```
gap> tblmod2 = BrauerTable( tbl, 2 );
                                             Software for
                                                     istbl
                                                            Geometry
                                   terTableRegular(
                        CharacterTable( "Sym(4)" )
                                                           ==> 536
i8 : peek t1
                                                             timer=0; // reset timer
               (2, \{4, 5\}, 9) \Rightarrow 4
(2, \{5, 4\}, 9) \Rightarrow 4
               (2, {7, 3}, A software package to compute
(3, {4, 7}, 11) => 4
               (3, {5, 5)attomorphisms of graded algebras
(3, {7, 4}, 11) => 4
(4, {5, 7}, 12) => 2
               (4, \{7, 5\}, 12) \Rightarrow 2
                                         SIMON KEICHER
```

vol 8

2018

A software package to compute automorphisms of graded algebras

SIMON KEICHER

ABSTRACT: We present autgradalg.lib, a Singular library to compute automorphisms of integral, finitely generated \mathbb{C} -algebras that are graded pointedly by a finitely generated abelian group. The library implements algorithms of Hausen, Keicher and Wolf (*Math. Comp.* **86** (2017), 2955–2974). We apply these to Mori dream spaces and investigate the automorphism groups of a series of Fano varieties.

1. INTRODUCTION AND SETTING. Consider an integral, finitely generated \mathbb{C} -algebra *R* that is graded by a finitely generated abelian group *K*; i.e., we have a decomposition

$$R = \bigoplus_{w \in K} R_w \quad \text{with } ff' \in R_{w+w'} \text{ for all } f \in R_w, \ f' \in R_{w'}.$$

Let the grading be *effective* (so that the monoid $\vartheta_R \subseteq K$ of all $w \in K$ with $R_w \neq \{0\}$ generates K as a group) and *pointed*. This means that we have $R_0 = \mathbb{C}$ and the polyhedral cone in $K \otimes \mathbb{Q}$ generated by ϑ_R is pointed.

We are interested in the *automorphism group* Aut_{*K*}(*R*): it consists of all pairs (φ, ψ) such that $\varphi : R \to R$ is an automorphism of \mathbb{C} -algebras, $\psi : K \to K$ is an automorphism of groups and $\varphi(R_w) = R_{\psi(w)}$ holds for all $w \in K$. Not only is Aut_{*K*}(*R*) an important invariant of the algebra *R*, but the methods used to compute it can be applied to compute symmetries of homogeneous ideals *I*. Once given explicitly, knowledge of these symmetries accelerates further computations involving *I*; see [Jensen 2017; Boehm et al. 2016; Steidel 2013] for examples.

This article introduces autgradalg.lib, an implementation in Singular (see http://www.singular.uni-kl.de) of the algorithms given in [Hausen et al. 2017] to compute $Aut_K(R)$. Section 2 describes the algorithms and explains their implementation through examples. Section 3 is devoted to the application of our algorithms

autgradalg.lib version 4.1.1.0

MSC2010: 13A02, 13P10, 14J50, 14L30, 14Q15, 13A50.

Keywords: graded algebras, automorphisms, symmetries, Cox rings, Mori dream spaces, computing, Singular.

to *Mori dream spaces*; we determine in Proposition 3.1 information on the automorphism groups of a class of Fano threefolds listed in [Bechtold et al. 2016]. The software is available in the online supplement or at [Keicher 2017].

2. AUTOMORPHISMS OF GRADED ALGEBRAS. Let us fix the assumptions on the algebra *R* for our algorithms. Firstly, we assume the grading group *K* to be of shape $\mathbb{Z}^k \oplus \mathbb{Z}/a_1\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/a_l\mathbb{Z}$. In particular, *k* and the list $a_1, \ldots, a_l \in \mathbb{Z}_{>1}$ encode *K*. The *K*-grading is determined by the *degree matrix* $Q = [q_1, \ldots, q_r]$ which has the $q_i := \deg(T_i)$ as its columns. Moreover, we expect *R* to be given explicitly in terms of generators and relations:

R = S/I, $S := \mathbb{C}[T_1, \ldots, T_r]$ $I := \langle g_1, \ldots, g_s \rangle \subseteq S.$

As one can remove linear equations, it is no restriction to assume that *R* is *minimally presented*, i.e., $I \subseteq \langle T_1, \ldots, T_r \rangle^2$ holds and the generating set $\{g_1, \ldots, g_s\}$ for *I* is minimal. From an implementation point of view, it is convenient to impose the following slight restrictions:

- The homogeneous components I_{q_1}, \ldots, I_{q_r} are all trivial.
- The set {q₁⁰,...,q_r⁰} ⊆ Z^k of the free parts q_i⁰ ∈ Z^k of the q_i contains a lattice basis for Z^k.

Example 2.1 (autgradalg.lib I). Let $K := \mathbb{Z}^3 \oplus \mathbb{Z}/2\mathbb{Z}$. In [Hausen and Keicher 2015, Example 2.1] and [Keicher 2014] we considered this *K*-graded \mathbb{C} -algebra *R*:

$$R = S/I, \quad S := \mathbb{C}[T_1, \dots, T_8], \quad I := \langle T_1 T_6 + T_2 T_5 + T_3 T_4 + T_7 T_8 \rangle,$$
$$Q := \begin{bmatrix} 1 & 1 & 0 & 0 - 1 - 1 & 2 & -2 \\ 0 & 1 & 1 - 1 & -1 & 0 & 1 & -1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \end{bmatrix}.$$

Then the K-grading given by Q is effective and pointed, as suggested in the picture.

To use autgradalg.lib, download it from the online supplement, unpack it and start Singular in the same directory. We enter R with the commands

```
> LIB "autgradalg.lib";
> intmat Q[4][8] =
> 1,1,0,0,-1,-1,2,-2,
> 0,1,1,-1,-1,0,1,-1,
> 1,1,1,1,1,1,1,
> 1,0,1,0,1,0,1,0;
> list TOR = 2; // torsion part of K
```


> ring S = 0,T(1..8),dp; > setBaseMultigrading(Q); // grading

Let us recall briefly the steps of the algorithm to compute $\operatorname{Aut}_K(R)$; for details, we refer to [Hausen et al. 2017]. The overall idea is to present $\operatorname{Aut}_K(R)$ as a stabilizer in the automorphism group $\operatorname{Aut}_K(S)$ of the *K*-graded polynomial ring *S*. In a first step, we will compute a presentation $\operatorname{Aut}_K(S) \subseteq \operatorname{GL}(n)$ for some $n \in \mathbb{Z}_{\geq 1}$. The set $\Omega_S := \{q_1, \ldots, q_r\}$ of generator weights will play a major role. We make use of the following $\operatorname{GL}(n)$ -action.

Construction 2.2 [Hausen et al. 2017, Construction 3.3]. Write $\Omega_S = \{w_1, \ldots, w_s\}$ for the duplicate-free set of all q_i . Determine a \mathbb{C} -vector space basis \mathcal{B}_i for S_{w_i} consisting of monomials. Then the concatenation $\mathcal{B} := (\mathcal{B}_1, \ldots, \mathcal{B}_s)$ is a basis for $V = \bigoplus_i S_{w_i}$. With $n := |\mathcal{B}|$, in terms of \mathcal{B} , each $A \in GL(n)$ defines a linear map $\varphi_A : V \to V$. We obtain an algebraic action

$$GL(n) \times S \to S,$$
 $(A, f) \mapsto A \cdot f := f(\varphi_A(T_1), \dots, \varphi_A(T_r)).$

For the second step, the idea is to determine equations cutting out those matrices in GL(n) that permute the homogeneous components S_w of same dimension where $w \in \Omega_S$. As Ω_S must be fixed by each automorphism, it suffices to consider the finite set

$$\operatorname{Aut}(\Omega_S) := \{ \psi \in \operatorname{Aut}(K); \ \psi(\Omega_S) = \Omega_S \} \subseteq \operatorname{Aut}(K).$$

It can be computed by tracking a lattice basis among the set of free parts q_i^0 of the q_i ; see [Hausen et al. 2017, Remark 3.1].

Algorithm 2.3 (computing $Aut_K(S)$). See [Hausen et al. 2017, Algorithm 3.7].

Input : the *K*-graded polynomial ring *S*.

- Determine $\Omega_S = \{w_1, \ldots, w_s\}$. Compute a basis \mathcal{B} as in Construction 2.2.
- Define the polynomial ring $S' := \mathbb{C}[Y_{ij}; 1 \le i, j \le n]$.
- Compute an ideal $J \subseteq S'$ whose equations ensure the multiplicative condition $A \cdot (f_1 f_2) = (A \cdot f_1)(A \cdot f_2)$, where $f_i \in S$, for each $A \in V(J) \subseteq GL(n)$.
- Compute $\operatorname{Aut}(\Omega_S) \subseteq \operatorname{Aut}(K)$. Determine the subset $\Gamma_0 \subseteq \operatorname{Aut}(\Omega_S)$ of those *B* that map \mathcal{B}_i bijectively to \mathcal{B}_j , where $w_j = B \cdot w_i$.
- For each $B \in \Gamma_0$,
 - compute an ideal $J_B \subseteq S'$ ensuring that each matrix in $V(J_B) \subseteq GL(n)$ maps the component S_w to the component $S_{B \cdot w}$ where $w \in \Omega_S$, and
 - redefine $J := J \cdot J_B$.

Output: the ideal $J \subseteq S'$. Then $V(J) \subseteq GL(n)$ is an algebraic subgroup isomorphic to Aut_K(S).

- **Remark 2.4.** (i) The third step of Algorithm 2.3 is finite; Definition 3.4(i) of [Hausen et al. 2017] for details.
- (ii) The ring S' in Algorithm 2.3 is K-graded by defining $deg(Y_{ij})$ as the degree of the *i*-th element of \mathcal{B} .
- (iii) The isomorphism $S \to S$ given by $A = (a_{ij}) \in V(J) \subseteq GL(n)$ is as in Construction 2.2; explicitly, it is given by $T_i \mapsto \sum_j a_{ij}(\mathcal{B}_i)_j$.

Example 2.5 (autgradalg.lib II). Let us apply Algorithm 2.3 to Example 2.1. Here, $\mathcal{B} = (T_1, \ldots, T_8)$ and all bases $\mathcal{B}_i = (T_i)$ are one-dimensional. Since no weight appears multiple times, $\Omega_S = \{q_1, \ldots, q_8\}$. Next, the algorithm will compute Aut(Ω_R). In our implementation one can also trigger this step manually if desired:

> list origs = autGenWeights(Q, TOR);

The result, origs, is a list of four integral matrices (intmats) standing for the automorphisms of the generator weights

$$\operatorname{Aut}(\Omega_{S}) = \left\{ \operatorname{id}, \begin{bmatrix} 1 & -2 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 2 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \right\}.$$
(1)

Note that $\operatorname{Aut}(\Omega_R)$ is isomorphic to the symmetry group $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ of a 2-dimensional rhombus. We now compute $\operatorname{Aut}_K(S)$ with the command

```
> def Sprime = autKS(TOR);
```

```
> setring Sprime;
```

Closer inspection shows that Sprime stands for the ring $S' = \mathbb{Q}[Y_1, \ldots, Y_{64}, Z]$. A list autKSexported will be exported: each element is a triple (A_B, B, J_B) where B runs through the four elements of Aut (Ω_R) and A_B is a formal matrix over Sprime that encodes isomorphisms of S as in Remark 2.4(iii). For instance, for autKSexported[2], the second entry in the triple (A_B, B, J_B) is the second matrix listed in (1) and the matrix A_B is

```
> print(autKSexported[2][1]);
```

Y(1)	0	0	0	0	0	0	0
0	0	0	0	Y(13)	0	0	0
0	0	0	0	0	0	0	<i>Y</i> (24)
0	0	0	0	0	0	Y(31)	0
0	Y(34)	0	0	0	0	0	0
0	0	0	0	0	Y(46)	0	0
0	0	0	Y(52)	0	0	0	0
0	0	Y(59)	0	0	0	0	0

The equations obtained from the zero entries in A_B and its invertible-condition are stored in the ideal J_B . The third entry is

```
> print(autKSexported[2][3]);
```

 $Y(2), Y(3), \ldots, Y(63), Y(64), -Y(1)Y(13)Y(24)Y(31)Y(34)Y(46)Y(52)Y(59)Z - 1$

Moreover, an ideal Iexported, called J in Algorithm 2.3, is being exported that is the product over all the ideals J_B where B runs through $\operatorname{Aut}(\Omega_R)$. This means $\operatorname{Aut}_K(S) \cong S'/J$ is isomorphic to Sprime modulo Iexported; the degree matrix of Sprime can be obtained via getVariableWeights().

We come to $\operatorname{Aut}_{K}(R)$. Restricting the group action of Construction 2.2 to $\operatorname{Aut}_{K}(S) \subseteq \operatorname{GL}(n)$, we have an algebraic subgroup given as the *stabilizer*

 $\operatorname{Stab}_{I}(\operatorname{Aut}_{K}(S)) := \{A \in \operatorname{Aut}_{K}(S); A \cdot I = I\} \subseteq \operatorname{Aut}_{K}(S).$

Provided $I_w = \{0\}$ holds for all $w \in \Omega_S$, Hausen et al. [2017] have shown that we have an isomorphism

$$\operatorname{Stab}_{I}(\operatorname{Aut}_{K}(S)) \cong \operatorname{Aut}_{K}(R).$$

The final step then is the following. Define the set $\Omega_I := \{\deg(g_1), \ldots, \deg(g_s)\}$ of ideal generator degrees. The idea is to compute (linear) equations ensuring that the vector spaces I_u , where $u \in \Omega_I$, are mapped to one another.

Algorithm 2.6 (computing $Aut_K(R)$). See [Hausen et al. 2017, Algorithm 3.8].

Input: the *K*-graded polynomial ring *S* and the defining ideal $I \subseteq S$ of *R*.

- Let $J \subseteq S' := \mathbb{C}[Y_{ij}; 1 \le i, j \le n]$ be the output of Algorithm 2.3.
- Compute Ω_I and form the \mathbb{C} -vector space $W := \bigoplus_{\Omega_I} S_u$.
- For the vector space $I_W = I \cap W \subseteq W$, compute
 - a \mathbb{C} -basis (h_1, \ldots, h_l) and

- a description $I_W = V(\ell_1, \ldots, \ell_m)$ with linear forms $\ell_i \in W^*$.

• With the GL(*n*)-action from Construction 2.2 and $Y = (Y_{ij})$, we obtain the ideal

$$J' := \langle \ell_i(Y \cdot h_j); \ 1 \le i \le m, \ 1 \le j \le l \rangle \subseteq S'.$$

Output: the ideal $J + J' \subseteq S'$. Then $V(J + J') \subseteq GL(n)$ is an algebraic subgroup isomorphic to Aut_{*K*}(*R*).

- **Remark 2.7.** (i) Algorithms 2.3 and 2.6 do not make use of Gröbner basis computations. However, in Singular, it usually is quicker to compute $J \cap J_B$ instead of $J \cdot J_B$.
- (ii) Computing $G := \operatorname{Aut}_K(R) \subseteq \operatorname{GL}(n)$ with Algorithm 2.6 enables us to directly compute the number of irreducible components $[G : G^0]$ and the dimension of *G* by Gröbner basis computations.

Example 2.8 (autgradalg.lib III). Continuing Example 2.5, let us compute $\operatorname{Aut}_{K}(R)$. We first switch back to *S*, enter the defining ideal *I* for R = S/I and start the computation of $\operatorname{Aut}_{K}(R)$:

```
> setring S;
> ideal I = T(1)*T(6) + T(2)*T(5) + T(3)*T(4) + T(7)*T(8);
> def Sres = autGradAlg(I, TOR);
> setring Sres;
```

The resulting ring Sres is identical to Sprime. A list stabExported is being exported; the interpretation of the entries is identical to that of the list listAutKS from Example 2.5, with the difference that the ideal part now contains additional equations describing the stabilizer: for example

```
> stabExported[2][3];
```

```
Y(2), Y(3), \dots Y(63), Y(64), -Y(1)Y(13)Y(24)Y(31)Y(34)Y(46)Y(52)Y(59)Z - 1, -Y(24)Y(31) + Y(52)Y(59), Y(13)Y(34) - Y(52)Y(59), -Y(13)Y(34) + Y(1)Y(46)
```

Moreover, an ideal Jexported is being exported that is the product over all J_B as before. Then Sres modulo Jexported is isomorphic to $\operatorname{Aut}_K(R)$. The grading is obtained as before with getVariableWeights().

3. APPLICATION: MORI DREAM SPACES. In this section, we briefly recall from [Hausen et al. 2017] how the algorithms from the last section can be applied to a class of varieties in algebraic geometry.

To a normal algebraic variety X over \mathbb{C} with finitely generated class group Cl(X) one can assign a Cl(X)-graded \mathbb{C} -algebra, its so-called *Cox ring*,

$$\operatorname{Cox}(X) = \bigoplus_{[D] \in \operatorname{Cl}(X)} \Gamma(X, \mathcal{O}(D));$$

see, e.g., [Arzhantsev et al. 2015] for details on this theory. If X is finitely generated, X is called a *Mori dream space*. For example, each toric variety or each smooth Fano variety is a Mori dream space [Cox 1995; Birkar et al. 2010]. The Cox ring has strong implications on the underlying Mori dream space. More precisely,

X can be recovered as a good quotient

$$\operatorname{Spec}(R) =: \overline{X} \supseteq \widehat{X} \xrightarrow{\#H} X$$
 (2)

of an open subset \widehat{X} by the *characteristic quasitorus* $H := \operatorname{Spec}(\mathbb{C}[K])$. In fact, \widehat{X} is determined by an ample class $w \in \operatorname{Cl}(X)$. This opens up a computer algebra based approach [Hausen and Keicher 2015; Keicher 2014] to Mori dream spaces. In [Arzhantsev et al. 2014], it has been shown that (2) translates to automorphisms of X as follows:

$$\operatorname{Aut}_{\operatorname{Cl}(X)}(\operatorname{Cox}(X)) \cong \operatorname{Aut}_{H}(\overline{X}) \supseteq \operatorname{Aut}_{H}(\widehat{X}) \xrightarrow{/H} \operatorname{Aut}(X)$$
(3)

Here, by Aut_{*H*}(*Y*) we mean the group of *H*-equivariant automorphisms of *Y*; these are pairs (φ, ψ) with $\varphi: Y \to Y$ being an automorphism of varieties and $\psi: H \to H$ an automorphism of affine algebraic groups such that $\varphi(h \cdot y) = \psi(h) \cdot y$ holds for all $h \in H$ and $y \in Y$. By (3), we can directly compute Aut_{*H*}(\overline{X}) with Algorithm 2.6. In the following proposition, we investigate the symmetries of the list of Fano varieties [Bechtold et al. 2016].

Proposition 3.1. Let X_i be the nontoric terminal Fano threefold of Picard number one with an effective two-torus action from the classification in [Bechtold et al. 2016, Theorem 1.1].

- (i) For all $1 \le i \le 41$, Algorithm 2.6 is able to compute a presentation of $G_i := Aut_H(\overline{X}_i)$ as an affine algebraic subgroup $V(J_i) \subseteq GL(n_i)$.
- (ii) Using (i), these are the dimensions dim (G_i) and the number of components $[G_i : G_i^0]$ of a selection of $G_i \subseteq GL(n_i)$:

X _i	AND	dimGi	<u>رو،</u> ف	i im Aut Xi	X_i	AULAS	dimGi	(G) (G)	in And Xi
X_3	$\mathbb{Z}/4\mathbb{Z}$	3	4	2	X_{26}	$\mathbb{Z}/2\mathbb{Z}$	3		2
X_6	{1}	5		4	X_{28}	{1}	4	1	3
X_7	{1}	5		4	X_{33}	{1}	6	2	5
X_{10}	{1}	4	1	3	X_{34}	{1}	6	2	5
X_{12}	{1}	6		5	X_{36}	{1}	5	1	4
<i>X</i> ₁₃	{1}	4	1	3	X_{37}	{1}	4	2	3
X_{14}	{1}	3		2	X_{38}	{1}	4	3	3
X_{15}	{1}	5		4	X_{39}	{1}	3		2
X_{16}	{1}	3		2	X_{40}	{1}	3	1	2
X_{18}	{1}	6		5	X_{42}	{1}	3	2	2
X_{19}	{1}	4	1	3	X_{45}	{1}	4	2	3
X_{20}	{1}	5		4	X_{46}	{1}	4	1	3
X_{21}	{1}	3	2	2	X_{47}	{1}	3	1	2
X ₂₅	{1}	4	1	3		-			

Proof. This is an application of Algorithm 2.6 and of the Singular commands to compute dimension and absolute components; see, for example, [Greuel and Pfister 2008]. We performed the computations on an older machine (Intel celeron CPU, 4 GB RAM) and canceled them after several seconds. The files are available at [Keicher 2017].

In [Hausen et al. 2017], the authors have also presented algorithms to compute $\operatorname{Aut}_H(\widehat{X})$ and generators for the Hopf algebra $\mathcal{O}(\operatorname{Aut}(X))$. Both algorithms are also implemented in our library. However, the case $\mathcal{O}(\operatorname{Aut}(X))$ involves a Hilbert basis computation that usually renders the computation infeasible. We therefore finish this note with an example.

Example 3.2 (autgradalg.lib IV). In Example 2.8, the algebra *R* is the Cox ring of a Mori dream space: fix an ample class, say, $w := (0, 0, 2) \in K \otimes \mathbb{Q}$, then *R* and *w* define a Mori dream space X = X(R, w). The characteristic quasitorus is $H = (\mathbb{C}^*)^3 \times \{\pm 1\}$.

In Example 2.8, we have already computed $\operatorname{Aut}_H(\overline{X}) \cong G := \operatorname{Aut}_K(R)$. From it, we obtain $\operatorname{Aut}_H(\widehat{X})$ as follows: first, w defines a certain polyhedral cone, the GIT-cone $\lambda(w)$. Then $\operatorname{Aut}_H(\widehat{X})$ is obtained from G by choosing only those elements (A_B, B, J_B) of the list stabExported where $B \in \operatorname{Aut}(\Omega_S)$ fixes $\lambda(w)$. In our library, you can compute it as follows (making use of gitfan.lib [Boehm et al. 2016]):

```
> intvec w = 1,9,16,0; // drawn in blue
> setring S; // from before, R=S/I
> def RR = autXhat(I, w, TOR);
> setring RR;
```


Then a list RES will be exported, identical to stabExported from Example 2.8 with the difference that it contains only the element stabExported[1] as the other matrices B do not fix $\lambda(w)$. The computation of generators for $\mathcal{O}(\operatorname{Aut}(X))$ is not feasible here, but in principle, the command is autX(I, w, TOR).

SUPPLEMENT. The online supplement contains version 4.1.1.0 of autgradalg.lib.

REFERENCES.

- [Arzhantsev et al. 2015] I. Arzhantsev, U. Derenthal, J. Hausen, and A. Laface, *Cox rings*, Cambridge Studies in Advanced Mathematics **144**, Cambridge University Press, 2015. MR Zbl
- [Bechtold et al. 2016] B. Bechtold, J. Hausen, E. Huggenberger, and M. Nicolussi, "On terminal Fano 3-folds with 2-torus action", *Int. Math. Res. Not.* **2016**:5 (2016), 1563–1602. MR Zbl

[[]Arzhantsev et al. 2014] I. Arzhantsev, J. Hausen, E. Herppich, and A. Liendo, "The automorphism group of a variety with torus action of complexity one", *Mosc. Math. J.* **14**:3 (2014), 429–471, 641. MR Zbl

Keicher ~~~ A software package to compute automorphisms of graded algebras 19

- [Birkar et al. 2010] C. Birkar, P. Cascini, C. D. Hacon, and J. McKernan, "Existence of minimal models for varieties of log general type", *J. Amer. Math. Soc.* **23**:2 (2010), 405–468. MR Zbl
- [Boehm et al. 2016] J. Boehm, S. Keicher, and Y. Ren, "Computing GIT-fans with symmetry and the Mori chamber decomposition of $\overline{M}_{0.6}$ ", 2016. arXiv
- [Cox 1995] D. A. Cox, "The homogeneous coordinate ring of a toric variety", *J. Algebraic Geom.* **4**:1 (1995), 17–50. MR Zbl
- [Greuel and Pfister 2008] G.-M. Greuel and G. Pfister, A SINGULAR *introduction to commutative algebra*, 2nd ed., Springer, 2008. MR
- [Hausen and Keicher 2015] J. Hausen and S. Keicher, "A software package for Mori dream spaces", *LMS J. Comput. Math.* **18**:1 (2015), 647–659. MR Zbl
- [Hausen et al. 2017] J. Hausen, S. Keicher, and R. Wolf, "Computing automorphisms of Mori dream spaces", *Math. Comp.* **86**:308 (2017), 2955–2974. MR Zbl
- [Jensen 2017] A. N. Jensen, "Gfan, a software system for Gröbner fans and tropical varieties", 2017, http://home.imf.au.dk/jensen/software/gfan/gfan.html. Zbl
- [Keicher 2014] S. Keicher, *Algorithms for Mori dream spaces*, Ph.D. thesis, Universität Tübingen, 2014, https://publikationen.uni-tuebingen.de/xmlui/handle/10900/54061. Zbl
- [Keicher 2017] S. Keicher, "autgradalg.lib a library for Singular to compute automorphisms of graded algebras", 2017, https://github.com/skeicher/autgradalg-lib.
- [Steidel 2013] S. Steidel, "Gröbner bases of symmetric ideals", J. Symbolic Comput. 54 (2013), 72–86. MR Zbl

RECEIVED: 16 Apr 2017 REVISED: 18 Apr 2018 ACCEPTED: 18 May 2018

SIMON KEICHER:

keicher@mail.mathematik.uni-tuebingen.de

Mathematisches Institut, Universität Tübingen, Tübingen, Germany

JOURNAL OF SOFTWARE FOR ALGEBRA AND GEOMETRY vol 8, no 1, 2018

HeLP: a GAP package for torsion units in integral group rings Andreas Bächle and Leo Margolis	
A software package to compute automorphisms of graded algebras Simon Keicher	11
A package for computations with classical resultants Giovanni Staglianò	21
The SpaceCurves package in Macaulay2 Mengyuan Zhang	31
The ReesAlgebra package in Macaulay2 David Eisenbud	49
A Macaulay2 package for computations with rational maps Giovanni Staglianò	61
ExteriorIdeals: a package for computing monomial ideals in an exterior algebra Luca Amata and Marilena Crupi	71
Software for computing conformal block divisors on $\overline{M}_{0,n}$ David Swinarski	81
Divisor Package for Macaulay2 Karl Schwede and Zhaoning Yang	87