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APPROXIMATE CONFORMAL MAPPINGS AND ELASTICITY PROBLEMS
FOR NONCIRCULAR TUBES

DAMIR F. ABZALILOV, PYOTR N. IVANSHIN AND ELENA A. SHIROKOVA

We present a method for analytic stress evaluation in elliptic and oval tubes based on approximate con-
formal mappings from annuli onto oval and elliptical doubly connected domains. The approximate
conformal mapping is realized by the boundary reparametrization method. We also solve two elasticity
problems for such tubes.

1. Introduction

Elastic deformations of circular tubes always attracted attention of scientists [Yella Reddy and Reid 1979;
Moore 1990; Nayak and Mondal 2011]. Recently the researchers began to consider noncircular tubes
with flattened, quasi-triangular, quasi-square, elliptical, rectangular and hexagon cross sections [Baze-
hhouri and Rezaeepazhand 2012; Baroutaji et al. 2014]. Such tubes can serve, for example, as energy
absorbers in different mechanisms. Also the scientists analyzed the stresses in tubes under different load,
compression and twist deformations applying both FEM and analytical methods [Zheng et al. 2015;
Rizzetto et al. 2019]. Elliptic and oval tubes are manufactured and sold by different modern firms. The
developing analytic technique and the computer progress allow appearance of new analytical evaluation
methods of the tube characteristics.

We apply the boundary reparametrization method [Abzalilov and Shirokova 2017] for construction of
the approximate conformal mapping from an annulus onto a doubly connected domain and then consider
the analytical solution of some plane problems based on the analytic function theory [Muskhelishvili
1977]. Similar problem for a simply connected domain was solved in [Ivanshin and Shirokova 2016].
We apply the formulas of [Muskhelishvili 1977] for evaluation of the tubes torsion. We also consider the
3D element of the tubes with the oval and elliptic cuts and its deformation under bending.

The basic ideas of the boundary reparametrization method were presented in [Shirokova 2014] where
the author constructed a method of the unit disk conformal mapping onto a simply connected domain.
The boundary reparametrization method is based on application of an integral equation solution to find-
ing the reparametrization function t (θ), θ ∈ [0, 2π ]. This reparametrization function transformes the
representation z(t) of the given domain boundary to the boundary value z(t (θ)) of the function analytic
in some circular domain (e.g., the unit disk, the annulus, the unit disk with concentric circular slits). We
restore the analytic function in the circular domain via the Cauchy integral formula after we find the
boundary values of the function.

We find the approximate solution of the integral equation reducing the integral equation to an infinite
linear system and then to a truncated finite system. We reduce the Cauchy integral representation of
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the analytic function in an annulus to a Laurent series in this annulus. We find the essential coefficients
of the Laurent series in order to construct the approximate analytic function in the form of a Laurent
polynomial applicable to further investigations.

2. Laurent polynomial approximate conformal mapping from an annulus onto
an oval cut and an elliptic cut

We approximately map the annuli onto the oval tube cross-section (Figure 1, left) and onto the elliptical
tube cross-section (Figure 1, right) applying the boundary reparametrization method [Abzalilov and
Shirokova 2017].

First we approximate the boundary curves – the interior curve z = z1(t), t ∈ [0, 2π ], and the exterior
curve z = z2(t), t ∈ [0, 2π ] – of each of the cross-sections by the Fourier polynomials

z j (t)=
T j∑

k=−T j

C j
k eikt , t ∈ [0, 2π ], j = 1, 2.

The boundary reparametrization method is to find the reparametrizing functions t j (θ), θ ∈ [0, 2π ], j =
1, 2, such that the expressions

T j∑
k=−T j

C j
k eikt j (θ) =

M j∑
k=−M j

D j
k eikθ , j = 1, 2,

are the boundary values (at the interior circle |ζ | = r and at the exterior circle |ζ | = 1) of a function
analytic in the annulus r < |ζ |< 1.

Consider a finite doubly-connected domain Dz bounded by the curves z = z j (t), t ∈ [0, 2π ], j = 1, 2.
We consider at first the analytic in the domain Dz function ζ(z) which maps the domain Dz to an annulus
Dζ = {ζ : r < |ζ |< 1} and the analytic in Dz function log z

ζ(z) . Let θs(t), s= 1, 2, be the polar angle of the
annulus boundary point corresponding to the boundary point zs(t) of the domain Dz . We introduce the
function qs(t)= arg zs(t)− θs(t), s = 1, 2. We apply the necessary and sufficient condition for log z

ζ(z)
to be analytic in Dz and obtain the integral Fredholm equation for the vector function (q1(t), q2(t)),
t ∈ [0, 2π ]:

qs(t)=−
2∑

j=1

1
π

∫ 2π

0
log
|z j (τ )|

R j

(
log |z j (τ )− zs(t)|

)′
τ

dτ +
2∑

j=1

1
π

∫ 2π

0
q j (τ )

(
arg[z j (τ )− zs(t)]

)′
τ

dτ,

s = 1, 2,

as in [Abzalilov and Shirokova 2017], where R1 = r , R2 = 1. Now the principal value singular integral
can be represented as

1
π

∫ 2π

0
log
|z j (τ )|

R j

(
log |z j (τ )− z j (t)|

)′
τ

dτ

≡
1

2π

∫ 2π

0
log
|z j (τ )|

R j
cot

τ − t
2

dτ +
1
π

∫ 2π

0
log
|z j (τ )|

R j
L j (τ, t) dτ ;
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Figure 1. Shape of the cross-section of the oval (left) and elliptical (right) tubes.

here the kernel L j (τ, t) is continuous. If the value of r were known, the integral

1
2π

∫ 2π

0
log
|z1(τ )|

r
cot

τ − t
2

dτ

could be calculated via the Hilbert formula. Similar integral equation was applied to find the function
q(t) and the reparametrizing function t (θ) in the case of a simply connected domain [Shirokova 2014].

We do not know the value of r in the case of a doubly connected domain. So we have to differentiate
both sides of the previous integral equation. After integrating the right-hand side of the resulting equation
by parts, we obtain the following relations on the functions q ′s(t):

q ′s(t)=−
1∑

j=0

1
π

∫ 2π

0
q ′j (τ )

(
arg[z j (τ )− zs(t)]

)′
t dτ +

1∑
j=0

1
π

∫ 2π

0
[log |z j (τ )|]

′
(
log |z j (τ )− zs(t)|

)′
t dτ,

s = 1, 2.

We separate the singularities in the kernel (log |zs(τ )− zs(t)|)′t in the form of cot τ−t
2 and obtain the

corresponding integrals with this principal value singular kernel exactly as it was described above.
The final integral equation can be represented as the Fredholm equation with an unknown vector

function M = (q ′1(s), q ′2(s)) in the form of M = AM + B. If the unknown functions have the form

q ′s(t)=
∞∑
j=1

α j,s cos j t +β j,s sin j t, t ∈ [0, 2π ], s = 1, 2.

we reduce the integral equation to the solution of an infinite linear system with unknown Fourier coef-
ficients of the functions q ′s(t), s = 1, 2. Then we reduce the infinite linear system to a truncated linear
system, a 2D generalization of the following result:

Lemma [Ivanshin and Shirokova 2016]. Let there exist the numbers j,m> 1 and a constant U > 0 so that∣∣∂ j+mG(τ, t)/∂t j∂τm
∣∣≤U and the function Y (t) possess the bounded second derivative: |Y ′′(t)|< T .

Then the approximate solution of the uniquely resolvable Fredholm integral equation of the second kind

X (t)=
∫ 2π

0
G(τ, t)X (τ ) dτ + Y (t),

where Y (t) is 2π periodic and G(τ, t) is 2π periodic with respect to both variables, can be reduced to
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the solution of a finite linear system with error estimated by O(1/N 2). Here N is the rank of the finite
linear system.

Now we obtain the monotone functions θs(t)= arg zs(t)−qs(t), s= 1, 2. Note that one of the functions
qs(t), s = 1, 2, can be restored via its derivative with an arbitrary constant summand, e.g. 0, but the other
one must contain the special constant summand, because the function log(z(ζ )/ζ )/ζ must be analytical
in the annulus Dζ . So the relation∫ 2π

0
q1(t)θ ′1(t) dt =−

∫ 2π

0
q2(t)θ ′2(t) dt

holds true due to Cauchy theorem. We put the expressions θs(t)= arg zs(t)− qs(t) into the last relation
and achieve the equality ∫ 2π

0
q1(t)(arg z1(t))′dt +

∫ 2π

0
q2(t)(arg z2(t))′dt = 0,

which determines the value of the constant summand for the second function qs(t) restored via its deriv-
ative.

After the relations between t and θ are found at the both boundary components we can obtain the
mapping function z(ζ ). We restore this function via its boundary values z(t (θ)) by the Cauchy integral
formula. This Cauchy integral and its derivatives vanish at the point ζ = 0. Therefore the inner radius r
of the annulus Dζ can be found via one of the formulas∫ 2π

0
z1(t)eikθ0(t)θ ′1(t) dt + r k

∫ 2π

0
z2(t)eikθ1(t)θ ′2(t) dt = 0, k = 1, 2, . . .

or by the least-squares method.
The Laurent series coefficients of the analytic function z(ζ ) mapping the annulus r < |ζ |< 1 onto the

domain Dz can be restored via the formulas

ck =
1

2π

∫ 2π

0
z1(t)e−ikθ1(t)θ ′0(t) dt, k = 0, 1, 2, . . . ,

c−k =−
r k

2π

∫ 2π

0
z1(t)eikθ1(t)θ ′1(t) dt, k = 1, 2, . . . .

We tested the reparametrization method in the approximate conformal mapping of the annulus given
by 2−

√
3< |ζ |< 1 onto the doubly connected domain Dz = {z

∣∣ |z|< 2, |z− 0.5|< 0.5}. The function

z = 2
ζ(2+

√
3)− 1

ζ − 2−
√

3
.

gives the exact conformal mapping of the annulus onto the given domain. We took the mapping polyno-
mial with 200 coefficients and compared the values of the exact mapping function and the approximate
mapping function at the points of the circle |ζ | = 0.5. The error was less than 0.0005.
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k ak bk k ak bk k ak bk

− 17 −0.00040 0.00001 −5 −0.00165 0.00354 7 −0.00911 0.01532
−15 0.00036 0.00002 −3 −0.04314 0.01779 9 0.00178 0.00723
−13 0.00088 0.00005 −1 0.39657 0.40846 11 0.00195 0.00368
−11 −0.00135 0.00013 1 1.52248 1.44051 13 −0.00121 0.00197
−9 −0.00112 0.00035 3 0.16082 0.12051 15 −0.00035 0.00109
− 7 0.00543 0.00103 5 0.00369 0.03707 17 0.00071 0.00061

Table 1. Coefficients of Laurent polynomial for oval cut and for the elliptical cut.

We apply the described reparametrization method for the oval domain and for the elliptical domain.
We find the following analytic functions. The function

zo(ζ )=

17∑
k=0

akζ
k
+

−1∑
k=−17

ak

(
ζ

ro

)k

maps approximately the annulus ro < |ζ |< 1, (ro = 0.87785) onto the given oval cross-section presented
in Figure 1, left. The function

ze(ζ )=

17∑
k=0

bkζ
k
+

−1∑
k=−17

bk

(
ζ

re

)k

maps approximately the annulus re < |ζ | < 1, (re = 0.87432) onto the given elliptical cross-section
presented on Figure 1, right. The coefficients ak and bk are presented in Table 1. The absolute values of
the Laurent coefficients vanish while the absolute values of their numbers increase. Therefore we take
the essential polynomial coefficients’ indices only in the range [−17, 17]. The other coefficients do not
bring significant difference to the results of calculations.

We apply these mappings to the solution of two elasticity theory problems.

3. Solution of the torsion problem for the oval tube and for the elliptical tube

We consider the boundary shear stresses on the exterior surfaces of the given tubes twisted in the plane
cross-sections over the center point of the cross-section. We base the torsion problem solution on relation
(13) of [Muskhelishvili 1977], Chapter 7: the value of the shear stress on the outer boundary of the
orthogonal cross-section of a tube is proportional to the expression

S(θ)=
1

|z′(eiθ )|
Im
[
eiθ(ϕ′(eiθ )− i z(eiθ )z′(eiθ )

)]
.

Here z(ζ ) is the Laurent polynomial mapping the corresponding annulus onto the tube cut and ϕ(ζ ) is
the analytic in the annulus function with the boundary condition

Imϕ(reiθ )= |z(reiθ )|2/2,

where r = 1 for each tube at the exterior boundary and r = ro for the oval tube or r = re for the elliptical
tube at the interior boundary.
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Figure 2. Stress S(θ) in the twisted oval (left) and elliptical (right) tubes.

The corresponding graphs of the function S(θ) for the oval and elliptical tubes are presented on
Figure 2.

We see that the boundary shear stress of each of the given tubes twisted in the plane x Oy over the cross-
section center of symmetry changes from its minimal value to its maximal value in small neighbourhoods
of four symmetrically located boundary points. The maximal shear stress values are larger for the oval
tube. So the oval tube is more destructible then the elliptical one under twisting.

4. Spline-interpolation solution of the bending problem for the oval tube and for the elliptical tube

Consider the stresses at the exterior surfaces of the tubes in the space (x, y, h) with the cut cross-sections
D parallel to the plane x Oy. Let the exterior surfaces of both tubes be fixed at the level h = 0 and the
shift in Ox direction on the exterior surfaces at the level h = H equal a. Such a deformation happens
when one bends the tube in Ox direction. We assume that the interior surfaces of the tubes are free
from stresses. For small values of H and a we apply the linear spline-interpolation method [Ivanshin
and Shirokova 2011; Shirokova 2004]. The linear spline-interpolation method of 3D elasticity problem
solution for a tube is to find the stresses in this tube when the displacement coordinates at the points of
a small segment D×[0, H ] are assumed to be linear over the coordinate h. The problem is reduced to
a set of mixed boundary value problems in an annulus.

According to the assumption the coordinates of the displacement vector take the form

u = u0(x, y)+ u1(x, y)h, v = v0(x, y)+ v1(x, y)h,

w = w0(x, y)+w1(x, y)h, (x, y) ∈ D, h ∈ [0, H ].
(1)

The interior surface null pressure assumption gives the relations

[σk1 cos(n, x)+ σk2 cos(n, y)+ σk3 cos(n, h)]x=x1(s),y=y1(s) = 0, k = 1, 2, 3,

for the points (x, y, h) on the interior surface of the tube segment, where σk j , k, j = 1, 2, 3, are tensor
components, n is the unit normal to the interior surface at the corresponding point. Note that cos(n, h)= 0
on the interior surface of the tube.
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Due to coordinate linearity (1) on h the latter relations take the following form for the points (x, y) =
(x1(s), y1(s)) of the interior boundary of D:{(

λ

[
∂u0

∂x
+
∂v0

∂y
+w1

]
+ 2µ

∂u0

∂x

)
dy1(s)−µ

(
∂u0

∂y
+
∂v0

∂x

)
dx1(s)

}
x=x1(s),y=y1(s)

= 0, (2)

{(
λ

[
∂u0

∂x
+
∂v0

∂y
+w1

]
+ 2µ

∂v0

∂y

)
dx1(s)−µ

(
∂u0

∂y
+
∂v0

∂x

)
dy1(s)

}
x=x1(s),y=y1(s)

= 0, (3)

{(
u1+

∂w0

∂x

)
dy1(s)−

(
v1+

∂w0

∂y

)
dx1(s)

}
x=x1(s),y=y1(s)

= 0, (4)

{(
λ

[
∂u1

∂x
+
∂v1

∂y

]
+ 2µ

∂u1

∂x

)
dy1(s)−µ

(
∂u1

∂y
+
∂v1

∂x

)
dx1(s)

}
x=x1(s),y=y1(s)

= 0, (5)

{(
λ

[
∂u1

∂x
+
∂v1

∂y

]
+ 2µ

∂v1

∂y

)
dx1(s)−µ

(
∂u1

∂y
+
∂v1

∂x

)
dy1(s)

}
x=x1(s),y=y1(s)

= 0, (6)

{
∂w1

∂x
dy1(s)−

∂w1

∂y
dx1(s)

}
x=x1(s),y=y1(s)

= 0, (7)

where λ and µ are Lame coefficients.
The boundary conditions on the exterior surface of the tube segment yield the following relations at

the points (x, y) = (x2(s), y2(s)) of the exterior boundary of D:

u0(x2(s), y2(s))= 0, v0(x2(s), y2(s))= 0, w0(x2(s), y2(s))= 0,

u1(x2(s), y2(s))H = a, v1(x2(s), y2(s))= 0, w1(x2(s), y2(s))= 0.

The equilibrium equations

∂σk1

∂x
+
∂σk2

∂y
+
∂σk3

∂h
= 0, k = 1, 2, 3,

must be met everywhere in the tube segment. Due to the displacement coordinates linearity in h the
equilibrium equations take the form

λ

{
∂2u0

∂x2 +
∂2v0

∂x∂y
+
∂w1

∂x
+

(
∂2u1

∂x2 +
∂2v1

∂x∂y

)
h
}
+µ

{
1∑

k=0

(
2
∂2uk

∂x2 +
∂2uk

∂y2 +
∂2vk

∂x∂y

)
hk
+
∂w1

∂x

}
= 0,

(8)

λ

{
∂2u0

∂x∂y
+
∂2v0

∂y2 +
∂w1

∂y
+ (

∂2u1

∂x∂y
+
∂2v1

∂y2 )h
}
+µ

{
1∑

k=0

(
2
∂2vk

∂y2 +
∂2uk

∂x∂y
+
∂2vk

∂x2

)
hk
+
∂w1

∂y

}
= 0,

(9)

λ

(
∂u1

∂x
+
∂v1

∂y

)
+µ

(
∂u1

∂x
+
∂v1

∂y
+
∂2w0

∂x2 +
∂2w0

∂y2 +

[
∂2w1

∂x2 +
∂2w1

∂y2

]
h
)
= 0. (10)
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The coefficients with h in relations (8) and (9) form the system
∂

∂x

[
(λ+ 2µ)

(
∂u1

∂x
+
∂v1

∂y

)]
−
∂

∂y

[
µ

(
∂v1

∂x
−
∂u1

∂y

)]
= 0,

∂

∂y

[
(λ+ 2µ)

(
∂u1

∂x
+
∂v1

∂y

)]
+
∂

∂x

[
µ

(
∂v1

∂x
−
∂u1

∂y

)]
= 0,

which is equivalent to the equation

∂

∂z

[
(λ+ 2µ)

(
∂u1

∂x
+
∂v1

∂y

)
+ iµ

(
∂v1

∂x
−
∂u1

∂y

)]
= 0,

where z = x + iy, z = x − iy. So

(λ+ 2µ)
(
∂u1

∂x
+
∂v1

∂y

)
+ iµ

(
∂v1

∂x
−
∂u1

∂y

)
= F1(z),

where F1(z) is a function analytical in D. Now we express the derivative ∂
∂z (u1+ iv1) in terms of F1

and obtain

u1(x, y)+ iv1(x, y)=
λ+ 3µ

4µ(λ+ 2µ)

∫
F1(z)dz−

λ+µ

4µ(λ+ 2µ)
zF1(z)+G1(z),

where G1(z) is a function analytical in D. Finally we have this representation of the plane displacement
vector u1+iv1, analogous to the plane displacement vector representation of [Muskhelishvili 1977]:

−2µ(u1(x, y)+ iv1(x, y))=−κ f1(z)+ z f ′1(z)+ g1(z),
where

λ+µ

2(λ+ 2µ)

∫
F1(z)dz ≡ f1(z), −2µG1(z)≡ g1(z),

λ+ 3µ
λ+µ

≡ κ.

The coefficient with h in (10) yields
∂2w1

∂x2 +
∂2w1

∂y2 = 0. So w1 = Re q1(z), where q1(z) is a function
analytical in D.

We have to restore the analytical in D functions f1(z), g1(z) and q1(z) using the boundary condi-
tions (5)–(7) on the interior boundary of D and using the given displacements u1(x2(s), y2(s))H = a,
v1(x2(s), y2(s))= 0, w1(x2(s), y2(s))= 0 at the exterior boundary of D.

So we have the following boundary conditions for the functions f1(z) and g1(z), which are analytical
in D:[

f1(z)+ z f ′1(z)+ g1(z)
]

z=x1(s)+iy1(s)
= 0,

[
−κ f1(z)+ z f ′1(z)+ g1(z)

]
z=x2(s)+iy2(s)

=−2µ
a
H
, (11)

The interior boundary condition in relation (11) is the boundary condition of the first boundary value
problem of the plane elasticity theory, the exterior boundary condition is the boundary condition of the
second boundary value problem of the plane elasticity theory [Muskhelishvili 1977].

We have the following boundary conditions for the function q1(z), analytical in D:

∂

∂n
[Re q1(z)]z=x1(s)+iy1(s) = 0, [Re q1(z))]z=x2(s)+iy2(s) = 0. (12)

The interior boundary condition in (12) is the Neumann condition for a harmonic function which can
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be rewritten as ∂
∂s [Im q1(z))]z=x1(s)+iy1(s) = 0; the exterior boundary condition is the Dirichlet boundary

condition for a harmonic function.
Clearly this boundary value problem has the solution f1(z)≡

2µa
(1+κ)H

, g1(z)≡−
2µa

(1+κ)H
, q1(z)≡ 0,

z ∈ D.
After restoring the components u1(x, y) ≡ a/H , v1(x, y) ≡ 0 and w1(x, y) ≡ 0 we reconstruct the

components u0(x, y), v0(x, y) and w0(x, y). To do this we apply the interior boundary conditions (2)–(4)
and the exterior boundary conditions u0(x2(s), y2(s))= 0, v0(x2(s), y2(s))= 0, w0(x2(s), y2(s))= 0 and
introduce functions f0(z), g0(z) and q0(z), analytical in D. We have for these functions the boundary
relations [

f0(z)+ z f ′0(z)+ g0(z)
]

z=x1(s)+iy1(s)
= 0,

∂

∂n
[Re q0(z)]z=x1(s)+iy1(s) =−

a
H
,[

−κ f0(z)+ z f ′0(z)+ g0(z)
]

z=x2(s)+iy2(s)
= 0, [Re q0(z)]z=x2(s)+iy2(s) = 0.

(13)

The boundary conditions in the left column of (13) yield f0(z) ≡ 0, g0(z) ≡ 0, so u0(x, y) ≡ 0,
v0(x, y) ≡ 0, but the problem of the function q0(z) restoration via boundary conditions (14) is not so
easy. Application of the additional mapping from an annulus to the domain D allows us to solve this
boundary value problem. Let z(ζ ) be the analytic function mapping the annulus r < |ζ | < 1 onto D.
Consider χ0(ζ ) = q0(z(ζ )). Now in order to restore the function χ0(ζ ) in the annulus r < |ζ | < 1 we
have the boundary conditions

[Re(ζχ ′0(ζ ))]z=reiθ =−
a
H
|z′(reiθ )|, Re(χ0(eiθ ))= 0.

This boundary value problem in the annulus is resolvable approximately through the relative series
expansion and coefficient comparison.

We consider z(ζ ) = zo(ζ ) for the oval tube, z(ζ ) = ze(ζ ) for the elliptical tube, r = ro for the oval
tube, r = re for the elliptical tube and examine the resulting exterior boundary stresses for the oval and
elliptical tubes.

We find the absolute value of the stress vector
√

σ 2
n1+ σ

2
n2 at the level h = 0 on the exterior surfaces

for both tubes and for κ = 2. The formula expressing the stresses value dependence on the polar angle is
100a Vo(θ)/H for the oval tube and 100a Ve(θ)/H for the elliptical tube. The graphs of Vo(θ) and Ve(θ)

are shown in Figure 3. The maximal absolute value of stress vector for the bent tube reaches maximum
both at the bending points and at the points opposite to them, this maximal value for the elliptical tube
is larger than that for the oval one but the difference is not essential.

a b

 0.04

 0.08

 0.12

0 1 2 3 4 5 6

Vo

θ

 0.04

 0.08

 0.12

0 1 2 3 4 5 6

θ

Ve

Figure 3. Stresses in the bent oval (left) and elliptical (right) tubes.
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5. Conclusion

The conformal mapping method presented here is computationally efficient for twisted and bent tubes
with noncircular cross-sections. It provides us with a Fourier polynomial mapping function. This ap-
proximate conformal mapping method makes it possible to apply the conformal mapping approach to
many problems of elasticity.
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