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ABSTRACT: We present autgradalg.lib, a Singular library to compute auto-
morphisms of integral, finitely generated C-algebras that are graded pointedly by
a finitely generated abelian group. The library implements algorithms of Hausen,
Keicher and Wolf (Math. Comp. 86 (2017), 2955–2974). We apply these to Mori
dream spaces and investigate the automorphism groups of a series of Fano varieties.

1. INTRODUCTION AND SETTING. Consider an integral, finitely generated C-
algebra R that is graded by a finitely generated abelian group K; i.e., we have a
decomposition

R =
⊕
w∈K

Rw with f f ′ ∈ Rw+w′ for all f ∈ Rw, f ′ ∈ Rw′ .

Let the grading be effective (so that the monoid ϑR ⊆ K of all w ∈ K with Rw 6= {0}
generates K as a group) and pointed. This means that we have R0 = C and the
polyhedral cone in K ⊗Q generated by ϑR is pointed.

We are interested in the automorphism group AutK (R): it consists of all pairs
(ϕ, ψ) such that ϕ : R → R is an automorphism of C-algebras, ψ : K → K
is an automorphism of groups and ϕ(Rw) = Rψ(w) holds for all w ∈ K. Not
only is AutK (R) an important invariant of the algebra R, but the methods used to
compute it can be applied to compute symmetries of homogeneous ideals I. Once
given explicitly, knowledge of these symmetries accelerates further computations
involving I; see [Jensen 2017; Boehm et al. 2016; Steidel 2013] for examples.

This article introduces autgradalg.lib, an implementation in Singular (see
http://www.singular.uni-kl.de) of the algorithms given in [Hausen et al. 2017] to
compute AutK (R). Section 2 describes the algorithms and explains their implemen-
tation through examples. Section 3 is devoted to the application of our algorithms
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to Mori dream spaces; we determine in Proposition 3.1 information on the auto-
morphism groups of a class of Fano threefolds listed in [Bechtold et al. 2016]. The
software is available in the online supplement or at [Keicher 2017].

2. AUTOMORPHISMS OF GRADED ALGEBRAS. Let us fix the assumptions on
the algebra R for our algorithms. Firstly, we assume the grading group K to be
of shape Zk

⊕Z/a1Z⊕ · · ·⊕Z/alZ. In particular, k and the list a1, . . . , al ∈ Z>1

encode K. The K -grading is determined by the degree matrix Q = [q1, . . . , qr ]

which has the qi := deg(Ti ) as its columns. Moreover, we expect R to be given
explicitly in terms of generators and relations:

R = S/I, S := C[T1, . . . , Tr ] I := 〈g1, . . . , gs〉 ⊆ S.

As one can remove linear equations, it is no restriction to assume that R is min-
imally presented, i.e., I ⊆ 〈T1, . . . , Tr 〉

2 holds and the generating set {g1, . . . , gs}

for I is minimal. From an implementation point of view, it is convenient to impose
the following slight restrictions:

• The homogeneous components Iq1, . . . , Iqr are all trivial.

• The set {q0
1 , . . . , q0

r } ⊆ Zk of the free parts q0
i ∈ Zk of the qi contains a lattice

basis for Zk.

Example 2.1 (autgradalg.lib I ). Let K :=Z3
⊕Z/2Z. In [Hausen and Keicher

2015, Example 2.1] and [Keicher 2014] we considered this K -graded C-algebra R:

R = S/I, S := C[T1, . . . , T8], I := 〈T1T6+ T2T5+ T3T4+ T7T8〉,

Q :=


1 1 0 0 –1 –1 2 –2
0 1 1 –1 –1 0 1 –1
1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0

 .
Then the K -grading given by Q is effective and pointed, as suggested in the picture.

To use autgradalg.lib, download it from the online supplement, unpack it
and start Singular in the same directory. We enter R with the commands

q1

q4q5

q6 q7

q8

(0, 0, 0)

q2q3

> LIB "autgradalg.lib";
> intmat Q[4][8] =
> 1,1,0,0,-1,-1,2,-2,
> 0,1,1,-1,-1,0,1,-1,
> 1,1,1,1,1,1,1,1,
> 1,0,1,0,1,0,1,0;
> list TOR = 2; // torsion part of K

http://msp.org/jsag/2018/8-1/jsag-v8-n1-x02-autgradalg-lib.zip
http://msp.org/jsag/2018/8-1/jsag-v8-n1-x02-autgradalg-lib.zip
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> ring S = 0,T(1..8),dp;
> setBaseMultigrading(Q); // grading

Let us recall briefly the steps of the algorithm to compute AutK (R); for details,
we refer to [Hausen et al. 2017]. The overall idea is to present AutK (R) as a
stabilizer in the automorphism group AutK (S) of the K -graded polynomial ring S.
In a first step, we will compute a presentation AutK (S)⊆GL(n) for some n ∈ Z≥1.
The set �S := {q1, . . . , qr } of generator weights will play a major role. We make
use of the following GL(n)-action.

Construction 2.2 [Hausen et al. 2017, Construction 3.3]. Write�S={w1, . . . , ws}

for the duplicate-free set of all qi . Determine a C-vector space basis Bi for Swi

consisting of monomials. Then the concatenation B := (B1, . . . ,Bs) is a basis for
V =

⊕
i Swi . With n := |B|, in terms of B, each A ∈ GL(n) defines a linear map

ϕA : V → V. We obtain an algebraic action

GL(n)× S→ S, (A, f ) 7→ A · f := f (ϕA(T1), . . . , ϕA(Tr )).

For the second step, the idea is to determine equations cutting out those matrices
in GL(n) that permute the homogeneous components Sw of same dimension where
w ∈ �S . As �S must be fixed by each automorphism, it suffices to consider the
finite set

Aut(�S) := {ψ ∈ Aut(K ); ψ(�S)=�S} ⊆ Aut(K ).

It can be computed by tracking a lattice basis among the set of free parts q0
i of

the qi ; see [Hausen et al. 2017, Remark 3.1].

Algorithm 2.3 (computing AutK (S)). See [Hausen et al. 2017, Algorithm 3.7].

Input : the K -graded polynomial ring S.

• Determine �S = {w1, . . . , ws}. Compute a basis B as in Construction 2.2.

• Define the polynomial ring S′ := C[Yi j ; 1≤ i, j ≤ n].

• Compute an ideal J ⊆ S′ whose equations ensure the multiplicative condition
A · ( f1 f2)= (A · f1)(A · f2), where fi ∈ S, for each A ∈ V (J )⊆ GL(n).

• Compute Aut(�S) ⊆ Aut(K ). Determine the subset 00 ⊆ Aut(�S) of those
B that map Bi bijectively to B j , where w j = B ·wi .

• For each B ∈ 00,
– compute an ideal JB ⊆ S′ ensuring that each matrix in V (JB) ⊆ GL(n)

maps the component Sw to the component SB·w where w ∈�S , and
– redefine J := J · JB .

Output : the ideal J ⊆ S′. Then V (J )⊆ GL(n) is an algebraic subgroup isomor-
phic to AutK (S).
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Remark 2.4. (i) The third step of Algorithm 2.3 is finite; Definition 3.4(i) of
[Hausen et al. 2017] for details.

(ii) The ring S′ in Algorithm 2.3 is K -graded by defining deg(Yi j ) as the degree
of the i-th element of B.

(iii) The isomorphism S → S given by A = (ai j ) ∈ V (J ) ⊆ GL(n) is as in
Construction 2.2; explicitly, it is given by Ti 7→

∑
j ai j (Bi ) j .

Example 2.5 (autgradalg.lib II ). Let us apply Algorithm 2.3 to Example 2.1.
Here, B = (T1, . . . , T8) and all bases Bi = (Ti ) are one-dimensional. Since no
weight appears multiple times, �S = {q1, . . . , q8}. Next, the algorithm will com-
pute Aut(�R). In our implementation one can also trigger this step manually if
desired:

> list origs = autGenWeights(Q, TOR);

The result, origs, is a list of four integral matrices (intmats) standing for the
automorphisms of the generator weights

Aut(�S) =

id,


1 –2 0 0
0 –1 0 0
0 0 1 0
0 1 0 1

 ,


–1 2 0 0
0 1 0 0
0 0 1 0
0 1 1 1

 ,


–1 0 0 0
0 –1 0 0
0 0 1 0
0 0 1 1


 . (1)

q1

q4q5

q6 q7

q8

(0, 0, 0)

q2q3

Note that Aut(�R) is isomorphic to the symmetry group Z/2Z× Z/2Z of a
2-dimensional rhombus. We now compute AutK (S) with the command

> def Sprime = autKS(TOR);
> setring Sprime;

Closer inspection shows that Sprime stands for the ring S′ =Q[Y1, . . . , Y64, Z ].
A list autKSexported will be exported: each element is a triple (AB, B, JB)

where B runs through the four elements of Aut(�R) and AB is a formal matrix
over Sprime that encodes isomorphisms of S as in Remark 2.4(iii). For instance,
for autKSexported[2], the second entry in the triple (AB, B, JB) is the second
matrix listed in (1) and the matrix AB is

> print(autKSexported[2][1]);
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Y (1) 0 0 0 0 0 0 0
0 0 0 0 Y (13) 0 0 0
0 0 0 0 0 0 0 Y (24)
0 0 0 0 0 0 Y (31) 0
0 Y (34) 0 0 0 0 0 0
0 0 0 0 0 Y (46) 0 0
0 0 0 Y (52) 0 0 0 0
0 0 Y (59) 0 0 0 0 0

The equations obtained from the zero entries in AB and its invertible-condition are
stored in the ideal JB . The third entry is
> print(autKSexported[2][3]);

Y (2), Y (3), . . . , Y (63), Y (64), −Y (1)Y (13)Y (24)Y (31)Y (34)Y (46)Y (52)Y (59)Z − 1

Moreover, an ideal Iexported, called J in Algorithm 2.3, is being exported that
is the product over all the ideals JB where B runs through Aut(�R). This means
AutK (S)∼= S′/J is isomorphic to Sprime modulo Iexported; the degree matrix
of Sprime can be obtained via getVariableWeights().

We come to AutK (R). Restricting the group action of Construction 2.2 to
AutK (S)⊆ GL(n), we have an algebraic subgroup given as the stabilizer

StabI (AutK (S)) := {A ∈ AutK (S); A · I = I } ⊆ AutK (S).

Provided Iw = {0} holds for all w ∈�S , Hausen et al. [2017] have shown that we
have an isomorphism

StabI (AutK (S)) ∼= AutK (R).

The final step then is the following. Define the set �I := {deg(g1), . . . , deg(gs)}

of ideal generator degrees. The idea is to compute (linear) equations ensuring that
the vector spaces Iu , where u ∈�I , are mapped to one another.

Algorithm 2.6 (computing AutK (R)). See [Hausen et al. 2017, Algorithm 3.8].

Input: the K -graded polynomial ring S and the defining ideal I ⊆ S of R.
• Let J ⊆ S′ := C[Yi j ; 1≤ i, j ≤ n] be the output of Algorithm 2.3.

• Compute �I and form the C-vector space W :=
⊕

�I
Su .

• For the vector space IW = I ∩W ⊆W, compute
– a C-basis (h1, . . . , hl) and
– a description IW = V (`1, . . . , `m) with linear forms `i ∈W ∗.

• With the GL(n)-action from Construction 2.2 and Y = (Yi j ), we obtain the
ideal

J ′ := 〈`i (Y · h j ); 1≤ i ≤ m, 1≤ j ≤ l〉 ⊆ S′.
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Output: the ideal J+ J ′⊆ S′. Then V (J+ J ′)⊆GL(n) is an algebraic subgroup
isomorphic to AutK (R).

Remark 2.7. (i) Algorithms 2.3 and 2.6 do not make use of Gröbner basis com-
putations. However, in Singular, it usually is quicker to compute J∩ JB instead
of J · JB .

(ii) Computing G :=AutK (R)⊆GL(n) with Algorithm 2.6 enables us to directly
compute the number of irreducible components [G : G0

] and the dimension
of G by Gröbner basis computations.

Example 2.8 (autgradalg.lib III ). Continuing Example 2.5, let us compute
AutK (R). We first switch back to S, enter the defining ideal I for R = S/I and
start the computation of AutK (R):

> setring S;
> ideal I = T(1)*T(6) + T(2)*T(5) + T(3)*T(4) + T(7)*T(8);
> def Sres = autGradAlg(I, TOR);
> setring Sres;

The resulting ring Sres is identical to Sprime. A list stabExported is being
exported; the interpretation of the entries is identical to that of the list listAutKS
from Example 2.5, with the difference that the ideal part now contains additional
equations describing the stabilizer: for example

> stabExported[2][3];

Y (2), Y (3), . . . Y (63), Y (64), −Y (1)Y (13)Y (24)Y (31)Y (34)Y (46)Y (52)Y (59)Z − 1,

−Y (24)Y (31)+ Y (52)Y (59), Y (13)Y (34)− Y (52)Y (59), −Y (13)Y (34)+ Y (1)Y (46)

Moreover, an ideal Jexported is being exported that is the product over all JB as
before. Then Sres modulo Jexported is isomorphic to AutK (R). The grading is
obtained as before with getVariableWeights().

3. APPLICATION: MORI DREAM SPACES. In this section, we briefly recall from
[Hausen et al. 2017] how the algorithms from the last section can be applied to a
class of varieties in algebraic geometry.

To a normal algebraic variety X over C with finitely generated class group Cl(X)
one can assign a Cl(X)-graded C-algebra, its so-called Cox ring,

Cox(X) =
⊕

[D]∈Cl(X)

0(X,O(D));

see, e.g., [Arzhantsev et al. 2015] for details on this theory. If X is finitely gen-
erated, X is called a Mori dream space. For example, each toric variety or each
smooth Fano variety is a Mori dream space [Cox 1995; Birkar et al. 2010]. The Cox
ring has strong implications on the underlying Mori dream space. More precisely,
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X can be recovered as a good quotient

Spec(R)=: X ⊇ X̂ //H
−→ X (2)

of an open subset X̂ by the characteristic quasitorus H := Spec(C[K ]). In fact,
X̂ is determined by an ample class w ∈ Cl(X). This opens up a computer algebra
based approach [Hausen and Keicher 2015; Keicher 2014] to Mori dream spaces.
In [Arzhantsev et al. 2014], it has been shown that (2) translates to automorphisms
of X as follows:

AutCl(X)(Cox(X))∼= AutH (X)⊇ AutH (X̂)
/H
−→Aut(X) (3)

Here, by AutH (Y ) we mean the group of H-equivariant automorphisms of Y ; these
are pairs (ϕ, ψ) with ϕ :Y→Y being an automorphism of varieties and ψ : H→ H
an automorphism of affine algebraic groups such that ϕ(h · y)=ψ(h)· y holds for all
h ∈ H and y ∈ Y. By (3), we can directly compute AutH (X) with Algorithm 2.6.
In the following proposition, we investigate the symmetries of the list of Fano
varieties [Bechtold et al. 2016].

Proposition 3.1. Let X i be the nontoric terminal Fano threefold of Picard number
one with an effective two-torus action from the classification in [Bechtold et al.
2016, Theorem 1.1].

(i) For all 1≤ i ≤ 41, Algorithm 2.6 is able to compute a presentation of Gi :=

AutH (X i ) as an affine algebraic subgroup V (Ji )⊆ GL(ni ).

(ii) Using (i), these are the dimensions dim(Gi ) and the number of components
[Gi : G0

i ] of a selection of Gi ⊆ GL(ni ):

X i Aut(
�

S
)

dim
G i

[G
i
:
G

0
i
]

dim
Aut(

X i)

X i Aut(
�

S
)

dim
G i

[G
i
:
G

0
i
]

dim
Aut(

X i)

X3 Z/4Z 3 4 2 X26 Z/2Z 3 2
X6 {1} 5 4 X28 {1} 4 1 3
X7 {1} 5 4 X33 {1} 6 2 5
X10 {1} 4 1 3 X34 {1} 6 2 5
X12 {1} 6 5 X36 {1} 5 1 4
X13 {1} 4 1 3 X37 {1} 4 2 3
X14 {1} 3 2 X38 {1} 4 3 3
X15 {1} 5 4 X39 {1} 3 2
X16 {1} 3 2 X40 {1} 3 1 2
X18 {1} 6 5 X42 {1} 3 2 2
X19 {1} 4 1 3 X45 {1} 4 2 3
X20 {1} 5 4 X46 {1} 4 1 3
X21 {1} 3 2 2 X47 {1} 3 1 2
X25 {1} 4 1 3
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Proof. This is an application of Algorithm 2.6 and of the Singular commands to
compute dimension and absolute components; see, for example, [Greuel and Pfister
2008]. We performed the computations on an older machine (Intel celeron CPU,
4 GB RAM) and canceled them after several seconds. The files are available at
[Keicher 2017]. �

In [Hausen et al. 2017], the authors have also presented algorithms to compute
AutH (X̂) and generators for the Hopf algebra O(Aut(X)). Both algorithms are
also implemented in our library. However, the case O(Aut(X)) involves a Hilbert
basis computation that usually renders the computation infeasible. We therefore
finish this note with an example.

Example 3.2 (autgradalg.lib IV ). In Example 2.8, the algebra R is the Cox
ring of a Mori dream space: fix an ample class, say, w := (0, 0, 2) ∈ K ⊗Q, then
R and w define a Mori dream space X = X (R, w). The characteristic quasitorus
is H = (C∗)3×{±1}.

In Example 2.8, we have already computed AutH (X)∼= G := AutK (R). From
it, we obtain AutH (X̂) as follows: first, w defines a certain polyhedral cone, the
GIT-cone λ(w). Then AutH (X̂) is obtained from G by choosing only those ele-
ments (AB, B, JB) of the list stabExported where B ∈ Aut(�S) fixes λ(w). In
our library, you can compute it as follows (making use of gitfan.lib [Boehm
et al. 2016]):

w

q1

q2q3

q4q5

q6

q7

q8

λ(w)

> intvec w = 1,9,16,0; // drawn in blue
> setring S; // from before, R=S/I
> def RR = autXhat(I, w, TOR);
> setring RR;

Then a list RES will be exported, identical to stabExported from Example 2.8
with the difference that it contains only the element stabExported[1] as the other
matrices B do not fix λ(w). The computation of generators for O(Aut(X)) is not
feasible here, but in principle, the command is autX(I, w, TOR).

SUPPLEMENT. The online supplement contains version 4.1.1.0 of autgradalg.lib.
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