Download this article
 Download this article For screen
For printing
Recent Issues

Volume 20, 1 issue

Volume 19, 5 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 5 issues

Volume 15, 5 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 5 issues

Volume 10, 5 issues

Volume 9, 5 issues

Volume 8, 8 issues

Volume 7, 10 issues

Volume 6, 9 issues

Volume 5, 6 issues

Volume 4, 10 issues

Volume 3, 10 issues

Volume 2, 10 issues

Volume 1, 8 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN 1559-3959 (online)
ISSN 1559-3959 (print)
 
Author index
To appear
 
Other MSP journals
High-cycle fatigue modelling on a benchmark DCB mode I debond using a cohesive zone model

Gang Li

Vol. 19 (2024), No. 5, 763–785
Abstract

A benchmark study on high-cycle fatigue modelling using a cohesive zone model presented for a bonded composite double-cantilever beam (DCB) joint. A user-developed subroutine, USDFLD, was applied to make the field variable represented by a characterized damage parameter for controlling the degradation and failure behaviour of cohesive elements. Accumulative local cohesive fatigue damage was analyzed via a correlation with global crack growth rate characteristic. The damage assessment was accomplished according to theories on fracture mechanics, damage mechanics, fatigue characteristics, and cohesive zone modelling through cycle jump approach. Debond length variation through fatigue cycles was determined using an analytical solution. Also, an available Abaqus fatigue approach integrated with virtual crack closure technique (VCCT) was conducted under two extreme loading ratios. Good agreement was obtained between the test and modelling results. Results discussion and recommended appropriate increment size for the proposed high-cycle fatigue modelling methodology are presented.

Keywords
bonded composite DCB, cohesive zone model, debond, high-cycle fatigue modelling, user subroutine
Milestones
Received: 8 May 2024
Revised: 3 September 2024
Accepted: 17 September 2024
Published: 30 October 2024
Authors
Gang Li
Aerospace Research Centre
National Research Council Canada
Ottawa, ON K1A 0R6
Canada