
JSAG 5 (2013), 15 – 19 The Journal of Software for
Algebra and Geometry

Computing the invariant ring of a finite group

THOMAS HAWES

ABSTRACT. We give an overview of a new package for Macaulay2 called InvariantRing, which con-
tains tools for describing the invariant ring of finite group actions on polynomial rings in characteristic
zero. We outline methods for computing primary and secondary invariants and compare the two
algorithms that are implemented for computing primary invariants.

INTRODUCTION. Let k be a field of characteristic zero and GL(n,k) the group of invertible n×n
matrices. Let S := k[x1, . . . ,xn] be the ring of polynomial functions on kn, where elements of kn are
considered as column vectors. We write x = (x1, . . . ,xn)

t for the column vector of the variables of S
and let elements of GL(n,k) act on x by matrix multiplication. For a finite subgroup G≤ GL(n,k),
consider the left action on S defined by (A · f)(x) := f (A−1x), for any A∈G and f ∈ S. The invariant
ring of the group G is the ring SG := { f ∈ S |A · f = f for all A ∈ G} and its elements are called
invariants. Due to the fact that G acts on S by linear transformations, a polynomial is invariant if, and
only if, each of its homogeneous pieces is invariant; thus SG is a graded subring of S. The following
structure theorem, which can be found in [N, DK], provides the main motivation for the package
InvariantRing.

Theorem 1. For any finite group G≤ GL(n,k), there exist homogeneous, algebraically independent
invariants f1, . . . , fn and homogeneous invariants g1, . . . ,gr such that

(‡) SG =
r⊕

j=1

k[f1, . . . , fn]g j.

The f1, . . . , fn are called primary invariants and the g1, . . . ,gr secondary invariants. The purpose
of the package InvariantRing for Macaulay2 [M2] is to compute primary and secondary invariants
for the invariant ring of a finite group over number fields.

Collections of primary and secondary invariants for an invariant ring are not uniquely determined,
but once a system of primary invariants has been chosen, the degrees of any corresponding system of
secondary invariants are determined by the following theorem (see [DK]):

Theorem 2. Let f1, . . . , fn be primary invariants for SG with degrees d1, . . . ,dn, and let H(SG, t)∈Z[t]
be the Hilbert series of SG. Suppose there are r corresponding secondary invariants.

(a) H(SG, t) ·∏n
i=1(1− tdi) = te1 + · · ·+ ter , where e1, . . . ,er are the degrees of any corresponding

secondary invariants. In particular, this polynomial has integer coefficients.
(b) The number of secondary invariants is r = d1···dn

|G| . In particular, |G| divides d1 · · ·dn.

2010 Mathematics Subject Classification. 13-04.
InvariantRing version 1.1.0.

15

Hawes :::: InvariantRing 16

It is easy to compute the Hilbert series of SG by using Molien’s theorem, which states that
H(SG, t) = 1

|G|∑A∈G det(In− tA)−1, where In is the n×n identity matrix [N]. Molien’s theorem, along
with Theorem 2, gives the number of secondary invariants and their degrees.

The package InvariantRing provides tools to study and compute the invariant ring of a finite group
action on a polynomial ring in characteristic zero. In the next section, we describe the key features of
the package and discuss the methods available for computing decompositions of the invariant ring as
in (‡). We conclude the article with a demonstration of these features by way of an extended example.

OVERVIEW. The package InvariantRing contains the methods generateGroup, reynoldsOperator,
and molienSeries as tools for studying the invariant ring of a finite group. To aid the input of finite
groups of matrices, the method generateGroup takes a list of generating matrices {A1, . . . ,Am} and
outputs the group they generate, using a brute-force algorithm that computes all possible products of
the Ai. The method reynoldsOperator uses a stored group G to compute the average 1

|G|∑A∈G A · f of
a polynomial f ∈ S. Finally, the method molienSeries computes the Hilbert series H(SG, t) of SG

using Molien’s theorem, expressing the result as a rational expression of the divide class.
The core of the package consists of methods for computing a decomposition as in (‡). The method

primaryInvariants implements two different algorithms for computing primary invariants for SG:
the ‘optimal’ algorithm from [K2] and the ‘Dade’ algorithm, described in [DK, S], for example.
The first algorithm is the default for the method primaryInvariants. It begins by cycling through
n-tuples (d1, . . . ,dn) ∈ Nn, ordered by increasing values of the product d1 · · ·dn. For each tuple, it
tests whether primary invariants with degrees d1, . . . ,dn can exist, firstly by using the two conditions
from Theorem 2 and then by using the Krull dimension test from [K2, Theorem 2(b)]. If these tests
are passed, a set of primary invariants with the proposed degrees is constructed iteratively using the
same dimension test; otherwise, the next degree vector is considered. The resulting primary invariants
have coefficients that are integers or uncomplicated fractions. In addition, the product of their degrees
is as small as possible, so the number and degrees of secondary invariants needed in (‡) are kept
small, by Theorem 2.

The default routine in the method primaryInvariants cannot compute primary invariants when
working over ground fields of positive characteristic, even if the characteristic is coprime to |G|.
In this case, the method primaryInvariants can be used with the option Dade set to true to find
a system of primary invariants using the Dade algorithm instead, provided the cardinality of the
ground field is sufficiently large. The algorithm works by finding a ‘Dade basis’ v1, . . . ,vn of S1,
then computing fi = ∏{w |w ∈ OrbG(vi)} for each i; the collection f1, . . . , fn is then a set of primary
invariants. The construction of a Dade basis involves only choosing random linear forms and linear
algebra, so has the advantage of being simple and quick. However, the resulting primary invariants
almost always have ugly coefficients and have degrees being the same as the order of the group.
When over a characteristic zero field with a small group, the Dade algorithm is often faster than the
default algorithm, but at the cost of calculating more secondary invariants to obtain a decomposition
as in (‡).

The method secondaryInvariants uses the primary invariants f1, . . . , fn and their degrees d1, . . . ,dn
to compute corresponding secondary invariants, by finding a collection of r = d1 · · ·dn/|G| homoge-
neous invariants whose degrees are the values predicted in Theorem 2(a) and whose images under the
projection S→ S/(f1, . . . , fn) are linearly independent over k (for a justification, see [DK, §3.5.1]).

Hawes :::: InvariantRing 17

Thus, finding secondary invariants boils down to a question of doing linear algebra with normal forms
of polynomials with respect to the ideal (f1, . . . , fn)⊂ S. The implementation of this procedure in
secondaryInvariants only works when the ground field is of characteristic zero.

The package also includes the method invariantRing for computing a decomposition as in (‡)
directly, based only on the data of the polynomial ring S and the group G. It outputs a collection of
primary invariants, computed using Kemper’s ‘optimal’ algorithm from [K2], and a corresponding
collection of secondary invariants.

As indicated above, the package InvariantRing cannot compute the full invariant ring of a finite
group over ground fields of positive characteristic. However, there are algorithms in the literature
that could be implemented in the future to address this. In particular, [K1, K2] give algorithms
for computing primary and secondary invariants of SG when gcd(|G|,chark) = 1. When chark
divides |G|, the ring SG is in general not Cohen-Macaulay [K1, Example 13], so does not admit a
decomposition as in (‡). In this case, the algorithms in [K1,K2] compute homogeneous, algebraically
independent invariants f1, . . . , fn, together with homogeneous invariants g1, . . . ,gr generating SG as a
(not necessarily free) k[f1, . . . , fn]-module.

AN EXAMPLE. We conclude this article with an example that demonstrates the main methods
available in InvariantRing and compares the default and Dade algorithms for calculating primary
invariants. The group G considered is the dihedral group of order 8, generated by matrices

A =
[−1 1 0
−1 0 1
−1 0 0

]
, B =

[0 −1 1
−1 0 1
0 0 1

]
.

This group acts on the polynomial ring S =Q[x,y,z].
To begin, the print width is altered, the package InvariantRing is loaded, and the matrices and

polynomial ring input.
Macaulay2, version 1.6
with packages: ConwayPolynomials, Elimination, IntegralClosure, LLLBases,

PrimaryDecomposition, ReesAlgebra, TangentCone

i1 : printWidth = 70; truncateOutput 140; needsPackage "InvariantRing";

i4 : A = matrix{{-1,1,0},{-1,0,1},{-1,0,0}}; B = matrix{{0,-1,1},{-1,0,1},{0,0,1}};

3 3
o4 : Matrix ZZ <--- ZZ

3 3
o5 : Matrix ZZ <--- ZZ

i6 : S = QQ[x,y,z];

We generate a group G from the list of matrices {A,B} using the generateGroup method. The field in
the second argument ensures the resulting matrices are defined over Q, the ground field of S.

i7 : G = generateGroup({A,B},QQ)

o7 = {| 0 -1 1 |, | 0 0 -1 |, | -1 1 0 |, | 0 0 -1 |, | 1 0 0 |,
| 0 -1 0 | | 0 -1 0 | | 0 1 0 | | 1 0 -1 | | 1 0 -1 |
| 1 -1 0 | | -1 0 0 | | 0 1 -1 | | 0 1 -1 | | 1 -1 0 |

| 0 -1 1 |, | -1 1 0 |, | 1 0 0 |}
| -1 0 1 | | -1 0 1 | | 0 1 0 |
| 0 0 1 | | -1 0 0 | | 0 0 1 |

o7 : List

Hawes :::: InvariantRing 18

Next, we find a list of primary invariants for SG using primaryInvariants. We do this using both
the default algorithm and the Dade algorithm, the latter being called by setting the optional argument
Dade to true. We obtain the degrees of the primary invariants computed with the Dade algorithm, but
truncate the full output.

i8 : time prim1=primaryInvariants(S,G)
-- used 0.534851 seconds

2 2 2 2 2 2 4 4 3
o8 = {x + y - 2x*z + z , x - x*y + y - y*z + z , x + y - 4x z +

2 2 3 4

6x z - 4x*z + z }

o8 : List

i9 : time prim2=primaryInvariants(S,G,Dade=>true)
-- used 0.37052 seconds

o9 = 8 7 6 2 5 3
{1536640000x - 5976432000x y - 53745983200x y + 9626324400x y

4 4 3 5 2 6
+ 128235861600x y + 9626324400x y - 53745983200x y -

7 ...
5976432000x*y + 15366400 ...

o9 : List

i10 : apply(prim2,degree)

o10 = {{8}, {8}, {8}}

o10 : List

The Dade algorithm was faster than the default algorithm in this example, but the resulting
invariants are complicated polynomials of degrees equalling the order of the group, which will
influence the time needed to compute secondary invariants. This is done next by applying the method
secondaryInvariants to the lists prim1 and prim2. According to Theorem 2(b) there are 83/8 = 64
secondary invariants corresponding to the collection prim2, so again we suppress the output.

i11 : time sec1=secondaryInvariants(prim1,G)
-- used 0.026354 seconds

2 2 2 2
o11 = {1, x y - x*y + y z - y*z }

o11 : List

i12 : time sec2=secondaryInvariants(prim2,G);
-- used 3.83254 seconds

We note how much quicker it was to compute the secondary invariants for prim1 than prim2. In fact,
on this occasion the default algorithm for computing primary invariants resulted in a quicker overall
computation of the decomposition (‡) for the invariant ring of G.

To see how many corresponding secondary invariants of each degree there are, we compute the
Hilbert series of SG using the method molienSeries and Theorem 2(a).

i13 : mol = molienSeries G

Hawes :::: InvariantRing 19

2
- 1 + T - T

o13 = --------------------------
3 2 2

(- 1 + T) (1 + T)(1 + T)

o13 : Expression of class Divide

i14 : T = first gens ring numerator mol;

i15 : ((value numerator mol)*(1-T^8)^3)//(value denominator mol)

2 3 4 5 6 7 8 9 10 11
o15 = 1 + 2T + T + 4T + 2T + 6T + 4T + 6T + 6T + 6T + 6T +

--
12 13 14 15 16 17 19

4T + 6T + 2T + 4T + T + 2T + T

o15 : ZZ[T]

Thus, for example, we see that there are 6 secondary invariants of degree 11. To print this polynomial
during the construction of secondary invariants, we call secondaryInvariants with the optional
argument PrintDegreePolynomial set to true:

i16 : secondaryInvariants(prim2,G,PrintDegreePolynomial=>true);

19 17 16 15 14 13 12 11 10 9 8 7 6 ...
t + 2t + t + 4t + 2t + 6t + 4t + 6t + 6t + 6t + 6t + 4t + 6t ...

Finally, we mention that the method invariantRing computes primary and secondary invariants
in one go, calling upon the method primaryInvariants with the optional argument Dade set to false.
Executing the command invariantRing(S,G) in the above example would output {prim1,sec1}.

Acknowledgement. The author wishes to express his gratitude to Diane Maclagan for suggesting
and supervising the writing of this package. He also thanks an anonymous referee and Amelia Taylor
for helpful comments concerning the code and this article.

REFERENCES.
[DK] H. Derksen and G. Kemper, Computational invariant theory, Invariant Theory and Algebraic Transformation

Groups, I, Springer-Verlag, Berlin, 2002.
[K1] G. Kemper, Calculating invariant rings of finite groups over arbitrary fields, J. Symbolic Comput. 21 (1996),

no. 3, 351–366.
[K2] , An algorithm to calculate optimal homogeneous systems of parameters, J. Symbolic Comput. 27 (1999),

no. 2, 171–184.
[M2] D.R. Grayson and M.E. Stillman, Macaulay2, a software system for research in algebraic geometry, available at

www.math.uiuc.edu/Macaulay2/.
[N] M.D. Neusel, Invariant theory, Student Mathematical Library, vol. 36, American Mathematical Society,

Providence, RI, 2007.
[S] B. Sturmfels, Algorithms in invariant theory, 2nd ed., Texts and Monographs in Symbolic Computation,

SpringerWienNewYork, Vienna, 2008.

RECEIVED : 2012-08-10 REVISED : 2013-03-24 ACCEPTED : 2013-05-16

thomas.hawes@maths.ox.ac.uk : Balliol College, Broad Street, Oxford, OX1 3BJ, UK.

http://dx.doi.org/10.1006/jsco.1996.0017
http://dx.doi.org/10.1006/jsco.1998.0247
http://www.math.uiuc.edu/Macaulay2/
mailto:thomas.hawes@maths.ox.ac.uk

	Introduction
	Overview
	An Example
	Acknowledgement

	References

