′e1 ≥ B̄ ′e2 ≥ B̄ ′e3. The three load states introduced above are then characterized by

• TXE: B̄ ′e1 =
4
3γe, B̄ ′e2 = B̄ ′e3 =−

2
3γe,

• TOR: B̄ ′e1 =
2
√

3
γe, B̄ ′e2 = 0, B̄ ′e3 =−

2
√

3
γe,

• TXC: B̄ ′e1 = B̄ ′e2 =
2
3γe, B̄ ′e3 =−

4
3γe.

The yield function may be illustrated by its contour in the synoptic (or octahedral) plane, whose unit
normal is given by the vector 1

√
3
( p1+ p2+ p3), where pi are the orthonormal eigenvectors of B̄′e. Again,

following [Rubin 1991], two orthogonal unit vectors in the synoptic plane are defined as

ē3 =
1
√

2
( p1− p3), ē1 =

1
√

6
(− p1+ 2 p2− p3). (27)

The yield surface can be described by the vector bs, defined as

bs = B̄′e
[ 1
√

3
( p1+ p2+ p3)

]
=

2
√

2 κ
3

(τ3 ē3+ τ1 ē1), (28)

where
τ3 = H(ϑ) cosϑ, τ1 = H(ϑ) sinϑ. (29)
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Figure 2. Yield surfaces for directional hardening displayed in the τ3-τ1-plane for ϑ ∈[
−

1
6π,

1
6π
]

for different values of β.

(It is noted that µbs/Je is the shearing component of the traction vector applied to the synoptic plane.)
With the specification γe = κH(ϑ), the vector bs in (28) describes the contour of the yield surface in the
synoptic plane; see Figure 1.

The state variable κ governs the isotropic expansion (or contraction) of the yield surface in the synoptic
plane, whereas evolution of β and β cause directional hardening, i.e., different hardening for different
loading modes.

The following discussion starts with the scalar-based model for directional hardening. Figure 2 shows
contours of the normalized yield surface in the τ3-τ1-plane for different values of β. From this figure
it can be seen that loading in uniaxial tension (TXE), causes an increase in β and thereby increased
hardening for loading modes with ϑ > 0 and softening for ϑ < 0. Loading in uniaxial compression
(TXC) causes the opposite tendency. For the model S, the normalized yield surface is pivoting around
the yield point at ϑ = 0 (TOR), which remains unaffected by directional hardening.

The yielding contour of the tensor-based model is illustrated by considering two cases of accumulated
directional hardening β: one case where the material has experienced uniaxial tension, such that

βTXE
i j =

√
2
3β

1 0 0
0 −1

2 0
0 0 −1

2

 , (30)

and one case where the material has experienced pure torsion, i.e.,

βTOR
i j =

1
√

2
β

0 1 0
1 0 0
0 0 0

 . (31)

Above, βi j denotes the Cartesian components of β, and β is a scalar. The yield contour is then described
by considering load states characterized by

Ui j =

ξ ζ 0
ζ − 1

2ξ 0
0 0 −

1
2ξ

 , 3ξ 2
+ 4ζ 2

= 2, (32)
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Figure 3. Yield surfaces for directional hardening predicted by the tensorial model T
and displayed in the τ3-τ1-plane for ϑ ∈

[
−

1
6π,

1
6π
]

for different values of β. Left: βTXE.
Right: βTOR.

where Ui j are the Cartesian components of U . By definition, U : U = 1, implying that (32)2 must hold,
and that −

√
2
3 ≤ ξ ≤

√
2
3 and − 1

√
2
≤ ζ ≤ 1

√
2
.

A loading path is now considered where the material starts in a state of uniaxial tension, passes through
a state of pure torsion, then through a state of biaxial tension, then again through a state of pure torsion
but with the opposite sign of the shearing, and finally back to uniaxial tension. The path of U thus passes
through the points

ξ =

√
2
3 , ζ = 0 (TXE),

ξ = 0, ζ = 1
√

2
(TOR),

ξ =−

√
2
3 , ζ = 0 (TXC),

ξ = 0, ζ =− 1
√

2
(TOR),

ξ =

√
2
3 , ζ = 0 (TXE).

(33)

The outcome is shown in Figure 3, where solutions for different values of β are shown. The black
dots indicate the starting point (TXE) of the path, and the arrows indicate the direction of the path. For
β = βTXE, the material has experienced directional hardening and softening for loads with ϑ > 0 and
ϑ < 0, respectively, whereas the yield point for pure torsion remains unaffected. This behavior is similar
to the scalar model S, as seen from Figure 2, even though the functional forms are not identical.

For a material that has experienced pure torsion, i.e., β = βTOR, yield contours are shown in Figure 3,
right. From this figure it can be seen that torsion with a positive shearing component causes hardening in
this torsion direction and softening for shearing in the opposite direction (i.e., with a negative shearing
component). Yielding in TXE and TXC remains unaffected. This ability to distinguish between positive
and negative shearing sets the tensor-based model apart from the scalar-based model, which is not able
to make this distinction.
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4. Invariance under Superposed Rigid Body Motions (SRBM)

Under Superposed Rigid Body Motions (SRBM) a quantity like the stress tensor T transforms to T+,
where a superscript (+ ) is added to indicate the value of a quantity in the superposed configuration. In
the above equations all scalars are uninfluenced by SRBM and the tensors D, B̄e, T ,β and the Jaumann
rate β̂ satisfy the transformation relations

D+ = Q D QT , B̄+e = Q B̄e QT , T+ = QT QT , β+ = Qβ QT , β̂+ = Qβ̂ QT , (34)

where Q(t) is an arbitrary proper orthogonal tensor function of time t only. It follows that the evolution
equation (3) for B̄e and (17) for β remain form-invariant under SRBM.

5. Numerical integration algorithms

5.1. Preliminaries. This section discusses numerical algorithms to integrate the evolution equations (3)
for Je and B̄e as well as the evolution equations (16) for isotropic hardening (κ), (17) for the tensorial
measure β of directional hardening for the tensor-based model and (22) for the scalar measure β of
directional hardening for the scalar-based model. These equations also use the yield function g in (9),
the effective elastic distortional strain γe in (10), the rate of inelasticity 0 in (11) and the effective total
distortional deformation rate ε̇ in (12). Also, the constitutive equation for the Cauchy stress T is given
in (7). Specifically, for the integration algorithms it is assumed that the values Je(tn), B̄e(tn), κ(tn) and
β(tn) or β(tn) are known at the beginning of the time step t = tn . The numerical algorithms determine
the values Je(tn+1), B̄e(tn+1), κ(tn+1) and β(tn+1) or β(tn+1) at the end of the time step t = tn+1 with
increment 1t = tn+1− tn .

Motivated by the work in [Simo 1988; Rubin and Papes 2011], recall that the relative deformation
gradient Fr from the time t = tn , the relative dilatation Jr and the unimodular relative deformation
gradient F̄r, satisfy the equations

Ḟr = L Fr, Fr(tn)= I,

Jr = det Fr, J̇r = Jr(D : I), Jr(tn)= 1,

F̄r = J−1/3
r Fr,

˙̄Fr = L′ F̄r, F̄r(tn)= I .

(35)

In [Rubin 2020], a strongly objective estimate D̃ of the average deformation rate over the time step
was developed and is given by

D̃ =
1

31t
ln[Jr (tn+1)]I + D̃′, D̃′ =

1
21t

[
I −

{
3

B̄−1
r (tn+1) : I

}
B̄−1

r (tn+1)

]
, (36)

where B̄r(tn+1)= F̄r(tn+1)F̄T
r (tn+1). Moreover, using this expression the average effective total distor-

tional deformation rate ε̇ during the time step is approximated by

ε̇ ≈ ˙̃ε =

√
2
3 D̃′ : D̃′. (37)

5.2. Integration of Je, B̄e, κ , and εe
p. It is recalled from [Rubin and Cardiff 2017] that the exact solution

for Je is given by
Je(tn+1)= Jr(tn+1)Je(tn). (38)
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Also, using the elastic trial B̄∗e
B̄∗e = F̄r B̄e(tn)F̄T

r , (39)

it can be shown that its deviatoric part B̄′∗e satisfies the evolution equation

˙̄B′∗e = L′ B̄∗e + B̄∗e L′T − 2
3(B̄

′∗

e : D′)I . (40)

Also, taking the deviatoric part of the evolution equation (3) requires B̄′e to satisfy the evolution equation

˙̄B′e = L′ B̄e+ B̄e L′T − 2
3(B̄

′

e : D′)I −0 B̄′e . (41)

Then, approximating this equation by

˙̄B′e =
˙̄B′∗e −0 B̄′e, (42)

and using a backward Euler approximation of the derivative yields the solution

B̄′e(tn+1)=
B̄′∗e (tn+1)

1+10
= λB̄′∗e (tn+1), (43)

where 10 is defined by
10 =1t0(tn+1), (44)

and 0(tn+1) is the value of function 0 defined in (11) at the end of the time step. It can be seen that the
solution (43) is similar to the radial return algorithm proposed by [Wilkins 1963] with the final value of
elastic distortional deformation being a scalar time its elastic trial value. Once B̄′e(tn+1) is known, the
value B̄e(tn+1) can be determined by solving the cubic equation

det
[ 1

3α1 I + B̄′e(tn+1)
]
= 1 (45)

for α1, as discussed in [Rubin and Attia 1996; Hollenstein et al. 2013].
The evolution equation (16) for the isotropic hardening variable κ can be integrated using an backward

Euler estimate of the derivative to obtain

κ(tn+1)=
κ(tn)+m110κs+1tm2κa

1+m110+1tm2
. (46)

Also, the equivalent inelastic strain is determined by integrating the evolution equation

εp(tn+1)= εp(tn)+ 2
310λγ

∗

e . (47)

5.3. Integration of β. Using the Jaumann derivative (18), the evolution equation for the deviatoric tensor
β can be written in the form

β̇ =Wβ +βW T
+m30(βsU −β)−m4β. (48)

Now, following the work in [Rubin 2020], it is convenient to introduce the elastic trial value β∗, which
is the solution for β in the absence of inelasticity and thermal recovery, i.e.,

β̇∗ =Wβ∗+β∗W T
= Lβ∗+β∗LT

−
2
3(β
∗
: D)I − R, β∗(tn)= β(tn), (49)
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with

R = R(β∗, D)= Dβ∗+β∗D− 2
3(β
∗
: D)I . (50)

Equation (48) can then be approximated by

β̇ ≈ β̇∗+m30(βsU −β)−m4β . (51)

To solve (49), it is also convenient to introduce the auxiliary deviatoric tensor β ′, which satisfies the
equations

β = Frβ(tn)FT
r , β ′(tn)= β(tn),

˙
β ′ = Lβ ′+β ′LT

−
2
3(β
′
: D)I, (52)

and rewrite (49) in the approximate form

β̇∗ ≈
˙
β ′− R(β ′, D). (53)

Using a backward Euler approximation of the derivatives, (53) is integrated to obtain

β∗(tn+1)≈ α(β
′(tn+1)−1R), 1R =1t R(β ′(tn+1), D̃), α =

|β(tn)|

|β ′(tn+1)−1R|
, (54)

where the scalar α is a correction factor that ensures that the elastic trial β∗(tn+1) is consistent with a
pure rotation, since it has the same magnitude as β(tn).

Also, with the help of (20) and (43) it can be shown that

U(tn+1)= U∗ =
B̄′∗e
|B̄′∗e |

=

√
3
8

B̄′∗e
γ ∗e
, (55)

with

γ ∗e =
1
2

√
3
2 B̄′∗e : B̄′∗e . (56)

Finally, using a backward Euler approximation of the derivative in (51), the value β(tn+1) is determined
by

β(tn+1)=
β∗(tn+1)+m3βs10U(tn+1)

1+m310+m41t
, (57)

where 10 is defined by (44).

5.4. Integration of β. Using the fact that the Lode parameter U defined in (23) has the same value at
the end of the time step as its value based on the elastic trial solution

U (B̄′e(tn+1))=U∗(B̄′∗e )=
27 det B̄′∗e

16γ ∗3e
, (58)

the evolution equation (22) for the directional hardening parameter β can be integrated to obtain

β(tn+1)=
β(tn)+m3βs10U (tn+1)

1+m310+m41t
. (59)
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5.5. Determination of 10. The numerical approximations of the state variables above depend on the
increment 10, which has not been specified yet. If γ ∗e ≤ κ

∗H∗, where κ∗ and H∗ denote the values
of κ(tn+1) and H(tn+1) evaluated for 10 = 0, then the step is elastic and 10 = 0 holds. On the other
hand, if γ ∗e > κ

∗H∗, then the step is inelastic, and 10 needs to be determined by solving (44), which
implicitly defines 10, since the right-hand side of (44) is a function of the updated state variables that
in turn depend on 10. In the present work, (44) is solved through a Newton–Raphson scheme.

5.6. Strong objectivity. These numerical estimates Je(tn+1), B̄e(tn+1), κ(tn+1), β(tn+1) and β(tn+1) are
strongly objective in the sense discussed in [Papes 2012] and [Rubin and Papes 2011] since they satisfy
the same transformation under SRBM as the exact values

J+e (tn+1)= Je(tn+1), B̄+e (tn+1)= Q B̄e(tn+1)QT , (60)

κ+(tn+1)= κ(tn+1), β+(tn+1)= Qβ(tn+1)QT , β+(tn+1)= β(tn+1), (61)

for arbitrary SRBM.

5.7. Algorithmic tangent stiffness. In the derivation of the algorithmic (consistent) tangent stiffness
below, entities are understood as pertaining to the end of the time step, i.e., t = tn+1, unless otherwise
specified. To simplify the notation, two tensor operators are introduced:

(Q⊗ R)i jkl = Qi j Rkl, (62)

(Q⊕ R)i jkl =
1
2(Qik R jl + Ril Q jk). (63)

The Kirchhoff stress is given by τ = JeT and is a function of Fr. The variation of τ is given by

δτ =
∂τ

∂Fr
: δFr =

[(
∂τ

∂Fr

)
FT

r

]
: (δFr F−1

r ). (64)

The consistent tangent modulus, C, is then identified as

C=
1
Je

(
∂τ

∂Fr

)
FT

r =
1
Je

[
K I ⊗

∂ Je

∂Fr
+µ

(
∂ B̄′e
∂Fr

)]
FT

r . (65)

A few simplifications are made when deriving the consistent tangent modulus. In practice, the fac-
tor α in (54) is close to unity, and the influence of α on the algorithmic stiffness is therefore ignored.
Furthermore, the approximation of D is replaced by the simpler expression [Hollenstein et al. 2013]

D ≈ 1
21t

(Br− I), (66)

where Br = Fr FT
r . However, the forms (36) and (54) are used in evaluating the constitutive equations.

Recalling that the current value of Je is given by Je = Je(t1)Jr, it follows that

∂ Je

∂Fr
FT

r = Je(t1)
∂ Jr

∂Fr
FT

r = Je(t1)Jr F−T
r FT

r = Je I . (67)

The second term in (65) is given by(
∂ B̄′e
∂Fr

)
FT

r = ∂(λB̄′∗e )∂Fr FT
r =−λ

2 B̄′∗e ⊗
(
∂(10)

∂Fr
FT

r

)
+ λ

(
∂ B̄′∗e
∂Fr

)
FT

r . (68)
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For the last derivative in the expression above, it is first noted that(
∂ B̄∗e
∂Fr

)
=−

2
3 B̄∗e ⊗ F−T

r +
1

J 2/3
r

∂[Fr B̄e(t1)FT
r ]

∂Fr
, (69)

and that
∂[Fr B̄e(t1)FT

r ]

∂Fr
= 2(I ⊕ Fr)B̄e(t1). (70)

A fourth-order tensor D1 is then defined as

D1 =

(
∂ B̄′∗e
∂Fr

)
FT

r = 2I ⊕ B̄∗e −
2
3(I ⊗ B̄∗e + B̄∗e ⊗ I)+ 2

9(B̄
∗

e : I)I ⊗ I . (71)

Differentiation of 10 in (44) yields(
1+ λζ1+

ζ1ζ2

κ

)
δ(10)=

10

ε̇
δε̇+

ζ1

γ ∗e
δγ ∗e −

ζ1

H
δH, (72)

where

δε̇ =
2
3ε̇

D′ :
(
∂D′
∂Fr

)
: δFr, (73)(

∂D′
∂Fr

)
=

1
1t

(
I ⊕ Fr−

1
3 I ⊗ Fr

)
, (74)

δγ ∗e =
3

8γ ∗e
B̄′∗e :

(
∂ B̄′∗e
∂Fr

)
: δFr, (75)

and

ζ1 =
b1ε̇1tκH

γe
, ζ2 =

dκ
d(10)

=
m1(κs− κ)

1+m110+m21t
. (76)

For the scalar model (model S) it follows that

δH = δHS =Uδβ +βδU =Uζ3δ(10)+ (β + ζ4U )δU, (77)
where

ζ3 =
dβ

d(10)
=

m3(βsU −β)
1+m310+m41t

, ζ4 =
m3βs10

1+m310+m41t
, (78)

and

δU = MS :

(
∂ B̄′∗e
∂Fr

)
: δFr, (79)

where

MS =U
(

B̄′∗−1
e −

9
8γ ∗2e

B̄′∗e

)
. (80)

For the tensorial model (model T) it follows that

δH = δHT = U : δβ +β : δU = ζ5U : δβ∗+U : MTδ(10)+ (β + ζ4U) : δU, (81)
where

ζ5 =
1

1+m310+m41t
, MT =

m3(βsU −β)
1+m310+m41t

. (82)
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Moreover, we have

δβ∗ =
(
∂β∗

∂Fr

)
: δFr,(

∂β∗

∂Fr

)
=
(
2I − 1

2 Br
)( ∂β ′
∂Fr

)
+

1
3 I ⊗[Br :

(
∂β ′

∂Fr

)
+ 2β ′Fr] − I ⊕ (β ′Fr)−β

′
⊕ Fr, (83)(

∂β ′

∂Fr

)
= 2

(
I ⊕ Fr−

1
3 I ⊗ Fr

)
β(tn), (84)

δU =MT :

(
∂ B̄′∗e
∂Fr

)
: δFr, (85)

MT =

√
3
8

1
γ ∗e

(
I−

3
8γ ∗2e

B̄′∗e ⊗ B̄′∗e

)
, (86)

where I= I ⊕ I is the fourth-order unit tensor. This finally gives

∂(10)

∂Fr
FT

r = H =
κ

ζ6

{
210Hγ ∗2e

3
D′ : D2+ ζ1ε̇

2
[3H

8
B̄′∗e − γ

∗2
e N1,S/T

]
: D1− N2,S/T

}
, (87)

where

ζ6 = ε̇
2γ ∗2e (κH + ζ1λκH + ζ1ζ2 H + NS/T), (88)

D2 =

(
∂D′
∂Fr

)
FT

r =
1
1t
[
I ⊕ Br−

1
3 I ⊗ Br

]
, (89)

NS = ζ1ζ3κU, NT = ζ1κU : MT, (90)

N1,S = (β + ζ4U )MS, N1,T = (β + ζ4U) :MT, (91)

N2,S = 0, N2,T = ζ1ζ5ε̇
2γ ∗2e U : D3, (92)

D3 =

(
∂β∗

∂Fr

)
FT

r = 4
(
I ⊕β − 1

3 I ⊗β
)
+ I ⊕ (β ′Br+ Brβ

′)

+β⊕ Br+ Br⊕β −
2
3 Br⊗β +

2
3 I ⊗ (B′rβ +β

′Br). (93)

Above, the entities (•)S/T take on the values (•)S and (•)T for model S and model T, respectively. It then
follows that (

∂ B̄′e
∂Fr

)
FT

r = H= λ

(
∂ B̄′∗e
∂Fr

)
FT

r − λ
2 B̄′∗e ⊗

∂(10)

∂Fr
FT

r = λD1− λ
2 B̄′∗e ⊗ H . (94)

The total mechanical stiffness is then given by

C= K I ⊗ I + µ

Je
H. (95)

6. Examples

6.1. Prerequisites. The stress response and evolution of relevant state variables for different loading
paths and cases are now considered. The components, Ti j of the stress tensor T referred to the fixed
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rectangular Cartesian base vectors ei are defined by

Ti j = T : ei ⊗ e j , (96)

with a⊗ b denoting the tensor product between the two vectors a and b. The following examples consider
steel at room temperature with thermal recovery inactive so that

m2 = m4 = 0. (97)

In addition, the material is assumed to be initially in a zero-stress fully annealed state with the initial
conditions specified by:

Je(0)= 1, B̄e(0)= I, κ(0)= κa, β(0)= 0, β(0)= 0. (98)

6.2. Cyclic uniaxial stress loading — comparison with experiments. For cyclic uniaxial stress loading,
the deformation gradient F is specified by

F = ae1⊗ e1+ b(e2⊗ e2+ e3⊗ e3), (99)

where a is the stretch in the loading direction and b is the lateral stretch. The axial stretch a is a specified
function of time only and the lateral stretch b is determined by the lateral boundary condition

T22 = 0, (100)

where it is noted that T33 = T22 for this deformation.
Figure 4 considers uniaxial tension to different extensions a − 1 followed by reverse loadings into

compression. The experimental data for austenitic stainless steel (316L) at room temperature is taken
from [Choteau et al. 2005] and is denoted by symbols. It should be noted that for this case of uniaxial
stress, models T and S predict exactly the same response for the same material constants. The following
model material constants

µ= 69 GPa, K = 167 GPa, b1 = 2.5 · 103, m1 = 0.0017,

κa = 0.0012, κs = 0.01, m3 = 0.15, βs = 0.35,
(101)

have been calibrated, and the results in Figure 4 show excellent comparison of model predictions to the
experimental data.

6.3. Cyclic loading with simple deformation modes. For the remaining examples in this paper, the ma-
terial constants are specified by

µ= 77 GPa, K = 167 GPa, b1 = 105, m1 = 0.001,

κa = 0.002, κs = 0.012, m3 = 0.2, βs = 0.3.
(102)

Also, in this subsection attention is limited to isochoric deformation with the deformation gradient F
specified by

F = ae1⊗ e1+

(
aγ e1+

1
√

a
e2

)
⊗ e2+

1
√

a
e3⊗ e3, Je = det F = 1, (103)
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Figure 4. Material response for cyclic uniaxial stress with loading up to different max-
imum extensions a− 1 followed by reversed loading; data from [Choteau et al. 2005]
(symbols) for austenitic stainless steel (316L) together with the calibrated model re-
sponses (solid lines).

where a and γ are functions of time only. Using this expression it can be shown that the rate of defor-
mation tensor D and the spin tensor W can be expressed in the forms

D = ȧ
a
[
e1⊗ e1−

1
2(e2⊗ e2+ e3⊗ e3)

]
+

1
2a3/2γ̇ (e1⊗ e2+ e2⊗ e1),

W = 1
2a3/2γ̇ (e1⊗ e2− e2⊗ e1).

(104)

From these expressions is can be seen that a controls the rates of stretching of material fibers and γ
controls shearing.

Two modes of simple deformation are considered:

(1) cyclic isochoric extension and contraction, and

(2) simple shear.

For cyclic isochoric extension and contraction, a and γ are specified by

a = 1+ 0.1 sin(2π t), γ = 0. (105)

In particular, for this loading it can be shown that

B̄e = a2
e e1⊗ e1+

1
ae
(e2⊗ e2+ e3⊗ e3),

N ′ =
√

2
3

[
e1⊗ e1−

1
2(e2⊗ e2+ e3⊗ e3)

]
, (106)

B̄′e = Be N ′, Be =

√
2
3

(
a2

e −
1
ae

)
,

U = sign(Be), U =U N ′, β = βN ′,
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Figure 5. Isochoric extension and contraction: model T (solid blue lines) and S (dashed
red lines). Left: stress-strain response. Right: evolution of βU and β : U vs. strain.

where the function sign(x) is defined by

sign(x)=


−1 for x < 0,

0 for x = 0,
1 for x > 0.

(107)

Using these expressions with U and U being constants, it follows that the tensorial evolution equation
(48) for β yields the same equation for β as the scalar equation (22). Also, the expressions (19) for
the tensorial model and (25) for the scalar model yield the same value of H . Consequently, the two
models yield exactly the same results for cyclic isochoric extension and contraction. This is illustrated in
Figure 5. The tensorial model and the scalar-based model predict exactly the same stress-strain response
in Figure 5, left, and also the same evolution for H in Figure 5, right. Even though it is not evident from
Figure 5, right, it should be noted that the evolution of β vanishes during elastic deformation.

The main difference between the scalar model of directional hardening and the tensorial model can
be seen for cyclic pure shear (TOR) for which U vanishes. For this loading, the scalar model exhibits
no Bauschinger effect, whereas the tensorial model does. Although pure shear and simple shear are not
identical, the following example considered cyclic simple shear specified by

a = 1, γ = 0.1 sin(2π t), (108)

to demonstrate the differences between the models.
Figure 6 shows the stress-strain response and the evolution of the relevant state variables for directional

hardening for the two models. From Figure 6, left, it is evident that directional hardening is present in the
tensorial model, whereas the scalar model only exhibits isotropic hardening for this load case. The reason
is that for this load case, the loading variable U is close to zero, implying that directional hardening is not
activated in the scalar model. This is further illustrated in Figure 6, right, where β : U evolves whereas
βU for the scalar model remains close to zero. There is, in fact, some evolution of β due to the fact
that for large deformations and nonlinear kinematics, U is not exactly zero, but β remains very small in
comparison to β.
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Figure 6. Cyclic loading in simple shear: model T (solid blue lines) and model S (dashed
red lines). Left: stress-strain response. Right: evolution of βU and β : U vs. strain.

6.4. Cyclic extension and contraction followed by simple shear. A load case is now considered where
the material is first exposed to a cycle of isochoric extension and contraction, in accordance with the
paths in Figure 5. After that, the material is exposed to a cycle of simple shear, as discussed in the
previous subsection. In Figure 7, the stress-strain response and the evolution of the relevant directional
hardening variable during the shearing cycle are shown.

During the preceding extension/contraction cycle the material has accumulated both isotropic and
directional hardening. The evolution of the stress components T11, T22, and T33 is identical for models
T and S, i.e., these components quickly drop to zero (or close to zero) once the extension/contraction
loading mode ceases and the shearing mode is initiated. The shear stress curves in Figure 7, bottom-left,
show a higher amplitude than the corresponding curves without any preceding deformation shown in
Figure 6, left. In the tensorial model, directional hardening is accumulated in the variables β11, β22, and
β33 during the first isochoric extension/contraction. Hence, when the shear loading starts, the evolution of
β12 virtually starts from zero. This interaction causes an initial drop in β:U , as seen in Figure 7, bottom-
right. However, when β12 has accumulated some hardening, β:U soon starts to increase again. For the
scalar-based model, directional hardening is accumulated in β during the isochoric extension/contraction
cycle. During the shear loading, the hardening value decreases from 0.3 down to zero, since U is close
to zero for this load case.

6.5. Cyclic loading with complex a deformation mode. A load case is now considered where the mate-
rial is exposed to a more complex loading mode, i.e., a combination of isochoric extension and shearing.
For this case, the velocity gradient is specified in the form

L = D = D′ = D
√

3
2 [cos 2π t UE+ sin 2π t US],

UE =

√
2
3

[
e1⊗ e1−

1
2(e2⊗ e2+ e3⊗ e3)

]
,

US =
1
√

2
[e1⊗ e2+ e2⊗ e1],

(109)

UE : UE = 1, US : US = 1, UE : US = 0,
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Figure 7. Cyclic loading in simple shear that was preceded by one cycle of isochoric
extension and contraction: model T (solid blue lines) and model S (dashed red lines). Top
and bottom-left: stress-strain response. Bottom-right: evolution of βU and β : U vs. strain.

where D = 1s−1. The deformation gradient is then attained by integrating the evolution equation

Ḟ = L F, F(0)= I . (110)

In Figure 8, the outcome from the complex loading path is shown. The responses for T ′11, T ′22, and
T ′33 in Figure 8, top, for models T and S are virtually identical. The responses for T12 for models T and
S differ somewhat. Especially the stress peaks differ by about 100 MPa between models T and S. The
associated variations in βU and β:U are shown in Figure 8, bottom-right. In the beginning of the load
path, both β:U and βU quickly approach the saturation level βs = 0.3. The value of β:U then decreases
slowly during the rest of the loading cycle, whereas βU oscillates between βs and (approximately) zero.

6.6. Cyclic loading of a plate with a circular hole. As a last numerical example, cyclic deformation of
a plate with a circular hole is considered. In order to study this 3D problem, the material model was
implemented in Abaqus as a UMAT user subroutine. The geometry of the plate is shown in Figure 9.
The outer dimensions of the plate are given by Hp = 4cm and Bp = 2cm. The radius of the central hole
is Rp = 1cm, and the thickness of the plate is Tp = 2mm.
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stress vs. time response. Bottom-right: evolution of βU and β : U vs. time.

2Hp

2Rp 2Bp

δ

X1

X2

Figure 9. Geometry and loading of plate with a hole.

The plate (gray) is clamped between two rigid blocks (black). The lower block is fixed, whereas the
upper block moves with a pure translation, δ, relative to the lower block. The translation is defined by
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Figure 10. Distributions of σe at t = 0.25 s, 0.5 s, 0.75 s, and 1 s.

the velocities
δ̇1 = 4π cos(2π t)mm/s, δ̇2 = 4π sin(2π t)mm/s, t ∈ [0, 1], (111)

implying that the upper block moves in a circle, causing a combination of tension/compression and
shearing of the plate.

Wedge elements (i.e., triangular elements with thickness) with quadratic shape functions were used
in the finite element analyses, and the characteristic length of the elements close to the hole, where the
gradients of stress and strain are strongest, was 1 mm. One layer of elements was used in the thickness
(X3) direction of the plate. Due to symmetry, only half the plate was modeled in the through thickness
direction, the material was allowed to slide freely on the symmetry plane X3 = 0 and the surface of the
plate was traction free.

Figures 10–13 show results from the plate simulations. In Figure 10, the distribution of the von Mises
stress, σe, is shown at four different times. In general, the peaks in the stress fields are more pronounced
in the solutions for model T than for model S. Besides that, the patterns of the stress fields are very
similar for the two models. It can also be noted, that for this type of boundary condition, where the plate
is fixed to the rigid blocks, significant stress concentrations appear at the corners of the plate. In the areas
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at the hole where the highest stress peaks appear, the peak stress differs by about 100 MPa between the
two models.

In Figure 11, distributions of the functions for directional hardening, i.e., HT and HS, are shown. The
discrepancy between HT and HS is significant, where large areas of HT are more or less saturated with
HT ≈ 1+ βs = 1.3, whereas the distribution of HS doesn’t deviate much from unity. This observation
holds not only at the end of the simulation but also for the earlier stages of the simulation, as seen in the
upper images in Figure 11.

Figure 12 shows the distribution of the effective hardening, i.e., κH , for the two models and at the
same points in time as before. It can be seen, that the difference in total hardening is not as dramatic as
the difference in the H -function. This is also the reason why, in the end, the distributions of effective
stress for the two models in Figure 10 agree fairly well.

Finally, Figure 13 shows the distributions of the accumulated equivalent inelastic strain εp. By defini-
tion, this entity can only increase at a material point. The distribution of this entity is very similar for the
two models, not only in the final state of the analysis, but throughout the analysis. Again, the corners of
the plate experience stress concentrations with large cyclic shear stresses, which cause large amounts of
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Figure 12. Distributions of (left) κHT and (right) κHS at t = 0.25 s, 0.5 s, 0.75 s, and 1 s.

accumulated inelastic strain. Peaks in the equivalent inelastic strain also appear to the left and right of
the hole. The magnitude of these peaks is more or less the same for the two models.

7. Discussion and concluding remarks

One approach to modeling the Bauschinger effect is to introduce a history-dependent back-stress tensor
with the stress in a yield function replaced by the difference of the stress and the back-stress. Directional
hardening is an alternative approach which introduces a history-dependent directional hardening tensor
β with the effective hardening being a function of isotropic hardening κ and the inner product of β with
a normalized stress (or elastic deformation) tensor. The main idea of the present work is to propose a
simplified version of directional hardening which introduces a history-dependent directional hardening
scalar instead of a history-dependent directional hardening tensor. To test this idea, the predictions of
scalar model are compared with those of the tensorial model.

Example problems indicate that the two models predict the same response for cyclic proportional
triaxial extension and triaxial compression loadings. In contrast, for cyclic proportional pure torsion
loading the tensorial model predicts a Bauschinger effect but the scalar model does not. However, in
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Figure 13. Distributions of equivalent plastic strain εp at t = 0.25 s, 0.5 s, 0.75 s, and 1 s.

practical problems the stress field is usually inhomogeneous so the material is not in a state of pure torsion.
Consequently, additional examples with complex nonproportional loading paths were considered which
indicate that the discrepancy between the two models in terms of stress levels is not dramatic. For the
3D analysis of a plate with a hole, the amplitudes of the peak stresses around the hole differed by less
than 10% between the two models even though the value of βs = 0.3 would indicate a potential effective
yield stress κH in the range of 0.7κ ≤ κH ≤ 1.3κ .

Strongly objective numerical algorithms were developed to integrate the evolution equations for both
models. Also, a consistent tangent operator was developed for both models. Obviously, the numerical
implementation of the scalar model is significantly less complicated than for the tensorial model. Overall,
the scalar model accounts for directional hardening fairly well and the simplicity of the model makes it
an attractive option to add to isotropic hardening models.
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CLOSED-FORM SOLUTIONS FOR AN EDGE DISLOCATION INTERACTING
WITH A PARABOLIC OR ELLIPTICAL ELASTIC INHOMOGENEITY

HAVING THE SAME SHEAR MODULUS AS THE MATRIX

XU WANG AND PETER SCHIAVONE

We use complex variable methods to derive closed-form solutions to the problems of an edge dislocation
interacting with a parabolic or elliptical elastic inhomogeneity embedded inside an infinite elastic matrix.
The inhomogeneity and the matrix have the same shear modulus but distinct Poisson’s ratios. The edge
dislocation can be located in the matrix, in the elastic inhomogeneity or precisely on the parabolic or
elliptical interface. Explicit expressions of the image force acting on the edge dislocation as a result of
its interaction with the parabolic or elliptical elastic inhomogeneity are presented. Our analyses indicate
that the image force on an edge dislocation inside a parabolic or an elliptical elastic inhomogeneity is
invariant with the direction of the Burgers vector of the edge dislocation.

1. Introduction

Green’s functions for composites subjected to a line dislocation and/or a line force have been studied
extensively by many investigators (see, for example, [Dundurs 1969; Stagni 1982; 1993; 1999; Warren
1983; Stagni and Lizzio 1983; Suo 1989; 1990; Tsuchida et al. 1991; Gong and Meguid 1994; Qaissaunee
and Santare 1995; Yen et al. 1995; Ting 1996; Chen 1996; Wang and Sudak 2006; Wang 2015; Shi and
Li 2006]). It appears that exact and closed-form representations of Green’s functions exist only in cases
involving two bonded isotropic or anisotropic elastic half-planes and for problems involving circular
isotropic elastic inhomogeneities [Dundurs 1969; Ting 1996; Wang 2015]. Series-form representations of
Green’s functions are available for elliptical and nonelliptical elastic inhomogeneities [Stagni 1982; 1993;
1999; Warren 1983; Stagni and Lizzio 1983; Tsuchida et al. 1991; Gong and Meguid 1994; Qaissaunee
and Santare 1995; Yen et al. 1995; Ting 1996; Chen 1996; Wang and Sudak 2006].

In this paper, we study the plane problems associated with an edge dislocation interacting with a
parabolic or elliptical elastic inhomogeneity. The edge dislocation can be located in the matrix, in the
elastic inhomogeneity or even on the parabolic or elliptical interface. Using Kolosov–Muskhelishvili’s
complex variable formulation [Muskhelishvili 1953], we demonstrate that elementary closed-form so-
lutions can still be obtained when the elastic inhomogeneity and the matrix have equal shear moduli
but distinct Poisson’s ratios. Using the Peach–Koehler formula [Dundurs 1969], explicit expressions of
the image force acting on the edge dislocation are presented. Some interesting features of the image
force are observed, especially when the edge dislocation lies inside the elastic inhomogeneity. The paper
is structured as follows. Kolosov–Muskhelishvili’s complex variable formulation is briefly reviewed in
Section 2. Closed-form solutions are derived in Section 3 for an edge dislocation interacting with a

Keywords: parabolic elastic inhomogeneity, elliptical elastic inhomogeneity, edge dislocation, image force, closed-form
solution.
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parabolic elastic inhomogeneity. Closed-form solutions are derived in Section 4 for an edge dislocation
interacting with an elliptical elastic inhomogeneity. In Section 5, we present a closed-form expression
of the image force on an edge dislocation inside an elastic inhomogeneity of arbitrary shape having
the same shear modulus as that of the matrix. In Section 6, we obtain a closed-from expression of
the image force on an edge dislocation in an infinite matrix reinforced by an elastic inhomogeneity of
arbitrary shape having the same shear modulus as that of the matrix. We summarize our findings and
conclusions in Section 7. We remark that since an edge dislocation is a defect in a crystalline solid, its
mobility and stability resulting from its interaction with an elastic inhomogeneity of parabolic, elliptical
or nonelliptical shape is of fundamental importance in understanding the mechanical properties of the
corresponding composite structure. In our case, this can be clearly observed from the obtained closed-
form expressions for the image force acting on the edge dislocation.

2. Kolosov–Muskhelishvili’s complex variable formulation

A Cartesian coordinate system {xi } (i = 1, 2, 3) is established. For the in-plane deformations of an
isotropic elastic material, the three in-plane stresses (σ11, σ22, σ12), two in-plane displacements (u1, u2)

and two stress functions (φ1, φ2) are given in terms of two analytic functions ϕ(z) and ψ(z) of the
complex variable z = x1+ ix2 as [Muskhelishvili 1953]

σ11+ σ22 = 2[ϕ′(z)+ϕ′(z)],

σ22− σ11+ 2iσ12 = 2[z̄ϕ′′(z)+ψ ′(z)],
(1)

2µ(u1+ iu2)= κϕ(z)− zϕ′(z)−ψ(z),

φ1+ iφ2 = i[ϕ(z)+ zϕ′(z)+ψ(z)],
(2)

where κ = 3− 4ν for plane strain and κ = (3− ν)/(1+ ν) for plane stress, µ and ν (0 ≤ ν ≤ 1/2) are
the shear modulus and Poisson’s ratio, respectively. In fact, energy considerations dictate that the range
of Poisson’s ratio can be relaxed to −1≤ ν ≤ 1/2: materials with a negative Poisson’s ratio are referred
to as ‘auxetic materials’ [Lakes 1987; Argatov et al. 2012]. In addition, the in-plane stresses are related
to the two stress functions through [Ting 1996]

σ11 =−φ1,2, σ12 = φ1,1, σ21 =−φ2,2, σ22 = φ2,1. (3)

In fact, the stress expressions in (1) can be obtained after differentiation of the stress functions in (2)2.
Thus, Equation (2) is fundamental to the formulation.

3. An edge dislocation interacting with a parabolic elastic inhomogeneity

3.1. Problem description. As shown in Figure 1, a parabolic elastic inhomogeneity, denoted by S1, is
perfectly bonded to the surrounding matrix, denoted by S2, through a parabolic interface L described by

L : x1 = H −
x2

2

4H
, H > 0. (4)

In addition, an edge dislocation with Burgers vector (b1, b2) is located at z = z0 = x0 + iy0 = reiθ

with x0 and y0 being the Cartesian coordinates of z0 whilst r and θ represent the polar coordinates of z0.
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Parabolic inhomogeneity S θ1

L: x  = H − x  /4H1

x1

0

x2

2
2

( µ, ν  )1

Matrix S2
( µ, ν   )2

H

r

z = z

Figure 1. An edge dislocation interacting with a parabolic elastic inhomogeneity. The
edge dislocation located at z = z0 can be in the matrix, in the inhomogeneity or just on
the parabolic interface.

Throughout the paper, subscript 1 and 2 are used to identify the respective quantities in S1 and S2 (we
remark that this notation clearly does not apply to the two components of the Burgers vector.) In order
to arrive at closed-form solutions, we assume that the parabolic inhomogeneity and the matrix have the
same shear modulus but distinct Poisson’s ratios (i.e., µ1 = µ2 = µ and ν1 6= ν2).

It follows from (2) that the conditions representing continuity of tractions and displacements across the
perfect parabolic interface L can be expressed in terms of the two pairs of analytic functions ϕi (z), ψi (z)
(i = 1, 2) as follows:

ϕ1(z)+ zϕ′1(z)+ψ1(z)= ϕ2(z)+ zϕ′2(z)+ψ2(z),

κ1ϕ1(z)− zϕ′1(z)−ψ1(z)= κ2ϕ2(z)− zϕ′2(z)−ψ2(z), z ∈ L .
(5)

Equation (5) can be conveniently rewritten in the form

ϕ1(z)=
κ2+ 1
κ1+ 1

ϕ2(z)=−
iµ(b1+ ib2)

π(κ1+ 1)
ln(z− z0), z ∈ S1 ∪ S2; (6)

ψ1(z)+
κ2− κ1

κ1+ 1
ϕ2(z)+

κ2− κ1

κ1+ 1
(z1/2
− 2H 1/2)2ϕ′2(z)= ψ2(z), z ∈ L . (7)

Equation (6) serves as an analytic continuation of the two analytic functions ϕ1(z) and ϕ2(z). In
writing (7), we have adopted the identity that z̄1/2

= 2H 1/2
− z1/2 for z ∈ L . This identity will also be

used in the following derivations. It remains to determine the two analytic functions ψ1(z) and ψ2(z)
through satisfaction of (7). In the ensuing three sections, ψ1(z) and ψ2(z) will be derived separately for
the three cases in which an edge dislocation is located in the matrix, in the parabolic inhomogeneity and
on the interface.
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3.2. An edge dislocation in the matrix. When the edge dislocation is located in the matrix, it follows
from (7) and the identity: ln(z̄− z̄0)= ln(z1/2

− z̄1/2
0 − 2H 1/2)+ ln(z1/2

+ z̄1/2
0 − 2H 1/2), z ∈ L that the

two analytic functions ψ1(z) and ψ2(z) can be determined explicitly as

ψ1(z)=
iµ(κ1− κ2)(b1− ib2)

π(κ1+ 1)(κ2+ 1)
ln[z− (z̄1/2

0 + 2H 1/2)2]

+
iµ(b1− ib2)

π(κ2+ 1)
ln(z− z0)+

iµ(b1+ ib2)

π(κ2+ 1)
z̄0

z− z0
+

iµ(κ2− κ1)(b1+ ib2)

π(κ1+ 1)(κ2+ 1)
(2H 1/2

− z1/2
0 )2

z− z0
,

z ∈ S1; (8)

ψ2(z)=
iµ(b1− ib2)

π(κ2+ 1)
ln(z− z0)+

iµ(b1+ ib2)

π(κ2+ 1)
z̄0

z− z0
+

iµ(κ2− κ1)(b1+ ib2)

π(κ1+ 1)(κ2+ 1)
4H 1/2

z1/2+ z1/2
0

+
iµ(κ2− κ1)(b1− ib2)

π(κ1+ 1)(κ2+ 1)
ln(z1/2

+ z̄1/2
0 − 2H 1/2)+

iµ(κ1− κ2)(b1− ib2)

π(κ1+ 1)(κ2+ 1)
ln(z1/2

+ z̄1/2
0 + 2H 1/2),

z ∈ S2, (9)

where the branch cut for z1/2 is chosen as the negative x1-axis. In obtaining (8) and (9), one must ensure
that ψ1(z) defined in the parabolic inhomogeneity is indeed an analytic function of z. The stresses in
the composite induced by the edge dislocation in the matrix can be arrived at by substituting (6), (8)
and (9) into (1). Using the Peach–Koehler formula [Dundurs 1969], the image force acting on the edge
dislocation can be explicitly determined as follows:

F1 =
H 1/2µ(κ2− κ1)

2πr3/2(κ1+ 1)(κ2+ 1)

[
(b2

2− b2
1) cos

3θ
2
− 2b1b2 sin

3θ
2
+

2r(b2
1+ b2

2)

r(1+ cos θ)− 2H
cos

θ

2

]
,

F2 =
H 1/2µ(κ2− κ1)

2πr3/2(κ1+ 1)(κ2+ 1)

[
(b2

2− b2
1) sin

3θ
2
+ 2b1b2 cos

3θ
2
+

2r(b2
1+ b2

2)

r(1+ cos θ)− 2H
sin

θ

2

]
,

(10)

where F1 and F2 are, respectively, the force components along the x1 and x2 directions. We see that the
image force in (10) varies with the direction of the vector (b1, b2).

When the edge dislocation lies on the x1-axis, Equation (10) becomes

F1 =
H 1/2µ(κ2− κ1)

2πr3/2(κ1+ 1)(κ2+ 1)

[
b2

2− b2
1+

r(b2
1+ b2

2)

r − H

]
, F2 =

H 1/2µ(κ2− κ1)b1b2

πr3/2(κ1+ 1)(κ2+ 1)
. (11)

When the edge dislocation approaches the vertex of the parabola L , Equation (11) reduces to

F1 =
µ(κ2− κ1)(b2

1+ b2
2)

2π(κ1+ 1)(κ2+ 1)(r − H)
, F2 =

µ(κ2− κ1)b1b2

πH(κ1+ 1)(κ2+ 1)
, as r→ H. (12)

The expression for F1 in (12) is simply the classical result for an edge dislocation interacting with a
planar bimaterial interface [Dundurs 1969]. On the other hand, when the edge dislocation lying on the
x1-axis is further from the parabola L , Equation (11) reduces to

F1 ∼=
H 1/2µ(κ2− κ1)b2

2

πr3/2(κ1+ 1)(κ2+ 1)
+ O(r−

5
2 ), F2 =

H 1/2µ(κ2− κ1)b1b2

πr3/2(κ1+ 1)(κ2+ 1)
, as r→∞, (13)
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which implies that the far-field asymptotic behavior of F1 is dominated by the b2 component of the
Burgers vector.

3.3. An edge dislocation in the parabolic inhomogeneity. When the edge dislocation is located in the
parabolic inhomogeneity, it follows from (7) that the two analytic functions ψ1(z) and ψ2(z) can be
explicitly determined as

ψ1(z)=
iµ(b1− ib2)

π(κ1+ 1)
ln(z− z0)+

iµ(b1+ ib2)

π(κ1+ 1)
z̄0

z− z0

+
iµ(κ1− κ2)(b1− ib2)

π(κ1+ 1)(κ2+ 1)
{ln[z− (z̄1/2

0 − 2H 1/2)2] + ln[z− (z̄1/2
0 + 2H 1/2)2]}, z ∈ S1; (14)

ψ2(z)=
iµ(b1− ib2)

π(κ1+ 1)
ln(z− z0)+

iµ(b1+ ib2)

π(κ1+ 1)
z̄0

z− z0
+

iµ(κ1− κ2)(b1+ ib2)

π(κ1+ 1)(κ2+ 1)
(z1/2
− 2H 1/2)2

z− z0

+
iµ(κ1− κ2)(b1− ib2)

π(κ1+ 1)(κ2+ 1)
[ln(z1/2

− z̄1/2
0 + 2H 1/2)+ ln(z1/2

+ z̄1/2
0 + 2H 1/2)], z ∈ S2. (15)

The stresses in the composite induced by the edge dislocation in the inhomogeneity can be arrived at
by substituting (6), (14) and (15) into (1). Using the Peach–Koehler formula, the image force acting on
the edge dislocation can be explicitly determined as follows

F1 =
2µ(κ1− κ2)(b2

1+ b2
2)

π(κ1+ 1)(κ2+ 1)
H

r2 sin2 θ + 4Hr cos θ − 4H 2
,

F2 =
µ(κ1− κ2)(b2

1+ b2
2)

π(κ1+ 1)(κ2+ 1)
r sin θ

r2 sin2 θ + 4Hr cos θ − 4H 2
,

(16)

which implies that the image force is invariant with the direction of the vector (b1, b2).
When the edge dislocation lies on the x1-axis, (16) becomes

F1 =
µ(κ2− κ1)(b2

1+ b2
2)

2π(κ1+ 1)(κ2+ 1)(H − x0)
, F2 = 0, −∞< x0 ≤ H. (17)

Interestingly, Equation (17) is always identical in form to the result for an edge dislocation near a planar
interface [Dundurs 1969]. We interpret from (17) that as far as the force on the edge dislocation is con-
cerned, an edge dislocation lying on the axis of symmetry of the parabola L can be treated as equivalent to
the same edge dislocation near a planar bimaterial interface at {x1 = H,−∞< x2 <+∞}. We illustrate
in Figure 2 the variation of F1 with an edge dislocation on the x1-axis. It is seen from Figure 2 and from
our previous analysis that as the edge dislocation is further away from the vertex of the parabola L , the
image force decays faster in the matrix than in the parabolic inhomogeneity, especially when b2 = 0.

3.4. An edge dislocation on the parabolic interface. When the edge dislocation is located precisely on
the parabolic interface with z1/2

0 + z̄1/2
0 = 2H 1/2, the two analytic functions ψ1(z) and ψ2(z) can be

obtained either from (8) and (9) or from (14) and (15) as

ψ1(z)=
iµ(b1− ib2)

π(κ2+ 1)
ln(z− z0)+

iµ(b1+ ib2)

π(κ1+ 1)
z̄0

z− z0
+

iµ(κ1− κ2)(b1− ib2)

π(κ1+ 1)(κ2+ 1)
ln[z− (z̄1/2

0 + 2H 1/2)2],

z ∈ S1; (18)
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Figure 2. Variation of the image force F1 on an edge dislocation on the x1-axis in the
matrix and in the parabolic inhomogeneity.

ψ2(z)=
iµ(b1− ib2)

π(κ1+ 1)
ln(z− z0)+

iµ(b1+ ib2)

π(κ2+ 1)
z̄0

z− z0
+

iµ(κ2− κ1)(b1+ ib2)

π(κ1+ 1)(κ2+ 1)
4H 1/2

z1/2+ z1/2
0

+
iµ(κ1− κ2)(b1− ib2)

π(κ1+ 1)(κ2+ 1)
[ln(z1/2

+ z1/2
0 )+ ln(z1/2

+ z̄1/2
0 + 2H 1/2)], z ∈ S2. (19)

The development of the (identical) expressions for the two analytic functions ψ1(z) and ψ2(z) in (18)
and (19) whether obtained from (8) and (9) (when the edge dislocation is located in the matrix) or from
(14) and (15) (when the edge dislocation lies inside the inhomogeneity) not only suggests the rationale
for the solutions derived in the following Secs. 4 and 5 but also confirms their correctness. The stresses
in the composite induced by the edge dislocation located precisely on the parabolic interface can be
obtained by substituting (6), (18) and (19) into (1).

4. An edge dislocation interacting with an elliptical elastic inhomogeneity

As shown in Figure 3, an elliptical elastic inhomogeneity, denoted by S1, is perfectly bonded to the
surrounding matrix, denoted by S2, through an elliptical interface L described by

L :
x2

1

a2 +
x2

2

b2 = 1, (20)

with a and b being the semi-major and semi-minor axes of the ellipse L , respectively. In addition, an
edge dislocation with Burgers vector (b1, b2) is located at z = z0 = x0+ iy0 with x0 and y0 being the
Cartesian coordinates of z0. As before, subscript 1 and 2 are used to identify the respective quantities
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Elliptical inhomogeneity S1
( µ, ν  )1

Matrix S2
( µ, ν   )2

0z = z

x1

x2

b

a

L: x  /a   + x  /b  = 11 2
2 22 2

Figure 3. An edge dislocation interacting with an elliptical elastic inhomogeneity. The
edge dislocation located at z = z0 can be in the matrix, in the inhomogeneity or just on
the elliptical interface.

in S1 and S2. The elliptical inhomogeneity and the matrix have the same shear modulus but different
Poisson’s ratios (i.e., µ1 = µ2 = µ and ν1 6= ν2).

After some algebraic operations, the continuity conditions of tractions and displacements across the
perfect elliptical interface L in (5) can be rewritten as

ϕ1(z)=
κ2+ 1
κ1+ 1

ϕ2(z)=−
iµ(b1+ ib2)

π(κ1+ 1)
ln(z− z0), z ∈ S1 ∪ S2; (21)

ψ1(z)+
κ2− κ1

κ1+ 1
ϕ2(z)+

κ2− κ1

κ1+ 1
D(z)ϕ′2(z)= ψ2(z), z ∈ L , (22)

where

z̄ = D(z)=
m+m−1

2
z+

m−m−1

2

√
z2− 4m R2, z ∈ L , (23)

with

R =
a+ b

2
,m =

a− b
a+ b

. (24)

When the edge dislocation is located in the matrix, it follows from (22) and the identity: ln(z̄− z̄0) =

ln[R(ξ−1
− ξ̄0)(1−mξ̄−1

0 ξ)], z ∈ L with

ξ = ω−1(z)=
1

2R

(
z+

√
z2− 4m R2

)
and ξ0 = ω

−1(z0)=
1

2R

(
z0+

√
z2

0− 4m R2)
that the two analytic functions ψ1(z) and ψ2(z) can be explicitly determined as
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ψ1(z)=
iµ(κ1− κ2)(b1− ib2)

π(κ1+ 1)(κ2+ 1)
ln(z− z1)

+
iµ(b1− ib2)

π(κ2+ 1)
ln(z− z0)+

iµ(b1+ ib2)

π(κ2+ 1)
z̄0

z− z0
+

iµ(κ2− κ1)(b1+ ib2)

π(κ1+ 1)(κ2+ 1)
D(z0)

z− z0
, z ∈ S1; (25)

ψ2(z)=
iµ(b1− ib2)

π(κ2+ 1)
ln(z− z0)+

iµ(b1+ ib2)

π(κ2+ 1)
z̄0

z− z0

+
iµ(κ1− κ2)(m−m−1)(b1+ ib2)

2π(κ1+ 1)(κ2+ 1)
z+ z0

√
z2− 4m R2+

√

z2
0− 4m R2

+
iµ(κ2− κ1)(b1− ib2)

π(κ1+ 1)(κ2+ 1)
ln
[

1−
ξ̄−1

0

ω−1(z)

]
+

iµ(κ1− κ2)(b1− ib2)

π(κ1+ 1)(κ2+ 1)
ln
[

1−
m2ξ̄−1

0

ω−1(z)

]
, z ∈ S2, (26)

where
z1 = R(m−1ξ̄0+m2ξ̄−1

0 ). (27)

By using the Peach–Koehler formula, the image force acting on the edge dislocation can be finally derived
as follows:

F1− iF2 =
R2µ(κ2− κ1)(1−m2)

π(κ1+ 1)(κ2+ 1)(z2
0− 4m R2)3/2

×

[
b2

2− b2
1− 2ib1b2+

4(b2
1+ b2

2)(z
2
0− 4m R2)|z0+

√

z2
0− 4m R2

|
2

(|z0+
√

z2
0− 4m R2

|2− 4m2 R2)(|z0+
√

z2
0− 4m R2

|2− 4R2)

]
, (28)

where F1 and F2 are respectively the force components along the x1 and x2 directions.
When an edge dislocation lying on the positive x1-axis approaches the elliptical interface, (28) becomes

F1 =
µ(κ2− κ1)(b2

1+ b2
2)

2π(κ1+ 1)(κ2+ 1)(x0− a)
, F2 =

2µ(κ2− κ1)b1b2

π(κ1+ 1)(κ2+ 1)b2/a
, x0→ a. (29)

The expression for F1 in (29) is just the result for an edge dislocation near a planar bimaterial interface
[Dundurs 1969], whilst the expression of F2 in (29) is consistent with that in (12) by considering the fact
that b2/a is the curvature radius of the ellipse at z = a and 2H is the curvature radius of the parabola at
the vertex.

On the other hand, when the edge dislocation is far from the interface, (28) reduces to

F1− iF2 =
R2µ(κ2− κ1)(1−m2)

π(κ1+ 1)(κ2+ 1)z3
0

[
b2

2

(
1+

z0

z̄0

)
− b2

1

(
1−

z0

z̄0

)
− 2ib1b2

]
, |z0| →∞. (30)

When m = 0 for a circular inhomogeneity, (28) simply reduces to the classical result in Equations (7.8)
and (7.9) by [Dundurs 1969].

When the edge dislocation is located inside the elliptical inhomogeneity, it follows from (22) that the
two analytic functions ψ1(z) and ψ2(z) can be explicitly determined as

ψ1(z)=
iµ(b1− ib2)

π(κ1+ 1)
ln(z−z0)+

iµ(b1+ ib2)

π(κ1+ 1)
z̄0

z− z0
+

iµ(κ1− κ2)(b1− ib2)

π(κ1+ 1)(κ2+ 1)
ln[(z−z1)(z−z2)],

z ∈ S1; (31)
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ψ2(z)=
iµ(b1− ib2)

π(κ1+ 1)
ln(z− z0)+

iµ(b1+ ib2)

π(κ1+ 1)
z̄0

z− z0
+

iµ(κ1− κ2)(b1+ ib2)

π(κ1+ 1)(κ2+ 1)
D(z)

z− z0

+
iµ(κ1− κ2)(b1− ib2)

π(κ1+ 1)(κ2+ 1)

[
ln
[

1−
m2ξ̄−1

0

ω−1(z)

]
+ ln[ω−1(z)−mξ̄0]

]
, z ∈ S2, (32)

where
ξ = ω−1(z)=

1
2R

(
z+

√
z2− 4m R2

)
, z1 = R(m−1ξ̄0+m2ξ̄−1

0 ),

ξ0 = ω
−1(z0)=

1
2R

(
z0+

√
z2

0− 4m R2), z2 = R(mξ̄0+ ξ̄
−1
0 ).

(33)

By using the Peach–Koehler formula, the image force acting on the edge dislocation can be finally derived
as follows

F1− iF2 =
µ(κ1− κ2)(b2

1+ b2
2)

π(κ1+ 1)(κ2+ 1)

(
1

z0− z1
+

1
z0− z2

)
, (34)

which implies that the image force is invariant with the direction of the vector (b1, b2). It will be seen in
the next section that the invariance of the image force with the direction of the Burger vector is invalid
for an edge dislocation inside an elastic inhomogeneity of nonelliptical shape having the same shear
modulus as that of the matrix.

When the edge dislocation lies on the x1-axis, (34) becomes

F1 =
µ(κ2− κ1)(b2

1+ b2
2)

π(κ1+ 1)(κ2+ 1)
x0

a2− x2
0
, F2 = 0, (35)

which is identical to that for an edge dislocation inside a circular elastic inhomogeneity of radius a
[Dundurs 1969]. Equation (35) implies that the semi-minor axis b exerts no influence on the image force
on an edge dislocation lying on the x1-axis inside the elliptical inhomogeneity.
When the edge dislocation lies on the x2-axis, (34) becomes

F2 =
µ(κ2− κ1)(b2

1+ b2
2)

π(κ1+ 1)(κ2+ 1)
y0

b2− y2
0
, F1 = 0, (36)

which is identical to that for an edge dislocation inside a circular elastic inhomogeneity of radius b
[Dundurs 1969]. Equation (36) implies that the semi-major axis a exerts no influence on the image force
on an edge dislocation lying on the x2-axis inside the elliptical inhomogeneity.
Through a limiting process, the two analytic functions ψ1(z) and ψ2(z) can be obtained for the case when
the edge dislocation just lies on the elliptical interface. The specific expressions are suppressed here.

5. An edge dislocation inside an elastic inhomogeneity of arbitrary shape

In this section, we consider an edge dislocation with Burgers vector (b1, b2) located at z = z0 inside
an elastic inhomogeneity of arbitrary shape (denoted as S1) perfectly bonded to the surrounding infinite
matrix (denoted as S2) through a sharp interface L . Here, we use the term “sharp interface” to mean an
interface with vanishing thickness between two dissimilar adjacent phases. As before, subscript 1 and 2
are used to identify the respective quantities in S1 and S2. The elastic inhomogeneity and the matrix have
the same shear modulus but different Poisson’s ratios.
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We consider the following conformal mapping function [England 1971]:

z = ω(ξ)= R
(
ξ +

N∑
n=1

anξ
−n
)
, ξ = ω−1(z), |ξ | ≥ 1, (37)

where R is a real scaling constant, and an, n = 1, 2, . . . , N are N complex constants.
By using the mapping function in (37), the exterior of the inhomogeneity is mapped onto the exterior

of the unit circle in the ξ -plane.
On the interface L , we have

z̄− z̄0 = Rξ−1

(
N∑

n=1

ānξ
n+1
− z̄0 R−1ξ + 1

)
= RāN ξ

−1
N+1∏
n=1

(ξ − ξn), z ∈ L , (38)

where ξn, n = 1, 2, . . . , N + 1, all of which are located outside the unit circle, are the N + 1 roots of the
following (N + 1)-order algebraic equation in ξ

N∑
n=1

ānξ
n+1
− z̄0 R−1ξ + 1= 0. (39)

Furthermore, the following relationship is also valid on the interface L

z̄
z− z0

= G(z), z ∈ L , (40)

where G(z) is analytic in the exterior of the inhomogeneity except infinity where it has a pole of finite
degree determined by its asymptotic behavior

G(z)∼= Q(z)+ O(1), |z| →∞, (41)

where Q(z) is a polynomial in z of (N − 1)-degree. Apparently, the polynomial Q(z) is non-constant for
a nonelliptical inhomogeneity with N ≥ 2 and is constant for an elliptical inhomogeneity with N = 1.

The analytic function φ1(z) defined in the inhomogeneity is still given by (21). Consequently, the
analytic function ψ1(z) defined in the inhomogeneity can be finally determined as

ψ1(z)=
iµ(b1− ib2)

π(κ1+ 1)
ln(z− z0)+

iµ(b1+ ib2)

π(κ1+ 1)
z̄0

z− z0

+
iµ(κ1− κ2)(b1− ib2)

π(κ1+ 1)(κ2+ 1)

N+1∑
n=1

ln(z− zn)+
iµ(κ2− κ1)(b1+ ib2)

π(κ1+ 1)(κ2+ 1)
Q(z), z ∈ S1,

(42)

where
zn = ω(ξn), n = 1, 2, . . . , N + 1. (43)

By using the Peach–Koehler formula, the image force acting on the edge dislocation is

F1− iF2 =
µ(κ1− κ2)

π(κ1+ 1)(κ2+ 1)

[
(b2

1+ b2
2)

N+1∑
n=1

1
z0− zn

− (b2
1− b2

2+ 2ib1b2)Q′(z0)

]
, (44)

so that the image force varies with the direction of the vector (b1, b2) for an inhomogeneity of nonellip-
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Figure 4. A rounded triangular interface L described by Equation (45).

tical shape. The image force is known once zn, n = 1, 2, . . . , N + 1 and Q′(z0) have been determined.
For example, we consider a rounded triangular interface in Figure 4 described by

z = ω(ξ)= R
(
ξ +

1
3ξ 2 +

1
45ξ 5

)
, |ξ | = 1. (45)

In this example, N = 5. The polynomial Q(z) is explicitly determined by

Q(z)=
z4
+ z0z3

+ z2
0z2

45R4 + z
(

z3
0

45R4 +
8

27R

)
. (46)

Thus, the term Q′(z0) can be easily determined by

Q′(z0)=
2z3

0

9R4 +
8

27R
. (47)

The image force on an edge dislocation on the x1-axis inside the rounded triangular inhomogeneity is
illustrated in Figure 5. It is seen from Figure 5 that: z0 =−0.1647R is an equilibrium position for an
edge dislocation with b2 = 0; whilst z0 = 0.2240R is an equilibrium position for an edge dislocation with
b1 = 0. The variance of the image force with the direction of the Burgers vector is also clearly reflected
in Figure 5.

6. An edge dislocation outside an elastic inhomogeneity of arbitrary shape

We now consider an edge dislocation with Burgers vector (b1, b2) located at z = z0 in an infinite matrix
(denoted as S2) perfectly bonded to an elastic inhomogeneity of arbitrary shape (denoted as S1) through
a sharp interface L . As before, subscript 1 and 2 are used to identify the respective quantities in S1 and
S2. The elastic inhomogeneity and the matrix have the same shear modulus but different Poisson’s ratios.
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Figure 5. The image force on an edge dislocation on the x1-axis inside the rounded
triangular inhomogeneity. F2 ≡ 0.

We consider the conformal mapping function [Muskhelishvili 1953; Jarczyk and Mityushev 2012]

z = ω(ξ)= R
M∑

n=1

cnξ
n, ξ = ω−1(z), |ξ | ≤ 1, (48)

where R is a real scaling constant, and cn, n = 1, 2, . . . ,M are M complex constants. Without losing
generality, one can set c1 = 1.

By using the mapping function in (48), the interior of the inhomogeneity is mapped onto the interior
of the unit circle in the ξ -plane.

On the interface L , the following relationship is valid

z̄− z̄0 =−ξ
−M
(

z̄0ξ
M
− R

M∑
n=1

c̄nξ
M−n

)
=−z̄0ξ

−M
M∏

n=1

(ξ − ξn), z ∈ L , (49)

where ξn, n = 1, 2, . . . ,M , all of which are located inside the unit circle, are the M roots of the following
M-order algebraic equation in ξ

z̄0ξ
M
− R

M∑
n=1

c̄nξ
M−n
= 0. (50)

The following relationship is also valid on the interface L:

z̄
z− z0

= H(z), z ∈ L , (51)
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where H(z) is analytic in the interior of the inhomogeneity except the point at z = 0 where it has a pole
of finite degree determined by its asymptotic behavior

H(z)∼= P(z)+ O(1), z→ 0, (52)

where P(z) is a polynomial in z−1 of degree M .
The analytic function φ2(z) defined in the matrix is still given by (21). Consequently, the analytic

function ψ2(z) defined in the matrix can be finally determined as

ψ2(z)=
iµ(b1− ib2)

π(κ2+ 1)
ln(z− z0)+

iµ(b1+ ib2)

π(κ2+ 1)
z̄0

z− z0

+
iµ(κ2− κ1)(b1− ib2)

π(κ1+ 1)(κ2+ 1)

M∑
n=1

ln
z− zn

z
+

iµ(κ1− κ2)(b1+ ib2)

π(κ1+ 1)(κ2+ 1)
P(z), z ∈ S2, (53)

where

zn = ω(ξn), n = 1, 2, . . . ,M. (54)

By using the Peach–Koehler formula, the image force acting on the edge dislocation is

F1− iF2 =
µ(κ2− κ1)

π(κ1+ 1)(κ2+ 1)

[
(b2

1+ b2
2)

M∑
n=1

zn

z0(z0− zn)
− (b2

1− b2
2+ 2ib1b2)P ′(z0)

]
, (55)

which also implies that the image force varies with the direction of the vector (b1, b2) when P ′(z0) 6= 0.
When M = 1 for a circular inhomogeneity, we have z1 = R2/z̄0 and P ′(z0)= R2/z3

0. In this special case,
(55) simply recovers the classical result in Equations (7.8) and (7.9) by [Dundurs 1969].

For example, as illustrated in Figure 6, we consider an interface described by

z = ω(ξ)= R(ξ + cξ 2), −1
2 ≤ c ≤ 1

2 , |ξ | = 1. (56)

In this example, M = 2. The two roots of Equation (50) can be explicitly given by

ξ1,2 =
R±

√
R2+ 4Rcz̄0

2z̄0
, |ξ1,2|< 1, (57)

and thus,

z1 =
cR3
+ R2 z̄0(2c2

+ 1)+ R(z̄0+ Rc)
√

R2+ 4Rcz̄0

2z̄2
0

,

z2 =
cR3
+ R2 z̄0(2c2

+ 1)− R(z̄0+ Rc)
√

R2+ 4Rcz̄0

2z̄2
0

.

(58)

In addition, the polynomial P(z) is determined by

P(z)=−
R2(1+ 2c2

+ Rz−1
0 c)

z0z
−

R3c
z0z2 . (59)
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Figure 6. Shapes of the interface described by (56) for different values of c.

Thus, the term P ′(z0) can be easily determined by

P ′(z0)=
R2z0(1+ 2c2)+ 3R3c

z4
0

. (60)

Consequently, the image force can be given explicitly by

F1− iF2

=
µ(κ2− κ1)

π(κ1+ 1)(κ2+ 1)

×

(
2R2z−1

0 (b2
1+ b2

2)[[cR+ z̄0(2c2
+ 1)][2z0 z̄2

0− cR3
− R2 z̄0(2c2

+ 1)] + R(z̄0+ Rc)2(R+ 4cz̄0)]

[2z0 z̄2
0− cR3− R2 z̄0(2c2+ 1)]2− R3(z̄0+ Rc)2(R+ 4cz̄0)

−R2z−4
0 (b2

1− b2
2+ 2ib1b2)[z0(1+ 2c2)+ 3Rc]

)
(61)

In particular, if we set c = 1/2 and z0 = R(2 + i), the image force on the edge dislocation can be
determined from (61) as follows:

F1 =
µ(κ2− κ1)(0.2704b2

1+ 0.2848b2
2− 0.3792b1b2)

πR(κ1+ 1)(κ2+ 1)
,

F2 =
µ(κ2− κ1)(−0.0345b2

1+ 0.3447b2
2+ 0.0144b1b2)

πR(κ1+ 1)(κ2+ 1)
.

(62)
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It can be seen from (60) and (61) that when the dislocation is located at the following particular point

z0 =−
3Rc

1+ 2c2 , 0.2779≤ |c| ≤ 0.5, (63)

the image force remains invariant with the direction of the Burgers vector and is given by

F1 =
µ(κ2− κ1)(b2

1+ b2
2)(2c2

+ 1)5

6πR(κ1+ 1)(κ2+ 1)c(c2− 1)(4c6+ 12c4+ 12c2− 1)
, F2 = 0. (64)

The component F1 in (64) becomes infinite as c→ ±0.2779 since now the edge dislocation just ap-
proaches the interface L in view of (56) and (63).

7. Conclusions

We have obtained simple and closed-form Green’s function solutions for an edge dislocation interacting
with a parabolic or elliptical elastic inhomogeneity under the assumption that the inhomogeneity and
the matrix have equal shear moduli. For the interaction between an edge dislocation and a parabolic
elastic inhomogeneity, the two analytic functions ψ1(z) and ψ2(z) are obtained in (8) and (9) for an
edge dislocation in the matrix, in (14) and (15) for an edge dislocation in the parabolic inhomogeneity
and in (18) and (19) for an edge dislocation located on the parabolic interface; the image force is given
by (10) when the dislocation lies in the matrix and by (16) when the dislocation lies in the parabolic
inhomogeneity. For the interaction between an edge dislocation and an elliptical elastic inhomogeneity,
the two analytic functions ψ1(z) and ψ2(z) are obtained in (25) and (26) for an edge dislocation in the
matrix, in (31) and (32) for an edge dislocation in the elliptical inhomogeneity; the image force is given
by (28) when the dislocation lies in the matrix and by (34) when the dislocation lies in the elliptical
inhomogeneity.

We have also obtained closed-form expressions in (44) and (55) for the image force on an edge
dislocation in the interior and exterior of an elastic inhomogeneity of arbitrary shape. It is stressed
that the mapping function in (37) that maps the exterior of an inhomogeneity onto the exterior of the unit
circle in the image plane is distinct from the one in (48) that maps the interior of an inhomogeneity onto
the interior of a unit circle in the image plane.
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