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ABSTRACT: We describe a new software package for computing multiplier
ideals in certain cases, including monomial ideals, monomial curves, generic de-
terminantal ideals, and hyperplane arrangements. In these cases we take advan-
tage of combinatorial formulas for multiplier ideals given by results of Howald,
Thompson, and Johnson. The package uses the package Normaliz. It is available
as a library for Macaulay2.

INTRODUCTION. Multiplier ideals have been applied to a number of problems in
algebraic geometry in recent years, most spectacularly in recent major advances
in the minimal model program [Hacon and McKernan 2007; Birkar et al. 2010]
that built on earlier work showing the deformation invariance of plurigenera [Siu
1998]. Other applications include several results on singularities and linear series
[Lazarsfeld 2004; Ein and Mustat,ă 2006], a bound for symbolic powers [Ein et al.
2001], and applications to algebraic statistics [Watanabe 2009; Zwiernik 2011;
Drton et al. 2009, Chapter 5]. New applications of multiplier ideals continue to
emerge in topics such as Chow stability [Lee 2008] and singularities in generic
liaison [Niu 2014]. With broad and growing interest in multiplier ideals, it is
increasingly valuable to compute examples.

For a thorough introduction to multiplier ideals see [Lazarsfeld 2004]. Here is a
definition of multiplier ideals in terms of resolution of singularities: Suppose X is
a smooth variety over a field k (we may assume X is affine, or even just kn , since
we are primarily interested in local issues), I ⊂ OX is a nonzero ideal sheaf, and
µ : Y → X is a log resolution of I , so that the total transform I OY defines a divisor
F with simple normal crossings support, F =

∑
ai Ei , where the Ei are distinct

reduced components of F . Then for each real number c ≥ 0 the c-th multiplier
ideal is defined by

J(I c)= µ∗OY (KY/X −bc · Fc),

where KY/X is the relative canonical divisor of Y over X , defined locally by the
vanishing of the determinant of the Jacobian dµ, and bc ·Fc denotes the component-
wise round-down of the R-divisor c · F , given by bc · Fc =

∑
bcaicEi .

MSC2010: primary 14Q99, 14F18; secondary 13A15, 13P25.
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In theory it is algorithmic to compute multiplier ideals by computing a resolution
of singularities of I followed by a sheaf pushforward. In practice it is more difficult;
see [Frühbis-Krüger 2014].

Shibuta’s [2011] algorithm for computing Bernstein–Sato polynomials and mul-
tiplier ideals via Gröbner basis methods in Weyl algebras (which he implemented
in Risa/Asir) was refined and implemented in the Dmodules library for Macaulay2
by Berkesch and Leykin [2010]. The Dmodules library can compute multiplier
ideals and jumping numbers of arbitrary ideals, but due to the difficulty of the
computations can only handle modestly sized examples.

We describe a new software package named MultiplierIdeals that computes
multiplier ideals of special ideals, including monomial ideals, ideals of monomial
curves, generic determinantal ideals, and hyperplane arrangements, via combina-
torial methods, using the Normaliz software and interface to Macaulay2 by Bruns,
Ichim, and Kämpf [Bruns and Ichim 2010; Bruns and Kämpf 2010]. The com-
binatorial methods allow computations of somewhat larger examples than can be
handled by general methods.

Wherever possible we work over an arbitrary field k. Since multiplier ideals
in our cases are computed by resolutions defined over Z (or over the Z-algebra
generated by the coefficients of the defining equations of the input data), we may
work in arbitrary characteristic.

Our package also computes certain quantities associated to multiplier ideals:
the log canonical thresholds and jumping numbers. Because of the round-down
operation, J(I c+ε) = J(I c) for sufficiently small ε > 0. A real number c ≥ 0 is
a jumping number of I if J(I c) 6= J(I c−ε) for all ε > 0. Every jumping number
is in fact rational. The smallest strictly positive jumping number is called the log
canonical threshold of I , denoted lct(I ). It turns out that J(I 0)= (1) is the trivial
ideal, so lct(I ) is the supremum of c such that J(I c)= (1); equivalently, lct(I ) is
the first value of c such that J(I c) 6= (1).

The portion dealing with monomial ideals was written first and distributed as
the package MonomialMultiplierIdeals. The portion dealing with monomial curves
was written by C. Raicu, B. Snapp, and the author at the 2011 IMA Special Work-
shop on Macaulay2, and distributed as the package SpaceCurvesMultiplierIdeals.
The portion dealing with hyperplane arrangements is based on code written by
Denham and Smith for the HyperplaneArrangements package [2011]. These por-
tions were all integrated into the present package, and computations with generic
determinantal ideals added, at the 2012 Macaulay2 Workshop at Wake Forest.

MONOMIAL IDEALS. For a monomial ideal I ⊂ k[x1, . . . , xn], let monom(I )⊂
Zn
≥0 be the set of exponent vectors of monomials in I . The Newton polyhedron

Newt(I ) is the convex hull of monom(I ). Let 1= (1, . . . , 1) ∈ Rn .
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Multiplier ideals of monomial ideals are described by the following theorem
of Howald:

Theorem 1 [Howald 2001; Blickle 2004]. The multiplier ideal J(I c) is the mono-
mial ideal containing xv if and only if v+ 1 ∈ Int(c ·Newt(I )). Here Int denotes
the topological interior of c ·Newt(I ) relative to the nonnegative orthant, that is,
as a subset of (R≥0)

n .

In other words, the multiplier ideal is the quotient ideal

J(I c)=
(
xv : v ∈ Int(c ·Newt(I ))

)
: x1.

The Newton polyhedron Newt(I ) is defined by a system of inequalities Av ≥ b,
where A is an r × n matrix, b is a vector, and ≥ is the partial order of entry-wise
comparison, where a ≥ b if and only if ai ≥ bi , 1 ≤ i ≤ r . Then c ·Newt(I ) is
defined by Av ≥ cb. The interior Int(c ·Newt(I )) is the solution of the system of
inequalities given by {

Aiv > cbi if bi 6= 0,
Aiv ≥ cbi = 0 if bi = 0.

Since Newt(I ) is a rational polyhedron, we can (and do) take the A and b to
have integer entries. Furthermore, since I is an ideal the entries of A and b are
nonnegative. In practice, it is sufficient to compute J(I c) for rational c = p/q , and
this can be done as follows: To find the integer vectors v lying in the topological
interior of the solution region to Av ≥ cb (equivalently, q Av ≥ pb), we add 1 to
the nonzero entries of pb, yielding a vector b′ with entries b′i = pbi + 1 if bi 6= 0,
and b′i = pbi = bi = 0 otherwise. Then the multiplier ideal J(I c) is the quotient
(xv : q Av ≥ b′) : x1.

The software Normaliz can compute the defining inequalities Av≥ b of Newt(I )
and the solutions to the modified system q Av ≥ b′; Macaulay2 can compute the
ideal quotient by x1, giving the multiplier ideal:

Macaulay2, version 1.6
i1 : needsPackage "MultiplierIdeals";
i2 : R = QQ[x,y,z,w];
i3 : I = monomialIdeal(x*y, x*z, y*z, y*w, z*w^2);
o3 : MonomialIdeal of R
i4 : logCanonicalThreshold(I)
o4 = 2
i5 : multiplierIdeal(I,7/3)

2
o5 = ideal (y, z*w, z , x*z)
i6 : toString jumpingNumbers(I)
o6 = {{2, 7/3, 5/2, 8/3, 3, 10/3, 7/2, 11/3, 4}, {ideal(z,y),

ideal(y,z*w,z^2,x*z), ideal(z*w,y*w,y*z,x*z,y^2,x*y),
ideal(y*w,y*z,x*z,y^2,x*y,z*w^2,z^2*w),
ideal(y*z*w,y^2*w,y*z^2,x*z^2,y^2*z,x*y*z,x*y^2,z^2*w^2), ...
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The jumpingNumbers command produces a list with two elements:

(1) A list of the jumping numbers of I in the interval (0, k(I )], where k(I ) is
the analytic spread of I . A different interval may be specified as an optional
argument.

(2) A list of the multiplier ideals at the jumping numbers. (The list is truncated
in the above example.)

Thus the output of the last command says that this ideal I has jumping num-
bers 2, 7/3, . . . , and gives the corresponding multiplier ideals: J(I 2) = (z, y),
J(I 7/3) = (y, zw, z2, xz), and so on. Multiplier ideals and jumping numbers for
c> k(I ) are given by Skoda’s theorem [Lazarsfeld 2004, Theorem 9.6.21]. Namely,
for c > k(I ), J(I c)= I J(I c−1); and c > k(I ) is a jumping number if and only if
c− 1 is a jumping number.

In the above example, the log canonical threshold, single multiplier ideal J(I 7/3),
and list of nine jumping numbers and multiplier ideals were each computed in a
fraction of a second on a 2012 MacBook with dual-core 64-bit 2.9 GHz CPU and
8 GB RAM. By way of comparison, the Dmodules package takes about 42 seconds
to compute the log canonical threshold on the same machine, and about 84 seconds
to compute J(I 7/3). This comparison is only intended to illustrate the advantages
of using special algorithms where available, and we remind the reader that the
DModules package uses a general method.

For monomial ideals, extra information is available: for any monomial xv, the
package computes the threshold value min{c : xv /∈ J(I c)}, and the list of facets of
the Newton polyhedron that impose the nonmembership:

i7 : toString logCanonicalThreshold(I,z^2*w)
o7 = (3,matrix {{2, 2, 1, 1, -3}, {2, 2, 0, 1, -2}})

This output means that z2w /∈ J(I 3) but z2w ∈ J(I c) for c < 3. That is, for the
exponent vector v = (0, 0, 2, 1), v + 1 lies on the boundary of 3 ·Newt(I ); and
furthermore it lies on the intersection of two facets, the ones scaled up from the
facets of Newt(I ) defined by 2x + 2y+ z+w = 3 and 2x + 2y+w = 2.

The log canonical threshold of the ideal I itself is the threshold value for 1= x0.

MONOMIAL CURVES. An affine monomial curve is one parametrized by t 7→
(ta1, . . . , tan ). We can and do assume that 1≤a1≤· · ·≤an and gcd(a1, . . . , an)=1.
For convenience we denote this curve by C(a1, . . . , an). It has a singularity at the
origin when a1≥ 2. The defining ideal is the kernel of the map k[x1, . . . , xn]→k[t]
given by xi 7→ tai . This is a binomial ideal.

The multiplier ideals of affine monomial curves in dimension n = 3 have been
found by Howard Thompson [2014],1 using the combinatorial description of the

1This paper states the result over C, but it holds over any field.
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resolution of singularities of a binomial ideal given in [González Pérez and Teissier
2002]. This yields a combinatorial formula in terms of the vector (a, b, c) of ex-
ponents appearing in the parametrization t 7→ (ta, tb, tc). Our software package
implements Thompson’s result, again calling on Normaliz to find generators for
the semigroup of integer solutions to certain linear inequalities:

i8 : R = QQ[x,y,z]; S = QQ[t];
i10 : I = kernel map(S,R,{t^3,t^4,t^5}) -- ideal of C(3,4,5)

2 2 2 3
o10 = ideal (y - x*z, x y - z , x - y*z)

To compute the multiplier ideals and log canonical threshold of I , we input the list
of exponents in the parametrization:

i11 : toString logCanonicalThreshold(R,{3,4,5})
o11 = 13/9
i12 : multiplierIdeal(R,{3,4,5},13/9)
o12 = ideal (z, y, x)

GENERIC DETERMINANTAL IDEALS. Let X = (xi, j )1≤i≤m,1≤ j≤n be an m × n
generic matrix, meaning one whose entries are independent variables. Let Ir (X)
be the ideal generated by the r × r minors of X . The multiplier ideals of Ir (X)
have been found by Amanda Johnson [2003]:2

Theorem 2. With X , m, n, and r as above, the multiplier ideals are given by the
following intersection of symbolic powers of determinantal ideals:

J(Ir (X)c)=
r⋂

i=1

Ii (X)(bc(r+1−i)c+1−(n−i+1)(m−i+1)).

Recall that symbolic powers of generic determinantal ideals may be expressed as

Ir (X)(a) =
∑

κ1+···+κs=a

s∏
i=1

Ir−1+κi (X),

with the sum taken over partitions of a. See [Bruns and Vetter 1988, Theorem 10.4].
We may compute multiplier ideals of determinantal ideals in our software by

giving the matrix X and the size of minors. Here we examine multiplier ideals of
the size-2 and size-3 minors of a 4× 5 generic matrix:

i13 : x = getSymbol"x"; R = QQ[x_1..x_20];
i15 : X = genericMatrix(R,4,5); -- a 4x5 generic matrix
i16 : logCanonicalThreshold(X,2) -- lct of the ideal of 2x2 minors
o16 = 10
i17 : multiplierIdeal(X,2,10) == minors(1,X) -- J(I^10) where I = 2x2 minors
o17 = true

2This dissertation states the result for algebraically closed fields, but it holds over any field.
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i18 : multiplierIdeal(X,2,11) == (minors(1,X))^3 -- J(I^11)
o18 = true

HYPERPLANE ARRANGEMENTS. A formula for multiplier ideals of hyperplane
arrangements was found by Mustat,ă [2006] and simplified in [Teitler 2008].3 The
HyperplaneArrangements package [Denham and Smith 2011] uses these results
to compute multiplier ideals and log canonical thresholds of hyperplane arrange-
ments. To this we add the ability to compute jumping numbers and other minor
modifications. I thank Graham Denham and Gregory G. Smith, the authors of
HyperplaneArrangements, for their permission to copy and modify their package’s
source code.

The following is Example 6.3 of [Berkesch and Leykin 2010]:
i19 : R = QQ[x,y,z];
i20 : ff = toList factor ( (x^2-y^2)*(x^2-z^2)*(y^2-z^2)*z ) / first;
i21 : A = arrangement ff;
i22 : toString jumpingNumbers(A,IntervalType=>"ClosedOpen")
o22 = {{3/7, 4/7, 2/3, 6/7}, {ideal(z,y,x), ideal(z^2,y*z,x*z,y^2,x*y,x^2),

ideal(y^2*z-z^3,x^2*z-z^3,x*y^2-x*z^2,x^2*y-y*z^2), ...

ACKNOWLEDGEMENTS. I am very grateful to Claudiu Raicu and Bart Snapp
for their critical contributions to the package and for a number of very helpful
comments about this paper and the software package itself. I would also like
to thank Howard Thompson for sharing his work-in-progress and for numerous
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