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APPROXIMATE CONFORMAL MAPPINGS AND ELASTICITY PROBLEMS
FOR NONCIRCULAR TUBES

DAMIR F. ABZALILOV, PYOTR N. IVANSHIN AND ELENA A. SHIROKOVA

We present a method for analytic stress evaluation in elliptic and oval tubes based on approximate con-
formal mappings from annuli onto oval and elliptical doubly connected domains. The approximate
conformal mapping is realized by the boundary reparametrization method. We also solve two elasticity
problems for such tubes.

1. Introduction

Elastic deformations of circular tubes always attracted attention of scientists [Yella Reddy and Reid 1979;
Moore 1990; Nayak and Mondal 2011]. Recently the researchers began to consider noncircular tubes
with flattened, quasi-triangular, quasi-square, elliptical, rectangular and hexagon cross sections [Baze-
hhouri and Rezaeepazhand 2012; Baroutaji et al. 2014]. Such tubes can serve, for example, as energy
absorbers in different mechanisms. Also the scientists analyzed the stresses in tubes under different load,
compression and twist deformations applying both FEM and analytical methods [Zheng et al. 2015;
Rizzetto et al. 2019]. Elliptic and oval tubes are manufactured and sold by different modern firms. The
developing analytic technique and the computer progress allow appearance of new analytical evaluation
methods of the tube characteristics.

We apply the boundary reparametrization method [Abzalilov and Shirokova 2017] for construction of
the approximate conformal mapping from an annulus onto a doubly connected domain and then consider
the analytical solution of some plane problems based on the analytic function theory [Muskhelishvili
1977]. Similar problem for a simply connected domain was solved in [Ivanshin and Shirokova 2016].
We apply the formulas of [Muskhelishvili 1977] for evaluation of the tubes torsion. We also consider the
3D element of the tubes with the oval and elliptic cuts and its deformation under bending.

The basic ideas of the boundary reparametrization method were presented in [Shirokova 2014] where
the author constructed a method of the unit disk conformal mapping onto a simply connected domain.
The boundary reparametrization method is based on application of an integral equation solution to find-
ing the reparametrization function t (θ), θ ∈ [0, 2π ]. This reparametrization function transformes the
representation z(t) of the given domain boundary to the boundary value z(t (θ)) of the function analytic
in some circular domain (e.g., the unit disk, the annulus, the unit disk with concentric circular slits). We
restore the analytic function in the circular domain via the Cauchy integral formula after we find the
boundary values of the function.

We find the approximate solution of the integral equation reducing the integral equation to an infinite
linear system and then to a truncated finite system. We reduce the Cauchy integral representation of

Keywords: conformal mapping, elasticity theory, stresses.

555

http://msp.org/jomms
https://doi.org/10.2140/jomms.2020.15-5
https://doi.org/10.2140/jomms.2020.15.555
http://msp.org


556 DAMIR F. ABZALILOV, PYOTR N. IVANSHIN AND ELENA A. SHIROKOVA

the analytic function in an annulus to a Laurent series in this annulus. We find the essential coefficients
of the Laurent series in order to construct the approximate analytic function in the form of a Laurent
polynomial applicable to further investigations.

2. Laurent polynomial approximate conformal mapping from an annulus onto
an oval cut and an elliptic cut

We approximately map the annuli onto the oval tube cross-section (Figure 1, left) and onto the elliptical
tube cross-section (Figure 1, right) applying the boundary reparametrization method [Abzalilov and
Shirokova 2017].

First we approximate the boundary curves – the interior curve z = z1(t), t ∈ [0, 2π ], and the exterior
curve z = z2(t), t ∈ [0, 2π ] – of each of the cross-sections by the Fourier polynomials

z j (t)=
T j∑

k=−T j

C j
k eikt , t ∈ [0, 2π ], j = 1, 2.

The boundary reparametrization method is to find the reparametrizing functions t j (θ), θ ∈ [0, 2π ], j =
1, 2, such that the expressions

T j∑
k=−T j

C j
k eikt j (θ) =

M j∑
k=−M j

D j
k eikθ , j = 1, 2,

are the boundary values (at the interior circle |ζ | = r and at the exterior circle |ζ | = 1) of a function
analytic in the annulus r < |ζ |< 1.

Consider a finite doubly-connected domain Dz bounded by the curves z = z j (t), t ∈ [0, 2π ], j = 1, 2.
We consider at first the analytic in the domain Dz function ζ(z) which maps the domain Dz to an annulus
Dζ = {ζ : r < |ζ |< 1} and the analytic in Dz function log z

ζ(z) . Let θs(t), s= 1, 2, be the polar angle of the
annulus boundary point corresponding to the boundary point zs(t) of the domain Dz . We introduce the
function qs(t)= arg zs(t)− θs(t), s = 1, 2. We apply the necessary and sufficient condition for log z

ζ(z)
to be analytic in Dz and obtain the integral Fredholm equation for the vector function (q1(t), q2(t)),
t ∈ [0, 2π ]:

qs(t)=−
2∑

j=1

1
π

∫ 2π

0
log
|z j (τ )|

R j

(
log |z j (τ )− zs(t)|

)′
τ

dτ +
2∑

j=1

1
π

∫ 2π

0
q j (τ )

(
arg[z j (τ )− zs(t)]

)′
τ

dτ,

s = 1, 2,

as in [Abzalilov and Shirokova 2017], where R1 = r , R2 = 1. Now the principal value singular integral
can be represented as

1
π

∫ 2π

0
log
|z j (τ )|

R j

(
log |z j (τ )− z j (t)|

)′
τ

dτ

≡
1

2π

∫ 2π

0
log
|z j (τ )|

R j
cot

τ − t
2

dτ +
1
π

∫ 2π

0
log
|z j (τ )|

R j
L j (τ, t) dτ ;
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Figure 1. Shape of the cross-section of the oval (left) and elliptical (right) tubes.

here the kernel L j (τ, t) is continuous. If the value of r were known, the integral

1
2π

∫ 2π

0
log
|z1(τ )|

r
cot

τ − t
2

dτ

could be calculated via the Hilbert formula. Similar integral equation was applied to find the function
q(t) and the reparametrizing function t (θ) in the case of a simply connected domain [Shirokova 2014].

We do not know the value of r in the case of a doubly connected domain. So we have to differentiate
both sides of the previous integral equation. After integrating the right-hand side of the resulting equation
by parts, we obtain the following relations on the functions q ′s(t):

q ′s(t)=−
1∑

j=0

1
π

∫ 2π

0
q ′j (τ )

(
arg[z j (τ )− zs(t)]

)′
t dτ +

1∑
j=0

1
π

∫ 2π

0
[log |z j (τ )|]

′
(
log |z j (τ )− zs(t)|

)′
t dτ,

s = 1, 2.

We separate the singularities in the kernel (log |zs(τ )− zs(t)|)′t in the form of cot τ−t
2 and obtain the

corresponding integrals with this principal value singular kernel exactly as it was described above.
The final integral equation can be represented as the Fredholm equation with an unknown vector

function M = (q ′1(s), q ′2(s)) in the form of M = AM + B. If the unknown functions have the form

q ′s(t)=
∞∑
j=1

α j,s cos j t +β j,s sin j t, t ∈ [0, 2π ], s = 1, 2.

we reduce the integral equation to the solution of an infinite linear system with unknown Fourier coef-
ficients of the functions q ′s(t), s = 1, 2. Then we reduce the infinite linear system to a truncated linear
system, a 2D generalization of the following result:

Lemma [Ivanshin and Shirokova 2016]. Let there exist the numbers j,m> 1 and a constant U > 0 so that∣∣∂ j+mG(τ, t)/∂t j∂τm
∣∣≤U and the function Y (t) possess the bounded second derivative: |Y ′′(t)|< T .

Then the approximate solution of the uniquely resolvable Fredholm integral equation of the second kind

X (t)=
∫ 2π

0
G(τ, t)X (τ ) dτ + Y (t),

where Y (t) is 2π periodic and G(τ, t) is 2π periodic with respect to both variables, can be reduced to
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the solution of a finite linear system with error estimated by O(1/N 2). Here N is the rank of the finite
linear system.

Now we obtain the monotone functions θs(t)= arg zs(t)−qs(t), s= 1, 2. Note that one of the functions
qs(t), s = 1, 2, can be restored via its derivative with an arbitrary constant summand, e.g. 0, but the other
one must contain the special constant summand, because the function log(z(ζ )/ζ )/ζ must be analytical
in the annulus Dζ . So the relation∫ 2π

0
q1(t)θ ′1(t) dt =−

∫ 2π

0
q2(t)θ ′2(t) dt

holds true due to Cauchy theorem. We put the expressions θs(t)= arg zs(t)− qs(t) into the last relation
and achieve the equality ∫ 2π

0
q1(t)(arg z1(t))′dt +

∫ 2π

0
q2(t)(arg z2(t))′dt = 0,

which determines the value of the constant summand for the second function qs(t) restored via its deriv-
ative.

After the relations between t and θ are found at the both boundary components we can obtain the
mapping function z(ζ ). We restore this function via its boundary values z(t (θ)) by the Cauchy integral
formula. This Cauchy integral and its derivatives vanish at the point ζ = 0. Therefore the inner radius r
of the annulus Dζ can be found via one of the formulas∫ 2π

0
z1(t)eikθ0(t)θ ′1(t) dt + r k

∫ 2π

0
z2(t)eikθ1(t)θ ′2(t) dt = 0, k = 1, 2, . . .

or by the least-squares method.
The Laurent series coefficients of the analytic function z(ζ ) mapping the annulus r < |ζ |< 1 onto the

domain Dz can be restored via the formulas

ck =
1

2π

∫ 2π

0
z1(t)e−ikθ1(t)θ ′0(t) dt, k = 0, 1, 2, . . . ,

c−k =−
r k

2π

∫ 2π

0
z1(t)eikθ1(t)θ ′1(t) dt, k = 1, 2, . . . .

We tested the reparametrization method in the approximate conformal mapping of the annulus given
by 2−

√
3< |ζ |< 1 onto the doubly connected domain Dz = {z

∣∣ |z|< 2, |z− 0.5|< 0.5}. The function

z = 2
ζ(2+

√
3)− 1

ζ − 2−
√

3
.

gives the exact conformal mapping of the annulus onto the given domain. We took the mapping polyno-
mial with 200 coefficients and compared the values of the exact mapping function and the approximate
mapping function at the points of the circle |ζ | = 0.5. The error was less than 0.0005.
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k ak bk k ak bk k ak bk

− 17 −0.00040 0.00001 −5 −0.00165 0.00354 7 −0.00911 0.01532
−15 0.00036 0.00002 −3 −0.04314 0.01779 9 0.00178 0.00723
−13 0.00088 0.00005 −1 0.39657 0.40846 11 0.00195 0.00368
−11 −0.00135 0.00013 1 1.52248 1.44051 13 −0.00121 0.00197
−9 −0.00112 0.00035 3 0.16082 0.12051 15 −0.00035 0.00109
− 7 0.00543 0.00103 5 0.00369 0.03707 17 0.00071 0.00061

Table 1. Coefficients of Laurent polynomial for oval cut and for the elliptical cut.

We apply the described reparametrization method for the oval domain and for the elliptical domain.
We find the following analytic functions. The function

zo(ζ )=

17∑
k=0

akζ
k
+

−1∑
k=−17

ak

(
ζ

ro

)k

maps approximately the annulus ro < |ζ |< 1, (ro = 0.87785) onto the given oval cross-section presented
in Figure 1, left. The function

ze(ζ )=

17∑
k=0

bkζ
k
+

−1∑
k=−17

bk

(
ζ

re

)k

maps approximately the annulus re < |ζ | < 1, (re = 0.87432) onto the given elliptical cross-section
presented on Figure 1, right. The coefficients ak and bk are presented in Table 1. The absolute values of
the Laurent coefficients vanish while the absolute values of their numbers increase. Therefore we take
the essential polynomial coefficients’ indices only in the range [−17, 17]. The other coefficients do not
bring significant difference to the results of calculations.

We apply these mappings to the solution of two elasticity theory problems.

3. Solution of the torsion problem for the oval tube and for the elliptical tube

We consider the boundary shear stresses on the exterior surfaces of the given tubes twisted in the plane
cross-sections over the center point of the cross-section. We base the torsion problem solution on relation
(13) of [Muskhelishvili 1977], Chapter 7: the value of the shear stress on the outer boundary of the
orthogonal cross-section of a tube is proportional to the expression

S(θ)=
1

|z′(eiθ )|
Im
[
eiθ(ϕ′(eiθ )− i z(eiθ )z′(eiθ )

)]
.

Here z(ζ ) is the Laurent polynomial mapping the corresponding annulus onto the tube cut and ϕ(ζ ) is
the analytic in the annulus function with the boundary condition

Imϕ(reiθ )= |z(reiθ )|2/2,

where r = 1 for each tube at the exterior boundary and r = ro for the oval tube or r = re for the elliptical
tube at the interior boundary.
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Figure 2. Stress S(θ) in the twisted oval (left) and elliptical (right) tubes.

The corresponding graphs of the function S(θ) for the oval and elliptical tubes are presented on
Figure 2.

We see that the boundary shear stress of each of the given tubes twisted in the plane x Oy over the cross-
section center of symmetry changes from its minimal value to its maximal value in small neighbourhoods
of four symmetrically located boundary points. The maximal shear stress values are larger for the oval
tube. So the oval tube is more destructible then the elliptical one under twisting.

4. Spline-interpolation solution of the bending problem for the oval tube and for the elliptical tube

Consider the stresses at the exterior surfaces of the tubes in the space (x, y, h) with the cut cross-sections
D parallel to the plane x Oy. Let the exterior surfaces of both tubes be fixed at the level h = 0 and the
shift in Ox direction on the exterior surfaces at the level h = H equal a. Such a deformation happens
when one bends the tube in Ox direction. We assume that the interior surfaces of the tubes are free
from stresses. For small values of H and a we apply the linear spline-interpolation method [Ivanshin
and Shirokova 2011; Shirokova 2004]. The linear spline-interpolation method of 3D elasticity problem
solution for a tube is to find the stresses in this tube when the displacement coordinates at the points of
a small segment D×[0, H ] are assumed to be linear over the coordinate h. The problem is reduced to
a set of mixed boundary value problems in an annulus.

According to the assumption the coordinates of the displacement vector take the form

u = u0(x, y)+ u1(x, y)h, v = v0(x, y)+ v1(x, y)h,

w = w0(x, y)+w1(x, y)h, (x, y) ∈ D, h ∈ [0, H ].
(1)

The interior surface null pressure assumption gives the relations

[σk1 cos(n, x)+ σk2 cos(n, y)+ σk3 cos(n, h)]x=x1(s),y=y1(s) = 0, k = 1, 2, 3,

for the points (x, y, h) on the interior surface of the tube segment, where σk j , k, j = 1, 2, 3, are tensor
components, n is the unit normal to the interior surface at the corresponding point. Note that cos(n, h)= 0
on the interior surface of the tube.
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Due to coordinate linearity (1) on h the latter relations take the following form for the points (x, y) =
(x1(s), y1(s)) of the interior boundary of D:{(

λ

[
∂u0

∂x
+
∂v0

∂y
+w1

]
+ 2µ

∂u0

∂x

)
dy1(s)−µ

(
∂u0

∂y
+
∂v0

∂x

)
dx1(s)

}
x=x1(s),y=y1(s)

= 0, (2)

{(
λ

[
∂u0

∂x
+
∂v0

∂y
+w1

]
+ 2µ

∂v0

∂y

)
dx1(s)−µ

(
∂u0

∂y
+
∂v0

∂x

)
dy1(s)

}
x=x1(s),y=y1(s)

= 0, (3)

{(
u1+

∂w0

∂x

)
dy1(s)−

(
v1+

∂w0

∂y

)
dx1(s)

}
x=x1(s),y=y1(s)

= 0, (4)

{(
λ

[
∂u1

∂x
+
∂v1

∂y

]
+ 2µ

∂u1

∂x

)
dy1(s)−µ

(
∂u1

∂y
+
∂v1

∂x

)
dx1(s)

}
x=x1(s),y=y1(s)

= 0, (5)

{(
λ

[
∂u1

∂x
+
∂v1

∂y

]
+ 2µ

∂v1

∂y

)
dx1(s)−µ

(
∂u1

∂y
+
∂v1

∂x

)
dy1(s)

}
x=x1(s),y=y1(s)

= 0, (6)

{
∂w1

∂x
dy1(s)−

∂w1

∂y
dx1(s)

}
x=x1(s),y=y1(s)

= 0, (7)

where λ and µ are Lame coefficients.
The boundary conditions on the exterior surface of the tube segment yield the following relations at

the points (x, y) = (x2(s), y2(s)) of the exterior boundary of D:

u0(x2(s), y2(s))= 0, v0(x2(s), y2(s))= 0, w0(x2(s), y2(s))= 0,

u1(x2(s), y2(s))H = a, v1(x2(s), y2(s))= 0, w1(x2(s), y2(s))= 0.

The equilibrium equations

∂σk1

∂x
+
∂σk2

∂y
+
∂σk3

∂h
= 0, k = 1, 2, 3,

must be met everywhere in the tube segment. Due to the displacement coordinates linearity in h the
equilibrium equations take the form

λ

{
∂2u0

∂x2 +
∂2v0

∂x∂y
+
∂w1

∂x
+

(
∂2u1

∂x2 +
∂2v1

∂x∂y

)
h
}
+µ

{
1∑

k=0

(
2
∂2uk

∂x2 +
∂2uk

∂y2 +
∂2vk

∂x∂y

)
hk
+
∂w1

∂x

}
= 0,

(8)

λ

{
∂2u0

∂x∂y
+
∂2v0

∂y2 +
∂w1

∂y
+ (

∂2u1

∂x∂y
+
∂2v1

∂y2 )h
}
+µ

{
1∑

k=0

(
2
∂2vk

∂y2 +
∂2uk

∂x∂y
+
∂2vk

∂x2

)
hk
+
∂w1

∂y

}
= 0,

(9)

λ

(
∂u1

∂x
+
∂v1

∂y

)
+µ

(
∂u1

∂x
+
∂v1

∂y
+
∂2w0

∂x2 +
∂2w0

∂y2 +

[
∂2w1

∂x2 +
∂2w1

∂y2

]
h
)
= 0. (10)
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The coefficients with h in relations (8) and (9) form the system
∂

∂x

[
(λ+ 2µ)

(
∂u1

∂x
+
∂v1

∂y

)]
−
∂

∂y

[
µ

(
∂v1

∂x
−
∂u1

∂y

)]
= 0,

∂

∂y

[
(λ+ 2µ)

(
∂u1

∂x
+
∂v1

∂y

)]
+
∂

∂x

[
µ

(
∂v1

∂x
−
∂u1

∂y

)]
= 0,

which is equivalent to the equation

∂

∂z

[
(λ+ 2µ)

(
∂u1

∂x
+
∂v1

∂y

)
+ iµ

(
∂v1

∂x
−
∂u1

∂y

)]
= 0,

where z = x + iy, z = x − iy. So

(λ+ 2µ)
(
∂u1

∂x
+
∂v1

∂y

)
+ iµ

(
∂v1

∂x
−
∂u1

∂y

)
= F1(z),

where F1(z) is a function analytical in D. Now we express the derivative ∂
∂z (u1+ iv1) in terms of F1

and obtain

u1(x, y)+ iv1(x, y)=
λ+ 3µ

4µ(λ+ 2µ)

∫
F1(z)dz−

λ+µ

4µ(λ+ 2µ)
zF1(z)+G1(z),

where G1(z) is a function analytical in D. Finally we have this representation of the plane displacement
vector u1+iv1, analogous to the plane displacement vector representation of [Muskhelishvili 1977]:

−2µ(u1(x, y)+ iv1(x, y))=−κ f1(z)+ z f ′1(z)+ g1(z),
where

λ+µ

2(λ+ 2µ)

∫
F1(z)dz ≡ f1(z), −2µG1(z)≡ g1(z),

λ+ 3µ
λ+µ

≡ κ.

The coefficient with h in (10) yields
∂2w1

∂x2 +
∂2w1

∂y2 = 0. So w1 = Re q1(z), where q1(z) is a function
analytical in D.

We have to restore the analytical in D functions f1(z), g1(z) and q1(z) using the boundary condi-
tions (5)–(7) on the interior boundary of D and using the given displacements u1(x2(s), y2(s))H = a,
v1(x2(s), y2(s))= 0, w1(x2(s), y2(s))= 0 at the exterior boundary of D.

So we have the following boundary conditions for the functions f1(z) and g1(z), which are analytical
in D:[

f1(z)+ z f ′1(z)+ g1(z)
]

z=x1(s)+iy1(s)
= 0,

[
−κ f1(z)+ z f ′1(z)+ g1(z)

]
z=x2(s)+iy2(s)

=−2µ
a
H
, (11)

The interior boundary condition in relation (11) is the boundary condition of the first boundary value
problem of the plane elasticity theory, the exterior boundary condition is the boundary condition of the
second boundary value problem of the plane elasticity theory [Muskhelishvili 1977].

We have the following boundary conditions for the function q1(z), analytical in D:

∂

∂n
[Re q1(z)]z=x1(s)+iy1(s) = 0, [Re q1(z))]z=x2(s)+iy2(s) = 0. (12)

The interior boundary condition in (12) is the Neumann condition for a harmonic function which can
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be rewritten as ∂
∂s [Im q1(z))]z=x1(s)+iy1(s) = 0; the exterior boundary condition is the Dirichlet boundary

condition for a harmonic function.
Clearly this boundary value problem has the solution f1(z)≡

2µa
(1+κ)H

, g1(z)≡−
2µa

(1+κ)H
, q1(z)≡ 0,

z ∈ D.
After restoring the components u1(x, y) ≡ a/H , v1(x, y) ≡ 0 and w1(x, y) ≡ 0 we reconstruct the

components u0(x, y), v0(x, y) and w0(x, y). To do this we apply the interior boundary conditions (2)–(4)
and the exterior boundary conditions u0(x2(s), y2(s))= 0, v0(x2(s), y2(s))= 0, w0(x2(s), y2(s))= 0 and
introduce functions f0(z), g0(z) and q0(z), analytical in D. We have for these functions the boundary
relations [

f0(z)+ z f ′0(z)+ g0(z)
]

z=x1(s)+iy1(s)
= 0,

∂

∂n
[Re q0(z)]z=x1(s)+iy1(s) =−

a
H
,[

−κ f0(z)+ z f ′0(z)+ g0(z)
]

z=x2(s)+iy2(s)
= 0, [Re q0(z)]z=x2(s)+iy2(s) = 0.

(13)

The boundary conditions in the left column of (13) yield f0(z) ≡ 0, g0(z) ≡ 0, so u0(x, y) ≡ 0,
v0(x, y) ≡ 0, but the problem of the function q0(z) restoration via boundary conditions (14) is not so
easy. Application of the additional mapping from an annulus to the domain D allows us to solve this
boundary value problem. Let z(ζ ) be the analytic function mapping the annulus r < |ζ | < 1 onto D.
Consider χ0(ζ ) = q0(z(ζ )). Now in order to restore the function χ0(ζ ) in the annulus r < |ζ | < 1 we
have the boundary conditions

[Re(ζχ ′0(ζ ))]z=reiθ =−
a
H
|z′(reiθ )|, Re(χ0(eiθ ))= 0.

This boundary value problem in the annulus is resolvable approximately through the relative series
expansion and coefficient comparison.

We consider z(ζ ) = zo(ζ ) for the oval tube, z(ζ ) = ze(ζ ) for the elliptical tube, r = ro for the oval
tube, r = re for the elliptical tube and examine the resulting exterior boundary stresses for the oval and
elliptical tubes.

We find the absolute value of the stress vector
√

σ 2
n1+ σ

2
n2 at the level h = 0 on the exterior surfaces

for both tubes and for κ = 2. The formula expressing the stresses value dependence on the polar angle is
100a Vo(θ)/H for the oval tube and 100a Ve(θ)/H for the elliptical tube. The graphs of Vo(θ) and Ve(θ)

are shown in Figure 3. The maximal absolute value of stress vector for the bent tube reaches maximum
both at the bending points and at the points opposite to them, this maximal value for the elliptical tube
is larger than that for the oval one but the difference is not essential.

a b

 0.04

 0.08

 0.12

0 1 2 3 4 5 6

Vo

θ
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 0.08

 0.12

0 1 2 3 4 5 6

θ

Ve

Figure 3. Stresses in the bent oval (left) and elliptical (right) tubes.
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5. Conclusion

The conformal mapping method presented here is computationally efficient for twisted and bent tubes
with noncircular cross-sections. It provides us with a Fourier polynomial mapping function. This ap-
proximate conformal mapping method makes it possible to apply the conformal mapping approach to
many problems of elasticity.
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MAGNETORHEOLOGICAL ELASTOMER ISOLATOR IN COMPRESSION MODE
FOR IMU VIBRATION ISOLATION

YANG FUFENG AND TAO YU

Magnetorheological elastomer (MRE) is a new class of smart materials, whose mechanical properties
can be continuously and rapidly controlled by an applied magnetic field. A compression MRE isolator
was designed and fabricated. The mechanical tests were conducted by instron. The dynamic properties
of MRE isolator were studied by frequency sweeping tests, using vibration table under 1 g acceleration
excitation with different currents. The peak value of the transmissibility was decreased by 29.7% and the
natural frequency of the single degree of freedom (SDOF) system approximately increased by 18.54%
while the current varied from 0.0 A to 4.0 A. Moreover, the equivalent stiffness and damping coefficients
were identified from experimental data. In order to further evaluate the effectiveness of MRE isolator
for vibration control, the SDOF inertial measurement unit (IMU) isolation system was simulated under
random vibration conditions. The peak acceleration of power spectral density (PSD) was decreased
by 48.8% when applying a series of constant currents. The study verifies that the compression MRE
isolator is capable of increasing system stiffness, changing system natural frequency and decreasing
system vibration.

1. Introduction

Vibration isolation is the most popular structures protection technique for many engineering structures.
However, research has revealed that the traditional passive vibration isolation systems, due to the passive
nature, are inable to adapt to changes in structural parameters over time, which results in reduced per-
formance. Any changes of the mechanical system such as varying mass or uncertain external excitations
and disturbances are not well supported by a passive isolation system. A great deal of efforts have been
dedicated to improve the performance of the traditional passive vibration isolation system. A series
of research efforts have been made for the development of novel adaptive vibration isolators utilizing
magnetorheological elastomers (MREs) [Brancati et al. 2017; Tao et al. 2019; Yang et al. 2016]. MRE is
a type of smart rubber, generally fabricated by dispersing magnetized particles in a solid polymer medium
such as natural rubber and curing under an applied magnetic field, which causes the magnetic particles
to align in chains. The elastic modulus or stiffness of MRE increases monotonically with the applied
magnetic field. This unique and controllable stiffness property of MREs offers a great opportunity for
the development of adaptive vibration isolators [Liao et al. 2012; Behrooz et al. 2014]. The tunable
automotive mounts and bushings based on MRE were developed in [Ginder et al. 2000]. They found
that the suspension resonances excited by torque variation could be suppressed by shifting the resonance
away from the excitation frequency. Another similar adaptive tuned vibration buffer based on MRE was
studied in [Deng et al. 2006]. MRE are currently being researched by many industries including the

Keywords: vibration isolation, magnetorheological elastomer, isolator, dynamics.
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Figure 1. Schematic configuration and photograph of MRE with shear deformation
[Dong et al. 2009].

Figure 2. Schematic configuration and photograph of MRE with compression deforma-
tion [Kallio 2005].

automotive, building, and space industries. Such as, space applications include isolation of payloads
from rocket stages during launch and isolation of mirrors in space telescopes.

There is a wide variety of non-magnetic matrices of MREs, like natural rubbers, silicone rubbers and
polyurethanes with a varying filler volume fraction. MREs can be classified into two types: isotropic and
anisotropic. Isotropic MRE is a homogeneous mixture of host matrix and magnetic particles. Anisotropic
MRE is fabricated by aligning the magnetic particles into a chain-like structure when cured with an ap-
plied magnetic field. Under the influence of a magnetic field the MRE becomes stiffer due to decreased
distance between the magnetic particles. The effect is usable for the applications of vibration isolation.
The MRE magnetostrictive effect is the most important feature for the vibration control application.
Shearing of the cured composite in the presence of a magnetic field causes MRE work dependent shear
modulus. Aligned MREs are shown to have a field dependent shear modulus, but the other elastic prop-
erties are still quite unexplored, especially when the MREs are measured without the applied magnetic
field. As shown in Figure 1, the shear deformation of MRE appears by the motion of the piston. The
magnetic field exists in the MRE which is perpendicular to the motion of the piston after the current is
applied to the coil [Dong et al. 2009].

As the same, aligned MREs are shown to have a field dependent compression modulus. As shown in
Figure 2, the magnetic field in the MRE spring element is along the same direction as its cylinder axis
(in the chain direction of aligned MREs) during the compression tests [Kallio 2005].
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Figure 3. Magnetorheological elastomer isolator in shear-compression mixed mode
[Liu 2012].

Figure 3 shows a magnetorheological elastomer isolator working in shear-compression mixed mode,
which is composed of two pieces of MREs, one works in shear mode and another works in compression
mode. Excitation magnetic field of the isolator is generated by the excitation coil, its direction is parallel
with the pressure direction and vertical with shear direction. As the modulus of MRE in compression
mode is higher than that in shear mode, the structure can effectively reduce the static strain caused by
the quality of the isolation device [Liu 2012].

In this study, a novel MRE isolator working in compression mode is proposed. The design, fabrication
and tests of compression MRE isolator are introduced. The experimental study on the mechanical proper-
ties of MRE isolator is performed by instron and vibrating table, respectively. Then the compression force
and displacement test results are presented and discussed. The stiffness and damping ratio coefficients are
identified from frequency sweeping test data. The SDOF IMU isolator system with four MRE isolators is
developed and simulated under random excitation input. The simulation results of PSD and displacement
are discussed and the performance of MRE isolator is evaluated. The compression MRE isolator proposed
in this paper can meet the requirements of the working environment and installation space for the IMU.
It has the characteristics of small volume, integrated preparation and controllable output force.

2. Fabrication of the compression MRE isolator

The schematic design of the compression MRE isolator is shown in Figure 4. As can be seen, the design
consists of a cylindrical MRE, two electromagnetic coils, two iron core connectors and an outer magneto-
conductivity casing. The structure of isolator allows the MRE to work in compression mode. The motion
of payload can be controlled in both up and down directions. The magnetic field is generated by the coils
and controlled by tuning the current. Moreover, the direction of magnetic field in the MRE is parallel
to the motion of the iron cores after the current is applied to the coils. One end of each iron core is
embedded inside the MRE. The diameter of the MRE is 35 mm, and the diameter of the coil wire is
0.50 mm with a total winding number of 300 turns. Each coil has electric resistance of 1.38 �.

Natural rubber is a flexible, rubbery polymer obtained from the tree Hevea Brasiliensis. Natural rubber
is a popular choice for the preparation of MRE because of its advantageous mechanical characteristics.
The particles used are BASF EW carbonyl iron powders and the mass fraction of iron particles is 60%.
A compound of the uncured rubber is accomplished on a laboratory scale two-roll mill. After the rubber
is well mixed, the iron particles are introduced into the rubber again on the two-roll mill. After the
final compounding, the MREs are prepared in electromagnetic mold, as shown in Figure 5. The mold
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Figure 4. Schematic of the MRE isolator.

Figure 5. Schematic of the electromagnetic device (left) and the MRE mold (right).

Figure 6. Different assembly forms of MRE isolator: compound structure (left), com-
pound structure with coils (middle), and complete structure (right).

is pre-heated in the vulcanizing machine, and the high pressure is applied to the polymer during the
curing process. Current is applied to the electromagnet coils to produce the desired alignment magnetic
field, with a magnetic induction of 1 Tesla. Natural rubber MREs are cured for 15 min before taken out.
Figure 6 presents different assembly forms of MRE isolator. The compound structure is made up of
MRE, magnetizers and coil skeletons.

3. Test and discussion

The quasi-static and dynamic tests are carried out to verify the performances of the MRE isolators and
to obtain the relationship among stiffness, damping and current.
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DC
power

electromagnetic device instron

Figure 7. MRE experimental test setup.

3.1. Compression force and displacement test. The experimental study on the mechanical properties of
the compound structure as shown in Figure 6(b) is performed. The purpose of the quasi-static tests is to
evaluate and record the physical properties of MRE isolators under different magnetic fields and different
displacement amplitudes. The experimental test setup is shown in Figure 7. MRE isolator is located
in the electromagnetic device and connected to the instron (CMT-4254). DC power source provides
current to the coils inside the electromagnetic device which generates the magnetic field surrounding the
MRE isolators. And the magnetic field intensity is measured by magnetometer. Controlled compression
displacement of the MRE isolator is supplied by the instron. The experiments are conducted with room
temperature 25 ◦C and the loading rate 1 mm/Min. The compression force and displacement curves
of the MRE are shown in Figure 8. It can be seen that the force of the MRE isolator increases as the
increasement of applied magnetic field and displacement, respectively. The displacement is almost 0 mm
when the static force of MRE isolator is about 20 N. It means that the static stiffness of MRE isolator is
enough to support IMU and meet the installation conditions.

3.2. Frequency sweeping test. The MRE isolator is evaluated by the frequency sweeping test. It is
carried out by a vibration table with 1g acceleration and different currents. The experimental setup
of frequency sweeping test with MRE isolator is shown in Figure 9. The SDOF vibration system is
composed of a payload and a MRE isolator. The payload of the SDOF system is supported by MRE
isolator, which is mounted on the vibration table. The payload acceleration and vibration table input
acceleration are measured by two accelerometers (PCB Model 352C33) respectively. DC power source
provides current to the coils inside MRE isolator which generates the magnetic field surrounding the
MRE. The parameters of the frequency sweeping test are as follows:

Sweep frequency: 20 Hz to 200 Hz Payload: 2.0 kg Acceleration: 1 g Current: 0, 1, 2, 3, 4 A

Figure 10 Experimental results with different currents shows the acceleration transmissibility results
for a frequency range between 20–100 Hz and the acceleration amplitude of 1 g with different currents
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Figure 8. Compression force and displacement curves.

Figure 9. Experimental setup of frequency sweeping test with MRE isolator.

applied to the MRE isolator. As can been seen, the natural frequency of the SDOF system increases from
42.23 Hz at 0 A to 50.06 Hz at 4 A. The peak value of the transmissibility is reduced from 5.403 to 3.796.
The natural frequency of the SDOF system approximate increase equals to 19.8%. The peak value has
the total reduction of 29.7% in the acceleration transmissibility approximately.

3.3. The identification of stiffness and damping ratio coefficients. The stiffness and damping ratio
coefficients are identified by using the experimental results of acceleration transmissibility as shown in
Figure 10. The steps are listed as follows:

1) The peak value of the acceleration transmissibility is Hm , and it represents the value of half power
point Hp. The relationship between them can be written as

Hp =
Hm
√

2
≈ 0.707Hm . (1)
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Figure 10. Experimental results with different currents.

Figure 11. Relation of half power points and frequency.

The frequencies ω1 and ω2 correspond to half power points of the acceleration transmissibility are
shown in Figure 12, right. The coefficient is given by the equation

n =
ω2−ω1

2
. (2)

2) The resonance frequency ωd can be obtained through the frequency response curve, and the natural
frequency is given by

ωn =
√
ωd

2+ n2. (3)

The damping ratio is defined as
ζ = n/ωn. (4)

3) The stiffness of MRE isolator is calculated through the equation

k = 4π2ωn
2m, (5)

where m is the payload mass.
Table 1 lists the normalized equivalent stiffness and damping coefficients from experimental data. The

maximum value of effective stiffness is 197.9 kN/m and the maximum increase of the effective stiffness
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current natural frequency stiffness damping ratio

0 A 42.23 Hz 140.8 kN/m 0.071
1 A 45.08 Hz 160.5 kN/m 0.080
2 A 47.03 Hz 174.6 kN/m 0.094
3 A 48.40 Hz 184.9 kN/m 0.103
4 A 50.06 Hz 197.9 kN/m 0.110

Table 1. Equivalent stiffness and damping coefficients of MRE isolator.

is 40.55% as current varies from 0.0 A to 4.0 A. The maximum increase of damping ratio is 54.9%.
The test results reveal that as the applied magnetic field increases, the natural frequency, stiffness and
damping ratio of the MRE isolator increase in value. The relationships of frequency (Hz), stiffness
(kN/m), damping ratio and current (A), obtained by polynomial fitting, are as follows:

f (I )= 0.0229I 4
− 0.0842I 3

− 0.3579I 2
+ 3.2692I + 42.23, (6)

K (I )= 0.1958I 4
− 0.875 I 3

− 1.5458I 2
+ 21.925I + 140.8, (7)

ζ(I )= 0.0005I 4
− 0.0049I 3

+ 0.0135I 2
− 0.0001I + 0.071. (8)

4. Theoretical model and calculation method

The IMU usually works in the random vibration environment. The control relationships of the single
MRE isolators are substituted into the dynamics simulation of IMU isolation system. Then the IMU
output power spectrum under the typical random vibration environment is obtained. Thus, the aim of
predicting the isolation effect of MRE isolators for IMU is achieved.

4.1. Dynamics model of IMU system. The dynamics model of IMU system is established as shown in
Figure 12, left. According to the dynamics properties of IMU system, it is considered as a multibody
system comprising rigid bodies, springs and dampers. The motion of the carrier 0 is the input of the
IMU system. Platform 5 and three gyros 9∼11 are considered as rigid bodies, respectively; platform and
carrier are linked by MRE isolators 1∼4, which are regarded as controlled spring-and-damper hinges
longitudinally vibrating in space. The connections 6∼8 between platform and gyros are considered as
spatial spring-and-damper hinges.

Isolators 1∼4 can be treated as one equivalent hinge element, which will be shown in the following,
thus the dynamics model of IMU system can be dealt with a tree system. Its topology figure can be
got easily as shown in Figure 12, right. In the topology figure, the circles represent body elements
wherein the numbers indicate the corresponding body element number; the arrows denote hinge elements
and the transfer directions of state vectors, the numbers aside are the sequence numbers of the hinge
elements. The boundaries are all numbered as 0. The boundaries corresponding to elements 1∼4 are
considered as output boundaries, and the boundaries corresponding to elements 9∼11 are considered as
input boundaries. So the IMU isolation system is considered as a multibody system composed of 4 rigid
bodies and 3 hinges.
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Figure 12. Left: dynamics model of laser IMU isolation system. Right: Topology of
laser gyro SIMU system.

The state vectors of the input and output points of every element and the boundary points are defined
as

Z =
[
X Y Z Θx Θy Θz Mx My Mz Qx Q y Qz

]T (9)

The state variables in the state vector are the linear displacements, angular displacements, internal
forces and internal torques in the modal coordinates. The specific derivation of the transfer matrix of
one degree of freedom system can refer to reference [Chen et al. 2013].

4.2. Transfer equation and transfer matrix of system components.

Transfer equation and transfer matrix of elements 1∼4. Each MRE isolator is regarded as a spatial
stiffness-and-damper hinge, which contains stiffness along the X, Y and Z directions. As four isolators
are sandwiched between two rigid bodies, they can be treated as one new element, namely, an equivalent
spring-and-damper hinge with single input end and single output end. The principal vectors and principal
moments of the element at the output end and the input end are the same. We obtain

Mx

My

Mz

Qx

Q y

Qz


O

=



Mx

My

Mz

Qx

Q y

Qz


I

= K1−4



X
Y
Z
2x

2y

2z
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O

− K1−4
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X
Y
Z
2x

2y

2z
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I

,
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X
Y
Z
2x

2y

2z
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O

=



X
Y
Z
2x

2y

2z


I

+ K−1
1−4



Mx

My

Mz
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I

. (10)

The transfer equation of elements 1∼4 is

Z1∼4,O = U1∼4 Z1∼4,I. (11)

The transfer matrix is

U1∼4 =

[
I6 K−1

1∼4
O6×6 I6

]
, (12)
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where

K1∼4 =



0 −
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i=1

kyi ci
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kzi bi
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(kyi c2

i + kzi b2
i ) −
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kzi ai bi −

4∑
i=1

kyi ai ci

4∑
i=1

kxi ci 0 −

4∑
i=1

kzi ai −
4∑

i=1
kzi bi ai

4∑
i=1
(kxi c2

i + kzi a2
i ) −

4∑
i=1

kxi bi ci

−

4∑
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kxi bi

4∑
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kyi ai 0 −
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i=1

kyi ci ai −
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kxi ci bi
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(kxi b2

i + kyi a2
i )
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0 −
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kyi ci 0 −
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kyi ai

0 0 −
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i=1

kzi −

4∑
i=1

kzi bi
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
Here (ai , bi , ci ) (i = 1∼4) denote the positions of isolators 1∼4 on the carrier and platform, and
(kxi , kyi , kzi ) are the initial stiffness coefficients of the isolators.

The transfer equation and transfer matrix of element 5. Platform 5 is considered as a rigid body with
three input ends and single output end, and its transfer equation is

Z5,O = U5 Z5,I1 +U5,I2 Z5,I2 +U5,I3 Z5,I3,

H5 Z5,I1 = H5,I2 Z5,I2,

H5 Z5,I1 = H5,I3 Z5,I3 .

(13)

The transfer matrix is given by

U5 =


I3 −l̃I1O O3×3 O3×3

O3×3 I3 O3×3 O3×3

mΩ2 l̃CO −ω
2(m l̃I1O l̃I1C+ JI1) I3 l̃I1O

mΩ2 I3 −mΩ2 l̃I1C O3×3 I3

 , (14)

U5,Ir =


O3×3 O3×3 O3×3 O3×3

O3×3 O3×3 O3×3 O3×3

O3×3 O3×3 I3 l̃Ir O

O3×3 O3×3 O3×3 I3

 (r = 2, 3), (15)

H5 =

[
I3 O3×3 O3×3 O3×3

O3×3 I3 O3×3 O3×3

]
, (16)

H5,Ir =

[
I3 l̃I1Ir O3×3 O3×3

O3×3 I3 O3×3 O3×3

]
(r = 2, 3) (17)

where ω is the natural frequency of the IMU system, C denotes the center of mass, m is the mass of rigid
body, JI is moment of inertia matrix relative to the input point I1, and l̃I,O are the cross product matrices
from point I to point O .
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Transfer equation and transfer matrix of elements 8. The transfer equation of elements 6∼8 are

Zi,O = Ui Zi,I (i = 6, 7, 8). (18)

The transfer matrices are

Ui =


I3 O3×3 O3×3 U14

O3×3 I3 U23 O3×3

O3×3 O3×3 I3 O3×3

O3×3 O3×3 O3×3 I3

 (i = 6, 7, 8), (19)

where

U14 =

−1/kx 0 0
0 −1/ky 0
0 0 −1/kz

 , U23 =

1/k ′x 0 0
0 1/k ′y 0
0 0 1/k ′z

 .
Here kx , ky and kz represent the stiffness coefficients of linear spring. k ′x , k ′y and k ′z denote the stiffness
coefficients of rotary spring respectively.

Transfer equation and transfer matrix of elements 9∼11. The gyros 9∼11 are rigid bodies with single
input and single output; their transfer equations are

Zi,O = Ui Zi,I (i = 9, 10, 11). (20)

The transfer matrices are

Ui =


I3 −l̃IO O3×3 O3×3

O3×3 I3 O3×3 O3×3

m�2 l̃CO −ω
2(m l̃IO l̃IC+ JI ) I3 l̃IO

m�2 I3 −m�2 l̃IC O3×3 I3

 (i = 9, 10, 11). (21)

4.3. Overall transfer equation and overall transfer matrix of IMU system. According to the automatic
deduction theorem of overall transfer equation of multibody system [Yang et al. 2014], the overall transfer
equation can be obtained as follows:

Uall Zall = 0 (22)

The overall transfer matrix is

Uall =

[
−I12 T9−1∼4 T10−1∼4 T11−1∼4

O6×12 G9−5 G10−5 O6×12

O6×12 G9−5 O6×12 G11−5

]
, (23)

where
T9−1∼4 = U1∼4U5U6U9,

T10−1∼4 = U1∼4U5,7U7U10,

T11−1∼4 = U1∼4U5,8U8U11,

,

G9−5 =−H5U6U9,

G10−5 = H5,7U7U10,

G11−5 = H5,8U8U11.

Zall is a column matrix consisting of the state vectors of system boundary points:

Zall = [ZT
1∼4,0 ZT

9,0 ZT
10,0 ZT

11,0]
T. (24)
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The boundary conditions of the system are

Z1∼4,0 = [0 0 0 0 0 0 Mx My Mz Qx Q y Qz]
T
1∼4,0 ,

Z9,0 = [X Y Z Θx Θy Θz 0 0 0 0 0 0]T9,0 ,

Z10,0 = [X Y Z Θx Θy Θz 0 0 0 0 0 0]T10,0 ,

Z11,0 = [X Y Z Θx Θy Θz 0 0 0 0 0 0]T11,0 .

(25)

Substituting the boundary conditions into (11) yields

Ūall Z̄all = 0, (26)

where Ūall is a 24× 24 square matrix composed of the 1st∼6th, 19th∼30th and 37th∼42nd columns
of Uall, Z̄all is a column matrix consisting of the unknown elements in Zall. For (20) to have nontrivial
solutions, the determinant of its coefficient matrix must be zero, namely

det(Ūall)= 0. (27)

The eigenfrequencies ωk (k = 1, 2, 3, . . .) of the IMU system can be obtained by solving (22). For
each ωk , using (20) and the transfer equations of elements, the state vector of any point can be got easily.

The body dynamics equations of IMU system can be written as

M jv j,t t +C jv j,t + K jv j = f j , (28)

where j is the number of body element, the mass matrix M j denotes the mass distribution of body
element, displacement array v j represents the motion state, consisting of the displacement and angu-
lar displacement variables of the body component and subscript t represents the time derivative time.
The product of K j and v j represents all internal forces on the component and their action positions
other than the damper force; K j is called the stiffness parameter matrix; C j acting on v j,t represents
the damping force on the body element and its action position, which is called a damping parame-
ter matrix; f j is the external force and torque of the body element. f = [ f T

5 f T
9 f T

10 f T
11]

T; and
f j = [mx ,m y,mz, fx , fy, fz]

T
j is the column matrix of force (including torque) acted on the body j

( j = 5, 9, 10, 11).

4.4. Power spectrum analysis method. Using the modal superposition technology, the physical coordi-
nates can be expanded in the form of augmented eigenvectors and generalized coordinates, i.e.,

v j =

n∑
k=1

V k
j qk(t). (29)

Substitute (29) into (28), make the inner product of V k
j and sum up with j , then according to the

orthogonality of the augmented eigenvector, it can be written as

q̈k(t)+

∑
j

〈
n∑

k=1
(C j V k

j )q̇
k(t), V k

j

〉
dk +ω2

kqk(t)=

∑
j
〈 f j , V k

j 〉

dk (30)
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where

dk
=

∑
j

〈M j V k
j , V k

j 〉 = 〈M1V k
1 , V k

1 〉+ 〈M3V k
3 , V k

3 〉+ · · · · · · + 〈M20V k
20, V k

20〉,∑
j

〈 f j , V k
j 〉 = 〈 f1, V k

1 〉+ 〈 f3, V k
3 〉+ · · · · · · + 〈 f20, V k

20〉.

Then let ∑
j

〈∑n
k=1(C j V k

j )q̇
k(t), V k

j

〉
dk = 2ζkωk . (31)

Substituting (29) and (31) into (30), one obtains

q̈k(t)+ 2ζkωk q̇k(t)+ωk
2qk(t)= ω2

k pk(t), (32)

where

pk(t)=

∑
j 〈 f j , V k

j 〉

ω2
kdk

=
V kT f (t)
ω2

kdk
. (33)

Then q1, . . . , qn are calculated by means of numerical integration. The dynamic response of the iso-
lation system can be obtained by substituting them into (29). If each component of f (t) is a steady-state
stochastic process, then the components of v j (t), pk(t), qk(t) are all steady-state stochastic processes.
The correlation matrix of response v j and generalized coordinates qk are defined as

Rv j (τ )= lim
T→∞

1
T

∫ T/2

−T/2
v j (t)v j (t + τ)Tdt (34)

Rqk (τ )= lim
T→∞

1
T

∫ T/2

−T/2
qk(t)qk(t + τ)Tdt, (35)

Rq(τ )= lim
T→∞

1
T

∫ T/2

−T/2
q(t)q(t + τ)Tdt =


Rq1 · · · Rq1qk · · · Rq1qn ,
...

. . .

Rqkq1 Rqk Rqkqn

...
. . .

Rqnq1 · · · Rqnqk · · · Rqn

 . (36)

According to (36), this yields
Rv j (τ )= V j Rq(τ )V j

T. (37)

The correlation matrices of generalized force p and external force f are

Rpk (τ )= lim
T→∞

1
T

∫ T/2

−T/2
pk(t)pk(t + τ)Tdt, R f (τ )= lim

T→∞

1
T

∫ T/2

−T/2
f (t) f (t + τ)Tdt, (38)

Then one gets

Rpk (τ )=
V kT R f (τ )V k

ω4
kdk2

, k=1, . . . , n, Rpr ps (τ )=
V rT R f (τ )V s

ω2
rω

2
s dr ds , r, s=1, . . . , n, r 6= s. (39)
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The power spectral matrix is deduced by Fourier transformation of the correlation matrix of the re-
sponse in physical coordinates

Sv j (ω)=

∫
+∞

−∞

Rv j (τ )e
−iωτdτ (40)

The transformation relationships between Sv j (ω) and Sq(ω), Spk (ω) and S f (ω) can be obtained as

Sv j (ω)= V j Sq(ω)V j
T, Spk (ω)=

V kT S f (ω)V k

ω4
kdk2

, k = 1, . . . , n, (41)

Spr ps (ω)=
V rT S f (ω)V s

ω2
rω

2
s dr ds , r, s = 1, . . . , n. (42)

Taking the Laplace transform of (32) and substituting s = jω, one gets

H k(ω)=
qk(ω)

pk(ω)
=

ω2
k

ω2
k −ω

2+ 2ζkωk jω
, k = 1, . . . , n, (43)

Sqk (ω)= H k∗(ω)Spk (ω)H k(ω), k = 1, . . . , n, (44)

where H k∗(ω) is the conjugate function of H k(ω). The relationships between the power spectra of system
output in physical coordinate and system physical force are as follows:

Spk (ω)=
V kT S f (ω)V k

ω4
kdk2

, k = 1, . . . , n, (45)

Spr ps (ω)=
V rT S f (ω)V s

ω2
rω

2
s dr ds , r, s = 1, . . . , n, (46)

Sqk (ω)= H k∗(ω)Spk (ω)H k(ω), k = 1, . . . , n, (47)

Sqr qs (ω)= H r∗(ω)Spr ps (ω)H s(ω), r, s = 1, . . . , n, r 6= s, (48)

Sq(ω)=


Sq1 · · · Sq1qk · · · Sq1qn

...
. . .

Sqkq1 Sqk Sqkqn

...
. . .

Sqnq1 · · · Sqnqk · · · Sqn

 , (49)

Sv j (ω)= V j Sq(ω)V j
T. (50)

The correlation function of the response power spectrum is

Rv j (τ )=
1

2π

∫
+∞

−∞

Sv j (ω)e
iωτdω. (51)

Let τ = 0. The root mean square (RMS) σv j of the response v j is

σ 2
v j
= Rv j (0)=

1
2π

∫
+∞

−∞

Sv j (ω)dω. (52)
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Figure 13. Transformation flow of PSD.

The transformation flow of PSD is shown in Figure 13.
According to the displacement PSD in physical coordinates, the velocity and acceleration PSD in

physical coordinates can be obtained:

Sv̇ j (ω)= ω
2 Sv j (ω), (53)

Sv̈ j (ω)= ω
4 Sv j (ω). (54)

When frequency is expressed in Hz, the relationship between the power spectra is described by

Sv j ( f )= 2πSv j (ω). (55)

5. Simulation results and analysis

It is supposed that the random vibration as input is a stationary Gauss process ÿ(t). The sampling function
of ÿ(t) can be written approximately as Fourier series ÿd(t):

ÿd(t)=
N∑

k=1

ak cos(ωk t +ϕk), (56)

where the phase angle ϕk is an independent random variable with range [0, 2π ]. The amplitude ak is

a2
k = 4Sÿ(ωk)1ω, (57)

where Sÿ(ω) is the input PSD, 1ω = (ωu −ωl)/N , ωu and ωl are frequency upper limit and lower limit
value for input PSD. The frequency ωk can be written as

ωk = ωl + (k− 1/2)1ω, k = 1, 2, . . . , N . (58)

Equation (56) presents a stationary and ergodic Gaussian random process. The mean value is

E(ÿd(t))= lim
T→∞

1
T

N∑
k=1

ak

∫ T

0
cos(ωk t +ϕk) dt = 0. (59)

The autocorrelation function is

ϕd
ÿ (τ )= lim

T→∞

1
T

∫ T

0
ÿd(t)ÿd(t + τ)dt =

1
2

N∑
k=1

a2
k cosωkτ. (60)
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Figure 14. PSD of input acceleration.

The PSD of input acceleration is shown in Figure 14 with RMS value of 6.7 g. The input displacement
and velocity time history is illustrated in Figure 15. Figure 16 demonstrates the theoretical simulation
results for the displacement curve of payload when the MRE isolator is applied with a series of constant
currents. The RMS values of payload with different currents are listed in Table 2 on page 582. It can
be seen that with the increasing current, the RMS of displacement decreases and acceleration increases.

Figure 15. Input signals in time domain: displacement (top left), velocity (top right)
and acceleration (bottom).



MAGNETORHEOLOGICAL ELASTOMER ISOLATOR FOR IMU VIBRATION ISOLATION 581

Figure 16. Acceleration of payload with a series of constant currents.

The changes of RMS values of displacement and acceleration are 11.38% and 39.71%, respectively.
Figure 17 shows the PSD of the acceleration for payload when the MRE isolator is applied with a series
of constant currents. The peak value of PSD is 1.07 g2/Hz at 0.0 A. The peak value of PSD decreases
by 48.8% when current is increased from 0.0 A to 4.0 A. The minimal root mean square value is 2.97 g
when the current is 4.0 A. The resonance peak apparently shifts with the increasing current. The natural
frequency change of a SDOF system is affected by changing the MRE isolator stiffness. These changes
indicate that it is possible to control MRE isolator over varying stiffness and damping.

Figure 17. PSD of the payload acceleration with a series of constant currents.
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current/A
root mean square 0 1 2 3 4 change

displacement/m 5.91 ·10−5 5.79 ·10−5 5.47 ·10−5 5.32 ·10−5 5.24 ·10−5
−11.38%

velocity/(m/s) 0.016 0.016 0.016 0.016 0.016 5.10%
acceleration/g 1.43 1.63 1.77 1.87 2.00 39.73%

Table 2. RMS values of payload with a series of constant currents.

6. Conclusions

This paper reports the design, fabrication, experimental tests and model simulation of the compression
MRE isolator. The experimental results of MRE isolator exhibit that both its stiffness and the damping ra-
tio are controllable with input currents. The simulation results show that the peak of PSD is reduced with
increasing input current under random input vibration. Thus, it is demonstrated that the MRE isolator,
whose mechanical properties can be controlled by an applied magnetic field, has potential applications
where tuning vibration characteristics are desired.
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ANALYTICAL SOLUTIONS FOR DISPLACEMENTS AND STRESSES
IN FUNCTIONALLY GRADED THICK-WALLED SPHERES
SUBJECTED TO A UNIDIRECTIONAL OUTER TENSION

CHENYI ZHENG AND CHANGWEN MI

In the context of infinitesimal theory of elasticity, we derived analytical solutions for displacements and
stresses in functionally graded thick-walled spheres under the application of a uniaxial outer tension.
While the shear modulus in the graded sphere is allowed to vary as a power-law function of radial coordi-
nate, the Poisson’s ratio is treated as a constant. The semiinverse method of elasticity is first employed for
proposing correct function forms of the radial and longitudinal displacements. The elastostatic Navier’s
equations of the power-law graded sphere lead to a system of second-order differential equations of
the Euler type. The order is then reduced and the system is recast into a first-order differential matrix
equation. Analytical solutions are subsequently developed by the coupling of differential equation and
eigenvalue theories. Successfully solving this particular problem provides a valid analytical solution
scheme for exploring elastic fields in graded hollow spheres subjected to nonhydrostatic boundary loads.
In order to examine the effects of the power-law gradation and the radii ratio of the thick-walled sphere
on stress distributions and stress concentration factors, extensive parametric studies are conducted. Ana-
lytical solutions of the graded thick-walled sphere are further compared with those of the homogeneous
case as well as with the numerical results due to finite element modelings. The obtained results show
that the property gradation significantly affects stress distributions through the thickness direction of
the graded thick-walled sphere. When the shear modulus is designed as an increasing function of the
radial coordinate, the high stress zone conventionally occurring near the inner boundary of homogeneous
thick-walled spheres tends to shift toward to the outer surface vicinity. For a given radii ratio, an optimal
power-law gradation leading to the lowest stress concentration factor can always be identified. The
proposed method of solution and the obtained results are useful for the design and manufacturing of
better performing spherical vessels.

1. Introduction

It is a well accepted fact that stress concentration (SC) is an inherent threatening to the structural integrity
of pressure vessels. The concentration of stresses typically occurs near the reentrant boundaries, geomet-
ric defects and points of force application. The maximum stress may be as high as several times of the
applied load. In the literature, this ratio is defined as the stress concentration factor (SCF) for a certain
combination of structure and loading conditions [Barber 1992]. Scientists and engineers have been
working hard to reduce and avoid SC both in theory and in engineering practice. One idea is to replace

Changwen Mi is the corresponding author.
Keywords: functionally graded spheres, unidirectional loading, analytical solution, stress concentration factor, finite element

modeling.

585

http://msp.org/jomms
https://doi.org/10.2140/jomms.2020.15-5
https://doi.org/10.2140/jomms.2020.15.585
http://msp.org


586 CHENYI ZHENG AND CHANGWEN MI

the completely homogeneous material of an engineering component with functionally graded materials
(FGMs). Within the context of mechanics, FGMs are a relatively new design strategy to regulate and
optimize the stress distributions in engineering materials and structures. The most typical example is the
combination of ceramic and metallic materials [Evci and Gülgeç 2018]. Fukui and Yamanaka [1992]
evaluated the stresses in graded thick-walled tubes made by the combination of a matrix composed of
three low-modulus materials and high-modulus particles. The gradation profile through the tube thickness
is controlled by the volume fraction of the reinforcement particles. Suresh et al. [1999] demonstrated that
a thin coating made of graded alumina-glass composite significantly reduces the sliding contact damage
of a polycrystalline alumina surface. As a direct result of the replacement, the modulus of elasticity is
allowed to vary through one or more spatial dimensions. In any theory of mechanics, both deformations
and stresses are closely related to elastic modulus. It is hoped that, through the proper regulation of
elastic modulus, stresses may redistribute following a desired pattern.

Materials and structures with graded modulus of elasticity [Birman and Byrd 2007; Ghayesh and
Farajpour 2019] have been designed and manufactured since 1980s and gained many applications in
contact mechanics [Suresh et al. 1999; Yan et al. 2019; Yan and Mi 2019] and fracture mechanics [Jin
and Batra 1996]. Tutuncu and Ozturk [2001] derived closed-form displacements and stresses of graded
cylindrical and spherical vessels under internal pressure alone. The shear modulus was also assumed to
vary as a power-law function through the wall thickness. Tutuncu [2007] further derived power series
solutions to a thick-walled cylinder under the application of internal pressure only. This time, the elastic
modulus of the cylinder is assumed to be an exponential function of the radial coordinate. Due to this
change of gradation function, an analytical solution to the axisymmetric equilibrium equations of the
radial displacement becomes more difficult. As a result, the author presented the solution in the form of
power series by employing the Frobenius method. The closed-form solution of this problem was later
derived by Nejad et al. [2016] in the plain strain condition. Atashipour et al. [2014] solved the elastic
fields in a homogeneous hollow sphere internally coated with a graded layer under hydrostatic boundary
pressures. Analytical solutions were derived for graded coating with both linearly and exponentially-
varying shear modulus. More recently, Evci and Gülgeç [2018] developed an analytical solution in a
graded hollow cylinder whose thermoelastic material properties are assumed to be power functions of
the radial coordinate.

As a powerful numerical approach, finite element (FE) analysis has also been employed for solving
cylindrical and spherical vessels under the application of hydrostatic loads. Nejad et al. [2016] com-
pared their analytical solutions with those resulting from the FE modelings. Ghannad and Nejad [2012]
first derived a complete analytical solution to thick-walled spheres with power-law gradation of elastic
modulus. The distribution of displacements and stresses were compared with those obtained by the
FE method. Apart from completely graded vessels [Ghannad 2013; Dryden and Batra 2013; Xin et al.
2014; Yang et al. 2015], thick-walled cylinders and spheres reinforced with a graded coating have also
been studied. Sburlati and Cianci [2015] investigated the effects of a graded interphase zone bridging a
spherical inclusion and a matrix subjected to a far-field pressure loading. The same structure under the
application of a uniform heating has also been considered [Sburlati et al. 2017].

All works reviewed above dealt with hollow cylinders and spheres under the application of hydro-
static pressures. Nonhydrostatic traction loads did not receive reasonable attentions until the last decade.
Based on the multiple isoparametric FE formulation, Kubair and Bhanu-Chandar [2008] numerically
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determined the SCF in a cylindrical panel containing a circular hole under the application of a far-
field uniaxial tension. Since the problem was numerically solved, both the power-law and exponential
variations of elastic modulus were considered. By the use of Airy stress function approach, Nie and
Batra [2010] derived analytical solutions of a graded hollow cylinder under normal and shear tractions
applied at its both boundaries. Mohammadi et al. [2011] evaluated the SCFs around a circular hole in
a radially graded plate subjected to either equal-biaxial or pure shear far-field tractions. Kubair [2013]
further derived closed-form elastic fields for the same panel geometry under the application of a far-field
antiplane shear loading. This time, only the exponential variation of elastic modulus was considered.
Sburlati [2013] derived an analytical solution to a circularly voided homogeneous plate reinforced by
a graded ring under the application of a far-field uniaxial tension. On this basis, Sburlati et al. [2014]
further considered the same geometry under the application of four different far-field loads, including
uniaxial tension, equal-biaxial tension and two forms of pure shear. Yang and Gao [2016] evaluated
the SCFs in a homogenous panel containing an elliptic hole that is reinforced by a graded coating layer.
Arbitrary loads and property gradations in the graded coating can be considered. Le [2017] developed an
asymptotically exact two-dimensional theory for functionally graded piezoelectric shells by synthesizing
the variational and asymptotic methods. As an application, the analytical solution to the forced vibration
of a graded piezoceramic cylindrical shell excited by a harmonic voltage was derived. Li et al. [2018]
considered a homogeneous thick-walled cylinder reinforced by a graded coating subjected to an arbitrary
biaxial outer loading. The effects of the graded coating on the reduction of SC and the optimization of
stress distributions were analyzed.

The references reviewed above demonstrate that fewer works have devoted to graded thick-walled
spheres subjected to nonhydrostatic loads. Poultangari et al. [2008] first proposed a series solution for a
power-law graded hollow sphere under the application of nonhydrostatic thermomechanical loads. Later,
the same research group further employed this solution method for solving the piezothermoelastic fields
in standalone graded hollow spheres [Jabbari et al. 2013] and graded hollow spheres perfectly bonded
by piezoelectric layers [Barati and Jabbari 2015; Jabbari et al. 2017]. Also based on the series solution
principle, Bayat and EkhteraeiToussi [2015] investigated the thermomechanical fields in a transversely
isotropic hollow sphere rotating at a constant angular velocity. Sburlati et al. [2018] derived elastic
solutions in an inhomogeneous spherical interphase separating a solid spherical inclusion and a finite
matrix. By assuming a power-law variation in shear modulus and a constant Poisson’s ratio, closed-
form solutions to both hydrostatic and pure-shear outer tractions were developed. In another recent
paper, Zheng et al. [2019] developed a semianalytical solution to a homogeneous hollow sphere interiorly
coated with a graded layer. Although a uniaxial outer tension was considered, displacements and stresses
of the graded coating were not directly solved within the elasticity theory of an inhomogeneous medium.
Instead, the solution was approximated by its homogeneous counterpart through discretizing the graded
coating into a few perfectly bonded homogeneous sublayers [Yang et al. 2009; Yang and Gao 2016].

The goal of this work is to continue the efforts in this line of research. Here, we consider the funda-
mental problem of a graded thick-walled sphere under the application of a uniaxial outer tension. The
hollow sphere is assumed to possess power-law variation of shear modulus through its thickness. Since
the Poisson’s ratio is treated as a constant, Young’s modulus of the isotropic thick-walled sphere also
varies by the same power-law function. Following the basic equations of an inhomogeneous elastic
medium, the boundary value problem is solved by the collective use of semiinverse method of elasticity
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theory, reduced-order method of differential equations and eigenvalue theory. In addition to analytical
solutions, FE modelings are also implemented to validate the correctness of stress distributions and SCFs.
The remainder of this paper is structured as follows. Section 2 describes the mechanical formulation and
analytical solutions to the graded thick-walled sphere under the application of a uniaxial outer tension.
In Section 3, extensive parametric studies are conducted for illustrating the effects of property gradation
and radii ratio on stress distributions and reduction of SCFs. FE modeling results are also presented to
validate the correctness of analytical solutions. Finally, in Section 4, concluding remarks are delivered.

2. Method of solution

Figure 1 shows a graded thick-walled sphere under the application of a unidirectional outer tension of
magnitude T . The inner and outer radius of the sphere are represented by a and b, respectively. Given
the spherical symmetry of the geometry, spherical coordinates (R, ϕ, θ ) are employed for the subsequent
mechanical formulation, where R, ϕ and θ denote the radial, longitudinal and latitudinal coordinates,
respectively. In view of its limited influence on stress distributions, the Poisson’s ratio (ν) of the graded
sphere is assumed to be a constant [Sburlati 2013]. The shear modulus of the graded sphere varies as a
power-law function of the radial coordinate:

G = Go Rm/bm, (1)

where Go denotes the shear modulus value at the outer boundary of the graded sphere and m is the grading
index, indicating the varying gradient of the shear modulus. It is worth noting that shear modulus instead
of Young’s modulus has been used in Equation (1). For the method of displacement potentials used in
this work, the combination of shear modulus and Poisson’s ratio is able to formulate the solution in the
simplest form than any other combinations of elastic constants.

In spherical coordinates, the unidirectional tension applied at the outer boundary of the graded sphere
can be expressed as

σR (b, ζ )
T

= ζ 2,
σRϕ (b, ζ )

T
=−ζ

√
1− ζ , (2)

where ζ = cosϕ. At the inner surface of the graded sphere, both the normal and the shear tractions are
zero:

σR (a, ζ )= 0, σRϕ (a, ζ )= 0. (3)

In spite of the dependence of shear modulus on the radial coordinate, the governing equations for
the graded thick-walled sphere are not different from those for a homogeneous medium. The strain-
displacement relations are given by

εR =
∂u R

∂R
, εϕ =

u R

R
−

√
1− ζ 2

R
∂uϕ
∂ζ

, εθ =
u R

R
+

ζuϕ
R
√

1− ζ 2
,

εRϕ =
1
2

(
∂uϕ
∂R
−

√
1− ζ 2

R
∂u R

∂ζ
−

uϕ
R

)
.

(4)
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T

T

Figure 1. A thick-walled sphere with radially graded shear modulus under the applica-
tion of a unidirectional outer tension.

In terms of the inhomogeneous shear modulus (1), the linear constitutive relations still assume the
form

σR=
2G(R)ν
1− 2ν

(εR + εθ + εϕ)+ 2G(R)εR, σϕ=
2G(R)ν
1− 2ν

(εR + εθ + εϕ)+ 2G(R)εϕ,

σθ=
2G(R)ν
1− 2ν

(εR + εθ + εϕ)+ 2G(R)εθ , σRϕ=2G(R)εRϕ.

(5)

In the absence of body forces, the axisymmetric equations of equilibrium in spherical coordinates are
given by [Barber 1992]

∂σR

∂R
+

ζσRϕ

R
√

1− ζ 2
−

√
1− ζ 2

R
∂σRϕ

∂ζ
+

2σR − σθ − σϕ

R
= 0,

ζ(σϕ − σθ )

R
√

1− ζ 2
−

√
1− ζ 2

R
∂σϕ

∂ζ
+
∂σRϕ

∂R
+

3σRϕ

R
= 0.

(6)

In view of the traction distributions (2), the constitutive equations (5) and the strain-displacement
relations (4), it can be inferred that the radial and longitudinal displacements in the graded sphere must
follow the form

u R = P1(R)+ζ 2 P2(R), uϕ = ζ
√

1− ζ 2 P3(R). (7)

Only when the displacements are in these forms, the traction boundary conditions (2) can possibly be
satisfied. By the substitution of the proposed displacements (7) back into the three sets of governing
equations (4), (5) and (6), the equations of equilibrium of the graded sphere become
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Go Rm−2

(1− 2ν) bm

(
H1(R)+ ζ 2 H2(R)

)
= 0,

Go Rm−2

(1− 2ν) bm ζ
√

1− ζ 2 H3(R)= 0, (8)

where H1(R), H2(R) and H3(R) are functions of the radial coordinate:

H1(R)=−2 (1− ν) P ′′1 (R)R
2
−
[
2 (1− ν) (m+ 2) P ′1(R)− P ′3(R)

]
R

+ 4 (1− ν−mν) P1(R)− 2 (1− 2ν) P2(R)− (3− 2ν (m+ 2)) P3(R), (9a)

H2(R)=−2 (1− ν) P ′′2 (R)R
2
−
[
2 (1− ν) (m+ 2) P ′2(R)+ 3P ′3(R)

]
R

+ 2 (5− 2ν (m+ 4)) P2(R)+ 3 (3− 2ν (m+ 2)) P3(R), (9b)

H3(R)=− (1− 2ν) P ′′3 (R)R
2
−
[
(1− 2ν) (m+ 2) P ′3(R)− 2P ′2(R)

]
R

+ 2 (4 (1− ν)−m (1− 2ν)) P2(R)+ (12 (1− ν)+m (1− 2ν)) P3 (R) . (9c)

Since ζ = cosϕ may take any value within the closed interval [−1, 1], equations (8) can be satisfied
if and only if

H1(R)= 0, H2 (R)= 0, H3(R)= 0. (10)

These are three coupled differential equations of Euler type with respect to the three unknown functions
P1(R), P2(R) and P3(R). By replacing the radial coordinate with R = et in (9), equations (10) reduce
to a system of coupled ordinary differential equations:

− 2 (1− ν) P ′′1 (t)− 2 (1− ν) (m+ 1) P ′1(t)+ P ′3 (t)

+ 4 (1− ν−mν) P1(t)− 2 (1− 2ν) P2(t)− (3− 2ν (m+ 2)) P3(t)= 0, (11a)

− 2 (1− ν) P ′′2 (t)− 2 (1− ν) (m+ 1) P ′2(t)− 3P ′3 (t)

+ 2 (5− 2ν (m+ 4)) P2(t)+ 3 (3− 2ν (m+ 2)) P3(t)= 0, (11b)

− (1− 2ν) P ′′3 (t)+ 2P ′2 (t)− (1− 2ν) (m+ 1) P ′3 (t)

+ (8 (1− ν)+ 2m (1− 2ν)) P2(t)+ (12 (1− ν)+m (1− 2ν)) P3(t)= 0. (11c)

These three ordinary differential equations may further be expressed in matrix form as

dW/dt = QW , (12)

with W denoting a column vector composed of the three unknown functions and their derivatives:

W =
[

P1(t) P2(t) P3 (t) P ′1(t) P ′2 (t) P ′3(t)
]T
, (13)

and Q representing a 6× 6 square matrix:

Q =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

2(1−ν−mν)
1−ν −

1−2ν
1−ν −

3−2ν(2+m)
2(1−ν) −1−m 0 1

2(1−ν)
0 5−2ν(4+m)

1−ν
9−6ν(2+m)

2(1−ν) 0 −1−m − 3
2(1−ν)

0 8(1−ν)+2m(1−2ν)
1−2ν

12(1−ν)+m(1−2ν)
1−2ν 0 2

1−2ν −1−m


. (14)
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Equation (12) can be solved by coupling the solutions of an inhomogeneous first-oder differential
equation and eigenvalue problems of a square matrix. To this end, the six eigenvalues of the coefficient
matrix Q must first be found:

λ1,2 =
k1±
√

k2

k0
, λ3,4 =

k1±
√

k3− 2
√

k4

k0
, λ5,6 =

k1±
√

k3+ 2
√

k4

k0
, (15)

where k0 through k4 are five dimensionless parameters that can be expressed in terms of Poisson’s ratio
and the grading index:

k0 = 2(1− ν)(1− 2ν),

k1 =−(1− ν)(1− 2ν)(m+ 1),

k2 = (1− ν)(1− 2ν)2
(
(1− ν)(9+m2)+ 2m(1− 5ν)

)
,

k3 = m2(1− ν)2(1− 2ν)2+ 4m(1− ν)(1− 2ν)3+ 29− 174ν+ 377ν2
− 348ν3

+ 116ν4,

k4 = (1− ν)2(1− 2ν)4
(
m2(1− 22ν+ 25ν2)+ 4m(11− 36ν+ 25ν2)+ 100(1− ν)2

)
.

(16)

For Poisson’s ratio ν ∈ (0, 0.5), all six eigenvalues of the coefficient matrix (15) are real for the grading
index 0< m ≤ 2. As a result, the general solution of the differential matrix equation (12) can be given
by the linear combination of the six eigenvalues:

P1(t)=
6∑

k=1

Ak

aλk−1 eλk t , P2(t)=
6∑

k=1

Bk

aλk−1 eλk t , P3(t)=
6∑

k=1

Ck

aλk−1 eλk t . (17)

In these equations, replacing the independent variable t with ln R leads to

P1(R)=
6∑

k=1

Ak

aλk−1 Rλk , P2(R)=
6∑

k=1

Bk

aλk−1 Rλk , P3(R)=
6∑

k=1

Ck

aλk−1 Rλk . (18)

Recall that, altogether, these three functions must satisfy the two equations of equilibrium (8). The
three groups of coefficients, Ak , Bk and Ck , are therefore not independent. By the substitution of (18)
back into (8), we can obtain

Bk = S (λk) Ak, Ck = L (λk) Ak, (19)

where S(λk) and L(λk) are given by

S(λk)=

(
2mν− (1− ν)(2− (m+ 1)λk − λ

2
k)
)(

12(1− ν)+ (1− 2ν)(m− (m+ 1)λk − λ
2
k)
)

2
(
(1− ν)(m+ 4ν− 6νm− 2ν(m+ 1+ λk)λk)−m2ν(1− 2ν)

) ,

L(λk)=−

(
2mν− (1− ν)(2− (m+ 1)λk − λ

2
k)
)(

4(1− ν)+m(1− 2ν)+ λk
)

(1− ν)
(
m+ 4ν− 6νm− 2ν(m+ 1+ λk)λk

)
−m2ν(1− 2ν)

.

(20)

With equations (19), the 18 unknown coefficients have reduced to only six: A1, A2, A3, A4, A5, A6.
They remain to be determined by implementing the traction boundary conditions at the outer surface (2)
and the inner surface (3) of the graded sphere.

Given the general solutions of the three unknown functions (18) in the radial and longitudinal displace-
ment (7), it is straightforward to derive the general expressions of displacements. The four nontrivial
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strain components can be further derived from the strain-displacement relations (4). Finally, with the
help of the shear modulus distribution (1), the radial and longitudinal stresses (5) can be recast

σR

T
=

Rm

bm

6∑
k=1

Ak
(
αk + ζ

2βk
) a1−λk

R1−λk
,

σRϕ

T
= ζ

√
1− ζ 2 Rm

bm

6∑
k=1

Akγk

a1−λk

R1−λk
, (21)

where αk , βk and γk (k= 1, . . . , 6) are all dimensionless functions of the shear modulus Go, the magnitude
of the applied uniaxial tension T , Poisson’s ratio ν, the grading index m and the eigenvalues λk :

αk =
2Go

(1− 2ν) T
((1− ν) λk + ν (2− L (λk))) , (22a)

βk =
2Go

(1− 2ν) T
((1− ν) λk S (λk)+ ν (2S (λk)+ 3L (λk))) , (22b)

γk =−
Go

T
(2S (λk)+ (1− λk) L (λk)) . (22c)

Equations (21) are valid expressions of the radial and shear stresses for any graded hollow sphere with
the shear modulus distribution given by (1). The six unknown coefficients (A1, . . . , A6) are adjustable
parameters that remain to be determined by satisfying specific traction or displacement boundary condi-
tions at both the inner and the outer surfaces of the hollow sphere. Upon implementing the uniaxial outer
tension condition (2) at R = b and the traction-free condition (3) at R = a, we arrive at four simultaneous
algebraic equations. In these equations, equating those terms independent of the variable ζ , preceding
ζ 2 and ζ

√
1− ζ 2 leads to six linear equations about the six unknown coefficients (A1, . . . , A6). This set

of equations may be restructured into a single matrix equation:

[U] {X} = {V } , (23)

where the components of the 6× 6 square matrix U are given by

U1k = αk, U2k = βk, U3k = γk, U4k =
αka1−λk

b1−λk
, U5k =

βka1−λk

b1−λk
, U6k =

γk a1−λk

b1−λk
; (24)

X is column vector composed of the six unknowns

X =
{

A1 A2 A3 A4 A5 A6
}T
; (25)

and V is also a column vector with the simple form

V =
{

0 0 0 0 1 −1
}T
. (26)

The algebraic matrix equation (23) is linear with respect to the six unknowns. As a result, its solution
procedure follows the standard linear algebra algorithm. The six unknowns can be easily found:

Ak = (U−1)k5− (U−1)k6 =
(U)′5k − (U)

′

6k

|U |
, (27)

where U−1, U ′ and |U | are the inverse, matrix of cofactors and determinant of the coefficient matrix U .
Since there are only two nonzero components in the column vector V , only the last two rows of the
matrices of inverse and cofactors are required in the solutions.
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In view of equations (24), closed-form expressions of the unknowns Ak can be further developed
without difficulty. Nonetheless, the results are quite lengthy. For brevity, they are not presented in the
manuscript. Interested readers are invited to implement the solution procedure in a symbolic mathemat-
ical software.

3. Results and discussion

In the last section, we developed an analytical solution to a graded thick-walled sphere subjected to a
uniaxial outer tension. For brevity, the closed-form expressions of the final results were not presented.
The purpose of the present section is to further explore the effects of the power-law grading index m and
the radii ratio b/a on both the stress distributions and the SCFs in terms of numerical experiments.

As can be concluded from previous studies on graded cylinders and spheres [Sburlati 2013], the effects
of Poisson’s ratio on stress fields are inessential when compared with those of the shear modulus. Xin et al.
[2014] further provided one theoretical foundation for justifying the assumption of constant Poisson’s
ratio extensively adopted in the literature. They indicated that, although the effects of Poisson’s ratio on
the radial displacement of a thick-walled tube under internal pressure are appreciable, those on stresses
are not obvious. As a result, the Poisson’s ratio was fixed as ν = 0.3 in all our case studies.

As a means of verifying and validating the correctness of the developed theoretical formulation, FE
solutions calculated through ABAQUS/Standard software were also prepared for most examples. In all
numerical experiments, the shear modulus at the outer boundary of the thick-walled sphere was taken as
Go = 80 GPa. The magnitude of the uniaxial outer tension was chosen as T = 50 MPa.

Previous studies demonstrate that high moduli of elasticity near the inner boundary of a thick-walled
sphere tend to worsen stress concentrations [Zheng et al. 2019]. In order to relieve the stress concen-
trations that typically occur at the inner surface of hollow spheres, their modulus of elasticity should
be designed as an increasing function of the radial coordinate. In other words, near the conventional
stress concentration zone, soft materials should be employed. For regions far way from the void, hard
materials can still be used. This design principle helps to drive the high-stress zone near the spherical
void toward to the outer boundary of the thick-walled sphere. On the basis of such an argument, only
positive grading indices should be considered in (1). For the special case of zero grading, the proposed
graded thick-walled sphere of course reduces to a completely homogeneous medium.

Figure 2 shows the distribution of the longitudinal stress along the inner surface of the graded thick-
walled sphere for the particular radii ratio b/a = 3. To investigate the effects of modulus inhomogeneity,
five positive grading indices were considered. For completeness, the classical solution of a homogeneous
thick-walled sphere is included in the figure. It can be seen from the figure that, the introduction of an
inhomogeneous shear modulus does not change the distribution pattern of the longitudinal stress along
the inner boundary. For any grading index, the maximum value of this stress component still occurs
along the equator of the inner surface (ϕ = π/2, 0≤ θ ≤ 2π). Due to symmetry, the minimum value of
the longitudinal stress takes place at both poles of the inner surface (ϕ = 0, π). The longitudinal stress
varies monotonically with the grading index. As m increases, the magnitude of both the maximum and
the minimum longitudinal stress decreases, indicating the desired effects of modulus inhomogeneity on
stress concentrations.

Because, on the inner surface of a graded thick-walled sphere, stress concentrations always occur
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Figure 2. Variation of dimensionless longitudinal stress along the inner surface of the
graded thick-walled sphere for five grading indices (b/a = 3, R = a).

Figure 3. Variation of dimensionless longitudinal stress with radial distance for five
grading indices (b/a = 3, ϕ = π/2).

along the equator, it is informative to further examine the variation of the longitudinal stress between
the inner and the outer equators of the sphere (Figure 3). The same five grading indices as studied in
Figure 2 were considered. It is now even more obvious that, at the inner surface of the graded sphere, the
longitudinal stress decays monotonically with increased grading index. For the particular thickness ratio
(b/a = 3), the highest stress concentration still occurs at the equator of the inner surface when m = 0.5
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and 1. In particular, when m = 0.5, the longitudinal stress decays rapidly with the radial distance from
the center of the sphere. However, the rate of decay becomes much slower as the grading index increases
to m = 1. Near the middle interface of the sphere, a stress plateau can be clearly observed. In addition to
the highest longitudinal stress occurring at the inner surface of the sphere, another local stress maximum
has also appeared at R/a = 2.12. The variation of the longitudinal stress is no longer monotonic. Two
points of inflection can be observed. As the grading index further increases to m = 1.5, the maximum
longitudinal stress in the thick-walled sphere has shifted from its inner surface to R/a = 2.38. As a result,
the high stress zone in the thick-walled sphere has changed to the vicinity of the outer surface. For the
highest considered grading index m = 2, this observation becomes even more clear. The inner surface
of the thick-walled sphere has become a global minimum of the longitudinal stress. For the five grading
indices, the longitudinal stress values at the outer surface of the graded thick-walled sphere are all close
to the applied uniaxial tension.

For comparison purpose, in Figure 3, we have also presented FE solutions for all five grading indices.
The FE solutions were calculated in ABAQUS/Standard software by employing the sublayer method,
in which a unidirectionally graded medium is divided into multiple homogeneous layers [Zheng et al.
2019; Liu et al. 2018; Yan et al. 2019; Yan and Mi 2019]. For brevity, the implementation details are
not repeated here. It can be seen from the figure that the analytical and FE solutions agree quite well for
small grading indices, validating the correctness of both methods. It is also noted that the relative error
between two solutions increases with the grading index. This behavior may be attributed to three factors.
First, in the FE modelings, all graded spheres were approximated with ten homogeneous sublayers. As
the grading index becomes higher, the shear modulus of the graded sphere varies faster, calling for a
finer FE simulation scheme. Second, among all four non-trivial components, the longitudinal stress is
the most important one. The largest magnitude of latitudinal, radial and shear stresses does not exceed
the applied external load, as will be presented shortly in this section. Third, for a thick-walled hollow
sphere, stress concentration is most severe along its inner surface.

In Table 1, we tabulate the SCF and its appearing location for a few grading indices in the range
of 0 ≤ m ≤ 2. The rate of reduction of the SCFs as compared with that of the classical solution is
also given in the table. Consistent with the stress distributions shown in Figure 3, for m ≤ 1.25, the
maximum longitudinal stress always occurs at the inner surface (R/a = 1) of the graded thick-walled
sphere and continues to decrease with the grading index. As the grading index increases to m = 1.5,
the maximum longitudinal stress does not occur at the inner surface anymore. The location at which
the maximum longitudinal stress occurs has shifted to R/a = 2.38 and a reduction rate of 46.8% is
achieved. This value is lower than the one corresponding to the grading index m = 1.25. It can therefore
be anticipated that an optimal grading index (mopt) must exist in the interval 1.25< m < 1.5. For such

m 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 mopt = 1.28

SCF 2.252 2.005 1.774 1.561 1.366 1.188 1.197 1.229 1.262 1.173
Location (R/a) 1 1 1 1 1 1 2.38 2.44 2.50 1 & 2.30
Reduction rate 0 11.0% 21.2% 30.7% 39.3% 47.2% 46.8% 45.4% 44.0% 47.9%

Table 1. The stress concentration factor and its location for a few graded thick-walled
spheres under the application of a uniaxial outer tension (b/a = 3, ν = 0.3).
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Figure 4. Variation of dimensionless longitudinal stress with radial distance for five
grading indices (b/a = 9, ϕ = π/2).

an ideal grading index, the longitudinal stresses at the inner surface and near the outer boundary of the
graded sphere become equal to each other, indicating the best longitudinal stress state along the sphere
thickness. A simple numerical search reveals that the optimal grading index is mopt = 1.28, at which
the highest reduction rate (47.9%) in the maximum longitudinal stress has been achieved. In view of
Figure 3, the longitudinal stress for mopt = 1.28 should still have a nonuniform distribution. With the
power-law gradation of shear modulus, it is thus impossible to achieve a completely uniformly distributed
longitudinal stress. As the grading index becomes higher than the optimal value, the SCF increases again.
The effects of the inhomogeneous shear modulus have therefore been weakened to a certain extent.

To investigate the influence of the radii ratio between the outer and the inner surface of the graded
thick-walled sphere, we further reexamined the longitudinal stress distribution for the case of b/a = 9
(Figure 4). Although the overall distribution patterns are similar to those for the case of b/a = 3, the
effects of the radii ratio is very clear. For example, when m = 1, the maximum longitudinal stress takes
at the inner surface of the thick-walled sphere for the radii ratio b/a = 3. However, when b/a = 9, the
maximum stress concentration has shifted to near the outer boundary of the sphere (R/a = 7.48). The
reduction rate becomes 46.1%, which is higher than the one corresponding to b/a = 3. Consequently, for
the same grading index, a larger radii ratio tends to drive the high stress zone from the inner boundary
toward to the outer surface of the thick-walled sphere and results in a better SCF reduction rate. To
validate this hypothesis, we further calculated the maximum longitudinal stress for a few different radii
ratios.

Figure 5 shows the variation of the SCF as a function of the radii ratio within the interval 3≤ b/a ≤ 18.
For all five grading indices, the SCF monotonically decreases as the radii ratio of the graded sphere
enlarges. For the homogeneous thick-walled sphere, the maximum longitudinal stress always occurs at
its inner boundary for any radii ratio. With increased radii ratio, the SCF rapidly converges to a constant
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Figure 5. Variation of the maximum longitudinal stress found in the graded sphere as
a function of the radii ratio b/a for five grading indices (ϕ = π/2).

(2.045) that corresponds to the SCF of an infinite hollow sphere (ν = 0.3). As the shear modulus of the
thick-walled sphere becomes nonuniform, the maximum longitudinal stress does not necessarily occur at
its inner boundary. For the grading index m = 0.5 and 1, a corner in the SCF curve can clearly be found
at b/a = 15.5 and 4.0, respectively. This behavior indicates the fact that the location of the maximum
longitudinal stress has shifted from the inner boundary to near the outer surface of the graded sphere. As
the grading index further increases to m = 1.5, the maximum longitudinal stress appears near the outer
surface of the thick-walled sphere for all studied radii ratios 3≤ b/a ≤ 18. As a result, the SCF curve
for the grading index m = 1.5 becomes again very smooth. With increased radii ratio, the SCF rapidly
converges to a constant. The corner no longer exists. For the largest considered grading index (m = 2),
the SCF becomes nearly a constant and thus independent of the radii ratio.

For completeness, we also examined the distribution of the latitudinal stress in the graded thick-walled
sphere. Figure 6 shows the variation of dimensionless latitudinal stress along its inner surface for the
same five grading indices that have been previously considered. No severe stress concentrations were
found, because the direction of the latitudinal stress is always normal to the applied uniaxial tension.
Independent of the grading index, the maximum magnitude of the latitudinal stress always occurs on two
poles of the inner boundary. It is clear that the maximum latitudinal stress at the inner surface continues
to decrease as the grading index increases.

In analogy to Figure 3, Figure 7 shows the distribution of the latitudinal stress along the radial direction.
As before, both the analytical and the FE solutions were presented. The disagreement between FE and
analytical solutions also increases with the grading index. However, in contrast to the case of longitudinal
stress (Figure 3), much better agreements can be found. It is noted that, for all five grading indices, the
latitudinal stress climbs monotonically from the inner boundary toward to the outer surface of the thick-
walled sphere. The impact of the grading index is very clear. At the inner boundary of the thick-walled
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Figure 6. Variation of dimensionless latitudinal stress along the inner surface of the
graded thick-walled sphere for five grading indices (b/a = 3, R = a).

Figure 7. Variation of dimensionless latitudinal stress with radial distance for five grad-
ing indices (b/a = 3, ϕ = 0 or π ).

sphere, the latitudinal stress decreases with increased grading index. At the outer surface, the opposite
is true. As a balance, the intermediate grading index m = 1 seems to be the best choice of the five
if the latitudinal stress is of the primary concern. For this particular case, σθ/T = −0.528 and 0.535,
respectively, at the inner and the outer surface of the thick-walled sphere.
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m 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 mopt = 0.99

|σθ |/T 0.793 0.723 0.656 0.590 0.535 0.644 0.761 0.885 1.017 0.531
Reduction rate 0 8.9% 17.3% 25.6% 32.5% 18.8% 4.0% −11.6% −28.2% 33.0%

Table 2. The maximum SCF in latitudinal stress occurring at either boundary of a graded
thick-walled sphere under the application of a uniaxial outer tension (b/a = 3, ϕ = 0, π ).

Table 2 tabulates the maximum values of the latitudinal stress (in magnitude) in the graded thick-walled
sphere for a few representative grading indices. For small grading indices (m < 0.99), the magnitude of
the latitudinal stress at the inner surface is larger than that at the outer boundary. However, for m = 0.99,
|σθ |/T at the outer boundary becomes equal to the one at the inner surface. Consistent with previous
discussions, such a grading index can be defined as its optimal value (mopt). For this case, the highest
reduction rate (33.0%) in the maximum latitudinal stress is achieved. With the further increase of the
grading index, the latitudinal stress at the outer boundary remains positive and continues to climb. As a
result, the reduction rate of |σθ |/T starts to decrease. The effects of the inhomogeneous shear modulus on
the reduction of latitudinal stress become nearly negligible when the grading index increases to m = 1.5.
For m = 2, the latitudinal stress at the outer boundary of the sphere becomes even far larger than the
classical SCF in the latitudinal stress.

Figure 8 shows the variation of the radial stress component along the symmetry axis of the mechanical
model for five grading indices. In view of the uniaxial outer tension applied on the thick-walled sphere,
it is along this direction (ϕ = 0, π) that the radial stress takes its maximum value. Both analytical and
FE solutions are presented for all five grading indices. As can be observed from the figure, reasonable
agreements between the two independent solutions are obtained for the radial stress component. This is

Figure 8. Variation of dimensionless radial stress with radial distance for five grading
indices (b/a = 3, ϕ = 0 or π ).
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Figure 9. Variation of dimensionless shear stress with radial distance for five grading
indices. (b/a = 3, ϕ = 3π/4)

true even for the largest grading index (m = 2), in contrast to the case of longitudinal stress. Limited
by the boundary conditions (3)1 and (2)1, the dimensionless radial stress σR/T is exactly 0 and 1 at
the inner and outer surfaces of the thick-walled sphere. Within the studied range of the grading index
0≤ m ≤ 2, no stress concentrations in the radial stress were found. Nonetheless, the introduction of an
inhomogeneous shear modulus is able to affect the distribution pattern of the radial stress. With increased
grading index, the radial stress between the two boundaries of the thick-walled sphere becomes closer
to a linear function of the radial coordinate.

Finally, in Figure 9, we present the variation of the shear stress component along the particular direc-
tion ϕ = 3π/4 for the same five grading indices. It is along this direction that the shear stress takes its
maximum positive value. At the inner and the outer surfaces of the thick-walled sphere, the dimensionless
shear stress σRϕ/T is exactly 0 and 0.5, respectively, as given by the boundary conditions (3)2 and (2)2.
Similar to the case of radial stress, increasing the grading index helps to straighten the shear stress
variation through the thickness dimension of the hollow sphere. As a result, the overall shear stress level
becomes lower and lower than its classical counterpart. As before, although the disagreement between
FE and analytical shear stresses also increases with the grading index, the discrepancy is acceptable and
much less than that of the longitudinal stress.

4. Concluding remarks

In this paper, we successfully developed an analytical solution to a graded thick-walled sphere sub-
jected to a uniaxial outer tension. While the Poisson’s ratio of the sphere was fixed as a constant, its
shear modulus was allowed to vary as a power-law function of the radial coordinate. The analytical
solution was derived through directly tackling the equilibrium equations of displacements of the graded
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thick-walled sphere. Informed by the distribution pattern of the applied uniaxial outer tension, function
forms of both the radial and the longitudinal displacements were proposed in terms of three unknown
functions of the radial coordinate. In this way, the two equations of equilibrium were recast into three
differential equations of the Euler type involving the three fundamental unknown functions. The system
of second-order differential equations were further reduced into six first-order ones by taking both the
three fundamental unknown functions and their derivatives as new unknown variables. The new system
is then converted into a first-order differential matrix equation and analytically solved by the joint use of
the first-order differential equation theory and the eigenvalue theory. In order to validate the correctness
of the derived analytical solution, finite element solution of the graded thick-walled sphere was also
calculated and a reasonable agreement between the two independent methods were identified for both
the stress distributions and stress concentration factors. On the basis of extensive parametric studies, a
few observations and conclusions can be drawn as follows:

• In order to drive the high stress zone conventionally taking place near the inner boundary of a homo-
geneous thick-walled sphere, the modulus of elasticity of thick-walled spheres should be designed
as an increasing function of the radial coordinate.

• In analogy to the case of a homogeneous thick-walled sphere, the longitudinal stress component
remains to be the primary concern in the graded ones. No significant stress concentrations were
found in latitudinal, radial and shear stresses.

• With increased shear modulus gradation, the high stress zone tends to shift from the inner surface
toward to the outer boundary of thick-walled spheres. In contrast to homogeneous thick-walled
spheres, for graded ones, two local stress maxima exist. As they become equal, an optimal grading
index in the power-lower function of shear modulus can be defined.

• For a given grading index in the power-lower function of shear modulus, the stress concentration
factor monotonically decays with increased radii ratio between the outer and the inner surface of
the graded sphere and gradually converges to the factor of an infinite hollow sphere. This global
maximum stress may occur either at the inner boundary or near the outer surface of the graded
sphere, depending on both the radii ratio and the grading index. With increased grading index, a
smaller radii ratio is required in order to shift the most sever stress concentration from the inner
surface toward to the outer boundary vicinity.
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FIELD INTENSITY FACTORS OF THREE CRACKS ORIGINATING FROM
A CIRCULAR HOLE IN A THERMOELECTRIC MATERIAL

QING-NAN LIU AND SHENG-HU DING

The fracture behavior of three cracks originating from a circular hole in a thermoelectric material is
studied. The basic theory of thermoelectric materials is given under the condition of the impermeable
boundary of the heat flux and electric current. By introducing the conformal mapping function, the
infinite plane on the physical plane is mapped into the inner unit circle on the mathematical plane. The
formulas of the relevant temperature and stress fields are derived, and the analytical solutions of the
complex stress functions are obtained by the complex variable function method. According to Cauchy
integral formula, the analytical expressions of the electric current intensity factor and the stress intensity
factor for three cracks originating from a circular hole are obtained. The effects of the hole radius and
the crack lengths on the electric current intensity factor and stress intensity factors were investigated.

1. Introduction

Thermoelectric materials are functional materials that directly convert thermal energy to electric energy
through the movement of a solid internal carrier. They are widely used in energy, refrigeration, micro-
electronics, aerospace military and other fields [Hone et al. 2013; Wu et al. 2018; Roncaglia and Ferri
2011; Wang et al. 2014; Liu et al. 2017]. Thermoelectric materials also have important applications in
thermoelectric power generation [Roncaglia and Ferri 2011], such as industrial waste heat recovery and
waste heat recovery systems, solid-state thermal management, solar energy collection, carbon emission
reduction [Pierce and Vaudo 2010], automobile exhaust, etc.

Thermoelectric materials have become an important branch of modern functional materials [Narasimha
et al. 2014; Yu et al. 2018]. However, thermoelectric materials are brittle materials. Due to the mechani-
cal, thermal and electrical factors, cracks or microcracks will inevitably occur in the machining process
[Bigoni and Movchan 2002; Xie et al. 2017; Shi 2020]. Craciun et al. [2014] studied the mode II fracture
problem of an anisotropic unbounded elastic body with three collinear equal cracks. The effect of thermal
load on the stress intensity factors of a finite length edge crack in an orthotropic infinite strip with finite
thickness is studied by Singh et al. [2019] Therefore, the research on fracture or cracks in thermoelectric
materials has important theoretical and practical significance. In recent years, some scholars have studied
the theory and methods of cracks in thermoelectric materials. Using the complex function method, the
two-dimensional problem of cracks in thermoelectric materials was studied in [Song et al. 2015], and
the effect of a crack on the conversion efficiency of thermoelectric materials was discussed in [Song
and Song 2016]. Considering the electrically and thermally impermeable crack model, Zhang and Wang

Sheng-Hu Ding is the corresponding author.
Keywords: thermoelectric material, circular hole, three cracks, complex variable function, intensity factors.
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[2013] studied the crack problem in a medium possessing a coupled thermoelectric effect under thermal-
electric loads. Considering the electric impermeable and heat semi-permeable crack model, the interface
crack problem in a layered thermoelectric material is investigated in [Zhang and Wang 2016b]. By using
the integral equation method, the thermal conductivity models of multilayer thermoelectric plates with
Griffith cracks and non-collinear cracks under different loads are established in [Ding and Liu 2018; Ding
and Zhou 2018]. The influence of the strip width of thermoelectric materials on the electric flux intensity
factor and the heat flux intensity factor was studied. The general model of a bi-layered thermoelectric
composite system with an interfacial crack is considered and the effect of interfacial cracking on the
thermoelectric properties is investigated in [Wang et al. 2018]. Clin et al. [2009] studied the stress
distribution of a thermocouple via numerical simulation. Turenne et al. [2010] studied the effects of
the boundary conditions and the length of the thermocouple on the stress distribution of thermoelectric
devices by numerical simulation. A finite element computational scheme for transient and nonlinear
coupling thermoelectric fields and the associated thermal stresses in thermoelectric materials is studied
in [Wang 2017].

As we all know, the holed structures play an important role in engineering. In the process of manufac-
turing and using a holed structure, cracks often appear around the hole [Tada et al. 1973; Ouchterlony
1976; Wu and Carlsson 1991]. In addition, when thermoelectric materials are subjected to thermal and
electrical loads, the stress concentration near the hole will initiate and propagate cracks, which will lead
to the failure of thermoelectric materials. Therefore, it is necessary and important to analyze the fracture
behavior of thermoelectric materials, especially those with holes and cracks. For isotropic materials, the
problem of multiple radial cracks originating from a circular hole using the complex variable method
is studied in [Bowie 1956]. The problem of one and two cracks at the edge of an elliptic hole in an
infinite isotropic material is solved using the integral transforms method from [Tweed and Melrose 1989].
Bertoldi et al. [2007] solved the problem of elliptical inclusions connected by the structural interface to
an infinite matrix analytically. For the case of anisotropic materials, the solutions of the stress intensity
factors of a single or two collinear edge cracks emanating from a curvilinear hole in an infinite anisotropic
plane based on the boundary element method is investigated in [Liaw and Kamel 1991]. Zhang and Wang
[2016a] solved the two-dimensional problem of an elliptical hole in thermoelectric materials by using the
complex function method. The results show that the thermoelectric conversion efficiency can be higher
than the maximum conversion efficiency of one-dimensional thermocouples at the same temperature
when the current flow and heat flux are separated. The theoretical model of thermoelectric coupling
for thermoelectric materials with inclined elliptical holes is established in [Wang and Wang 2017]. The
effective properties of a thermoelectric material in the vicinity of an arbitrarily shaped hole are studied
in [Song et al. 2019b]. The contribution of surface elasticity and electric current density on the ther-
mal stress distribution around a circular nano-hole in a thermoelectric material is considered in [Song
et al. 2019a]. Using complex variable methods, the closed-form solutions describing the corresponding
thermoelastic fields in the vicinity of the nano-hole are given. Using the complex variable function
method and the conformal mapping technique, the model of infinite thermoelectric material containing
a circular hole with a straight crack is considered in [Pang et al. 2018]. Using the same method, Jiang et
al. [2020] studied the two-dimensional problem of a circular hole with two unequal cracks in an infinite
thermoelectric material under the action of uniform current and heat flux. However, the above two papers
are both thermoelectric uncoupled model, which is inconsistent with the actual engineering situation. In



THREE CRACKS FROM A CIRCULAR HOLE IN A THERMOELECTRIC MATERIAL 607

fact, thermoelectric material is coupled by thermal field and electric field. Therefore, considering the
thermoelectric coupling effect, this paper studied the problem of three cracks at the edge of a circular
hole in thermoelectric material. The effects of various parameters on current intensity factor and stress
intensity factor are given.

The purpose of the present work to study the fracture problem of three cracks originating from a
circular hole in a thermoelectric material under combined thermal and electrical loads. In addition, it is
very interesting and challenging to obtain the analytical solutions for such complicated crack problems,
since these solutions can provide the theoretical bases for fracture problems in thermoelectric materials,
and can also be used as benchmark approximate methods to judge the accuracy and effciency of various
numerical methods.

2. Basic equations

2.1. Governing equations. Consider an infinite thermoelectric material in which all fields are assumed
to depend only on the in-plane coordinates x and y. When no free electric charge and heat source exist,
the coupled transports equations of the heat and electrons in a thermoelectric material were given by
[Perez-Aparicio et al. 2007]

Jq =−

(
T 2γ ε

e

)
1
T
∇V + (T 3γ ε2

+ T 2k)∇
1
T
, (1)

Ju =

(
T 2γ ε

e

)
∇

1
T
−

(
T γ
e2

)
1
T
∇V, (2)

where V = eν, and the electric current density Je is coupled with the heat flux Jq through the Seebeck
coefficient ε. Ju is the energy flux. In the thermoelectric materials, the electric current density can
be derived from the energy flux, where Je = e Ju . In addition T, ν, γ, k are the temperature, electric
potential, electrical conductivity and thermal conductivity.

It is easy to find that

Je =−γ∇ν− γ ε∇T, (3)

Jq =−γ εT∇ν− (γ ε2T + k)∇T . (4)

The energy flux can be expressed as

Ju = Jq + Jeν. (5)

Assuming that the energy and charge in thermoelectric materials are all conserved, the electric current
density and energy flux have the form

∇ · Je = 0, (6)

∇ · Jq + Je · ∇ν = 0. (7)

2.2. General solution of the thermoelectric field. A new function F is introduced as

F = ν+ εT . (8)
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Then the constitutive equations can be rewritten as

Je =−γ∇F, (9)

Ju =−γ F∇F − k∇T . (10)

For the solution of two-dimensional problems in thermoelectric materials, the temperature field and
electric field can be expressed by two decomposed complex functions. Substituting (9) and (10) into (6)
and (7) respectively, the governing equations become

∇
2 F = 0, (11)

k∇2T + γ (∇F)2 = 0. (12)

Following [Muskhelishvili 1975], let F be the real part of the analytic complex function f1(z), where
z = x + iy. We get

F = Re[ f1(z)]. (13)

Substituting (13) into (9), we obtain

Jex =−γRe[ f1(z)]x =−
1
2
γ ( f ′1(z)+ f ′1(z)),

Jey =−γRe[ f1(z)]y =−
i
2
γ ( f ′1(z)− f ′1(z)).

(14)

or
Jex − i Jey =−γ f ′1(z). (15)

From (3) and (6), we get

Je
2
=−γ k∇2T =

γ k∇2ν

ε
. (16)

Namely

∇
2T =−

γ

k
[∇Re[ f1(z)]]2 =−

γ

k
f ′1(z) f ′1(z). (17)

Considering the two-dimensional thermoelectric problem, the temperature field is superposed by two
functions

T = T1+ T2, (18)

where T1 and T2 satisfy

∇
2T1 =−

γ

k
f ′1(z) f ′1(z) , (19)

∇
2T2 = 0. (20)

By integrating (17), we have

T =−
γ

4k
f1(z) f1(z)+Re[g(z)], (21)

where g(z) is an arbitrary analytic function.



THREE CRACKS FROM A CIRCULAR HOLE IN A THERMOELECTRIC MATERIAL 609

From (10) and (18), the energy flux can be expressed as

Jux − i Juy =−
γ

2
f1(z) f ′1(z)− kg′(z). (22)

2.3. General solution of the stress field. For plane problems, combined with the compatibility equation,
the stress function Φ satisfies

∇
4Φ =−β∇2T, (23)

where β is a coefficient taking the value Eα for plane stress and Eα/(1−ν) for plane strain, where
E, ν, α are the Young’s modulus, Poisson ratio and thermal expansion coefficient.

For planar two-dimensional problems, the stress function Φ is written as two complex decomposition
functions,

Φ(x, y)= ψ(x, y)+ψ0(x, y), (24)

where ψ(x, y) is the special solution of the stress function, and ψ0(x, y) is the general solution of the
stress function. Combining (20) and (21) with (23), we obtain

ψ =−
γβ f2(z) f2(z)

16k
, (25)

where f ′2(z)= f1(z).
According to the superposition principle, the stresses and displacements can be expressed as

σxx + σyy = 4Re[ϕ′(z)] +
µβγ

2k
f1(z) f1(z),

σyy − σxx + 2iσxy = 2[zϕ′′(z)+φ′(z)] +
µβγ

2k
f2(z) f ′1(z),

(26)

2µ[ux + iu y] = κϕ(z)− zϕ′(z)−φ(z)+ 2µα∗
∫

g(z) dz−
µβγ

4k
f2(z) f1(z), (27)

where ϕ(z) and φ(z) are complex stress functions, κ and α∗ are defined as follows

α∗ =

{
α, for plane stress state

(1+ v)α. for plane strain state

κ =

3− v
/

1+ v, for plane stress state

3− 4v. for plane strain state

(28)

The boundary condition of the stress in thermoelectric materials can be expressed as

ϕ(z)+ zϕ′(z)+φ(z)= i
∫
(px + i py) ds−

µβγ

4k
f2(z) f1(z)+ constant, (29)

where the constants px and py are the external forces exerted on the boundary, and they are assumed to
be zero.
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Figure 1. A circular hole with three cracks in thermoelectric material for z-plane and ξ -plane.

3. Thermoelectric field for a circular hole with three cracks

3.1. Formulation of problems. Consider a circular hole with three equal-length cracks on an infinite
plane. The radius of the circle is R and the length of the crack is c− R. The boundary conditions on the
circular hole surfaces are regarded as electrically and thermally insulated. The medium is subjected to
a uniform electric current density and a uniform heat flux at infinity. Thus, the boundary conditions can
be expressed as 

Jqx = 0, Jqy = 0, |z| = R or R < |x |< c or R < |y|< c,

Jex = 0, Jey = 0, |z| = R or R < |x |< c or R < |y|< c,

Jex = 0, Jey = Je0, |x | →∞, |y| →∞,

Jux = 0, Juy = Ju0. |x | →∞, |y| →∞.

(30)

As shown in Figure 1, we transform the exterior of a circular hole with three cracks in the z-plane into
the interior of a unit circle on the ξ -plane by introducing the conformal mapping function z = ω(ξ) by

z = ω(ξ)=
R
2ξ

[√
−m1ξ 2+m2(ξ 2+ 1)2+

√
−m1ξ 2− 4ξ 2+m2(ξ 2+ 1)2

]
, (31)

where
m1 =

(c2
− R2)2

R2c2 , m2 =
c4
+ R4

2R2c2 , (32)

in which
√
−1= i , and we take ω−1(c)→ 1, ω−1(−c)→−1, ω−1(ci)→ c.

Substituting (31) into (26) and (29), we have

σθ + σρ = 4Re
[
ϕ′(ζ )

ω′(ζ )

]
+
µβγ

2k
f1(z) f1(z),

σyy − σxx + 2iσxy = 2
[

z
(
ϕ′(ζ )

ω′(ζ )

)′
+
φ′(ζ )

ω′(ζ )

]
+
µβγ

2k
f2(z) f ′1(z),

(33)

φ(ζ )+
w(ζ )

w′(ζ )
φ′(ζ )+ϕ(ζ )= i

∫
(px + i py) ds−

µβγ

4k
f2(ζ ) f1(ζ )+ constant, (34)

where θ and ρ are the polar angle and polar radius of the polar coordinates at the crack tip of the ξ -plane.
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3.2. Solution of the cracks. To solve the two-dimensional plane crack problem, the boundary conditions
of the circular surfaces are electrically and thermally insulated, and the material plate is subjected to a
uniform electric current density (Jex = 0, Jey = Je0) and an energy flux (Jux = 0, Juy = Ju0) at infinity.
When the potential difference and temperature difference are given, the current density and energy flux
in the thermoelectric material are constantly distributed, and the heat flux is non-linear with spatial
coordinates. Therefore, it is more convenient to use Je0 and Ju0 to solve the far-field thermoelectric
boundary conditions for circular hole problems with the boundary conditions of the electric current
density and energy flux given by

f1(z)− f1(z)=−
∫

Jen(s) ds+ constant, (35)

Im
[γ

4
f 2
1 (z)+ κg(z)

]
=−

∫
Jun(s) ds+ constant, (36)

where n indicates the normal direction, Jen and Jun stand for the electric current density and energy flux
in the direction normal to s, respectively.

With considering the electric current impermeable cracks and the boundary conditions of the current
density insulation at the edge of the hole, (35) can be rewritten as

f1(z)− f1(z)= 0. (37)

According to the electric current density condition at infinity, the complex function f1(z) can be
expressed as

f1(z)= a1z+ f0(z), (38)

where a1 is a complex constant related to the electric current density at infinity and f ′0(∞)= 0.
Substituting (38) into (15), and then taking the limit z→∞ gives

a1 =
i Je0

γ
. (39)

Substituting (31) and (39) into (37) and noting ξ = σ = eiθ on the circular surface, we have

f0(σ )− f0(σ )=−
i Je0R
2σγ

[√
−4m1σ 2+ 4m2(σ 2+ 1)2+

√
−4m1σ 2− 16σ 2+ 4m2(σ 2+ 1)2

]
. (40)

Multiplying both sides of (40) by 1
2π i

dσ
σ−ξ

and carrying out the Cauchy integration yields, we obtain

f0(ζ )=−i
2Je0

γ

[
w(ζ )−

R
√

m2

ξ

]
. (41)

Substituting (31) and (41) into (38), we have

f1(z)=−
i Je0 R
2γ ξ

[√
−m1ξ 2+m2(ξ 2+ 1)2+

√
−m1ξ 2− 4ξ 2+m2(ξ 2+ 1)2− 4

√
m2
]
. (42)

From (21) and (42), the function g(z) related to the temperature function can be expressed as

g(z)= a2z2
+ b2z+ g0(z), (43)
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where a2 and b2 respectively represent the complex constants of the electric current density and energy
flux at infinity, and g′0(∞)= 0

Substituting (42) and (43) into (22), and then taking the limit z→∞ gives

a2 =
Je0

2

4kγ
, b2 =

i Ju0

k
. (44)

Substituting (42) and (44) into (36), considerating ξ = σ = eiθ on the circular surface and Jun = 0,
and carrying out the Cauchy integration yields

g(z)=−
i Ju0 R
2kξ

[√
−m1ξ 2+m2(ξ 2+ 1)2+

√
−m1ξ 2− 4ξ 2+m2(ξ 2+ 1)2− 4

√
m2
]

Je0
2 R2

16kγ

[
−2m1+ 2m2(ζ + ζ

−1)2− 4+
√
[−m1+m2(ζ + ζ−1)2]2+ 16m1− 16m2(ζ + ζ−1)2

]
. (45)

Considering the problem of two-dimensional thermal stresses, the complex potentials ϕ(ζ ) and φ(ζ )
in thermoelectric material have the form

ϕ(ζ )= A1(ζ ) ln ζ +ϕ0(ζ ), φ(ζ )= A2(ζ ) ln ζ +φ0(ζ ), (46)

where A1(ξ) and A2(ξ) are unknown complex functions at infinity.
Substituting (46) into (34), we obtain

A1(ξ)= R2m2 A0,

A2(ξ)= A1+ 2R3 P0
[√

4m2(ξ + ξ−1)2− 4m1+
√

4m2(ξ + ξ−1)2− 4m1− 16
]
,

(47)

where

A0 =−
2µα∗i Ju0

k(κ + 1)
, P0 =

µβ J 2
e0

8kγ
. (48)

By setting px and py as zero, the stress boundary condition in (34) can be rewritten as

ϕ(σ)+
ω(σ)

ω′(σ )
ϕ′(σ )+φ(σ)=−

µβγ

4k
f2(σ ) f1(σ ). (49)

From (31), we have

ω′(ζ )=m2 R(ζ+ζ−1)(1−ζ−2)[(−4m1+4m2(ζ+ζ
−1)2)−

1
2 +(−4m1+4m2(ζ+ζ

−1)2−16)−
1
2 ], (50)

which leads to the following expression for M = ω(ξ)/ω′(ξ):

M =
R
4ξ

√
4m2(ξ 2+ 1)2− 4m1ξ 2+

√
4m2(ξ 2+ 1)2− 4m1ξ 2− 16ξ 2

m2 R(ξ + ξ−1)(1− ξ 2)
[
(4m2(ξ + ξ−1)2− 4m1)

−
1
2 + (4m2(ξ + ξ−1)2− 4m1− 16)−

1
2
] (51)

It can be deduced that ω′(ξ) and w(ζ )

w′(ζ )
ϕ′0(ζ ) are analytically outside the unit circle and can be extended

to an analytic function on the circle. Then using of the Cauchy integral at infinity leads to

1
2π i

∫
σ

w(σ)

w′(σ )

ϕ′0(σ )

σ − ζ
dσ = 0. (52)
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Note that on the circular surface, we have ξ = σ = eiθ . Then, substituting (51) and (52) into (49) and
carrying out the Cauchy integration yields

ϕ0(ξ)=
R2m2 A0

ζ
, φ0(ξ)= (8R3 p0

√
m2+ R2m2 A0)ζ

−1. (53)

From (46) and (53), ϕ(ζ ) and φ(ζ ) can be expressed as

ϕ(ξ)= m2 R3 p0ζ
[
4
√

m2ζ
−1
− 8
√

m2(ζ
2
+ ζ−2)

+

√
−4m1ζ 2+ 4m2(ζ 2+1)2+

√
−4m1ζ 2− 16ζ 2+ 4m2(ζ 2+1)2

]
, (54)

φ(ζ )= m2 R3 p0ζ
[√
−4m1ζ 2+ 4m2(ζ 2+1)2

+4
√

m2(ζ
−1
− 2ζ−4

− 2)+
√
−4m1ζ 2− 16ζ 2+ 4m2(ζ 2+ 1)2

]
−M2ϕ

′

0(ζ ). (55)

For the problem of hole edge cracks, the current intensity factors at the crack tip c are defined as

Ke = Kex − i Key = lim
z→R+c

√
2π(z− R− c)(Jex − i Jey)

=−γ lim
ξ→1

√
2π [ω(ξ)−ω(1)]

f ′1(ξ)
ω′(ξ)

.

(56)

Substituting (42) and (54) into (56), we have

Ke = Kex − i Key = i
√
πR

√
c4
+ R4

Rc
je0. (57)

For the problem of hole edge cracks, the stress intensity factor at the crack tip c can be expressed as

K I − i KII = lim
z→R+c

2
√

2π(ω(ξ)− R− c)ϕ′(z)= lim
ξ→1

2
√

2π(ω(ξ)−ω(1))
ϕ′(ξ)

ω′(ξ)
. (58)

Substituting (50) and (54) into (58), we have

K I =
m2 R3µβ J 2

e0

8kγ

√
π

c

(
16m2− 2m1
√

16m2− 4m1
+

16m2− 2m1− 8
√

16m2− 4m1− 16
− 8
√

m2

)
., (59)

KII =
µα∗ Ju0

k(κ + 1)

√
π

c
c4
+ R4

c2 . (60)

Under limiting conditions, the new configuration can be simulated from the present result. If the
length of crack c-R tends to zero, using (42), (15) reduces to

Jex − iJey = iJe0
1+ ξ̄ 2

ξ̄ ξ−2
(60)

which is the result for an infinite thermoelectric material containing only a circular hole [Zhang and
Wang 2016a].
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Figure 2. Variation of the electric intensity factor Ke with R (left) and c/R (right).

4. Numerical examples

When an infinite thermoelectric plate with three cracks originating from circular hole is subjected to a
uniform current at infinity, the electric intensity factor at the crack tip c is shown in Figure 2. From (57),
it can be seen that the electric intensity factor is related not only to the radius R of the circle, but also to
the length c/R of the crack. When the radius of the circular hole is larger and other conditions remain
unchanged, the electric intensity factor Ke at the crack tip increases as R increases, and the change speed
becomes faster as R increases. When R is a constant value, the electric intensity factor Ke at the crack tip
increases with an increase of c/R, and the change speed becomes faster as R increases. Figure 3 shows
the variation of the stress intensity factor K I at the crack tip c with parameters R/c and R. It can be found
that when the orifice radius is constant, c/R increases as the value of K I increases. When R/c is a fixed
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value, the stress intensity factor at the crack tip c increases as the aperture radius increases. When R/c is
larger, the rate of K I increases faster. Figure 4 shows the variation of the stress intensity factor KII with
parameters R/c and R. When the radius of the circular hole is larger and the other conditions remain
unchanged, the stress intensity factor KII at the crack tip c increases as R increases and the change speed
becomes faster with an increase of R/c value. When R is a constant value, the stress intensity factor KII at
the crack tip c increases with the increase of c/R, and the change speed becomes faster as c/R increases.

5. Conclusions

Based on the general form of the temperature field and stress field in thermoelectric materials, the explicit
solutions of the electric current density and heat flux are obtained by using the complex function method.
A more practical case, thermoelectric coupling is considered in this paper. To solve the problem of a
circular hole with three cracks, the boundary conditions and conformal mapping were used to map the
outer part of the z-plane circular hole to the inner part of the ξ -plane unit circle. The influences of the
radius of the hole and the length of the cracks on the electric intensity factor and the stress intensity
factor are studied under the condition that the thermoelectric material plate is insulated only by the
electric current at infinity.
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EXPERIMENTAL STUDY OF DEFORMATION PROCESSES IN LARGE-SCALE
CONCRETE STRUCTURES UNDER QUASISTATIC LOADING
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ROMAN TSVETKOV, VALERIY YEPIN AND GEORGIY GUSEV

Physical experiments with large-scale models of engineering structures provide invaluable information
for understanding the deformation processes in objects of complex configuration and allow researchers
to reproduce the interactions between the structural elements on different scales. The article presents test
stand designed and assembled at the Institute of Continuum Media Mechanics (Perm, Russia). Using
this stand, studies of deformation processes in a large-scale model concrete structure were carried out.
The deformation response of structural elements to the locally applied quasistatic and impulse loads was
studied. The patterns of the spatial-temporal distribution of deformation parameters over the structural
elements were obtained. The tests conducted in the elastic deformation mode allowed to obtain the
vibration portrait of the structure, which provided basic information for the future experiments aimed at
studying inelastic deformation of the structure until its ultimate failure.

1. Introduction

The assessment of the stress-strain state of large engineering constructions and complex structures is of
great importance. This issue arises at the stages of construction and operation of buildings, as well as
at the stage of evaluation of risks associated with the occurrence of emergency situations. Estimating
the stress-strain state in complex and large-sized buildings and engineering structures is based on a
combination of experimental and theoretical approaches. The theoretical approaches involve the creating
of a mathematical model of the examined structure and determination of principal regularities of its
behavior using for this purpose the classic analytical and numerical simulation methods in the framework
of elastic and non-elastic models. Today, the numerical implementation of these models is possible due
to the application of a number of well-developed universal software systems for finite element analysis,
such as ANSYS, ABAQUS, NASTRAN, COMSOL, LIRA-CAD. As a rule, such software packages
offer a wide scope of options for describing the composition of the object and taking into account the
interactions between structural elements. They involve various models to simulate the physical and
mechanical properties of materials used in the structure. However, the development of a mathematical
model of the structure composed of many elements of different size necessitates the simplification of
its properties and the neglect of structural details beginning from a certain scale. Such a model is not
always appropriate for displaying the whole variety of processes, which occur on different scales and
can provoke the structure failure. In addition, the problem of furnishing such mathematical models with
material parameters is not as simple as might appear at the first sight. Information about the physical
and mechanical properties of materials obtained from the standard tests, which usually realize simple
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stress-strain state, is often insufficient for describing the state of a real structure. Therefore, an important
stage in numerical simulation is a reliable verification of the mathematical model by means of comparing
its predictions with the results of experiments simulating the deformation processes in real structures to
the maximum possible accuracy.

Experimental approaches to the assessment of the stress-strain state of large structures are based on the
monitoring of the behavior of real structures under real operating conditions, or examining the behavior
of model structures subjected to loads reproducing to a certain extent the action of real loads. A review
of experimental methods for studying large structures is given in [16; 22].

Traditionally, mechanical tests of complex large-sized structures conducted at the stages of their con-
struction and operation with the aim to determine the actual bearing capacity, rigidity and crack resistance
of structures, as well as to estimate the possibility of their future operation. Often, such tests are carried
out to study the ways to strengthen the structure and assess the possibility of extending its life. Such tests
are generally performed under conditions of elastic deformation, which does not allow the occurrence of
irreversible strain states of the object [17; 14]. Some experiments are known on loading real structures to
their complete destruction [31; 23]. However, for such studies, special conditions are required associated
with the search for the test structure, the organization of the necessary loading system, the technology
for recording experimental data in the field, etc.

Modeling of the deformation behavior of large structures in laboratory conditions makes it possible
to study the impact of a wide variety of experimental loads. During the experiments the changes in
the stress-strain state of model structure are under control and it is possible to register many different
parameters of the structure. Modern test stands provide ample opportunities for conducting experiments,
which can simulate not only elastic, but also inelastic deformation of examined object, the initiation and
evolution of damages, and ultimate failure of the structure [19; 27].

Conducting large-sized structure tests is a complex and expensive procedure, which requires large
material costs, special equipment and highly qualified specialists. However, in the past few years inter-
est in such tests has quickened due to the fact that large-scale modeling allows realistic representation
of physic-mechanical properties of structure materials and ensemble interactions of all dissimilar and
different-scale elements of the structure. This is especially important due to the widespread use of new
materials and technologies in engineering and construction. Large-scale experiments provide valuable
information for interpreting the mechanical behavior of structures made of heterogeneous materials. They
provide required data for the verification of mathematical models of deformation processes in complex
structures. Furthermore, keen interest in such tests is generated by a rapid development of experimental
devices for recording, gathering and processing of information, which allow one to study the behavior
of the investigated objects with a desired accuracy. An analysis of resent publications indicates that
large-scale modeling is actively progressing field of research.

Specialized stands for conducting large-scale structure experiments are unique structures in themselves.
The experimental laboratories of this kind are generally organized on the principle of universality to allow
studying structures made of various materials and reproducing a wide range of operating loads. Large
test centers usually hold several types of strong floors and reaction walls, vibration platforms and shake
tables with different degrees of freedom, and also contain a variety of devices for performing both the
primary and secondary structure tests. The size and shape of these testing units are specified depending
on the purpose of a test laboratory. Such laboratories often comprise the structural units of large industrial
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corporations [30; 6; 9]. Therefore, as a rule, such research centers limit their interests to a certain class
of objects and a certain range of impacts.

In the construction industry, the most-in demand area of experimental research is related to seismic
impacts on buildings and engineering structures. Now, there are a number of world-class research centers
with unique facilities, which simulate seismic impacts on the structure [26; 20; 11; 5; 25]. The studies
conducted at these centers are mainly concerned with observation of the movement of structural elements
under conditions of high amplitude dynamic loads, the analysis of the crack formation and propagation,
and recording of scenarios of damage accumulation and failure [29; 8]. The focus of research is both on
the behavior of load bearing structures and on the objects inside buildings, as well as the study of the
ways to protect structures from seismic loads. Among the subjects of research are the structures of steel
[21], concrete [18; 34] wood, large-scale fragments of low-rise and high-rise buildings [4; 15], fragments
of bridges [12; 2], power transmission line supports and other engineering structures. The information
obtained is used to solve the problems of seismic resistance of existing and newly constructed structures.

Information about the experimental studies of large-scale buildings and engineering structures under
the action of static or slowly changing external loads is found less frequently in scientific publications.
Such processes occur in structures under the action of operational loads, as well as due to changes in
the state of foundations caused by karst effects, freezing of soils, and various technogenic processes in
the surrounding soil massif. Laboratory tests of full-size reinforced concrete fragments under static and
quasi-static loads are described in [7; 13]. Bench tests simulating the interaction of large-scale models
of engineering structures with subgrade soil are reviewed in [1; 24; 33; 32]. The focus of those works
is on the observed scenarios of damage evolution, detection of the most vulnerable structural elements
and ascertaining whether the deformation state of the structure complies with building codes.

However, such issues as the early diagnosis of structural damage, the search for damage precursor,
and the assessment of workability of structures with a certain level of accumulated damage should be in-
vestigated further. Information obtained during these studies is essential for the development of effective
automated deformation monitoring systems. A desire to solve these problems has motivated researchers
of the Institute of Continuous Media Mechanics of the Russian Academy of Sciences (Perm, Russia) to
construct a large-scale test stand intended for studying the deformation processes in complex building
and engineering structures.

Unlike most of the known experimental facilities of this kind, our stand was designed and created as
a tool for exploratory research. It has great variability in the formulation of research tasks, the choice of
research methods and registration tools. Our goal is to obtain fundamental knowledge about regularities
of deformation processes, search for precursors of fracture, development of the methods for recording
the early signs of failure in structures of various configurations and from different materials. Based on
these tasks, it is very important to plan and correctly design the configuration of the power elements of
the stand, providing the possibility of varying the external loads by type and value. An important point is
the design of measuring and recording systems. It should be easily reconfigurable in accordance with the
objectives of the study and the type of test structure. This paper provides information about the design
of the stand, its equipment and capabilities.

Currently, a large cycle of experiments has developed and started at our stand. It aims to examine
the behavior of a reinforced concrete structure under static and dynamic loading. We are going to study
the spatial-temporal distribution of the deformation response of load-bearing elements to the onset of
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critical processes, as well as to find and register damage precursors. In the experiment, such processes
as contact interaction of structural parts, binding of structural elements due to steel reinforcement, real
material composition, etc., are reproduced. These experiments provide the grounds for the development
of automated deformation monitoring systems, which make it possible to control the current state of
the observed structure and predict the development of critical processes in it. This paper presents the
first results of the experiments simulating the deformation response of structural elements to the local
quasi-static and impulse loads.

2. An experimental stand for mechanical testing of large-scale structures

The experimental stand of the Institute of Continuous Media Mechanics is a universal test site designed
for mechanical testing of large-scale structures of various kinds. It is fitted with advanced equipment
capable of applying various types of dynamic and static loads, and monitoring the observation of deforma-
tion processes in a wide range of execution times. The stand’s equipment allows a variety of experiments,
simulating the differential settlement of building foundation and impact of local static, vibrational and
pulsed loads on various parts of model structure. The stand allows the observation of the structure through
all stages of the deformation process including the elastic-to-inelastic transition. It allows researchers
to observe the nucleation and evolution of damages, the failure of individual parts of the structure and,
finally, the complete destruction of the specimen.

The main load-bearing elements of the stand are four load frames, combined by the horizontal and
vertical connecting elements. The usable volume inside the frames is 8 × 12 × 8 m (Figure 1). The load
frames are based on a concrete foundation of 3 m depth. The design force, which can be realized within
each loading frame, is 1000 kN. The stand is equipped with a beam crane, as well as supplementary
devices and units, which provide assembling and loading of the model structure, registration, collection
and processing of experimental data.

Differential settlement of building foundation is simulated using a specially designed jack system.
It provides displacements of the base of each column using hydraulic jacks with the ability of fine
adjustment. The jack control system ensures kinematic and force impacts on the structure in automatic
mode according to the specified time dependencies. This makes it possible to realize different column
settlement scenarios. The stand provides a vast variety of tools for realization of quasi-static loads.

The deformation response of the model structure to external loads is recorded using several recording
systems. The stand is equipped with various types of sensors, which can register deformation processes
with characteristic times ranging from 10 microseconds to several years. The lower boundary of this
range corresponds to the acoustic emission signals. The registration of these signals is carried out with
the aid of the original system developed by the team of co-authors. It provides the online, 8-channel
registration of acoustic vibrograms with the accuracy comparable to the accuracy of the world-known
brands of devices. The developed system has the advantages of easy increase of the number of channels
and sensors, low cost, easy integration with well-known software products for processing primary data
of acoustic vibrograms. Deformation processes with characteristic times of 0.1 ms are recorded using
the system of 30 single-component vibration sensors (accelerometers). The physical and program-based
integration of the sensors allows its synchronization and controlling the registration modes of the initial
vibrograms. Dynamic deformation processes with characteristic times from 2 ms to 2.5 s are recorded
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Figure 1. Test stand with installed model concrete structure: photo and schematic diagram.

by six 3-component seismic sensors.
The deformation response of the structural elements to a given local quasistatic load is measured by a

system of 57 strain gauges and fiber-optic sensors integrated with the recording equipment. Registration
of vertical displacements of the column bases is carried out by the system of hydraulic leveling sensors
and the system of automatic data recording with web cameras [3].

In order to evaluate in practice the operability and functionality of the stand and the accompanying
systems, an experiment was developed to study the deformation behavior of a model concrete structure
subjected to quasi-static load. The experimental sample is a fragment of a precast-monolithic building on
a scale of 1:2, including 24 standard cells combined into a 4-story structure (Figure 1). The dimensions
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Figure 2. Scheme of load application and sensor location: second floor plan of model
structure (left) and vertical section A-A (right).

of the sample are as follows: length 6 m, width 4 m, height 6 m. The model structure was designed based
on the results of numerical simulation of the deformation processes in it, from an elastic state to inelastic
one. These processes are accompanied by the occurrence and accumulation of cracks, formation of zones
of damaged material in some parts of the structure and, finally, a complete loss of bearing capacity [28].
Analysis of the results of modeling made it possible to determine the dimensions and structural features
of the model object, evaluate the mode and level of external loads. The deformation parameters, showing
the greatest promise from the viewpoint of possibilities of recording subcritical and critical states, were
identified, and the parameter ranges and accuracy of their recording were evaluated.

Creating an experimental sample took about 4 months. This included the development of a mathe-
matical model, a numerical simulation of possible scenarios of elastic and inelastic deformation of the
structure, and finally the sample manufacturing.

Now, the model structure is installed on the experimental stand. It is equipped with the following
facilities.

– 12 hydraulic jacks are used to apply localized self-balanced force.

– 57 strain gauges are used to record deformations (gauges are distributed over the structure according
to Figure 2).

– laser displacement sensors are used to record the relative displacements at the force application
points (Figure 2).

– 24 one-component piezo-accelerometers are used to register the vibration response (gauges are
distributed over the structure according to Figure 3, sensors are indicated by circles).

– A hammer equipped with an accelerometer is used to register a localized impulse force.

The deformation state of the structure during the experiment is controlled by an automated monitor-
ing system. All measurement data are synchronized and collected in the monitoring database and go
through primary mathematical processing. So, we obtain the opportunity of the online observation the
deformation processes in the model structure during all stages of the experiment.
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Figure 3. Scheme of accelerometer location.

3. Basic vibration portrait of the model structure

To study the dynamic processes in the model structure, it is necessary to know its vibration characteristics
at the initial state. For this, we proposed to create a basic vibrational portrait of the structure. To obtain
such information, a series of experiments was carried out. The experimental conditions were specified in
such a way as to keep the structure in the elastic state. This was realized due to a reduced-impact mode
in which the applied load could not cause inelastic deformation of its elements.

The vibration portrait is a set of information about the spatially distributed vibrational response of
the structure to a series of test impulse impacts applied in its various parts. Having this information,
we can compare it with the picture of the spatially distributed deformation response of the structure to
certain external impact. Such comparison makes it possible to evaluate the change in the vibrational
characteristics of the structure caused by a change in its deformation state, including the occurrence and
accumulation of damage. Thus, it becomes possible to assess the magnitude and location of damage.

Obtaining the vibrational portrait of the structure is a complex procedure. The structure, which was
under its own weight, was subjected to testing impulse force, which was applied sequentially at each basic
element of the structure. Impact was produced by a hammer of 470 grams equipped with accelerometer.
The force was applied to the surface of each vertical column in two perpendicular directions in the
horizontal plane and to the floor slabs along the normal to their upper surface. The vibration response
was recorded by a system of 24 accelerometers located on the columns, crossbars and floor slabs. The
distribution of sensors by model structure is shown in Figure 3 (sensors are shown by circles). In total,
120 impulse forces were realized at different locations, and for each impulse a set of 24 vibrograms was
obtained. Thus, we got 120 sets of 24 vibrograms which characterize spatial vibrational responses of the
structure to 120 test impacts.
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Figure 4. Acceleration vibrograms recorded on the striker and several sensors.

For each acceleration vibrogram, the corresponding Fourier and wavelet images were obtained. The
total set of vibrograms and the results of their processing represent the basic electronic vibration portrait
of the model structure. Composing the vibration portrait is a rather long procedure. In our case, it took
about 1 month. But such number of measurements are necessary in order to describe the initial vibrational
properties with sufficient accuracy. In addition, to generate statistically reliable data, it is advisable to
perform this procedure repeatedly.

Figure 3 gives a schema of one test of this series. The point of application of test impulse force and its
direction are shown by the arrow. Figure 4 presents vibrograms of accelerations in the direction normal
to the surface of sensor attachment. The figure shows the data recorded by the striker sensor and sensors
attached to 2 columns (C2, C3) and 3 crossbars (R1, R2, R3). Designation and arrangement of sensors
correspond to Figure 3. Matching vibrograms clearly demonstrate the time of the wave front passage
through each sensor and the delay of the wave front as the distance from the impact point increases.

The experimentally recorded pattern of the wave front propagation is in qualitative agreement with the
results obtained by the numerical simulation [10]. Figure 5 displays the propagation of the displacement
wave front caused by a localized impulse force applied at one ground floor column (result of simulation).
The figure demonstrates the positions of the displacement wave front, which correspond to three succes-
sive instants of time, elapsed from the moment of impact: 0.36 ms, 1.1 ms and 2.4 ms. The histogram
on Figure 5 compares the arrival times of the deformation wave front at some points of the structure
obtained by the numerical simulation and during the experiment. These data were recorded by sensors
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Figure 5. The displacement wave front in structural elements at three time instants and
arrival time of the deformation wave at different points of structure.

located on three crossbars (R1, R2, R3) and two columns (C2, C3). The calculated and experimental
data demonstrate a fairly good agreement.

Figure 6 shows several wavelet images of accelerations recorded by sensors located at different points
of the structure. Designation of the sensors and their positions are indicated in Figure 3. The patterns
clearly demonstrate the “lifetime” of free vibrations at different frequencies. The most long-lived vibra-
tions have the frequency of ∼200 Hz. The vibration amplitudes for columns, crossbars and floor slabs
differ significantly.

4. Quasistatic loading of the model structure

Thus, having complete information about the initial state of the model structure, we began to study its
deformation response to static load. Here we demonstrate the results obtained by loading the structure
in a low-impact mode in which deformations remain elastic.

First of all, the spatial deformation response of the structure to the applied localized self-balancing
bursting force was studied. Static load F1 was applied by means of a jack, installed between two floor
slabs (Figure 2). The loading was carried out stepwise, with increasing the load at each step and reset
to zero before the next step. Figure 7 shows change in force F1 and corresponding changes in vertical
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Figure 6. Wavelet images of acceleration vibrograms at different points of model structure.

displacement L1 in the vicinity of the loading point as well as deformation response of individual ele-
ments at the points T1–T4. Strain gauge notation corresponds to that given in Figure 2. Similar data
were obtained for all points of the structure, equipped with strain gauges.

The above measurements were made for several quasi-static load arrangements. For all variants of
loading we obtained the patterns of spatial distribution of deformations as well as the plots of deformation
and displacement as a function of the applied force. An analysis of these graphs in Figure 7 shows that
if the applied force is less than 20 kN, all structural elements remain elastic. As soon as the applied load
exceeded 20 kN (this corresponds to the 5th loading step), the strain value in unloading state becomes
non-zero. This fact indicates the beginning of inelastic processes in the structure. Comparing the graphs
obtained from the sensors located at different distances from the jack, we can see that the strain decreases
rapidly when the distance from the loading point increases. So, at a distance of 5 meters from the jack
the strain level decreases by 30 times.

To study the dynamic properties of a structure subjected to static loading, we acted as follows. After
each loading step, structural vibrations were excited at some points of the structure, and the acceleration
vibrograms were obtained and compared with the vibrograms recorded prior to loading (vibrograms
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Figure 7. Changes in the applied force F1 and corresponding changes in the displace-
ment L1 and strain at points T1-T4 of model structure.

from the basic vibration portrait). Figure 8 shows a diagram of half the sample with sensors and the
vibrograms recorded by C4 sensor located on the column close to the jack. The position of the jack is
shown by the red arrow, the position and direction of the pulse force is indicated by the green arrow.
The vibrogram is normalized to the acceleration amplitude of the striker. The lower graph is a detailed
image of the marked fragment of the upper graph. A comparison of the vibrograms taken from the basic
vibration portrait and obtained after the third loading step shows that the difference is insignificant. Thus,
we can conclude that the quasi-static loading in the low-impact mode does not significantly affect the
dynamic deformation response of the structure to the external impulse loads. This fact is consistent with
the current opinion that the “initial” stress state doesn’t affect the dynamic behavior of a deformable
system.

5. Conclusions

A review of information on modern test stands, which are used to study the deformation processes in
large-scale building and engineering structures, showed that this line of research is in great demand and
is actively progressing. On the one hand, this is connected with the tendency to create increasingly
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Figure 8. Vibrograms recorded by accelerometer C4 prior the loading and after the third
loading step.

complex unique structures using new engineering materials and technologies. On the other hand, there is
considerable progress in the development of experimental data recording systems, as well as the systems
for processing large amounts of information. These circumstances significantly increase the informative
value of experimental studies and gives impetus to the development of methods for the assessment of the
stress-strain state of structures and prediction of their performance capacity.

The experimental stand created by the team of authors is aimed at studying the deformation processes
in large-scale model structures, searching for precursors of failure, as well as elaborating criteria for
establishing the pre-critical state of the structure. The research stand is designed and created as a tool for
exploratory research. Our goal is to obtain fundamental knowledge about the patterns of the emergence of
damage precursors, to develop the instruments for observations of early signs of destruction in structures
of various configurations and from various materials. The stand is a multifunctional experimental site that
allows you to explore the features of static and dynamic deformation processes in a variety of building
and engineering structures.

Presented series of experiments demonstrates the capabilities of the experimental setup, which allows
one to study deformation processes in large-scale objects with a multi-element structure, and dissimilar
deformation interaction. The obtained results are as follows:

– A basic vibrational portrait of the model structure has been created, which provided basic infor-
mation for the future experiments aimed at studying inelastic deformation of a structure until its
ultimate failure.
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– The deformation response of structural elements to the local self-balanced load specified in the
loading-unloading mode has been studied. The spatial distribution of linear deformations over struc-
tural elements has been obtained under external loads applied at different points. It was shown that
in the range of applied forces up to 20 kN, the structural elements experience elastic deformation.

– The dynamic response of structural elements to a locally applied impulse load has been studied. The
patterns of the spatial-temporal distribution of deformation parameters over the structural elements
have been obtained. The study has shown that the propagation of the deformation wave through the
structural elements is of complex character. With regard to the characteristic times of propagation
of the deformation wave over the structural elements, the obtained experimental data are found to
be in good agreement with the results of numerical simulation.

The presented experiments allow us to accumulate unique data on the strength, reliability and dura-
bility of concrete structures under static and dynamic loads. These data are needed to understand the
mechanisms of damage formation in concrete structures, to find precursors of failure, as well as to develop
criteria allowing registration of the onset of the critical state.
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