
Journal of Software for

Algebra and Geometry

Software for computing conformal block divisors on M0,n

DAVID SWINARSKI

vol 8 2018



JSAG 8 (2018), 81–86 The Journal of Software for
dx.doi.org/10.2140/jsag.2018.8.81 Algebra and Geometry

Software for computing conformal block divisors on M0,n

DAVID SWINARSKI

ABSTRACT: We introduce the packages LieTypes.m2 and ConformalBlocks.m2
for Macaulay2. LieTypes.m2 contains basic types for working with Lie algebras
and Lie algebra modules. ConformalBlocks.m2 computes ranks and first Chern
classes of vector bundles of conformal blocks on M0,n .

1. INTRODUCTION. The moduli stacks Mg,n of Deligne–Mumford stable n-pointed
curves of genus g are central objects of study in algebraic geometry and mathe-
matical physics. The WZW model of conformal field theory can be interpreted as
defining vector bundles on Mg,n whose fibers are the so-called vector spaces of
conformal blocks. These vector bundles were first constructed by Tsuchiya, Ueno
[2008], and Yamada; their ranks are computed by the famous Verlinde formula.

We omit the lengthy full definition of conformal blocks (see the references
[Beauville 1996] and [Ueno 2008]) and instead merely describe the input required
to specify a conformal block. Let g be a simple Lie algebra, and let ` be a positive
integer called the level. Choose a set of simple roots for the root system associated
to g, and let θ be the highest root. Let (−,−) denote the Killing form, normalized
so that (θ, θ)= 2.

Proposition 1.1. Let g and n be nonnegative integers satisfying 3g − 3+ n ≥ 0.
Let ` be a positive integer. Let Eλ = (λ1, . . . , λn) be an n-tuple of weights with
(λi , θ)≤ ` for each i = 1, . . . , n. For each such triple (g, `, Eλ), we may construct
a vector bundle V(g, `, Eλ) on Mg,n , called the vector bundle of conformal blocks.

In 2008, Fakhruddin gave formulas for the Chern classes of these vector bundles
[Fakhruddin 2012]. We will refer to the first Chern class of a conformal block bun-
dle as a conformal block divisor. The package ConformalBlocks.m2 implements
some of Fakhruddin’s main formulas in the genus 0 case.

Several quantities from representation theory appear in Fakhruddin’s formulas,
and the earliest version of ConformalBlocks.m2 contained several functions for
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representation theory calculations. At the suggestion of Grayson and Stillman,
these were moved into a separate package, LieTypes.m2.

2. THE LIETYPES.M2 PACKAGE. The LieTypes.m2 package defines two new
classes, LieAlgebra and LieAlgebraModule; objects of these classes are hash
tables. Currently, only simple Lie algebras over C are implemented. (Volunteers
who would like to extend the functionality of this package are invited to contact the
author.) Simple Lie algebras over C are specified by their rank and root system type.
Irreducible Lie algebra modules are specified by their underlying Lie algebra and
highest weight, and a general Lie algebra module is specified by the multiplicities
of the irreducible submodules it contains.

The LieTypes.m2 package contains several functions implementing basic Lie
algebra data, such as the Cartan matrix. The documentation within the package con-
tains references for formulas and/or sources of reference data for each of these func-
tions. This package uses Macaulay2’s combinatorial and linear algebra functions.

2.1. Tensor coefficients and fusion coefficients. One notable feature of the pack-
age LieTypes.m2 is that it computes tensor product decompositions and fusion
product decompositions for all irreducible root system types.

Let Vλ denote the irreducible g-module with highest weight λ. Define the tensor
product coefficients N ν

λ,µ by

Vλ⊗ Vµ =
⊕

V
⊕N ν

λ,µ
ν .

The LieTypes.m2 package uses the Racah–Speiser algorithm for computing tensor
product coefficients [Di Francesco et al. 1997, 13.5.2].

In type A (that is, g= slk), the tensor product coefficients are the Littlewood–
Richardson coefficients. These coefficients have been previously implemented in
other Macaulay2 packages (e.g., SchurRings.m2).

The fusion product ⊗` is a product for integrable level ` modules over an affine
Lie algebra ĝ. The fusion coefficients N (`)ν

λ,µ are defined by the decomposition of
the fusion product, and can be computed using the Kac–Walton algorithm (see
[Di Francesco et al. 1997, § 16.2.2]). The Kac–Walton algorithm is closely related
to the Racah–Speiser algorithm for tensor products, and it is defined entirely using
the combinatorics of the root system of the underlying finite-dimensional Lie alge-
bra. Therefore, we can abuse notation and use the Kac–Walton algorithm to define
a product ⊗` on Lie algebra modules as well as affine Lie algebra modules.

Fusion coefficients have previously been implemented in KAC and Magma; but,
to the author’s knowledge, the implementation in LieTypes.m2 in Macaulay2 is
the first free, open-source implementation of fusion coefficients.

As an example, let g= sl3. Let ω1 and ω2 be the fundamental dominant weights,
and λ= 2ω1+ω2 = (2, 1), µ= ω1+ 2ω2 = (1, 2). The calculation below shows
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that the tensor product V(2,1)⊗V(1,2) contains two copies of V(1,1), while the level 3
fusion product V(2,1)⊗3 V(1,2) contains one copy of V(1,1). The information com-
puted by the tensor product and fusion product functions is sufficient to determine
the characters of these products, though characters are not implemented in this
version of LieTypes.m2.

i1 : loadPackage("LieTypes");
i2 : sl_3=simpleLieAlgebra("A",2)
o2 = Simple Lie algebra, type A, rank 2
o2 : LieAlgebra
i3 : U=irreducibleLieAlgebraModule({2,1},sl_3);
i4 : V=irreducibleLieAlgebraModule({1,2},sl_3);
i5 : W=irreducibleLieAlgebraModule({1,1},sl_3);
i6 : tensorCoefficient(U,V,W)
o6 = 2
i7 : fusionCoefficient(U,V,W,3)
o7 = 1

3. THE CONFORMALBLOCKS.M2 PACKAGE. The ConformalBlocks.m2 pack-
age implements some of Fakhruddin’s formulas for conformal block divisors on
the moduli space of pointed genus 0 curves M0,n . Its three main functions compute
(1) the rank of a conformal block bundle,

(2) the intersection number of a conformal block divisor with an F-curve,

(3) the divisor class of the symmetrization of a conformal block divisor.
The version of this package described here uses Macaulay2’s combinatorial and
linear algebra functions.

Some references for divisors and curves on M0,n include [Keel and McKernan
2013; Keel 1992; Arap et al. 2012]. The boundary 1 = ∂M0,n (that is, the lo-
cus parametrizing nodal curves) consists of irreducible components 1I . These
span Pic(M0,n,Q). Moreover, the symmetrizations of the classes 1I yield a basis
{B2, . . . , Bbn/2c} of Pic(M0,n,Q)Sn. The ConformalBlocks.m2 package imple-
ments Sn-symmetric divisors in a new class called SymmetricDivisorM0nbar.
Divisors may be entered/viewed as linear polynomials in the classes Bi . For in-
stance, the divisor B2 + B3 + 2B4 on M0,8 could be created with the command
symmetricDivisorM0nbar(8,B_2+B_3+2*B_4). There are methods, for the
SymmetricDivisorM0nbar class, for creating and comparing divisors, as well
as addition, negation, scalar multiplication, and printing.

We will also be interested in certain combinatorially defined curves in the moduli
space called F-curves. These are denoted FI1,I2,I3,I4 , where I1 t I2 t I3 t I4 is a
partition of {1, . . . , n} into four nonempty subsets. Averaging such a curve with
its Sn translates gives a symmetric curve class; if #I1= a, #I2= b, #I3= c, #I4= d ,
we write Fa,b,c,d for this class. The classes {F j,1,1,n− j−2}

bn/2c−1
j=1 form an ordered

basis of H2(M0,n,Q)Sn.
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3.1. Ranks of conformal block bundles. The function conformalBlockRank in
ConformalBlocks.m2 computes ranks of conformal block bundles recursively us-
ing propagation and factorization (see [Beauville 1996, Corollary 2.4 and page 84]).
We abbreviate rEλ = rank V(g, `, Eλ) if this will cause no confusion.

In practice, propagation means that if one of the weights is zero, we may drop it.
Specifically, let Eλ = (λ1, . . . , λn), and suppose that λn = 0. Then V(g, `, Eλ) =

π∗n V(g, `, λ̂), where λ̂ = (λ1, . . . , λn−1) and πn : M0,n → M0,n−1 is the map
forgetting the n-th marked point. In particular, rEλ = rλ̂.

The factorization rules for conformal block bundles refer to a specific direct sum
decomposition of each fiber. We merely state the consequence of factorization for
ranks: Let Eµ∪Eν be a partition of the vector Eλ= (λ1, . . . , λn) into two vectors, each
of length at least 2. Then

rEλ =
∑
β∈P`

r Eµ∪βrEν∪β∗ .

Here ∗ denotes the involution on the root system given by −w0, where w0 is
the longest word in the Weyl group. Formulas for the action of this involution
for the simple Lie algebras are given in [Di Francesco et al. 1997, page 511] and
implemented in LieTypes.m2 with the starInvolution function.

To seed the recursion, we must know the ranks of conformal block bundles for
n=3. We get these from the fusion coefficients by rank V(g, `, (λ, µ, ν))= N (`)ν∗

λ,µ .

As an example, we compute rank V(sl2, 3, (ω1, . . . , ω1)) on M0,8:

i8 : loadPackage("ConformalBlocks");
i9 : sl_2=simpleLieAlgebra("A",1);
i10 : V=conformalBlockVectorBundle(sl_2,3,{{1},{1},{1},{1},{1},{1},{1},{1}},0);
i11 : conformalBlockRank(V)
o11 = 13

3.2. Intersection numbers with F-curves. Fakhruddin uses factorization to ex-
press intersection numbers of c1V(g, `, Eλ) with an F-curve in terms of degrees
of conformal blocks on M0,4 ∼= P1 and ranks of conformal blocks on M0,n′ with
n′ < n [Fakhruddin 2012, Proposition 2.7]. This formula is implemented in the
function FCurveDotConformalBlockDivisor.
i12 : w={{1},{1},{1},{1},{1},{1}};
i13 : V=conformalBlockVectorBundle(sl_2,1,w,0)
o13 = V
o13 : Conformal block vector bundle on M-0-6-bar
i14 : conformalBlockRank(V)
o14 = 1
i15 : FCurveDotConformalBlockDivisor({{1,2,3},{4},{5},{6}},V)
o15 = 1
i16 : FCurveDotConformalBlockDivisor({{1,2},{3,4},{5},{6}},V)
o16 = 0
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Line o14 tells us that the vector bundle V(sl2, 1, (ω1, . . . , ω1)) is a line bundle.
The intersection numbers computed in o15 and o16 allow us to give a geometric
interpretation of this divisor (see [Alexeev et al. 2014, Theorem 7.2] for details):
Let f : M0,6/S6

∼=
→H2 be the map which identifies a smooth genus 2 curve with the

branch points of its g1
2 . This extends to a map f : M0,6/S6

∼=
→ H 2 using the theory

of admissible covers. By comparing the intersection numbers computed above to
those of the pullback f ∗λ of the λ class on M2, we see that V(sl2, 1, (ω1, . . . , ω1))

is a multiple of f ∗λ.

3.3. Divisor classes of symmetric or symmetrized bundles. The Sn-symmetric di-
visors play an important role in the study of the birational geometry of M0,n . In
addition, they are much easier to study, since dim Pic(M0,n,Q)= 2n−1

−
(n

2

)
− 1

while dim Pic(M0,n,Q)Sn = bn/2c− 1.
Fakhruddin [2012, Corollary 3.6] gives a formula for computing the symmetriza-

tion
∑

σ∈Sn
c1V(g, `, σ Eλ) of a conformal block divisor over its Sn-translates. This

is implemented in the function symmetrizedConformalBlockDivisor for an
arbitrary n-tuple of weights Eλ. This function can also be used and is even faster if
the set of weights is already Sn-symmetric.

In the example below, we compute c1V(sl6, 1, (ω2, . . . , ω2)) for n = 6:
i17 : sl_6=simpleLieAlgebra("A",5);
i18 : w2={0,1,0,0,0};
i19 : V=conformalBlockVectorBundle(sl_6,1,apply(6, i -> w2),0);
i20 : D=symmetrizedConformalBlockDivisor(V)
o20 = 288*B + 864*B

2 3
o20 : S_6-symmetric divisor on M-0-6-bar
i21 : coefficientList D
o21 = {288, 864}
o21 : List
i22 : coefficientList scale D
o22 = {1, 3}
o22 : List

We see that c1V(sl6, 1, (ω2, . . . , ω2)) is a multiple of B2+ 3B3. The pullback
to M0,6 of the distinguished polarization on the GIT quotient (P1)6// SL2 with the
symmetric linearization is also a multiple of B2+ 3B3; GIT divisors of this form
are studied in [Alexeev and Swinarski 2012].
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