The Kustin–Miller complex construction, due to A. Kustin and M. Miller, can be
applied to a pair of resolutions of Gorenstein rings with certain properties to obtain a
new Gorenstein ring and a resolution of it. It gives a tool to construct and analyze
Gorenstein rings of high codimension. We describe the Kustin–Miller complex, its
implementation in the
Macaulay2 package
KustinMiller, and explain how it can be
applied to explicit examples.
Centro de Análise Matemática,
Geometria e Sistemas Dinâmicos, Departamento de
Matemática
Instituto Superior Técnico, Universidade Técnica de
Lisboa
Av. Rovisco Pais
Lisboa
Portugal